-
Notifications
You must be signed in to change notification settings - Fork 31
/
zoneout_LSTM.py
267 lines (233 loc) · 10.7 KB
/
zoneout_LSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# -*- coding: utf-8 -*-
#/usr/bin/python2
import numpy as np
import tensorflow as tf
from tensorflow.python.ops.rnn_cell import RNNCell
# Thanks to 'initializers_enhanced.py' of Project RNN Enhancement:
# https://github.com/nicolas-ivanov/Seq2Seq_Upgrade_TensorFlow/blob/master/rnn_enhancement/initializers_enhanced.py
def orthogonal_initializer(scale=1.0):
def _initializer(shape, dtype=tf.float32):
flat_shape = (shape[0], np.prod(shape[1:]))
a = np.random.normal(0.0, 1.0, flat_shape)
u, _, v = np.linalg.svd(a, full_matrices=False)
q = u if u.shape == flat_shape else v
q = q.reshape(shape)
return tf.constant(scale * q[:shape[0], :shape[1]], dtype=tf.float32)
return _initializer
class ZoneoutLSTMCell(RNNCell):
"""Zoneout Regularization for LSTM-RNN.
"""
def __init__(self, num_units, is_training, input_size=None,
use_peepholes=False, cell_clip=None,
initializer=orthogonal_initializer(),
num_proj=None, proj_clip=None, ext_proj=None,
forget_bias=1.0,
state_is_tuple=True,
activation=tf.tanh,
zoneout_factor_cell=0.0,
zoneout_factor_output=0.0,
reuse=None):
"""Initialize the parameters for an LSTM cell.
Args:
num_units: int, The number of units in the LSTM cell.
is_training: bool, set True when training.
use_peepholes: bool, set True to enable diagonal/peephole
connections.
cell_clip: (optional) A float value, if provided the cell state
is clipped by this value prior to the cell output activation.
initializer: (optional) The initializer to use for the weight
matrices.
num_proj: (optional) int, The output dimensionality for
the projection matrices. If None, no projection is performed.
forget_bias: Biases of the forget gate are initialized by default
to 1 in order to reduce the scale of forgetting at the beginning of
the training.
activation: Activation function of the inner states.
"""
if not state_is_tuple:
tf.logging.warn(
"%s: Using a concatenated state is slower and will soon be "
"deprecated. Use state_is_tuple=True.", self)
if input_size is not None:
tf.logging.warn(
"%s: The input_size parameter is deprecated.", self)
if not (zoneout_factor_cell >= 0.0 and zoneout_factor_cell <= 1.0):
raise ValueError(
"Parameter zoneout_factor_cell must be in [0 1]")
if not (zoneout_factor_output >= 0.0 and zoneout_factor_output <= 1.0):
raise ValueError(
"Parameter zoneout_factor_cell must be in [0 1]")
self.num_units = num_units
self.is_training = is_training
self.use_peepholes = use_peepholes
self.cell_clip = cell_clip
self.num_proj = num_proj
self.proj_clip = proj_clip
self.initializer = initializer
self.forget_bias = forget_bias
self.state_is_tuple = state_is_tuple
self.activation = activation
self.zoneout_factor_cell = zoneout_factor_cell
self.zoneout_factor_output = zoneout_factor_output
if num_proj:
self._state_size = (
tf.nn.rnn_cell.LSTMStateTuple(num_units, num_proj)
if state_is_tuple else num_units + num_proj)
self._output_size = num_proj
else:
self._state_size = (
tf.nn.rnn_cell.LSTMStateTuple(num_units, num_units)
if state_is_tuple else 2 * num_units)
self._output_size = num_units
self._ext_proj = ext_proj
@property
def state_size(self):
return self._state_size
@property
def output_size(self):
if self._ext_proj is None:
return self._output_size
return self._ext_proj
def __call__(self, inputs, state, scope=None):
num_proj = self.num_units if self.num_proj is None else self.num_proj
if self.state_is_tuple:
(c_prev, h_prev) = state
else:
c_prev = tf.slice(state, [0, 0], [-1, self.num_units])
h_prev = tf.slice(state, [0, self.num_units], [-1, num_proj])
# c_prev : Tensor with the size of [batch_size, state_size]
# h_prev : Tensor with the size of [batch_size, state_size/2]
dtype = inputs.dtype
input_size = inputs.get_shape().with_rank(2)[1]
with tf.variable_scope(scope or type(self).__name__):
if input_size.value is None:
raise ValueError(
"Could not infer input size from inputs.get_shape()[-1]")
# i = input_gate, j = new_input, f = forget_gate, o = output_gate
lstm_matrix = _linear([inputs, h_prev], 4 * self.num_units, True)
i, j, f, o = tf.split(lstm_matrix, 4, 1)
# diagonal connections
if self.use_peepholes:
w_f_diag = tf.get_variable(
"W_F_diag", shape=[self.num_units], dtype=dtype)
w_i_diag = tf.get_variable(
"W_I_diag", shape=[self.num_units], dtype=dtype)
w_o_diag = tf.get_variable(
"W_O_diag", shape=[self.num_units], dtype=dtype)
with tf.name_scope(None, "zoneout"):
# make binary mask tensor for cell
keep_prob_cell = tf.convert_to_tensor(
self.zoneout_factor_cell,
dtype=c_prev.dtype
)
random_tensor_cell = keep_prob_cell
random_tensor_cell += \
tf.random_uniform(tf.shape(c_prev),
seed=None, dtype=c_prev.dtype)
binary_mask_cell = tf.floor(random_tensor_cell)
# 0 <-> 1 swap
binary_mask_cell_complement = tf.ones(tf.shape(c_prev)) \
- binary_mask_cell
# make binary mask tensor for output
keep_prob_output = tf.convert_to_tensor(
self.zoneout_factor_output,
dtype=h_prev.dtype
)
random_tensor_output = keep_prob_output
random_tensor_output += \
tf.random_uniform(tf.shape(h_prev),
seed=None, dtype=h_prev.dtype)
binary_mask_output = tf.floor(random_tensor_output)
# 0 <-> 1 swap
binary_mask_output_complement = tf.ones(tf.shape(h_prev)) \
- binary_mask_output
# apply zoneout for cell
if self.use_peepholes:
c_temp = c_prev * \
tf.sigmoid(f + self.forget_bias +
w_f_diag * c_prev) + \
tf.sigmoid(i + w_i_diag * c_prev) * \
self.activation(j)
if self.is_training and self.zoneout_factor_cell > 0.0:
c = binary_mask_cell * c_prev + \
binary_mask_cell_complement * c_temp
else:
c = c_temp
else:
c_temp = c_prev * tf.sigmoid(f + self.forget_bias) + \
tf.sigmoid(i) * self.activation(j)
if self.is_training and self.zoneout_factor_cell > 0.0:
c = binary_mask_cell * c_prev + \
binary_mask_cell_complement * c_temp
else:
c = c_temp
if self.cell_clip is not None:
c = tf.clip_by_value(c, -self.cell_clip, self.cell_clip)
# apply zoneout for output
if self.use_peepholes:
h_temp = tf.sigmoid(o + w_o_diag * c) * self.activation(c)
if self.is_training and self.zoneout_factor_output > 0.0:
h = binary_mask_output * h_prev + \
binary_mask_output_complement * h_temp
else:
h = h_temp
else:
h_temp = tf.sigmoid(o) * self.activation(c)
if self.is_training and self.zoneout_factor_output > 0.0:
h = binary_mask_output * h_prev + \
binary_mask_output_complement * h_temp
else:
h = h_temp
# apply prejection
if self.num_proj is not None:
w_proj = tf.get_variable(
"W_P", [self.num_units, num_proj], dtype=dtype)
h = tf.matmul(h, w_proj)
if self.proj_clip is not None:
h = tf.clip_by_value(h, -self.proj_clip, self.proj_clip)
new_state = (tf.nn.rnn_cell.LSTMStateTuple(c, h)
if self.state_is_tuple else tf.concat(1, [c, h]))
return h, new_state
def _linear(args, output_size, bias, bias_start=0.0, scope=None):
"""Linear map: sum_i(args[i] * W[i]), where W[i] is a variable.
Args:
args: a 2D Tensor or a list of 2D, batch x n, Tensors.
output_size: int, second dimension of W[i].
bias: boolean, whether to add a bias term or not.
bias_start: starting value to initialize the bias; 0 by default.
scope: VariableScope for the created subgraph; defaults to "Linear".
Returns:
A 2D Tensor with shape [batch x output_size] equal to
sum_i(args[i] * W[i]), where W[i]s are newly created matrices.
Raises:
ValueError: if some of the arguments has unspecified or wrong shape.
"""
if args is None or (isinstance(args, (list, tuple)) and not args):
raise ValueError("`args` must be specified")
if not isinstance(args, (list, tuple)):
args = [args]
# Calculate the total size of arguments on dimension 1.
total_arg_size = 0
shapes = [a.get_shape().as_list() for a in args]
for shape in shapes:
if len(shape) != 2:
raise ValueError(
"Linear is expecting 2D arguments: %s" % str(shapes))
if not shape[1]:
raise ValueError(
"Linear expects shape[1] of arguments: %s" % str(shapes))
else:
total_arg_size += shape[1]
# Now the computation.
with tf.variable_scope(scope or "Linear"):
matrix = tf.get_variable("Matrix", [total_arg_size, output_size])
if len(args) == 1:
res = tf.matmul(args[0], matrix)
else:
res = tf.matmul(tf.concat(args, 1), matrix)
if not bias:
return res
bias_term = tf.get_variable(
"Bias", [output_size],
initializer=tf.constant_initializer(bias_start))
return res + bias_term