-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhelperFunctions.py
70 lines (63 loc) · 1.95 KB
/
helperFunctions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import math
import numpy as np
from gluoncv import model_zoo, data, utils
from matplotlib import pyplot as plt
def transform_image(array):
norm_image, image = data.transforms.presets.yolo.transform_test(array)
return norm_image, image
def detect(network, data):
pred = network(data)
class_ids, scores, bounding_boxes=pred
return class_ids, scores, bounding_boxes
def count_object(network, class_ids, scores, bounding_boxes, object_label, threshold=0.75):
idx = 0
for i in range(len(network.classes)):
if network.classes[i] == object_label:
idx = i
scores = scores[0]
class_ids = class_ids[0]
num_people = 0
bboxes = []
for i in range(len(scores)):
proba = scores[i].astype('float32').asscalar()
if proba > threshold and class_ids[i].asscalar() == idx:
num_people += 1
bboxes.append(bounding_boxes[0].asnumpy()[i])
return num_people, bboxes
def calculatePlane(pts):
p1, p2, p3 = pts
x1, y1, z1 = p1
x2, y2, z2 = p2
x3, y3, z3 = p3
a1 = x2 - x1
b1 = y2 - y1
c1 = z2 - z1
a2 = x3 - x1
b2 = y3 - y1
c2 = z3 - z1
a = b1 * c2 - b2 * c1
b = a2 * c1 - a1 * c2
c = a1 * b2 - b1 * a2
d = (- a * x1 - b * y1 - c * z1)
return [a, b, c, d]
def plotPlane(pts, ax):
p0, p1, p2 = pts
x0, y0, z0 = p0
x1, y1, z1 = p1
x2, y2, z2 = p2
ux, uy, uz = u = [x1 - x0, y1 - y0, z1 - z0]
vx, vy, vz = v = [x2 - x0, y2 - y0, z2 - z0]
u_cross_v = [uy * vz - uz * vy, uz * vx - ux * vz, ux * vy - uy * vx]
point = np.array(p0)
normal = np.array(u_cross_v)
d = -point.dot(normal)
xx, yy = np.meshgrid(range(-1), range(1))
z = (-normal[0] * xx - normal[1] * yy - d) * 1. / normal[2]
ax.plot_surface(xx, yy, z)
plt.show()
def computeDistance(pt, plane):
a, b, c, d = plane
x, y, z = pt
d = abs((a * x + b * y + c * z + d))
e = (math.sqrt(a * a + b * b + c * c))
return d / e