-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathdataset.py
74 lines (66 loc) · 3.1 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import fnmatch
import os
import random
import numpy as np
import tensorflow as tf
import warnings
from samplernn import (load_audio, quantize)
def round_to(x, base=5):
return base * round(x/base)
def truncate_to(x, base):
return int(np.floor(x / float(base))) * base
def find_files(directory, pattern='*.wav'):
'''Recursively finds all files matching the pattern.'''
files = []
for root, dirnames, filenames in os.walk(directory):
for filename in fnmatch.filter(filenames, pattern):
files.append(os.path.join(root, filename))
return files
# We need an initial random shuffle which remains the same if we resume, we could use the second
# argument to random.shuffle, but that's a BAD idea, see https://stackoverflow.com/a/19307329/795131
# and https://stackoverflow.com/a/29684037/795131. The right way is to instantiate our own
# random.Random instance, to get both decent randomness AND avoid polluting the global environment.
def get_dataset_filenames_split(data_dir, val_frac, batch_size):
files = find_files(data_dir)
assert batch_size <= len(files), 'Batch size exceeds the corpus length'
if not files:
raise ValueError(f'No wav files found in {data_dir}.')
random.Random(4).shuffle(files)
# Truncate to the closest batch_size multiple.
if not (len(files) % batch_size) == 0:
warnings.warn('Truncating dataset, length is not equally divisible by batch size')
idx = truncate_to(len(files), batch_size)
files = files[: idx]
val_size = len(files) * val_frac
val_size = round_to(val_size, batch_size)
if val_size == 0 : val_size = batch_size
val_start = len(files) - val_size
return files[: val_start], files[val_start :]
def pad_batch(batch, batch_size, seq_len, overlap):
num_samps = ( int(np.floor(len(batch[0]) / float(seq_len))) * seq_len )
zeros = np.zeros([batch_size, overlap, 1], dtype='float32')
return tf.concat([zeros, batch[:, :num_samps, :]], axis=1)
def get_subseq(dataset, batch_size, seq_len, overlap, q_type, q_levels):
for batch in dataset:
batch = quantize(batch, q_type, q_levels)
num_samps = len(batch[0])
for i in range(overlap, num_samps, seq_len):
x = batch[:, i-overlap : i+seq_len]
y = x[:, overlap : overlap+seq_len]
yield (x, y)
def get_dataset(files, num_epochs, batch_size, seq_len, overlap, drop_remainder=False, shuffle=True, q_type='mu-law', q_levels=256):
dataset = tf.data.Dataset.from_generator(
lambda: load_audio(files, shuffle=shuffle),
output_types=tf.float32,
output_shapes=((None, 1))
)
dataset = dataset.repeat(num_epochs).batch(batch_size, drop_remainder)
dataset = dataset.map(lambda batch: tf.py_function(
func=pad_batch, inp=[batch, batch_size, seq_len, overlap], Tout=tf.float32
))
return tf.data.Dataset.from_generator(
lambda: get_subseq(dataset, batch_size, seq_len, overlap, q_type, q_levels),
output_types=(tf.int32, tf.int32),
output_shapes=(
(batch_size, seq_len + overlap, 1),
(batch_size, seq_len, 1)))