-
Notifications
You must be signed in to change notification settings - Fork 0
/
resnet_cifar.py
158 lines (123 loc) · 5.05 KB
/
resnet_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import datetime
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.callbacks import TensorBoard, LearningRateScheduler
import time
import resnet
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--num_gpus', type=int, default=2,
help='input gpu number, default=2')
parser.add_argument('--batch_size', type=int, default=128,
help='input batch size, default=128')
parser.add_argument('--num_epochs', type=int, default=60,
help='input epoch, default=60')
args = parser.parse_args()
NUM_GPUS = args.num_gpus # 2
BS_PER_GPU = args.batch_size # 128
NUM_EPOCHS = args.num_epochs # 60
HEIGHT = 32
WIDTH = 32
NUM_CHANNELS = 3
NUM_CLASSES = 10
NUM_TRAIN_SAMPLES = 50000
NUM_BATCHS = NUM_TRAIN_SAMPLES / (BS_PER_GPU * NUM_GPUS)
NUM_TRAIN_IMG = NUM_BATCHS * BS_PER_GPU * NUM_GPUS
BASE_LEARNING_RATE = 0.1
LR_SCHEDULE = [(0.1, 30), (0.01, 45)]
def normalize(x, y):
x = tf.image.per_image_standardization(x)
return x, y
def augmentation(x, y):
x = tf.image.resize_with_crop_or_pad(
x, HEIGHT + 8, WIDTH + 8)
x = tf.image.random_crop(x, [HEIGHT, WIDTH, NUM_CHANNELS])
x = tf.image.random_flip_left_right(x)
return x, y
def schedule(epoch):
initial_learning_rate = BASE_LEARNING_RATE * BS_PER_GPU / 128
learning_rate = initial_learning_rate
for mult, start_epoch in LR_SCHEDULE:
if epoch >= start_epoch:
learning_rate = initial_learning_rate * mult
else:
break
tf.summary.scalar('learning rate', data=learning_rate, step=epoch)
return learning_rate
class TimeHistory(keras.callbacks.Callback):
def on_train_begin(self, logs={}):
self.times = []
self.batchtimes = []
def on_epoch_begin(self, epoch, logs={}):
self.epoch_time_start = time.time()
self.batchtime = []
def on_train_batch_begin(self, batch, log={}):
self.batchtime_start = time.time()
def on_train_batch_end(self, batch, log={}):
self.batchtime.append(time.time() - self.batchtime_start)
def on_epoch_end(self, epoch, logs={}):
self.times.append(time.time() - self.epoch_time_start)
self.batchtimes.append(self.batchtime)
(x,y), (x_test, y_test) = keras.datasets.cifar10.load_data()
train_dataset = tf.data.Dataset.from_tensor_slices((x,y))
test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test))
tf.random.set_seed(22)
train_dataset = train_dataset.map(augmentation).map(normalize).shuffle(NUM_TRAIN_SAMPLES).batch(BS_PER_GPU * NUM_GPUS, drop_remainder=True)
test_dataset = test_dataset.map(normalize).batch(BS_PER_GPU * NUM_GPUS, drop_remainder=True)
input_shape = (HEIGHT, WIDTH, NUM_CHANNELS)
img_input = tf.keras.layers.Input(shape=input_shape)
opt = keras.optimizers.SGD(learning_rate=0.1, momentum=0.9)
if NUM_GPUS == 1:
model = resnet.resnet56(img_input=img_input, classes=NUM_CLASSES)
model.compile(
optimizer=opt,
loss='sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy'])
else:
mirrored_strategy = tf.distribute.MirroredStrategy()
with mirrored_strategy.scope():
model = resnet.resnet56(img_input=img_input, classes=NUM_CLASSES)
model.compile(
optimizer=opt,
loss='sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy'])
log_dir="logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
file_writer = tf.summary.create_file_writer(log_dir + "/metrics")
file_writer.set_as_default()
tensorboard_callback = TensorBoard(
log_dir=log_dir,
update_freq='batch',
histogram_freq=1)
lr_schedule_callback = LearningRateScheduler(schedule)
time_callback = TimeHistory()
history = model.fit(train_dataset,
epochs=NUM_EPOCHS,
validation_data=test_dataset,
validation_freq=1,
callbacks=[time_callback])
#model.evaluate(test_dataset)
avg_time = sum(time_callback.times[1:])/len(time_callback.times[1:]) # remove first epoch
# log accuracy and elasped time of epoch
logfile = "gpu" + str(NUM_GPUS) + \
"_bs" + str(BS_PER_GPU) + \
"_epoch" + str(NUM_EPOCHS)
with open("%s.csv" % logfile, 'w') as f:
f.write("val_accuracy,epoch_elasped_time\n")
for i in range(NUM_EPOCHS):
f.write('%f,%.2f \r\n' % (history.history['val_sparse_categorical_accuracy'][i],
time_callback.times[i]))
f.write("average of epoch time = %.2f\n" %(avg_time))
f.write("Throughput = %.2f img/sec.\n" % (NUM_TRAIN_IMG / avg_time))
#print("Epoch duration")
#print(time_callback.times) # print each epoch's runtime
#print("Batch duration of epoch")
#print(time_callback.batchtimes)
#print(sum(time_callback.times[1:]),len(time_callback.times[1:]))
#avg_time = sum(time_callback.times[1:])/len(time_callback.times[1:]) # remove first epoch
#print('-'*40)
#print("average of epoch time = %.2f " %(avg_time))
#print("Throughput = %.2f img/sec." % (NUM_TRAIN_IMG / avg_time))
#print('-'*40)
#model.save('model.h5')
#new_model = keras.models.load_model('model.h5')
#new_model.evaluate(test_dataset)