-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathAlgorithmManager.py
861 lines (688 loc) · 36.9 KB
/
AlgorithmManager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
import warnings
warnings.filterwarnings('ignore', 'numpy not_equal will not check object identity in the future')
from sklearn.cluster import KMeans, MiniBatchKMeans
from sklearn.decomposition import PCA
#from sklearn.cluster import AgglomerativeClustering as hc
from sklearn.metrics import silhouette_samples, silhouette_score
from time import clock
import matplotlib.pyplot as plt
from scipy.cluster.hierarchy import dendrogram, linkage, fcluster
import matplotlib.cm as cm
import numpy as np
import pandas as pd
import baselines
import networkx as nx
from matplotlib import colors
from random import randint
'''
Feature Selection
------------------------------
criterion function
'''
def criterion_func(data,features):
from sklearn.linear_model import SGDClassifier
from sklearn.cross_validation import train_test_split
clf = SGDClassifier(loss='log', random_state=1, n_iter=1)
y, _ = pd.factorize(data['IsBelow'])
X_train, X_test, y_train, y_test = train_test_split(data[features], y, test_size=0.33, random_state=42)
clf.fit(X_train, y_train)
return clf.score(X_test, y_test)
'''
Implementation of a Sequential Forward Selection algorithm.
features (list): The feature space as a list of features.
max_k: Termination criterion; the size of the returned feature subset.
criterion_func (function): Function that is used to evaluate the performance of the feature subset.
print_steps (bool): Prints the algorithm procedure if True.
Returns the selected feature subset, as a list of features of length max_k.
'''
def seq_forw_select(data,features, max_k, criterion_func, print_steps=False):
# Initialization
feat_sub = []
k = 0
d = len(features)
if max_k > d:
max_k = d
while True:
# Inclusion step
if print_steps:
print('\nInclusion from feature space', features)
print(feat_sub + [features[0]])
crit_func_max = criterion_func(data,feat_sub + [features[0]])
best_feat = features[0]
for x in features[1:]:
crit_func_eval = criterion_func(data,feat_sub + [x])
if crit_func_eval > crit_func_max:
crit_func_max = crit_func_eval
best_feat = x
feat_sub.append(best_feat)
if print_steps:
print('include: {} -> feature subset: {}'.format(best_feat, feat_sub))
features.remove(best_feat)
# Termination condition
k = len(feat_sub)
if k == max_k:
break
return feat_sub
class AlgorithmManager(object):
dataManager = {}
'''
Init
'''
def __init__(self,dataManager):
self.dataManager = dataManager
'''
Graph -
Each node is a different method
Each edge is a sequence of method->method by timestamp
Add 1 for weight when the same tuple of methods are called
'''
def displayGraph(self):
data = self.dataManager.loadData(["QueryName","TimeStamp","Sid","Aid"],transformFields=False)
#data = data[data.Aid == "012abc55-5801-494f-a77f-a799f1d855de"]
data.is_copy = False
data.sort_values(["Sid","TimeStamp"], inplace=True) # Sort by "TimeStamp"
G=nx.DiGraph()
lastSid = 0;
colors_list = "bgrcmyk";#["red","black","yellow","blue"];
curColor = "red";
for i in range(len(data)-1):
fromQuery = data["QueryName"].values[i];
toQuery = data["QueryName"].values[i+1];
if(data["Sid"].values[i] != lastSid):
lastSid = data["Sid"].values[i];
curColor = colors_list[randint(0,len(colors_list)-1)]
continue;
try:
G[fromQuery][toQuery]['weight']=G[fromQuery][toQuery]['weight']+1;
except:
G.add_edge(fromQuery,toQuery,weight=1,color=curColor)
elarge=[(u,v) for (u,v,d) in G.edges(data=True) if d['weight'] >5000]
esmall=[(u,v) for (u,v,d) in G.edges(data=True) if d['weight'] <5000]
pos=nx.circular_layout(G)
plt.figure(figsize=(20,20))
# nodes
nx.draw_networkx_nodes(G,pos,
node_size=[v * 10 for v in nx.degree(G).values()]
,alpha=0.5)
# edges
nx.draw_networkx_edges(G,pos,edgelist=elarge,
width=1)
nx.draw_networkx_edges(G,pos,edgelist=esmall,
width=1,alpha=0.1,edge_color='b',style='dashed')
# weights
#weights = nx.get_edge_attributes(G,'weight')
#nx.draw_networkx_edge_labels(G,pos,edge_labels=weights)
labels = {}
for edge in esmall:
labels[edge[0]] = edge[0]
labels[edge[1]] = edge[1]
for edge in elarge:
labels[edge[0]] = edge[0]
labels[edge[1]] = edge[1]
# Labels for the nodes in eLarge
nx.draw_networkx_labels(G,pos,labels,font_size=12,font_color='b')
#plt.savefig("D:\weighted_graph_noconnection.png")
plt.show()
'''
Displays the count of IsFirst for each QueryName divided by the number of IsFirst in the dataset
'''
def displayCountByQueryName(self):
data = self.dataManager.loadData(["QueryName","IsFirst"],transformFields=False)
firstCount = (data.IsFirst).sum()
notFirstCount = (data.IsFirst).count() - firstCount
result = data.groupby('QueryName').apply(
lambda group: (group.IsFirst.sum() / # Sum = count of true
float(firstCount))
).to_frame('First')
result['NotFirst'] = data.groupby('QueryName').apply(
lambda group: ((group.IsFirst.count() - group.IsFirst.sum()) / # Count of total minus count of true
float(notFirstCount))
)
result.plot(kind='bar')
plt.show()
'''
Displays the count of below and above session for each QueryName divided by the number of queries in session in the dataset
'''
'''
For each unique query it displays the percentage of the users that have 3 or more sessions
'''
def displayCountSessionByQueryName(self):
data = self.dataManager.loadData(["QueryName","Aid","IsFirst","Sid"],transformFields=False)
result = data.groupby('Aid').apply(
lambda group: (group.Sid.nunique() <= 3) # 3 is the average (faster this way)
)
resultBelow = result[result == True]
resultAbove = result[result == False]
belowCount = (data[data.Aid.isin(resultBelow.index)]).sum()
aboveCount = data[data.Aid.isin(resultAbove.index)].sum()
result = data.groupby('QueryName').apply(
lambda group: (group.Aid.isin(resultBelow.index).sum() / # Sum = count of true
float(belowCount))
).to_frame('Below')
result['Above'] = data.groupby('QueryName').apply(
lambda group: ((group.Aid.isin(resultAbove.index)).sum() / # Count of total minus count of true
float(aboveCount))
)
result.plot(kind='bar')
plt.show()
'''
Session duration for users that visited the site more then 3 times is significantly higher than those who visited 3 times or less
'''
def displayAvgTimeSessions(self):
data = dataManager.loadData(["QueryName","TimeStamp","Sid","Aid"],transformFields=False)
# Get the timestamp difference
def get_stats(group):
return (pd.to_datetime(group['TimeStamp'])-pd.to_datetime(group['TimeStamp']).shift()).fillna(0).sum() / np.timedelta64(1, 's');
result = data.groupby('Aid').apply(
lambda group: (group.Sid.nunique() <= 3) # 3 is the average
)
resultBelow = result[result == True]
resultAbove = result[result == False]
sumOfTimestampBelow3 = data[data.Aid.isin(resultBelow.index)].groupby('Sid').apply(get_stats)
sumOfTimestampAbove3 = data[data.Aid.isin(resultAbove.index)].groupby('Sid').apply(get_stats)
timeMeans = (sumOfTimestampBelow3.mean()/60,sumOfTimestampAbove3.mean()/60)
timeStd = (sumOfTimestampBelow3.std()/60,sumOfTimestampAbove3.std()/60)
ind = np.arange(2) # the x locations for the groups
width = 0.35 # the width of the bars
fig, ax = plt.subplots()
rects1 = ax.bar(ind, timeMeans, width, color='b')
# add some text for labels, title and axes ticks
ax.set_ylabel('Average time of sessions (Minutes)')
ax.set_xticks(ind + 0.2)
ax.set_xticklabels(('Below average stay on site', 'Above average stay on site'))
plt.show()
# T-Test with unequal variance
stats.ttest_ind(sumOfTimestampBelow3, sumOfTimestampAbove3, equal_var=False)
'''
Trying to perform a decision tree in order to detect which features best forcast low retention
'''
def printDecisionTreeForBelow3(self):
from sklearn.ensemble import RandomForestClassifier
import pandas as pd
import numpy as np
from sklearn.cross_validation import train_test_split
data = self.dataManager.loadData(["QueryName","TimeStamp","Sid","Aid","Country","IsFirst","Browser","Os","Continent"],transformFields=True)
features = data.columns[1:4]
result = data.groupby('Aid').apply(
lambda group: (group.Sid.nunique()<=3)
)
below = result[result == True]
data['IsBelow'] = data['Aid'].isin(below.index)
y, _ = pd.factorize(data['IsBelow'])
X_train, X_test, y_train, y_test = train_test_split(data[features], y, test_size=0.33, random_state=42)
from sklearn.metrics import accuracy_score
from sklearn import svm
#clf = svm.SVC();
clf = RandomForestClassifier(n_jobs=2)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
accuracy_score(y_test, y_pred)
from sklearn import tree
i_tree = 0
for tree_in_forest in clf.estimators_:
with open('tree_' + str(i_tree) + '.dot', 'w') as my_file:
my_file = tree.export_graphviz(tree_in_forest, out_file = my_file)
i_tree = i_tree + 1
'''
runs the forward feature selection
'''
def run_seq_forw_select(self):
data = self.dataManager.loadData(["QueryName","TimeStamp","Sid","Aid","Country","IsFirst","Browser","Os","Continent"],transformFields=True)
result = data.groupby('Aid').apply(
lambda group: (group.Sid.nunique()<=3)
)
below = result[result == True]
data['IsBelow'] = data['Aid'].isin(below.index)
features = ["QueryName","TimeStamp","Sid","Aid","Country","IsFirst","Browser","Os","Continent"]
res_forw = seq_forw_select(data,features=features, max_k=4,criterion_func=criterion_func, print_steps=True)
return res_forw
'''
For each unique value in the column, we display the percentage of the users that have 3 sessions or more
'''
def genericBelowAverageDisplay(self,column):
data = self.dataManager.loadData(["Sid","Aid",column],transformFields=False,removeFirstK=5)
result = data.groupby('Aid').apply(
lambda group: (group.Sid.nunique()<=3)
)
below = result[result == True]
belowData = data.loc[data['Aid'].isin(below.index)]
col = data.groupby([column]).apply(
lambda group: (group.Aid.nunique())
).to_frame('Total')
col['Below'] = belowData.groupby([column]).apply(
lambda group: (group.Aid.nunique())
)
(col['Below']/col['Total']).plot(kind='barh', width=0.5)
plt.tight_layout()
plt.show()
'''
Display Sessions and queries
'''
def displaySidAndQueryName(self):
data = self.dataManager.loadData(["Aid","Sid","QueryName"],transformFields=False)
# Specific Aid
dataAid = data[data.Aid == "012abc55-5801-494f-a77f-a799f1d855de"]
colors = cm.gist_ncar(np.linspace(0,1,dataAid.QueryName.nunique()))
pd.crosstab(dataAid.Sid, dataAid.QueryName).plot.barh(stacked=True, color=colors,figsize=(20, 20))
plt.show()
'''
Find Aid with many sessions
'''
def displayAidBySid(self):
data = self.dataManager.loadData(["Aid","Sid"],transformFields=False)
result = data.groupby('Aid').apply(
lambda group: (group.Sid.nunique())
)
# Remove top 5 extreme
for i in np.arange(5):
print(result.idxmax())
result = result[result < result.max()]
# Aids:
# UnknownIbizaUser
#14bcea76-45fd-4b66-87a9-f63844a086c2
#53a13610-68d0-49a6-87ad-d3c121b0c2c2
#b7d6a7e8-6390-4e54-b653-0d1c055c7da3
#185610be-92f9-4d83-a567-4675a5615fac
ax = result.plot(kind='barh',color='red',figsize =(20,20))
ax.set_xlabel("# of unique Sid for each Aid")
ax.set_ylabel("Aid")
ax.axvline(x=result.mean(),c="blue",linewidth=2,ls='dashed')
ax.axvline(x=result.median(),c="red",linewidth=2,ls='dashed')
plt.xticks(np.arange(result.min(), result.max()+1, 5.0))
plt.savefig('GroupByAidCountSidForAll.png')
plt.show()
'''
Running baseline methods: Random and ItemKNN
'''
def compareGRUtoBaselines():
import gru4rec
session_key = "Sid" #"Aid" # Or Sid
time_key = "TimeStamp"
item_key = "QueryName" #"QueryName"
data = self.dataManager.loadData([time_key,item_key,session_key,"Aid","Sid"],removeFirstK=5)
train, test = self.dataManager.splitData(data,isRandom=False)
rand = baselines.RandomPred()
rand.fit(train)
res = baselines.evaluate_sessions(rand,test,train,cut_off=2, session_key = session_key, item_key = item_key, time_key = time_key)
print('Sid: Recall@2: {}'.format(res[0]))
res = baselines.evaluate_sessions(rand,test,train,cut_off=2, session_key = "Aid", item_key = item_key, time_key = time_key)
print('AidRecall@2: {}'.format(res[0]))
#itemknn = baselines.ItemKNN(n_sims = 100, lmbd = 20, alpha = 0.5, session_key = session_key, item_key = item_key, time_key = time_key)
itemknn.fit(train)
res = baselines.evaluate_sessions(itemknn,test,train,cut_off=2, session_key = session_key, item_key = item_key, time_key = time_key)
print('Recall@2: {}'.format(res[0]))
itemknn = baselines.ItemKNN(n_sims = 100, lmbd = 20, alpha = 0.5, session_key = "Aid", item_key = item_key, time_key = time_key)
itemknn.fit(train)
res = baselines.evaluate_sessions(itemknn,test,train,cut_off=2, session_key = session_key, item_key = item_key, time_key = time_key)
print('Recall@2: {}'.format(res[0]))
'''
Runs recurrent neural network based on the paper: http://arxiv.org/pdf/1511.06939v4.pdf
'''
def runGRU4Rec(self):
import gru4rec
session_key = "Sid" #"Aid" # Or Sid
time_key = "TimeStamp"
item_key = "QueryName" #"QueryName"
data = self.dataManager.loadData([time_key,item_key,session_key,"Aid","Sid"],removeFirstK=5)
train, test = self.dataManager.splitData(data,isRandom=False)
print('Training GRU4Rec')
batch_size = 200
for layers in [100,1000]:
for loss_type in ['top1']:
for momentum in [3,4,5]:
for dropOut in [3,4,5]:
try:
print('Batch Size: ' + str(batch_size) + ' Dropout: ' + str(float(dropOut)/10.0) + ' Momentum: ' + str(float(momentum)/10.0))
gru = gru4rec.GRU4Rec(layers=[layers], loss=loss_type, batch_size=batch_size, dropout_p_hidden=float(dropOut)/10.0, learning_rate=0.05, momentum=float(momentum)/10.0
,n_epochs=3,hidden_act = 'tanh', final_act='tanh'
,session_key=session_key, item_key=item_key, time_key=time_key)
gru.fit(train)
res = gru.evaluate_sessions_batch(test, cut_off=2, batch_size=batch_size,
session_key=session_key, item_key=item_key, time_key=time_key)
print('Recall : {}'.format(res[0]))
except:
print("Unexpected error")
'''
Runs the GRU, learns from the users that have more than average sessions and predicts on users that have less than 3 sessions and above
'''
def learnFromExperiencedGRU(self):
import gru4rec
session_key = "Sid" #"Aid" # Or Sid
time_key = "TimeStamp"
item_key = "QueryName" #"QueryName"
data = self.dataManager.loadData([time_key,item_key,session_key,"Aid","Sid"],removeFirstK=5)
result = data.groupby('Aid').apply(
lambda group: (group.Sid.nunique() <= 3)
)
resultBelow = result[result == True]
resultAbove = result[result == False]
dataBelow = data[data.Aid.isin(resultBelow.index)]
dataAbove = data[data.Aid.isin(resultAbove.index)]
train, test = self.dataManager.splitData(dataAbove,isRandom=False)
testBelow = dataBelow[:len(test)]
print('Training GRU4Rec')
batch_size = 200
for layers in [1000]:
for loss_type in ['top1']:
for momentum in [3,4,5]:
for dropOut in [3]:
try:
print('Batch Size: ' + str(batch_size) + ' Dropout: ' + str(float(dropOut)/10.0) + ' Momentum: ' + str(float(momentum)/10.0))
gru = gru4rec.GRU4Rec(layers=[1000], loss=loss_type, batch_size=batch_size, dropout_p_hidden=float(dropOut)/10.0, learning_rate=0.05, momentum=float(momentum)/10.0
,n_epochs=3,hidden_act = 'tanh', final_act='tanh'
,session_key=session_key, item_key=item_key, time_key=time_key)
gru.fit(train)
res = gru.evaluate_sessions_batch(test, cut_off=2, batch_size=batch_size,
session_key=session_key, item_key=item_key, time_key=time_key)
print('Above Test Recall : {}'.format(res[0]))
res = gru.evaluate_sessions_batch(testBelow, cut_off=2, batch_size=batch_size,
session_key=session_key, item_key=item_key, time_key=time_key)
print('Below Recall : {}'.format(res[0]))
except:
print("Unexpected error")
'''
Runs recurrent neural network based on the paper: http://arxiv.org/pdf/1511.06939v4.pdf
Runs the gru on a specific Aid, and then on the sessions for the aid
Aid: 21674def-1c93-46e5-95ab-015e904fb10f
Encoded Aid: 3807
Train Size: 1184 Test Size: 296
Best Results:
Batch Size: 5 Dropout: 0.5 Momentum: 0.4
Correct: 108
Accuracy: 0.372413793103
Batch Size: 10 Dropout: 0.5 Momentum: 0.2
Correct: 109
Accuracy: 0.382456140351
Batch Size: 15 Dropout: 0.5 Momentum: 0.3
Correct: 110
Accuracy: 0.392857142857
'''
def runGRU4RecForSpecificAid(self,numOfAids=10):
import gru4rec
session_key = "Sid" #"Aid" # Or Sid
time_key = "TimeStamp"
item_key = "QueryName"
data = self.dataManager.loadData([time_key,item_key,"Aid","Sid"],removeFirstK=5,onlyFirstFile=True)
result = data.groupby('Aid').apply(
lambda group: (group.Sid.nunique())
)
result.sort_values(inplace=True,ascending=False)
for selectedAid in result.keys()[2:(numOfAids+2)]:
idx = self.dataManager.fields.index("Aid");
ret = self.dataManager.mcle.all_encoders_[idx].inverse_transform(selectedAid);
print(str(ret))
aidData = data.loc[data['Aid'] == selectedAid]
train, test = self.dataManager.splitData(aidData,isRandom=False)
print('Training GRU4Rec')
batch_size = 5
momentum = 0.4
dropOut = 0.5
print('Batch Size: ' + str(batch_size) + ' Dropout: ' + str(float(dropOut)) + ' Momentum: ' + str(float(momentum)))
gru = gru4rec.GRU4Rec(layers=[1000], loss='top1', batch_size=batch_size, dropout_p_hidden=float(dropOut), learning_rate=0.05, momentum=float(momentum)
,n_epochs=10,hidden_act = 'tanh', final_act='tanh'
,session_key=session_key, item_key=item_key, time_key=time_key)
gru.fit(train)
test.is_copy = False
test.sort_values([time_key,session_key], inplace=True) # Sort by time_key first and then by session_key
specificSession = test[test[session_key] == test[session_key].values[0]]
preds = gru.predict_next_batch(specificSession[session_key], specificSession[item_key], None, len(specificSession))
print('Correct: {}'.format(correct))
if(len(test)-batch_size-1 > 0):
print('Accuracy: {}'.format(float(correct)/float(len(test)-batch_size-1)))
def getRecallForPrevious(self):
session_key = "Sid" #"Aid" # Or Sid
time_key = "TimeStamp"
item_key = "Pn" #"QueryName"
data = self.dataManager.loadData(["TimeStamp","Pn","QueryName","Sid","Aid"],transformFields=False,removeFirstK=10,isFirstMonth=True)
data.is_copy = False
data.sort_values([session_key,"TimeStamp"], inplace=True) # Sort by "TimeStamp"
lastSid = 0;
totalCount = 0;
recallSuccess = 0;
for i in range(len(data)-1):
fromQuery = data[item_key].values[i];
toQuery = data[item_key].values[i+1];
if(data[session_key].values[i] != lastSid): # Switched Session
lastSid = data[session_key].values[i]; # not adding to total count (not counting first of every session)
else:
if(fromQuery == toQuery):
recallSuccess = recallSuccess + 1;
totalCount = totalCount + 1
print(float(float(recallSuccess) /float(totalCount)))
def runGRU4RecAndDisplaySessions(self):
session_key = "Sid" #"Aid" # Or Sid
time_key = "TimeStamp"
item_key = "Pn" #"QueryName"
data = self.dataManager.loadData(["TimeStamp","Pn","QueryName","Sid","Aid"],transformFields=False,removeFirstK=10,isFirstMonth=True)
train, test = self.dataManager.splitData(data,isRandom=False)
print('Training GRU4Rec')
batch_size = 200
loss_type = 'top1'
momentum = 3
dropOut = 3
for layers in [100,1000]:
print('Layers: ' + str(layers) + ' Batch Size: ' + str(batch_size) + ' Dropout: ' + str(float(dropOut)/10.0) + ' Momentum: ' + str(float(momentum)/10.0))
gru = GRU4Rec(layers=[layers], loss=loss_type, batch_size=batch_size, dropout_p_hidden=float(dropOut)/10.0, learning_rate=0.05, momentum=float(momentum)/10.0
,n_epochs=3,hidden_act = 'tanh', final_act='tanh'
,session_key=session_key, item_key=item_key, time_key=time_key)
gru.fit(train)
res = gru.evaluate_sessions_batch(test, cut_off=2, batch_size=1, # Batch size = 1 inorder to better view each session
session_key=session_key, item_key=item_key, time_key=time_key,display=True)
print('Recall : {}'.format(res[0]))
'''
Input:
data - The data set we want to clear from noise.
pivot - According to what pivot create the one-of-k vectors, either Aid or Sid.
n_components - If n_components is a number, set the number of components to be this parameter, 'mle' lets the PCA function to choose the number of components.
plot - If it is True, then prints to file the distribution of singular values as a graph.
Output -
Calculates the projection of the data into the sub-space defined by the components chosen.
'''
def runPCA(self,data, n_components='mle', plot=False, pivot = 'Aid'):
pca = PCA(n_components, copy=True)
# Plot the PCA spectrum
print "Running PCA"
startTime = clock()
new_data = pca.fit_transform(data)
print "finished running after {0} secs".format(clock()-startTime)
if plot==True:
plt.figure(1, figsize=(4, 3))
plt.clf()
plt.axes([.2, .2, .7, .7])
plt.plot(pca.explained_variance_, linewidth=2)
plt.axis('tight')
plt.xlabel('n_components')
plt.ylabel('explained_variance_')
plt.savefig("PCA{0}.png".format(pivot))
return new_data
'''
Input:
pivot - According to what pivot create the one-of-k vectors, either Aid or Sid.
clusters - An iterable object that contains the how many clusters we wish to create.
If there is more than 1, the function will test each of the options given.
If it is False, use the default 5 clusters option.
value - What are the values we want to make from the one-of-k vectors, can be either QueryName or Pn.
file - Redirects the output of the function to a file.
elbow - Redirects the inertia's values to a .csv file.
clSizes - Redirects the cluster sizes calculations to a .csv file.
normalize - A flag for using normalization, if the flag is true, each coordinate is normalized, and then multiplied by the factor.
factor - See the above.
n_components - If n_components is a number, the function calculates the PCA and keeps only the n_components most significent components,
Otherwise calculates regular K-Means without PCA.
Batch - Flag that represents whether to use the Mini-Batches version of K-Means,
This option seems to be not stable enough for our attempts.
Output -
Calculates the K-Means clustering of the data, and outputs the results according to the parameters given.
'''
def runKMeans(self, pivot = "Aid", clusters = False, value="QueryName", file = False, elbow = False, clSizes = False, normalize = False, factor = 100, n_components=False, Batch = False):
# Preparing the data : loading, normalizing (if selected) and shuffling the data.
data = self.loadOperationsByOneOfK(pivot, value, normalize, factor)
np.random.shuffle(data)
# Preparing the data to compare, creating an average vector of the pivots, open all the file descriptors needed.
if file!= False:
avgVec = np.mean(data,axis = 0)
fid = open(file, 'w')
np.set_printoptions(precision=3,suppress = True) # Define a prettier printing.
fid.write(str(avgVec))
if elbow != False:
elbowfid = open(elbow, 'w')
if clSizes != False:
sizesfid = open(clSizes, 'w')
if n_components != False:
data = self.runPCA(data,n_components)
if clusters == False:
clusters = {5}
for n_clusters in clusters:
print "Running KMeans on {0} Clusters".format(n_clusters)
# Initialize the clusterer with n_clusters value, 15 runs of the algorithm and a random generator
if Batch == False:
clusterer = KMeans(n_clusters=n_clusters, n_init=300, init='k-means++', max_iter = 1000)
else:
clusterer = MiniBatchKMeans(n_clusters,n_init=300, batch_size=20000, init="k-means++", max_iter = 1000)
cluster_labels = clusterer.fit_predict(data)
# The silhouette_score gives the average value for all the samples.
# This gives a perspective into the density and separation of the formed clusters
#silhouette_avg = silhouette_score(data, cluster_labels)
fid.write("\n\nThe cluster centers for K={0}\n".format(n_clusters))
fid.write(str(clusterer.cluster_centers_))
#fid.write("\nThe cluster centers compared to the mean for K={0}\n".format(n_clusters))
#fid.write(str(clusterer.cluster_centers_/avgVec * 100))
if clSizes != False:
sizesfid.write("{0},".format(n_clusters))
for i in range(n_clusters):
cluster_i_size = 0
for val in cluster_labels:
if val == i:
cluster_i_size = cluster_i_size + 1
if clSizes != False:
sizesfid.write(",{0}".format(cluster_i_size))
fid.write("\nThe size of cluster {0} is {1}".format(i,cluster_i_size))
if elbow != False:
elbowfid.write("{0},{1}\n".format(n_clusters, clusterer.inertia_))
if clSizes != False:
sizesfid.write("\n")
fid.write("\nThe inertia is {0}\n\n".format(clusterer.inertia_))
fid.write("\n")
fid.write("\n\n")
#fid.write("For {0} clusters the average silhouette score is : {1}".format(n_clusters, silhouette_avg))
if elbow != False:
elbowfid.close()
if clSizes != False:
sizesfid.close()
'''
Input:
run_number - Allows creating files automatically without running over former files.
value - What are the values we want to make from the one-of-k vectors, can be either QueryName or Pn.
pivot - According to what pivot create the one-of-k vectors, either Aid or Sid.
clSizes - Redirects the cluster sizes calculations to a .csv file.
normalize - A flag for using normalization, if the flag is true, each coordinate is normalized, and then multiplied by the factor.
factor - See the above.
n_components - If n_components is a number, the function calculates the PCA and keeps only the n_components most significent components,
Otherwise calculates regular Hierarchical Clustering without PCA.
Output -
Calculates the Hierarchical Clustering of the data, creates a dandrogram and saves it to a file, and writes the cluster sizes to file if clSizes isn't False.
'''
def runHierarchicalClustering(self, run_number=2, value="QueryName", pivot='Aid', clSizes=False, normalize=False,factor=100, n_components=False):
print 'Running hierarchical clustering'
# Preparing the data : loading, normalizing (if selected) and selecting 10k record randomly.
data = self.loadOperationsByOneOfK(pivot, value, normalize, factor)
np.random.shuffle(data)
data = data[1:10,:] # The clustering is slow, so attempting the cluster only 10k random samples.
# Preparing the data to compare, creating an average vector of the pivots.
if n_components != False:
data = self.runPCA(data,n_components)
# Compute clustering
print("Running hierarchical clustering for {0} clusters".format(run_number))
startTime = clock()
ward = linkage(data, 'single', metric = 'cosine')
print("finished running after {0} secs".format(clock()-startTime))
# calculate the dendrogram
plt.figure(figsize=(25, 10))
plt.title('Hierarchical Clustering Dendrogram')
plt.xlabel('sample index')
plt.ylabel('distance')
dendrogram(
ward,
leaf_rotation=90., # rotates the x axis labels
leaf_font_size=8., # font size for the x axis labels
truncate_mode='lastp', # show only the last p merged clusters
p=100, # show only the last p merged clusters
show_leaf_counts=False, # False = numbers in brackets are counts
show_contracted=True, # to get a distribution impression in truncated branches
count_sort = 'descendent',
distance_sort = False
)
plt.savefig("plot{0}{1}{2}HC.png".format(value,pivot,run_number))
if clSizes != False:
sizesFid = open(clSizes,'w')
max_d = 0.7
clusters = fcluster(ward, max_d, criterion='distance')
n_clusters = clusters.max()
for i in range(1, n_clusters):
cluster_i_size = 0
for val in clusters:
if val == i:
cluster_i_size = cluster_i_size + 1
sizesFid.write("\nThe size of cluster {0} is {1}".format(i,cluster_i_size))
sizesFid.close()
'''
Utility function for clustering.
Input:
value - What are the values we want to make from the one-of-k vectors, can be either QueryName or Pn.
pivot - According to what pivot create the one-of-k vectors, either Aid or Sid.
normalize - A flag for using normalization, if the flag is true, each coordinate is normalized, and then multiplied by the factor.
factor - See the above.
Output:
Process the dataframe, and returns a ndarray of operations by the pivot label.
'''
def loadOperationsByOneOfK(self, pivot='Aid', value="QueryName", normalize=True, factor=100):
data = self.dataManager.loadData([pivot,value],transformFields=True)
print("\n")
data = data.sort_values(by=pivot)
#print(data.head(50))
# Compute the One of K matrix's size.
temp = data.max()
numOfTypes = temp[value] + 1
numOfPivots = temp[pivot] + 1
print("num of operation types {0} , num of pivot items {1}".format(numOfTypes, numOfPivots))
vectByTypes = np.zeros((numOfPivots,numOfTypes)) # Constructs a ndarray of size number of unique Sids x number of possible requests
# Initializing status parameters.
t1 = clock()
i = 0
for row in data.itertuples():
curPivot = row[1] # the current Session\User ID
oper = row[2] # the current Operation Type
value = vectByTypes.item((curPivot,oper)) # reads the former count of SID\AID x Operation
vectByTypes.itemset(((curPivot,oper)), value + 1) # Adding 1 to the current operation type for the current SID using Numpy quick access functions
value = vectByTypes.item((curPivot,oper))
# Status print every 100,000 iterations
t2 = clock()
if (i%500000 == 0 and i!=0):
print('Processed {0} rows in {1} seconds'.format(i, t2-t1))
i = i + 1
if normalize == True:
maxVect = vectByTypes.max(axis = 0)
print "The maximum of each row before normalization is : {0}".format(maxVect)
vectByTypes = vectByTypes / maxVect * factor
maxVect = vectByTypes.max(axis = 0)
print "and after normalization is : {0}".format(maxVect)
# print(vectByTypes[1:10])
print('Finshed processing all the data.')
return vectByTypes
'''
Runs T-SNE on the Dataset
'''
def runTSNE(self, pivot, normalize = False, factor = 100):
# Preparing the data : loading, normalizing (if selected) and selecting 100k record randomly.
data = self.loadOperationsByOneOfK(False, pivot, normalize, factor)
np.random.shuffle(data)
from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
X_tsne = TSNE(learning_rate=100).fit_transform(data)
X_pca = PCA().fit_transform(data)
figure(figsize=(10, 5))
subplot(121)
scatter(X_tsne[:, 0], X_tsne[:, 1])
subplot(122)
scatter(X_pca[:, 0], X_pca[:, 1])
plt.show();