-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.py
43 lines (37 loc) · 1.56 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import os
from flask import Flask,render_template,request,url_for,redirect,send_file
from skimage.transform import resize
from imageio import imread
from keras.models import model_from_json
import numpy as np
app=Flask(__name__)
@app.route('/',methods=['GET','POST'])
def home():
if request.method=='GET':
return render_template('HOMEPAGE.html')
if request.method=='POST':
image_file=request.files['image']
filepath = os.path.join('IMAGEFORPRO', image_file.filename)
image_file.save(filepath)
return redirect(url_for('RESULT',filename1=image_file.filename))
@app.route('/images/<filename>',methods=['GET'])
def images(filename):
return send_file(os.path.join('IMAGEFORPRO', filename))
@app.route('/RESULT/<filename1>')
def RESULT(filename1):
json_file=open(r'C:\Users\Lenovo\projectsem\Model .json','r')
loaded_model_json=json_file.read()
json_file.close()
model=model_from_json(loaded_model_json)
model.load_weights(r"C:\Users\Lenovo\projectsem\model.h5")
image_path=os.path.join('IMAGEFORPRO',filename1)
image_url=url_for('images',filename=filename1)
image_initial=imread(image_path)
image_final=resize(image_initial,(32,32,3))
prob=model.predict(np.array([image_final,]))
options=['airplane','automobile','bird','cat','deer','dog','frog','horse','ship','truck']
index = np.argsort(prob[0,:])
OBJ=options[index[9]]
return render_template('RESULT.html',OBJ=OBJ,image_url=image_url)
if __name__=='__main__':
app.run('127.0.0.1')