-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathweek8_log_to_share.txt
105 lines (78 loc) · 2.63 KB
/
week8_log_to_share.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
In [1]: %run Ch9_HH
In [2]: pts
Out[2]:
Pointset <no name> (parameterized)
Independent variable:
t: [ 0. 0.03, ..., 99.90568067 100. ]
Coordinates:
h: [ 1. 0.99997799, ..., 0.99249769 0.99244578]
m: [ 0. 0.00240724, ..., 0.02857164 0.02872323]
n: [ 0. 0.00048106, ..., 0.05953078 0.05977829]
v: [-70. -69.97903007, ..., -63.65348633 -63.62591765]
Labels by index: 268: {Event:thresh_ev: {keys=t}},
336: {Event:min_ev: {keys=t}},
870: {Event:thresh_ev: {keys=t}},
939: {Event:min_ev: {keys=t}}
In [3]: traj.getEventTimes('min_ev')
Out[3]: [26.073268181687283, 68.231241897663608]
In [4]: t0, t1 = _
In [5]: t0
Out[5]: 26.073268181687283
In [6]: ix0 = pts.find(t0,0)
In [7]: ix1 = pts.find(t1,1)
In [8]: ix0, ix1
Out[8]: (336, 939)
In [9]: per = pts[ix0:ix1]
In [10]: plot(per['t'],per['v'],'k-',linewidth=3)
Out[10]: [<matplotlib.lines.Line2D object at 0x6ecc870>]
In [11]: per
Out[11]:
Pointset <no name> (parameterized)
Independent variable:
t: [ 26.07326818 26.09480739, ..., 68.19723796 68.22431831]
Coordinates:
h: [ 0.59218769 0.60743877, ..., 0.56689927 0.58716025]
m: [ 6.04141320e-05 4.44093542e-05, ..., 1.04533824e-04 6.71766594e-05]
n: [ 0.35418991 0.34390398, ..., 0.37105724 0.3575612 ]
v: [-97.27746607 -97.27331802, ..., -97.26571131 -97.27700752]
Labels by index: 0: {Event:min_ev: {keys=t}},
534: {Event:thresh_ev: {keys=t}}
In [12]: figure()
Out[12]: <matplotlib.figure.Figure object at 0x6ebd270>
#### NOTE: next line offsets times in per from starting at t=26
#### to t = 0
In [13]: per['t'] = per['t'] - per['t'][0]
In [14]: plot(per['t'], per['m'], 'g')
Out[14]: [<matplotlib.lines.Line2D object at 0x6eccb70>]
In [15]: plot(per['t'], per['n'], 'r')
Out[15]: [<matplotlib.lines.Line2D object at 0x7507b70>]
In [16]: plot(per['t'], per['h'], 'm')
Out[16]: [<matplotlib.lines.Line2D object at 0x6ebded0>]
In [17]: def tau_m(V):
....: return 1/(ma(V)+mb(V))
....:
In [18]: tau_m(-10)
Out[18]: 0.069785430211398922
In [19]: tau_m(10)
Out[19]: 0.048805585721687889
In [20]: tau_m(50)
Out[20]: 0.030048070968154119
In [21]: vs = linspace(-80,50)
In [22]: tau_ms = [tau_m(v) for v in vs]
In [23]: figure()
Out[23]: <matplotlib.figure.Figure object at 0x7721e30>
In [24]: plot(vs, tau_ms)
Out[24]: [<matplotlib.lines.Line2D object at 0x7727f90>]
In [25]: HH.pars
Out[25]:
{'C': 1.0,
'Iapp': 0.40000000000000002,
'gk': 80.0,
'gl': 0.10000000000000001,
'gna': 100.0,
'vk': -100.0,
'vl': -67.0,
'vna': 50.0}
In [26]: gl = HH.pars['gl']
In [27]: gl
Out[27]: 0.10000000000000001