forked from IDRnD/redimnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhubconf.py
41 lines (30 loc) · 1.49 KB
/
hubconf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import json
import torch
from redimnet import ReDimNetWrap
dependencies = ['torch','torchaudio']
URL_TEMPLATE = "https://github.com/IDRnD/ReDimNet/releases/download/latest/{model_name}"
def load_custom(size, pretrained=False, finetuned=True):
model_prefix = 'lm' if finetuned else 'ptn'
assert size in [f'b{i}' for i in range(7)]
model_name = f'redimnet-{size}-vox2-{model_prefix}.pt'
url = URL_TEMPLATE.format(model_name = model_name)
full_state_dict = torch.hub.load_state_dict_from_url(url, progress=True)
model_config = full_state_dict['model_config']
state_dict = full_state_dict['state_dict']
model = ReDimNetWrap(**model_config)
if pretrained or finetuned:
load_res = model.load_state_dict(state_dict)
print(f"load_res : {load_res}")
return model
def b0(pretrained=False, finetuned=True):
return load_custom('b0', pretrained=pretrained, finetuned=finetuned)
def b1(pretrained=False, finetuned=True):
return load_custom('b1', pretrained=pretrained, finetuned=finetuned)
def b2(pretrained=False, finetuned=True):
return load_custom('b2', pretrained=pretrained, finetuned=finetuned)
def b3(pretrained=False, finetuned=True):
return load_custom('b3', pretrained=pretrained, finetuned=finetuned)
def b5(pretrained=False, finetuned=True):
return load_custom('b5', pretrained=pretrained, finetuned=finetuned)
def b6(pretrained=False, finetuned=True):
return load_custom('b6', pretrained=pretrained, finetuned=finetuned)