diff --git a/.ipynb_checkpoints/stock_sentimental-checkpoint.ipynb b/.ipynb_checkpoints/stock_sentimental-checkpoint.ipynb
new file mode 100644
index 0000000..bc8b62b
--- /dev/null
+++ b/.ipynb_checkpoints/stock_sentimental-checkpoint.ipynb
@@ -0,0 +1,369 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "                                                Text  Sentiment\n",
+      "0  Kickers on my watchlist XIDE TIT SOQ PNK CPW B...          1\n",
+      "1  user: AAP MOVIE. 55% return for the FEA/GEED i...          1\n",
+      "2  user I'd be afraid to short AMZN - they are lo...          1\n",
+      "3                                  MNTA Over 12.00            1\n",
+      "4                                   OI  Over 21.37            1\n",
+      "Text         0\n",
+      "Sentiment    0\n",
+      "dtype: int64\n",
+      "(4632, 34) (4632,)\n",
+      "(1159, 34) (1159,)\n"
+     ]
+    }
+   ],
+   "source": [
+    "import pandas as pd\n",
+    "import numpy as np\n",
+    "from sklearn.model_selection import train_test_split\n",
+    "from sklearn.preprocessing import LabelEncoder\n",
+    "from tensorflow.keras.preprocessing.text import Tokenizer\n",
+    "from tensorflow.keras.preprocessing.sequence import pad_sequences\n",
+    "\n",
+    "# Load dataset\n",
+    "data = pd.read_csv('Stock_data.csv')\n",
+    "\n",
+    "# Display first few rows of the dataset\n",
+    "print(data.head())\n",
+    "\n",
+    "# Check for missing values\n",
+    "print(data.isnull().sum())\n",
+    "\n",
+    "# Drop missing values if any\n",
+    "data = data.dropna()\n",
+    "\n",
+    "# Encode sentiment labels (assuming they are in a column named 'Sentiment')\n",
+    "le = LabelEncoder()\n",
+    "data['Sentiment'] = le.fit_transform(data['Sentiment'])\n",
+    "\n",
+    "# Split dataset into features and labels\n",
+    "X = data['Text']\n",
+    "y = data['Sentiment']\n",
+    "\n",
+    "# Split data into training and testing sets\n",
+    "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
+    "\n",
+    "# Tokenization\n",
+    "tokenizer = Tokenizer(num_words=5000)  # Consider top 5000 words\n",
+    "tokenizer.fit_on_texts(X_train)\n",
+    "\n",
+    "# Convert texts to sequences\n",
+    "X_train_seq = tokenizer.texts_to_sequences(X_train)\n",
+    "X_test_seq = tokenizer.texts_to_sequences(X_test)\n",
+    "\n",
+    "# Pad sequences to ensure uniform input size\n",
+    "max_length = max(len(x) for x in X_train_seq)\n",
+    "X_train_pad = pad_sequences(X_train_seq, maxlen=max_length, padding='post')\n",
+    "X_test_pad = pad_sequences(X_test_seq, maxlen=max_length, padding='post')\n",
+    "\n",
+    "# Display shapes of data\n",
+    "print(X_train_pad.shape, y_train.shape)\n",
+    "print(X_test_pad.shape, y_test.shape)\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">Model: \"sequential\"</span>\n",
+       "</pre>\n"
+      ],
+      "text/plain": [
+       "\u001b[1mModel: \"sequential\"\u001b[0m\n"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n",
+       "┃<span style=\"font-weight: bold\"> Layer (type)                         </span>┃<span style=\"font-weight: bold\"> Output Shape                </span>┃<span style=\"font-weight: bold\">         Param # </span>┃\n",
+       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n",
+       "│ embedding (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Embedding</span>)                │ ?                           │     <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> (unbuilt) │\n",
+       "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+       "│ lstm (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">LSTM</span>)                          │ ?                           │     <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> (unbuilt) │\n",
+       "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+       "│ dropout (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dropout</span>)                    │ ?                           │               <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │\n",
+       "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+       "│ lstm_1 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">LSTM</span>)                        │ ?                           │     <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> (unbuilt) │\n",
+       "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+       "│ dropout_1 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dropout</span>)                  │ ?                           │               <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │\n",
+       "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+       "│ dense (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dense</span>)                        │ ?                           │     <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> (unbuilt) │\n",
+       "└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n",
+       "</pre>\n"
+      ],
+      "text/plain": [
+       "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n",
+       "┃\u001b[1m \u001b[0m\u001b[1mLayer (type)                        \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape               \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m        Param #\u001b[0m\u001b[1m \u001b[0m┃\n",
+       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n",
+       "│ embedding (\u001b[38;5;33mEmbedding\u001b[0m)                │ ?                           │     \u001b[38;5;34m0\u001b[0m (unbuilt) │\n",
+       "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+       "│ lstm (\u001b[38;5;33mLSTM\u001b[0m)                          │ ?                           │     \u001b[38;5;34m0\u001b[0m (unbuilt) │\n",
+       "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+       "│ dropout (\u001b[38;5;33mDropout\u001b[0m)                    │ ?                           │               \u001b[38;5;34m0\u001b[0m │\n",
+       "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+       "│ lstm_1 (\u001b[38;5;33mLSTM\u001b[0m)                        │ ?                           │     \u001b[38;5;34m0\u001b[0m (unbuilt) │\n",
+       "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+       "│ dropout_1 (\u001b[38;5;33mDropout\u001b[0m)                  │ ?                           │               \u001b[38;5;34m0\u001b[0m │\n",
+       "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+       "│ dense (\u001b[38;5;33mDense\u001b[0m)                        │ ?                           │     \u001b[38;5;34m0\u001b[0m (unbuilt) │\n",
+       "└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Total params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> (0.00 B)\n",
+       "</pre>\n"
+      ],
+      "text/plain": [
+       "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Trainable params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> (0.00 B)\n",
+       "</pre>\n"
+      ],
+      "text/plain": [
+       "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Non-trainable params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> (0.00 B)\n",
+       "</pre>\n"
+      ],
+      "text/plain": [
+       "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "from tensorflow.keras.models import Sequential\n",
+    "from tensorflow.keras.layers import Embedding, LSTM, Dense, Dropout\n",
+    "\n",
+    "# Define LSTM model\n",
+    "model = Sequential()\n",
+    "model.add(Embedding(input_dim=5000, output_dim=128))  # Embedding layer\n",
+    "model.add(LSTM(128, return_sequences=True))  # LSTM layer\n",
+    "model.add(Dropout(0.5))  # Dropout to prevent overfitting\n",
+    "model.add(LSTM(64))  # Second LSTM layer\n",
+    "model.add(Dropout(0.5))  # Dropout\n",
+    "model.add(Dense(1, activation='sigmoid'))  # Output layer for binary classification\n",
+    "\n",
+    "# Compile the model\n",
+    "model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])\n",
+    "\n",
+    "# Display model summary\n",
+    "model.summary()\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Epoch 1/10\n",
+      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 73ms/step - accuracy: 0.6265 - loss: 0.6656 - val_accuracy: 0.6343 - val_loss: 0.6423\n",
+      "Epoch 2/10\n",
+      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 61ms/step - accuracy: 0.7415 - loss: 0.5434 - val_accuracy: 0.7573 - val_loss: 0.4971\n",
+      "Epoch 3/10\n",
+      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 59ms/step - accuracy: 0.8876 - loss: 0.3093 - val_accuracy: 0.7616 - val_loss: 0.5779\n",
+      "Epoch 4/10\n",
+      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 61ms/step - accuracy: 0.9329 - loss: 0.1984 - val_accuracy: 0.7519 - val_loss: 0.6860\n",
+      "Epoch 5/10\n",
+      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 60ms/step - accuracy: 0.9661 - loss: 0.1211 - val_accuracy: 0.7454 - val_loss: 0.7584\n",
+      "Epoch 6/10\n",
+      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 60ms/step - accuracy: 0.9642 - loss: 0.1280 - val_accuracy: 0.7357 - val_loss: 0.8707\n",
+      "Epoch 7/10\n",
+      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 60ms/step - accuracy: 0.9692 - loss: 0.1043 - val_accuracy: 0.7195 - val_loss: 0.8572\n",
+      "Epoch 8/10\n",
+      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 61ms/step - accuracy: 0.9730 - loss: 0.0922 - val_accuracy: 0.7335 - val_loss: 0.8631\n",
+      "Epoch 9/10\n",
+      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 61ms/step - accuracy: 0.9842 - loss: 0.0609 - val_accuracy: 0.7357 - val_loss: 1.1649\n",
+      "Epoch 10/10\n",
+      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 73ms/step - accuracy: 0.9794 - loss: 0.0758 - val_accuracy: 0.7228 - val_loss: 1.1020\n"
+     ]
+    }
+   ],
+   "source": [
+    "# Train the model\n",
+    "history = model.fit(X_train_pad, y_train, epochs=10, batch_size=64, validation_split=0.2)\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "\u001b[1m37/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 14ms/step - accuracy: 0.7369 - loss: 1.0339\n",
+      "Test Accuracy: 74.46%\n"
+     ]
+    }
+   ],
+   "source": [
+    "# Evaluate the model\n",
+    "loss, accuracy = model.evaluate(X_test_pad, y_test)\n",
+    "print(f'Test Accuracy: {accuracy * 100:.2f}%')\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 500ms/step\n",
+      "Sentiment: Positive\n"
+     ]
+    }
+   ],
+   "source": [
+    "def predict_sentiment(text):\n",
+    "    sequence = tokenizer.texts_to_sequences([text])\n",
+    "    padded = pad_sequences(sequence, maxlen=max_length, padding='post')\n",
+    "    prediction = model.predict(padded)\n",
+    "    # Assuming binary classification: 0 for Negative, 1 for Positive\n",
+    "    if prediction[0] > 0.5:\n",
+    "        print(\"Sentiment: Positive\")\n",
+    "    else:\n",
+    "        print(\"Sentiment: Negative\")\n",
+    "\n",
+    "# Example usage\n",
+    "new_text = \"The stock market is  bad today.\"\n",
+    "predict_sentiment(new_text)\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "model.save('sentiment_model.keras')\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Text: \"The stock market is performing well today.\"\n",
+      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step\n",
+      "Sentiment: Positive\n",
+      "Text: \"The stock market is performing bad today.\"\n",
+      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step\n",
+      "Sentiment: Positive\n",
+      "Text: \"I'm very happy with the profits I've made.\"\n",
+      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step\n",
+      "Sentiment: Positive\n",
+      "Text: \"I'm disappointed with the losses this quarter.\"\n",
+      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step\n",
+      "Sentiment: Negative\n",
+      "Text: \"It's a great time to invest in stocks!\"\n",
+      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step\n",
+      "Sentiment: Positive\n"
+     ]
+    }
+   ],
+   "source": [
+    "test_texts = [\n",
+    "    \"The stock market is performing well today.\",\n",
+    "    \"The stock market is performing bad today.\",\n",
+    "    \"I'm very happy with the profits I've made.\",\n",
+    "    \"I'm disappointed with the losses this quarter.\",\n",
+    "    \"It's a great time to invest in stocks!\"\n",
+    "    \n",
+    "]\n",
+    "\n",
+    "for text in test_texts:\n",
+    "    print(f'Text: \"{text}\"')\n",
+    "    predict_sentiment(text)\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.12.4"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/PROJECT_STRUCTURE.md b/PROJECT_STRUCTURE.md
index 1ed8936..088af5f 100644
--- a/PROJECT_STRUCTURE.md
+++ b/PROJECT_STRUCTURE.md
@@ -15,6 +15,10 @@
 │   ├── SBI Test data.csv
 │   ├── SBI Train data.csv
 │   └── SBIN.csv
+├── Data Analysis/
+│   ├── SBI Stock Analysis .png
+│   ├── SBI Stock Analysis Updated.pptx
+│   └── SBI Stock Analysis Updated.twbx
 ├── Financial Environment Segmentation/
 │   ├── Financial Environment Segmentation.ipynb
 │   ├── Financial Insights - Market Segmentation.png
diff --git a/repo_structure.txt b/repo_structure.txt
index 3af122d..149e9b4 100644
--- a/repo_structure.txt
+++ b/repo_structure.txt
@@ -11,6 +11,10 @@
 │   ├── SBI Test data.csv
 │   ├── SBI Train data.csv
 │   └── SBIN.csv
+├── Data Analysis/
+│   ├── SBI Stock Analysis .png
+│   ├── SBI Stock Analysis Updated.pptx
+│   └── SBI Stock Analysis Updated.twbx
 ├── Financial Environment Segmentation/
 │   ├── Financial Environment Segmentation.ipynb
 │   ├── Financial Insights - Market Segmentation.png
diff --git a/sentiment_model.h5 b/sentiment_model.h5
index 3183c43..8b6b6a8 100644
Binary files a/sentiment_model.h5 and b/sentiment_model.h5 differ
diff --git a/sentiment_model.keras b/sentiment_model.keras
new file mode 100644
index 0000000..457085e
Binary files /dev/null and b/sentiment_model.keras differ
diff --git a/stock_sentimental.ipynb b/stock_sentimental.ipynb
index 746daff..bc8b62b 100644
--- a/stock_sentimental.ipynb
+++ b/stock_sentimental.ipynb
@@ -2,7 +2,7 @@
  "cells": [
   {
    "cell_type": "code",
-   "execution_count": 12,
+   "execution_count": 2,
    "metadata": {},
    "outputs": [
     {
@@ -74,25 +74,17 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 13,
+   "execution_count": 3,
    "metadata": {},
    "outputs": [
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "c:\\Users\\sapni\\anaconda3\\lib\\site-packages\\keras\\src\\layers\\core\\embedding.py:90: UserWarning: Argument `input_length` is deprecated. Just remove it.\n",
-      "  warnings.warn(\n"
-     ]
-    },
     {
      "data": {
       "text/html": [
-       "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">Model: \"sequential_1\"</span>\n",
+       "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">Model: \"sequential\"</span>\n",
        "</pre>\n"
       ],
       "text/plain": [
-       "\u001b[1mModel: \"sequential_1\"\u001b[0m\n"
+       "\u001b[1mModel: \"sequential\"\u001b[0m\n"
       ]
      },
      "metadata": {},
@@ -101,39 +93,39 @@
     {
      "data": {
       "text/html": [
-       "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
-       "┃<span style=\"font-weight: bold\"> Layer (type)                    </span>┃<span style=\"font-weight: bold\"> Output Shape           </span>┃<span style=\"font-weight: bold\">       Param # </span>┃\n",
-       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
-       "│ embedding_1 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Embedding</span>)         │ ?                      │   <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> (unbuilt) │\n",
-       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
-       "│ lstm_2 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">LSTM</span>)                   │ ?                      │   <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> (unbuilt) │\n",
-       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
-       "│ dropout_2 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dropout</span>)             │ ?                      │             <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │\n",
-       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
-       "│ lstm_3 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">LSTM</span>)                   │ ?                      │   <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> (unbuilt) │\n",
-       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
-       "│ dropout_3 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dropout</span>)             │ ?                      │             <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │\n",
-       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
-       "│ dense_1 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dense</span>)                 │ ?                      │   <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> (unbuilt) │\n",
-       "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
+       "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n",
+       "┃<span style=\"font-weight: bold\"> Layer (type)                         </span>┃<span style=\"font-weight: bold\"> Output Shape                </span>┃<span style=\"font-weight: bold\">         Param # </span>┃\n",
+       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n",
+       "│ embedding (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Embedding</span>)                │ ?                           │     <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> (unbuilt) │\n",
+       "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+       "│ lstm (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">LSTM</span>)                          │ ?                           │     <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> (unbuilt) │\n",
+       "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+       "│ dropout (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dropout</span>)                    │ ?                           │               <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │\n",
+       "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+       "│ lstm_1 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">LSTM</span>)                        │ ?                           │     <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> (unbuilt) │\n",
+       "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+       "│ dropout_1 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dropout</span>)                  │ ?                           │               <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │\n",
+       "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+       "│ dense (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dense</span>)                        │ ?                           │     <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> (unbuilt) │\n",
+       "└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n",
        "</pre>\n"
       ],
       "text/plain": [
-       "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
-       "┃\u001b[1m \u001b[0m\u001b[1mLayer (type)                   \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape          \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m      Param #\u001b[0m\u001b[1m \u001b[0m┃\n",
-       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
-       "│ embedding_1 (\u001b[38;5;33mEmbedding\u001b[0m)         │ ?                      │   \u001b[38;5;34m0\u001b[0m (unbuilt) │\n",
-       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
-       "│ lstm_2 (\u001b[38;5;33mLSTM\u001b[0m)                   │ ?                      │   \u001b[38;5;34m0\u001b[0m (unbuilt) │\n",
-       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
-       "│ dropout_2 (\u001b[38;5;33mDropout\u001b[0m)             │ ?                      │             \u001b[38;5;34m0\u001b[0m │\n",
-       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
-       "│ lstm_3 (\u001b[38;5;33mLSTM\u001b[0m)                   │ ?                      │   \u001b[38;5;34m0\u001b[0m (unbuilt) │\n",
-       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
-       "│ dropout_3 (\u001b[38;5;33mDropout\u001b[0m)             │ ?                      │             \u001b[38;5;34m0\u001b[0m │\n",
-       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
-       "│ dense_1 (\u001b[38;5;33mDense\u001b[0m)                 │ ?                      │   \u001b[38;5;34m0\u001b[0m (unbuilt) │\n",
-       "└─────────────────────────────────┴────────────────────────┴───────────────┘\n"
+       "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n",
+       "┃\u001b[1m \u001b[0m\u001b[1mLayer (type)                        \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape               \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m        Param #\u001b[0m\u001b[1m \u001b[0m┃\n",
+       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n",
+       "│ embedding (\u001b[38;5;33mEmbedding\u001b[0m)                │ ?                           │     \u001b[38;5;34m0\u001b[0m (unbuilt) │\n",
+       "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+       "│ lstm (\u001b[38;5;33mLSTM\u001b[0m)                          │ ?                           │     \u001b[38;5;34m0\u001b[0m (unbuilt) │\n",
+       "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+       "│ dropout (\u001b[38;5;33mDropout\u001b[0m)                    │ ?                           │               \u001b[38;5;34m0\u001b[0m │\n",
+       "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+       "│ lstm_1 (\u001b[38;5;33mLSTM\u001b[0m)                        │ ?                           │     \u001b[38;5;34m0\u001b[0m (unbuilt) │\n",
+       "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+       "│ dropout_1 (\u001b[38;5;33mDropout\u001b[0m)                  │ ?                           │               \u001b[38;5;34m0\u001b[0m │\n",
+       "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+       "│ dense (\u001b[38;5;33mDense\u001b[0m)                        │ ?                           │     \u001b[38;5;34m0\u001b[0m (unbuilt) │\n",
+       "└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n"
       ]
      },
      "metadata": {},
@@ -185,7 +177,7 @@
     "\n",
     "# Define LSTM model\n",
     "model = Sequential()\n",
-    "model.add(Embedding(input_dim=5000, output_dim=128, input_length=max_length))  # Embedding layer\n",
+    "model.add(Embedding(input_dim=5000, output_dim=128))  # Embedding layer\n",
     "model.add(LSTM(128, return_sequences=True))  # LSTM layer\n",
     "model.add(Dropout(0.5))  # Dropout to prevent overfitting\n",
     "model.add(LSTM(64))  # Second LSTM layer\n",
@@ -201,7 +193,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 14,
+   "execution_count": 6,
    "metadata": {},
    "outputs": [
     {
@@ -209,25 +201,25 @@
      "output_type": "stream",
      "text": [
       "Epoch 1/10\n",
-      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 67ms/step - accuracy: 0.6284 - loss: 0.6606 - val_accuracy: 0.6268 - val_loss: 0.6536\n",
+      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 73ms/step - accuracy: 0.6265 - loss: 0.6656 - val_accuracy: 0.6343 - val_loss: 0.6423\n",
       "Epoch 2/10\n",
-      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 61ms/step - accuracy: 0.7146 - loss: 0.5622 - val_accuracy: 0.7745 - val_loss: 0.4920\n",
+      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 61ms/step - accuracy: 0.7415 - loss: 0.5434 - val_accuracy: 0.7573 - val_loss: 0.4971\n",
       "Epoch 3/10\n",
-      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 75ms/step - accuracy: 0.8898 - loss: 0.3168 - val_accuracy: 0.7756 - val_loss: 0.4849\n",
+      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 59ms/step - accuracy: 0.8876 - loss: 0.3093 - val_accuracy: 0.7616 - val_loss: 0.5779\n",
       "Epoch 4/10\n",
-      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 71ms/step - accuracy: 0.9278 - loss: 0.2154 - val_accuracy: 0.7433 - val_loss: 0.5643\n",
+      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 61ms/step - accuracy: 0.9329 - loss: 0.1984 - val_accuracy: 0.7519 - val_loss: 0.6860\n",
       "Epoch 5/10\n",
-      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 71ms/step - accuracy: 0.9486 - loss: 0.1725 - val_accuracy: 0.7594 - val_loss: 0.6393\n",
+      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 60ms/step - accuracy: 0.9661 - loss: 0.1211 - val_accuracy: 0.7454 - val_loss: 0.7584\n",
       "Epoch 6/10\n",
-      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 62ms/step - accuracy: 0.9671 - loss: 0.1213 - val_accuracy: 0.7530 - val_loss: 0.8493\n",
+      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 60ms/step - accuracy: 0.9642 - loss: 0.1280 - val_accuracy: 0.7357 - val_loss: 0.8707\n",
       "Epoch 7/10\n",
-      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 62ms/step - accuracy: 0.9738 - loss: 0.0973 - val_accuracy: 0.7357 - val_loss: 1.0902\n",
+      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 60ms/step - accuracy: 0.9692 - loss: 0.1043 - val_accuracy: 0.7195 - val_loss: 0.8572\n",
       "Epoch 8/10\n",
-      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 64ms/step - accuracy: 0.9737 - loss: 0.0950 - val_accuracy: 0.7357 - val_loss: 0.8958\n",
+      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 61ms/step - accuracy: 0.9730 - loss: 0.0922 - val_accuracy: 0.7335 - val_loss: 0.8631\n",
       "Epoch 9/10\n",
-      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 68ms/step - accuracy: 0.9826 - loss: 0.0744 - val_accuracy: 0.7443 - val_loss: 0.9316\n",
+      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 61ms/step - accuracy: 0.9842 - loss: 0.0609 - val_accuracy: 0.7357 - val_loss: 1.1649\n",
       "Epoch 10/10\n",
-      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 75ms/step - accuracy: 0.9851 - loss: 0.0689 - val_accuracy: 0.7303 - val_loss: 1.0088\n"
+      "\u001b[1m58/58\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 73ms/step - accuracy: 0.9794 - loss: 0.0758 - val_accuracy: 0.7228 - val_loss: 1.1020\n"
      ]
     }
    ],
@@ -238,15 +230,15 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 15,
+   "execution_count": 8,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "\u001b[1m37/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - accuracy: 0.7407 - loss: 0.9643\n",
-      "Test Accuracy: 74.63%\n"
+      "\u001b[1m37/37\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 14ms/step - accuracy: 0.7369 - loss: 1.0339\n",
+      "Test Accuracy: 74.46%\n"
      ]
     }
    ],
@@ -258,19 +250,15 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 1,
+   "execution_count": 10,
    "metadata": {},
    "outputs": [
     {
-     "ename": "NameError",
-     "evalue": "name 'tokenizer' is not defined",
-     "output_type": "error",
-     "traceback": [
-      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
-      "\u001b[1;31mNameError\u001b[0m                                 Traceback (most recent call last)",
-      "\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_10044\\3289756518.py\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m     11\u001b[0m \u001b[1;31m# Example usage\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     12\u001b[0m \u001b[0mnew_text\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m\"The stock market is  bad today.\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 13\u001b[1;33m \u001b[0mpredict_sentiment\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mnew_text\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
-      "\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_10044\\3289756518.py\u001b[0m in \u001b[0;36mpredict_sentiment\u001b[1;34m(text)\u001b[0m\n\u001b[0;32m      1\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mpredict_sentiment\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtext\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m     \u001b[0msequence\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtokenizer\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtexts_to_sequences\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mtext\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m      3\u001b[0m     \u001b[0mpadded\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mpad_sequences\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msequence\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmaxlen\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mmax_length\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpadding\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'post'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m      4\u001b[0m     \u001b[0mprediction\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpadded\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m      5\u001b[0m     \u001b[1;31m# Assuming binary classification: 0 for Negative, 1 for Positive\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;31mNameError\u001b[0m: name 'tokenizer' is not defined"
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 500ms/step\n",
+      "Sentiment: Positive\n"
      ]
     }
    ],
@@ -292,25 +280,17 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 17,
+   "execution_count": 14,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
-    "model.save('sentiment_model.h5')\n",
+    "model.save('sentiment_model.keras')\n",
     "\n"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 18,
+   "execution_count": 16,
    "metadata": {},
    "outputs": [
     {
@@ -318,19 +298,19 @@
      "output_type": "stream",
      "text": [
       "Text: \"The stock market is performing well today.\"\n",
-      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step\n",
+      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step\n",
       "Sentiment: Positive\n",
       "Text: \"The stock market is performing bad today.\"\n",
-      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step\n",
+      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step\n",
       "Sentiment: Positive\n",
       "Text: \"I'm very happy with the profits I've made.\"\n",
-      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step\n",
+      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step\n",
       "Sentiment: Positive\n",
       "Text: \"I'm disappointed with the losses this quarter.\"\n",
-      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 31ms/step\n",
+      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step\n",
       "Sentiment: Negative\n",
       "Text: \"It's a great time to invest in stocks!\"\n",
-      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n",
+      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step\n",
       "Sentiment: Positive\n"
      ]
     }
@@ -367,7 +347,7 @@
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "base",
+   "display_name": "Python 3 (ipykernel)",
    "language": "python",
    "name": "python3"
   },
@@ -381,9 +361,9 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.9.13"
+   "version": "3.12.4"
   }
  },
  "nbformat": 4,
- "nbformat_minor": 2
+ "nbformat_minor": 4
 }