forked from planetmath/54_General_topology
-
Notifications
You must be signed in to change notification settings - Fork 0
/
54A20-AlternativeCharacterizationOfUltrafilter.tex
49 lines (43 loc) · 1.45 KB
/
54A20-AlternativeCharacterizationOfUltrafilter.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{AlternativeCharacterizationOfUltrafilter}
\pmcreated{2013-03-22 14:42:20}
\pmmodified{2013-03-22 14:42:20}
\pmowner{yark}{2760}
\pmmodifier{yark}{2760}
\pmtitle{alternative characterization of ultrafilter}
\pmrecord{13}{36324}
\pmprivacy{1}
\pmauthor{yark}{2760}
\pmtype{Theorem}
\pmcomment{trigger rebuild}
\pmclassification{msc}{54A20}
\endmetadata
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\def\F{\mathcal{F}}
\begin{document}
\PMlinkescapeword{finite}
Let $X$ be a set.
A filter $\F$ over $X$ is an ultrafilter if and only if
it satisfies the following condition:
if $A \coprod B = X$ (see disjoint union),
then either $A \in \F$ or $B \in \F$.
This result can be generalized somewhat:
a filter $\F$ over $X$ is an ultrafilter if and only if
it satisfies the following condition:
if $A \cup B = X$ (see union), then either $A \in \F$ or $B \in \F$.
This theorem can be extended to
the following two propositions about finite unions:
\begin{enumerate}
\item A filter $\F$ over $X$ is an ultrafilter if and only if,
whenever $A_1,\dots,A_n$ are subsets of $X$ such that $\coprod_{i=1}^n A_i = X$
then there exists exactly one $i$ such that $A_i \in \F$.
\item A filter $\F$ over $X$ is an ultrafilter if and only if,
whenever $A_1,\dots,A_n$ are subsets of $X$ such that $\bigcup_{i=1}^n A_i = X$
then there exists an $i$ such that $A_i \in \F$.
\end{enumerate}
%%%%%
%%%%%
\end{document}