-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmodel_ising2dsqrdipolemet.cpp
195 lines (166 loc) · 5.06 KB
/
model_ising2dsqrdipolemet.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
/*
* Copyright (c) 2012, Robert Rueger <[email protected]>
*
* This file is part of SSMC.
*
* SSMC is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* SSMC is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with SSMC. If not, see <http://www.gnu.org/licenses/>.
*/
#include "model_ising2dsqrdipolemet.hpp"
// ------- 2D ISING MODEL WITH LONG RANGE DIPOLE INTERACTION ---------
IsingModel2dDipole::IsingModel2dDipole( const unsigned int& N,
const bool& periodic, const double& J,
const double& g, const double& B,
const double& T, string cwd )
: IsingModel2d( N, false, J, B, T, 0, cwd ), g( g ), H_memory( H() )
{
if ( periodic ) {
cout << "WARNING: Periodic boundary conditions are not supported!" << endl;
}
}
bool IsingModel2dDipole::prepare( const char& mode )
{
bool success = IsingModel2d::prepare( mode );
H_memory = H();
return success;
}
void IsingModel2dDipole::metropolis_singleflip()
{
// (reimplementation because we can't calculate deltaH)
// find a random spin to flip
unsigned int flip_line = gsl_rng_uniform_int( rng, size );
unsigned int flip_col = gsl_rng_uniform_int( rng, size );
// flip it and calculate energy difference!
spin[flip_line][flip_col].flip();
double deltaH = H() - H_memory;
if ( deltaH > 0 ) {
// accept the new state?
if ( gsl_rng_uniform( rng ) > exp( - deltaH / T ) ) {
// new state rejected ... reverting!
spin[flip_line][flip_col].flip();
return;
}
}
H_memory += deltaH;
}
void IsingModel2dDipole::metropolis_mirror()
{
// vertical or horizontal mirroring?
bool mode = gsl_rng_uniform_int( rng, 2 );
unsigned int fmline = gsl_rng_uniform_int( rng, size - 1 ) + 1;
unsigned int fmcol = gsl_rng_uniform_int( rng, size - 1 ) + 1;
if ( mode ) {
// mirroring: horizontal
for ( unsigned int l = fmline; l < size; l++ ) {
for ( unsigned int c = 0; c < size; c++ ) {
spin[l][c].flip();
}
}
} else {
// mirroring: vertical
for ( unsigned int c = fmcol; c < size; c++ ) {
for ( unsigned int l = 0; l < size; l++ ) {
spin[l][c].flip();
}
}
}
// energy difference
double deltaH = H() - H_memory;
if ( deltaH > 0 ) {
// accept the new state?
if ( gsl_rng_uniform( rng ) > exp( - deltaH / T ) ) {
// new state rejected ... reverting!
if ( mode ) {
// mirroring: horizontal
for ( unsigned int l = fmline; l < size; l++ ) {
for ( unsigned int c = 0; c < size; c++ ) {
spin[l][c].flip();
}
}
} else {
// mirroring: vertical
for ( unsigned int c = fmcol; c < size; c++ ) {
for ( unsigned int l = 0; l < size; l++ ) {
spin[l][c].flip();
}
}
}
return;
}
}
H_memory += deltaH;
}
void IsingModel2dDipole::metropolis_blockflip()
{
// generate coordinates of the block
unsigned int temp;
unsigned int l1 = gsl_rng_uniform_int( rng, size );
unsigned int l2 = gsl_rng_uniform_int( rng, size );
if ( l1 > l2 ) {
temp = l1;
l1 = l2;
l2 = temp;
}
unsigned int c1 = gsl_rng_uniform_int( rng, size );
unsigned int c2 = gsl_rng_uniform_int( rng, size );
if ( c1 > c2 ) {
temp = c1;
c1 = c2;
c2 = temp;
}
// flip the block
for ( unsigned int l = l1; l <= l2; l++ ) {
for ( unsigned int c = c1; c <= c2; c++ ) {
spin[l][c].flip();
}
}
// energy difference
double deltaH = H() - H_memory;
if ( deltaH > 0 ) {
// accept the new state?
if ( gsl_rng_uniform( rng ) > exp( - deltaH / T ) ) {
// new state rejected ... reverting!
for ( unsigned int l = l1; l <= l2; l++ ) {
for ( unsigned int c = c1; c <= c2; c++ ) {
spin[l][c].flip();
}
}
return;
}
}
H_memory += deltaH;
}
void IsingModel2dDipole::mcstep()
{
for ( unsigned int n = 1; n <= N; n++ ) {
metropolis_singleflip();
metropolis_blockflip();
metropolis_singleflip();
metropolis_mirror();
}
time++;
}
double IsingModel2dDipole::H() const
{
double H = IsingModel2d::H(); // energy without dipole interaction
for ( unsigned int i = 0; i < N - 1; i++ ) {
for ( unsigned int j = i + 1; j < N; j++ ) {
unsigned int iline = i / size, icol = i % size;
unsigned int jline = j / size, jcol = j % size;
double r = sqrt( ( jline - iline ) * ( jline - iline )
+ ( jcol - icol ) * ( jcol - icol ) );
H += - g / ( r * r * r ) * ( spin[iline][icol] * spin[jline][jcol] );
}
}
return H;
}