-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlstm.py
362 lines (281 loc) · 15.1 KB
/
lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
#@title Load Python libraries
#pip install alpha_vantage -q
#pip install torch
#pip install numpy
#Download M4 dataset. Path should be ./NAB-master/data
import numpy as np
# pip install torch
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
from alpha_vantage.timeseries import TimeSeries
import numpy as np
import pandas as pd
import os
import numpy as np
from sklearn.metrics import mean_squared_error
from sktime.performance_metrics.forecasting import mean_absolute_scaled_error
from ESRNN.m4_data import *
import json
from error import normal_dist,introduce_errors
torch.manual_seed(0)
np.random.seed(0)
print("All libraries loaded")
torch.manual_seed(0)
config = {
"Stock": {
"key": "99UE5LPF59QDCGSY", # Claim your free API key here: https://www.alphavantage.co/support/#api-key
"symbol": "AMZN",
"outputsize": "full",
"key_adjusted_close": "5. adjusted close",
},
"data": {
"window_size": 1,
"train_split_size": 0.88,
},
"plots": {
"show_plots": True,
"xticks_interval": 90,
"color_actual": "#001f3f",
"color_train": "#3D9970",
"color_val": "#0074D9",
"color_error": "#FF0000",
"color_pred_train": "#3D9970",
"color_pred_val": "#0074D9",
"color_pred_test": "#FF4136",
},
"model": {
"input_size": 1, # since we are only using 1 feature, close price
"num_lstm_layers": 1,
"lstm_size": 12,
"dropout": 0.2,
},
"training": {
"device": "cpu", # "cuda" or "cpu"
"batch_size": 1,
"num_epoch": 50,
"learning_rate": 0.01,
"scheduler_step_size": 40,
}
}
def prepare_data_x(x, window_size):
# perform windowing
n_row = x.shape[0] - window_size + 1
output = np.lib.stride_tricks.as_strided(x, shape=(n_row,window_size), strides=(x.strides[0],x.strides[0]))
return output[:-1], output[-1]
def prepare_data_y(x, window_size):
# # perform simple moving average
# output = np.convolve(x, np.ones(window_size), 'valid') / window_size
# use the next day as label
output = x[window_size:]
return output
def prepare_data(normalized_data_close_price, config, plot=False):
data_x, data_x_unseen = prepare_data_x(normalized_data_close_price, window_size=config["data"]["window_size"])
data_y = prepare_data_y(normalized_data_close_price, window_size=config["data"]["window_size"])
# split dataset
split_index = int(data_y.shape[0]*config["data"]["train_split_size"])
data_x_train = data_x[:split_index]
data_x_val = data_x[split_index:]
data_y_train = data_y[:split_index]
data_y_val = data_y[split_index:]
return split_index, data_x_train, data_y_train, data_x_val, data_y_val, data_x_unseen
class TimeSeriesDataset(Dataset):
def __init__(self, x, y):
x = np.expand_dims(x, 2) # in our case, we have only 1 feature, so we need to convert `x` into [batch, sequence, features] for LSTM
self.x = x.astype(np.float32)
self.y = y.astype(np.float32)
def __len__(self):
return len(self.x)
def __getitem__(self, idx):
return (self.x[idx], self.y[idx])
class Normalizer():
def __init__(self):
self.mu = None
self.sd = None
def fit_transform(self, x):
self.mu = np.mean(x, axis=(0), keepdims=True)
self.sd = np.std(x, axis=(0), keepdims=True)
normalized_x = (x - self.mu)/self.sd
return normalized_x
def inverse_transform(self, x):
return (x*self.sd) + self.mu
class LSTMModel(nn.Module):
def __init__(self, input_size=1, hidden_layer_size=32, num_layers=2, output_size=1, dropout=0.2):
super().__init__()
self.hidden_layer_size = hidden_layer_size
self.linear_1 = nn.Linear(input_size, hidden_layer_size)
self.relu = nn.ReLU()
self.lstm = nn.LSTM(hidden_layer_size, hidden_size=self.hidden_layer_size, num_layers=num_layers, batch_first=True)
self.dropout = nn.Dropout(dropout)
self.linear_2 = nn.Linear(num_layers*hidden_layer_size, output_size)
self.init_weights()
self.historycorrectorlstm = []
self.historycorrection = []
def init_weights(self):
for name, param in self.lstm.named_parameters():
if 'bias' in name:
nn.init.constant_(param, 0.0)
elif 'weight_ih' in name:
nn.init.kaiming_normal_(param)
elif 'weight_hh' in name:
nn.init.orthogonal_(param)
def forward(self, x):
batchsize = x.shape[0]
# layer 1
x = self.linear_1(x)
x = self.relu(x)
# LSTM layer
lstm_out, (h_n, c_n) = self.lstm(x)
# reshape output from hidden cell into [batch, features] for `linear_2`
x = h_n.permute(1, 0, 2).reshape(batchsize, -1)
# layer 2
x = self.dropout(x)
predictions = self.linear_2(x)
return predictions[:,-1]
def run_epoch(dataloader, is_training=False):
epoch_loss = 0
if is_training:
model.train()
else:
model.eval()
for idx, (x, y) in enumerate(dataloader):
if is_training:
optimizer.zero_grad()
batchsize = x.shape[0]
x = x.to(config["training"]["device"])
y = y.to(config["training"]["device"])
out = model(x)
loss = criterion(out.contiguous(), y.contiguous())
if is_training:
loss.backward()
optimizer.step()
epoch_loss += (loss.detach().item() / batchsize)
lr = scheduler.get_last_lr()[0]
return epoch_loss, lr
def skip(id, paramstring, metric):
if id not in metric.keys():
return False
if paramstring not in metric[id].keys():
return False
return set(metric[id][paramstring].keys()) == set(['y_pred', 'y_true', 'y_train'])
# select from Hourly, Daily, Weekly ... etc
X_train_df, y_train_df, X_test_df, y_test_df = prepare_m4_data(
dataset_name="Monthly",
directory= "./data",
num_obs=200)
# unique_id is the selected timeseries from dataset Monthly
with open(f"pred_plots_exp/metric_lstm.json", 'r') as infile:
metric = json.load(infile)
for size in range(1,6,2):
for num in [0.01, 0.05, 0.1, 0.15, 0.20, 0.25]:
for mag_p in [0.1, 0.2, 0.5]:
for loc_p in [0.1, 0.2, 0.5]:
for unique_id in range(1,21):
str_id = str(unique_id)
if not os.path.exists(f"pred_plots_exp/lstm{unique_id}"):
# if the demo_folder directory is not present
# then create it.
os.makedirs(f"pred_plots_exp/lstm{unique_id}")
if skip(str_id, f"{size}-{mag_p}-{num}-{loc_p}", metric):
print("Skipped")
continue
if str_id not in metric.keys():
metric[str_id] = {}
metric[str_id][f"{size}-{mag_p}-{num}-{loc_p}"] = {}
print(unique_id)
print("LSTM")
data_close_price = y_train_df.loc[y_train_df.unique_id=="M"+str(unique_id), "y"][-500:].values
split_index = int(len(data_close_price)*config["data"]["train_split_size"])
train_series = data_close_price[:split_index]
mag_mean = size*np.std(train_series)
mag_std = mag_p*mag_mean
loc_mean = 1/num
loc_std = loc_p*loc_mean
data_close_price[:split_index] = introduce_errors(train_series, normal_dist(mag_mean, mag_std), normal_dist(loc_mean, loc_std))
# normalize
scaler = Normalizer()
normalized_data_close_price = scaler.fit_transform(data_close_price)
split_index, data_x_train, data_y_train, data_x_val, data_y_val, data_x_unseen = prepare_data(normalized_data_close_price, config, plot=config["plots"]["show_plots"])
dataset_train = TimeSeriesDataset(data_x_train, data_y_train)
dataset_val = TimeSeriesDataset(data_x_val, data_y_val)
print("Train data shape", dataset_train.x.shape, dataset_train.y.shape)
print("Validation data shape", dataset_val.x.shape, dataset_val.y.shape)
model = LSTMModel(input_size=config["model"]["input_size"], hidden_layer_size=config["model"]["lstm_size"], num_layers=config["model"]["num_lstm_layers"], output_size=1, dropout=config["model"]["dropout"])
model = model.to(config["training"]["device"])
# create `DataLoader`
train_dataloader = DataLoader(dataset_train, batch_size=config["training"]["batch_size"], shuffle=False)
val_dataloader = DataLoader(dataset_val, batch_size=config["training"]["batch_size"], shuffle=False)
# define optimizer, scheduler and loss function
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=config["training"]["learning_rate"], betas=(0.9, 0.98), eps=1e-9)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=config["training"]["scheduler_step_size"], gamma=0.1)
# begin training
for epoch in range(config["training"]["num_epoch"]):
loss_train, lr_train = run_epoch(train_dataloader, is_training=True)
loss_val, lr_val = run_epoch(val_dataloader)
scheduler.step()
print('Epoch[{}/{}] | loss train:{:.6f}, test:{:.6f} | lr:{:.6f}'
.format(epoch+1, config["training"]["num_epoch"], loss_train, loss_val, lr_train))
# here we re-initialize dataloader so the data doesn't shuffled, so we can plot the values by date
torch.manual_seed(0)
train_dataloader = DataLoader(dataset_train, batch_size=config["training"]["batch_size"], shuffle=False)
val_dataloader = DataLoader(dataset_val, batch_size=config["training"]["batch_size"], shuffle=False)
model.eval()
# predict on the training data, to see how well the model managed to learn and memorize
predicted_train = np.array([])
for idx, (x, y) in enumerate(train_dataloader):
x = x.to(config["training"]["device"])
out = model(x)
out = out.cpu().detach().numpy()
predicted_train = np.concatenate((predicted_train, out))
# predict on the validation data, to see how the model does
predicted_val = np.array([])
for idx, (x, y) in enumerate(val_dataloader):
x = x.to(config["training"]["device"])
out = model(x)
out = out.cpu().detach().numpy()
predicted_val = np.concatenate((predicted_val, out))
print(len(predicted_val))
if True:
# prepare data for plotting, show predicted prices
data_date = np.array(y_train_df.loc[y_train_df.unique_id=="M"+str(unique_id), 'ds'][-500:].values)
num_data_points = len(data_date)
to_plot_data_y_train_pred = np.zeros(num_data_points)
to_plot_data_y_val_pred = np.zeros(num_data_points)
to_plot_data_y_train_pred[config["data"]["window_size"]:split_index+config["data"]["window_size"]] = scaler.inverse_transform(predicted_train)
to_plot_data_y_val_pred[split_index+config["data"]["window_size"]:] = scaler.inverse_transform(predicted_val)
to_plot_data_y_train_pred = np.where(to_plot_data_y_train_pred == 0, None, to_plot_data_y_train_pred)
to_plot_data_y_val_pred = np.where(to_plot_data_y_val_pred == 0, None, to_plot_data_y_val_pred)
# plots
fig = figure(figsize=(25, 5), dpi=80)
fig.patch.set_facecolor((1.0, 1.0, 1.0))
plt.plot(data_date, data_close_price, label="Errored Data", color=config["plots"]["color_error"])
plt.plot(data_date, y_train_df.loc[y_train_df.unique_id=="M"+str(unique_id), "y"][-500:].values, label="Original Data", color=config["plots"]["color_actual"])
plt.plot(data_date, to_plot_data_y_train_pred, label="Predicted prices (train)", color=config["plots"]["color_pred_train"])
plt.plot(data_date, to_plot_data_y_val_pred, label="LSTM Prediction", color=config["plots"]["color_pred_val"])
plt.legend()
plt.savefig(f"pred_plots_exp/lstm{unique_id}/normal-{size}-{mag_p}-{num}-{loc_p}.pdf")
# prepare data for plotting, zoom in validation
to_plot_data_y_val_subset = scaler.inverse_transform(data_y_val)
to_plot_predicted_val = scaler.inverse_transform(predicted_val)
to_plot_data_date = data_date[split_index+config["data"]["window_size"]:]
# plots
fig = figure(figsize=(25, 5), dpi=80)
fig.patch.set_facecolor((1.0, 1.0, 1.0))
plt.plot(to_plot_data_date, to_plot_data_y_val_subset, label="Actual prices", color=config["plots"]["color_actual"])
plt.plot(to_plot_data_date, to_plot_predicted_val, label="Predicted prices (validation)", color=config["plots"]["color_pred_val"])
plt.title("Zoom in to examine predicted price on validation data portion")
plt.grid(b=None, which='major', axis='y', linestyle='--')
plt.legend()
plt.savefig(f"pred_plots_exp/lstm{unique_id}/scale-{size}-{mag_p}-{num}-{loc_p}.pdf")
metric[str_id][f"{size}-{mag_p}-{num}-{loc_p}"]['y_true'] = to_plot_data_y_val_subset[:len(to_plot_data_y_val_subset)-1].tolist()
metric[str_id][f"{size}-{mag_p}-{num}-{loc_p}"]['y_pred'] = to_plot_predicted_val[1:].tolist()
metric[str_id][f"{size}-{mag_p}-{num}-{loc_p}"]['y_train'] = data_close_price[:split_index].tolist()
with open(f"pred_plots_exp/metric_lstm.json", 'w') as outfile:
json.dump(metric, outfile, indent=2)
print(metric.keys())