-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
178 lines (141 loc) · 5.5 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import random
import logging
import shutil
import sys
import torch
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from typing import Dict, Union
from evaluator import Evaluator
from datetime import datetime
TIMESTAMP = "{0:%Y-%m-%dT%H-%M-%S/}".format(datetime.now())
class Trainer:
"""#TODO: adds docstring
"""
TRAIN = 'train'
VALIDATION = 'valid'
TEST = 'test'
def __init__(self, model, dataset, val_dataset, args):
# constants
self.model = model
self.dataset = dataset
self.val_dataset = val_dataset
self.num_epochs = args.num_epochs
self.learning_rate = args.learning_rate
self.gpu = args.gpu
if os.path.isdir(args.checkpoint_dir_path):
self.checkpoint_dir_path = args.checkpoint_dir_path
self.checkpoint_file_path = args.checkpoint_dir_path
else:
self.checkpoint_dir_path = os.path.dirname(args.checkpoint_dir_path)
self.checkpoint_file_path = args.checkpoint_dir_path
self.display_steps = args.display_steps
self.monitor_metric_list = [
{'name': n, 'type': t}
for n, t in zip(args.monitor_metric_name, args.monitor_metric_type)
]
# variables
self.cur_train_results = None
self.cur_eval_results = None
self.cur_best_results = {key: None for key in args.monitor_metric_name}
self.cur_monitor_metric = None
self.cur_epoch_id = None
self.num_eval_steps_per_epoch = None
self.global_step = {
Trainer.TRAIN: 0,
Trainer.VALIDATION: 0,
Trainer.TEST: 0,
}
self._create_output_dir()
self.evaluator = Evaluator(
checkpoint_dir_path=self.checkpoint_dir_path,
console_output=False)
def run(self, mode):
if mode == Trainer.TRAIN:
self._before_training()
self._train()
#self._test()
self._after_training()
if mode == Trainer.TEST:
self._test()
def _before_training(self):
self.tensorboard_writer = self._get_tensorboard_writer()
def _after_training(self):
self.tensorboard_writer.close()
def _train(self):
'''
state_dict = torch.load(
self.checkpoint_dir_path+'/change_insize_best_mlr1.ckpt',
map_location='cuda:{}'.format(self.gpu))
self.model.load_state_dict(state_dict)
'''
for epoch_id in tqdm(range(self.num_epochs)):
self.cur_epoch_id = epoch_id
self.cur_train_results = self._train_epoch()
#self.cur_eval_results = self._eval_epoch(Trainer.VALIDATION)
self.evaluator.evaluate(
self.model,
additional_eval_info='train_epoch{}'.format(self.cur_epoch_id))
torch.save(self.model.state_dict(), self.checkpoint_file_path+'/tr_epoc_{}'.format(self.cur_epoch_id))
def _test(self):
for metric in self.monitor_metric_list:
self.cur_monitor_metric = metric
for epoch_id in tqdm(range(1)):
self.cur_epoch_id = epoch_id
self._load()
self.evaluator.evaluate(
self.model,
additional_eval_info='test_epoch{}'.format(self.cur_epoch_id))
def _load(self):
state_dict = torch.load(
self.checkpoint_file_path,
map_location='cuda:{}'.format(self.gpu))
self.model.load_state_dict(state_dict)
load_info = 'loading checkpoint from: {}'.format(
self.checkpoint_file_path)
print(load_info)
def _train_epoch(self):
raise NotImplementedError
def _eval_epoch(self, mode:str):
raise NotImplementedError
def _create_output_dir(self):
if not os.path.exists(self.checkpoint_dir_path):
if os.path.isdir(self.checkpoint_dir_path):
os.makedirs(self.checkpoint_dir_path)
else:
os.makedirs(os.path.dirname(self.checkpoint_dir_path))
def _get_tensorboard_writer(self):
if os.path.exists(self.tensorboard_log_dir_path):
shutil.rmtree(self.tensorboard_log_dir_path)
tensorboard_writer = SummaryWriter(self.tensorboard_log_dir_path)
return tensorboard_writer
'''
def _switch_mode(self, mode):
if mode == Trainer.TRAIN:
self.model.train()
#self.dataset.switch_to_train_data()
elif mode == Trainer.VALIDATION:
self.model.eval()
self.dataset.switch_to_val_data()
self.num_eval_steps_per_epoch = self.num_valid_steps_per_epoch
elif mode == Trainer.TEST:
self.model.eval()
self.dataset.switch_to_test_data()
self.num_eval_steps_per_epoch = self.num_test_steps_per_epoch
else:
error_info = 'mode "{}" is invalid.'.format(mode)
raise ValueError(error_info)
'''
@property
def tensorboard_log_dir_path(self):
return os.path.join('./output/71/roberta_pretrain', 'tensorboard_logs/'+TIMESTAMP)
@property
def num_train_steps_per_epoch(self):
return len(self.dataset)
@property
def num_total_train_steps(self):
return self.num_train_steps_per_epoch * self.num_epochs
#@property
#def checkpoint_file_path(self):
# return self.checkpoint_dir_path