-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgpu_linalg.cu
539 lines (455 loc) · 23.6 KB
/
gpu_linalg.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
#include <gpu_linalg.hpp>
#include <linalg.hpp>
#include <build_tree.hpp>
#include <basis.hpp>
#include <comm.hpp>
#include "cuda.h"
#include "cublas_v2.h"
#include "cusolverDn.h"
#include <iostream>
#include <algorithm>
#include <numeric>
#include <tuple>
cudaStream_t stream = NULL;
cublasHandle_t cublasH = NULL;
cusolverDnHandle_t cusolverH = NULL;
void* init_libs(int* argc, char*** argv) {
if (MPI_Init(argc, argv) != MPI_SUCCESS)
fprintf(stderr, "MPI Init Error\n");
int mpi_rank;
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
int num_device;
int gpu_avail = (cudaGetDeviceCount(&num_device) == cudaSuccess);
if (gpu_avail) {
int device = mpi_rank % num_device;
cudaSetDevice(device);
cudaStreamCreate(&stream);
cublasCreate(&cublasH);
cublasSetStream(cublasH, stream);
cusolverDnCreate(&cusolverH);
cusolverDnSetStream(cusolverH, stream);
}
return stream;
}
void fin_libs() {
if (stream)
cudaStreamDestroy(stream);
if (cublasH)
cublasDestroy(cublasH);
if (cusolverH)
cusolverDnDestroy(cusolverH);
MPI_Finalize();
}
void set_work_size(int64_t Lwork, double** D_DATA, int64_t* D_DATA_SIZE) {
if (Lwork > *D_DATA_SIZE) {
*D_DATA_SIZE = Lwork;
if (*D_DATA)
cudaFree(*D_DATA);
cudaMalloc((void**)D_DATA, sizeof(double) * Lwork);
}
else if (Lwork <= 0) {
*D_DATA_SIZE = 0;
if (*D_DATA)
cudaFree(*D_DATA);
}
}
void allocBufferedList(void** A_ptr, void** A_buffer, int64_t element_size, int64_t count) {
int64_t bytes = element_size * count;
cudaMalloc((void**)A_ptr, bytes);
*A_buffer = malloc(bytes);
memset((void*)*A_buffer, 0, bytes);
}
void flushBuffer(char dir, void* A_ptr, void* A_buffer, int64_t element_size, int64_t count) {
int64_t bytes = element_size * count;
if (dir == 'G' || dir == 'g')
cudaMemcpy(A_buffer, A_ptr, bytes, cudaMemcpyDeviceToHost);
else if (dir == 'S' || dir == 's')
cudaMemcpy(A_ptr, A_buffer, bytes, cudaMemcpyHostToDevice);
}
void freeBufferedList(void* A_ptr, void* A_buffer) {
cudaFree(A_ptr);
free(A_buffer);
}
int64_t partition_DLU(int64_t row_coords[], int64_t col_coords[], int64_t orders[], int64_t N_cols, int64_t col_offset, const int64_t row_A[], const int64_t col_A[]) {
int64_t NNZ = col_A[N_cols] - col_A[0];
std::vector<std::tuple<int64_t, int64_t, int64_t>> coo_list(NNZ);
std::iota(orders, &orders[NNZ], 0);
for (int64_t x = 0; x < N_cols; x++) {
int64_t begin = col_A[x] - col_A[0];
int64_t end = col_A[x + 1] - col_A[0];
std::transform(row_A + begin, row_A + end, orders + begin, coo_list.begin() + begin,
[=](int64_t y, int64_t yx) { return std::make_tuple(y, x + col_offset, yx); });
}
auto iter = std::stable_partition(coo_list.begin(), coo_list.end(),
[](std::tuple<int64_t, int64_t, int64_t> i) { return std::get<0>(i) == std::get<1>(i); });
auto iterL = std::stable_partition(iter, coo_list.end(),
[](std::tuple<int64_t, int64_t, int64_t> i) { return std::get<0>(i) > std::get<1>(i); });
std::transform(coo_list.begin(), coo_list.end(), row_coords,
[](std::tuple<int64_t, int64_t, int64_t> i) { return std::get<0>(i); });
std::transform(coo_list.begin(), coo_list.end(), col_coords,
[](std::tuple<int64_t, int64_t, int64_t> i) { return std::get<1>(i); });
std::transform(coo_list.begin(), coo_list.end(), orders,
[](std::tuple<int64_t, int64_t, int64_t> i) { return std::get<2>(i); });
return std::distance(iter, iterL);
}
int64_t count_apperance_x(const int64_t X[], int64_t AX[], int64_t lenX) {
std::pair<const int64_t*, const int64_t*> minmax_e = std::minmax_element(X, &X[lenX]);
int64_t min_e = *std::get<0>(minmax_e);
int64_t max_e = *std::get<1>(minmax_e);
std::vector<int64_t> count(max_e - min_e + 1, 0);
for (int64_t i = 0; i < lenX; i++) {
int64_t x = X[i] - min_e;
int64_t c = count[x];
AX[i] = c;
count[x] = c + 1;
}
return *std::max_element(count.begin(), count.end());
}
void batchParamsCreate(BatchedFactorParams* params, int64_t R_dim, int64_t S_dim, const double* U_ptr, double* A_ptr, double* X_ptr, int64_t N_up, double** A_up, double** X_up,
double* Workspace, int64_t Lwork, int64_t N_rows, int64_t N_cols, int64_t col_offset, const int64_t row_A[], const int64_t col_A[]) {
int64_t N_dim = R_dim + S_dim;
int64_t NNZ = col_A[N_cols] - col_A[0];
int64_t stride = N_dim * N_dim;
int64_t lenB = Lwork / stride;
lenB = lenB > NNZ ? NNZ : lenB;
int64_t N_rows_aligned = ((N_rows >> 4) + ((N_rows & 15) > 0)) * 16;
int64_t NNZ_aligned = ((NNZ >> 4) + ((NNZ & 15) > 0)) * 16;
std::vector<int64_t> rows(NNZ), cols(NNZ), orders(NNZ);
int64_t lenL = partition_DLU(&rows[0], &cols[0], &orders[0], N_cols, col_offset, row_A, col_A);
std::vector<int64_t> urows(NNZ), ucols(NNZ);
int64_t K1 = count_apperance_x(&rows[0], &urows[0], NNZ);
int64_t K2 = count_apperance_x(&cols[0], &ucols[0], NNZ);
std::vector<double> one_data(N_rows, 1.);
double* one_data_dev;
cudaMalloc(&one_data_dev, sizeof(double) * N_rows);
cudaMemcpy(one_data_dev, &one_data[0], sizeof(double) * N_rows, cudaMemcpyHostToDevice);
const int64_t NZ = 13, ND = 6;
std::vector<double*> ptrs_nnz_cpu(NZ * NNZ_aligned);
std::vector<double*> ptrs_diag_cpu(ND * N_rows_aligned);
const double** _U_r = (const double**)&ptrs_nnz_cpu[0 * NNZ_aligned];
const double** _U_s = (const double**)&ptrs_nnz_cpu[1 * NNZ_aligned];
const double** _V_x = (const double**)&ptrs_nnz_cpu[2 * NNZ_aligned];
const double** _A_sx = (const double**)&ptrs_nnz_cpu[3 * NNZ_aligned];
double** _A_x = (double**)&ptrs_nnz_cpu[4 * NNZ_aligned];
double** _B_x = (double**)&ptrs_nnz_cpu[5 * NNZ_aligned];
double** _A_upper = (double**)&ptrs_nnz_cpu[6 * NNZ_aligned];
double** _A_s = (double**)&ptrs_nnz_cpu[7 * NNZ_aligned];
double** _Xo_Y = (double**)&ptrs_nnz_cpu[8 * NNZ_aligned];
double** _Xc_Y = (double**)&ptrs_nnz_cpu[9 * NNZ_aligned];
double** _Xc_X = (double**)&ptrs_nnz_cpu[10 * NNZ_aligned];
double** _ACC_Y = (double**)&ptrs_nnz_cpu[11 * NNZ_aligned];
double** _ACC_X = (double**)&ptrs_nnz_cpu[12 * NNZ_aligned];
double** _X_d = (double**)&ptrs_diag_cpu[0 * N_rows_aligned];
double** _A_l = (double**)&ptrs_diag_cpu[1 * N_rows_aligned];
const double** _U_i = (const double**)&ptrs_diag_cpu[2 * N_rows_aligned];
double** _ACC_I = (double**)&ptrs_diag_cpu[3 * N_rows_aligned];
double** _Xo_I = (double**)&ptrs_diag_cpu[4 * N_rows_aligned];
double** _ONE_LIST = (double**)&ptrs_diag_cpu[5 * N_rows_aligned];
double* _V_data = Workspace;
double* _ACC_data = &Workspace[N_cols * R_dim];
std::vector<int64_t> ind(std::max(N_rows, NNZ) + 1);
std::iota(ind.begin(), ind.end(), 0);
std::transform(rows.begin(), rows.end(), _U_r, [=](int64_t y) { return &U_ptr[stride * y]; });
std::transform(rows.begin(), rows.end(), _U_s, [=](int64_t y) { return &U_ptr[stride * y + R_dim * N_dim]; });
std::transform(cols.begin(), cols.end(), _V_x, [=](int64_t x) { return &U_ptr[stride * x]; });
std::transform(orders.begin(), orders.end(), _A_x, [=](int64_t yx) { return &A_ptr[stride * yx]; });
std::transform(orders.begin(), orders.end(), _A_s, [=](int64_t yx) { return &A_ptr[stride * yx + R_dim * R_dim]; });
std::transform(orders.begin(), orders.begin() + N_cols, _A_l, [=](int64_t yx) { return &A_ptr[stride * yx + R_dim * N_dim]; });
std::transform(orders.begin(), orders.end(), _A_upper, [=](int64_t yx) { return A_up[yx]; });
std::transform(rows.begin(), rows.end(), _Xo_Y, [=](int64_t y) { return X_up[y]; });
std::transform(rows.begin(), rows.end(), _Xc_Y, [=](int64_t y) { return &X_ptr[y * R_dim]; });
std::transform(cols.begin(), cols.end(), _Xc_X, [=](int64_t x) { return &_V_data[(x - col_offset) * R_dim]; });
std::transform(ind.begin(), ind.begin() + N_rows, _Xo_I, [=](int64_t i) { return X_up[i]; });
std::transform(rows.begin(), rows.end(), urows.begin(), _ACC_Y,
[=](int64_t y, int64_t uy) { return &_ACC_data[(y * K1 + uy) * N_dim]; });
std::transform(cols.begin(), cols.end(), ucols.begin(), _ACC_X,
[=](int64_t x, int64_t ux) { return &_ACC_data[((x - col_offset) * K2 + ux) * N_dim]; });
std::transform(ind.begin(), ind.begin() + N_rows, _ACC_I, [=](int64_t i) { return &_ACC_data[i * N_dim * K1]; });
std::fill(_ONE_LIST, _ONE_LIST + N_rows, one_data_dev);
std::transform(ind.begin(), ind.begin() + lenB, _B_x, [=](int64_t i) { return &_V_data[i * stride]; });
std::transform(ind.begin(), ind.begin() + lenB, _A_sx, [=](int64_t i) { return &_V_data[i * stride + R_dim]; });
std::transform(ind.begin(), ind.begin() + N_cols, _X_d, [=](int64_t i) { return &X_ptr[N_dim * (i + col_offset)]; });
std::transform(ind.begin(), ind.begin() + N_cols, _U_i, [=](int64_t i) { return &U_ptr[stride * N_rows + R_dim * i]; });
memset((void*)params, 0, sizeof(BatchedFactorParams));
params->N_r = R_dim;
params->N_s = S_dim;
params->N_upper = N_up;
params->L_diag = N_cols;
params->L_nnz = NNZ;
params->L_lower = lenL;
params->L_rows = N_rows;
params->L_tmp = lenB;
params->Kfwd = K1;
params->Kback = K2;
void** ptrs_nnz, **ptrs_diag;
cudaMalloc((void**)&ptrs_nnz, sizeof(double*) * NNZ_aligned * NZ);
cudaMalloc((void**)&ptrs_diag, sizeof(double*) * N_rows_aligned * ND);
cudaMalloc((void**)¶ms->info, sizeof(int) * N_cols);
cudaMalloc((void**)¶ms->ipiv, sizeof(int) * R_dim * N_cols);
params->U_r = (const double**)&ptrs_nnz[0 * NNZ_aligned];
params->U_s = (const double**)&ptrs_nnz[1 * NNZ_aligned];
params->V_x = (const double**)&ptrs_nnz[2 * NNZ_aligned];
params->A_sx = (const double**)&ptrs_nnz[3 * NNZ_aligned];
params->A_x = (double**)&ptrs_nnz[4 * NNZ_aligned];
params->B_x = (double**)&ptrs_nnz[5 * NNZ_aligned];
params->A_upper = (double**)&ptrs_nnz[6 * NNZ_aligned];
params->A_s = (double**)&ptrs_nnz[7 * NNZ_aligned];
params->Xo_Y = (double**)&ptrs_nnz[8 * NNZ_aligned];
params->Xc_Y = (double**)&ptrs_nnz[9 * NNZ_aligned];
params->Xc_X = (double**)&ptrs_nnz[10 * NNZ_aligned];
params->ACC_Y = (double**)&ptrs_nnz[11 * NNZ_aligned];
params->ACC_X = (double**)&ptrs_nnz[12 * NNZ_aligned];
params->X_d = (double**)&ptrs_diag[0 * N_rows_aligned];
params->A_l = (double**)&ptrs_diag[1 * N_rows_aligned];
params->U_i = (const double**)&ptrs_diag[2 * N_rows_aligned];
params->ACC_I = (double**)&ptrs_diag[3 * N_rows_aligned];
params->Xo_I = (double**)&ptrs_diag[4 * N_rows_aligned];
params->ONE_LIST = (double**)&ptrs_diag[5 * N_rows_aligned];
params->U_d0 = U_ptr + stride * col_offset;
params->Xc_d0 = X_ptr + R_dim * col_offset;
params->X_d0 = X_ptr + N_dim * col_offset;
params->V_data = _V_data;
params->A_data = A_ptr;
params->X_data = X_ptr;
params->ACC_data = _ACC_data;
params->ONE_DATA = one_data_dev;
cudaMemcpy(ptrs_nnz, ptrs_nnz_cpu.data(), sizeof(double*) * NNZ_aligned * NZ, cudaMemcpyHostToDevice);
cudaMemcpy(ptrs_diag, ptrs_diag_cpu.data(), sizeof(double*) * N_rows_aligned * ND, cudaMemcpyHostToDevice);
}
void batchParamsDestory(BatchedFactorParams* params) {
if (params->X_d)
cudaFree(params->X_d);
if (params->U_r)
cudaFree(params->U_r);
if (params->ONE_DATA)
cudaFree(params->ONE_DATA);
if (params->info)
cudaFree(params->info);
if (params->ipiv)
cudaFree(params->ipiv);
}
void batchCholeskyFactor(BatchedFactorParams* params, const CellComm* comm) {
int64_t U = params->N_upper, R = params->N_r, S = params->N_s, N = R + S, D = params->L_diag;
double one = 1., zero = 0., minus_one = -1.;
int info_host = 0;
level_merge_gpu(params->A_data, N * N * params->L_nnz, comm);
cublasDgemmBatched(cublasH, CUBLAS_OP_T, CUBLAS_OP_N, N, N, N, &one,
params->U_r, N, params->A_x, N, &zero, params->B_x, N, D);
cublasDgemmBatched(cublasH, CUBLAS_OP_N, CUBLAS_OP_N, R, N, N, &one,
params->B_x, N, params->U_r, N, &zero, params->A_x, R, D);
cublasDgemmBatched(cublasH, CUBLAS_OP_N, CUBLAS_OP_N, R, S, N, &one,
params->B_x, N, params->U_s, N, &zero, params->A_l, R, D);
cublasDgemmBatched(cublasH, CUBLAS_OP_N, CUBLAS_OP_N, S, S, N, &one,
params->A_sx, N, params->U_s, N, &zero, params->A_upper, U, D);
cublasDgemmBatched(cublasH, CUBLAS_OP_N, CUBLAS_OP_N, 1, R, 1, &one,
params->ONE_LIST, 1, params->U_i, 1, &one, params->A_x, R + 1, D);
cublasDgetrfBatched(cublasH, R, params->A_x, R, params->ipiv, params->info, D);
cublasDgetrsBatched(cublasH, CUBLAS_OP_N, R, S, params->A_x, R, params->ipiv, params->A_l, R, &info_host, D);
cublasDgemmBatched(cublasH, CUBLAS_OP_T, CUBLAS_OP_N, S, S, R, &minus_one,
params->A_s, R, params->A_l, R, &one, params->A_upper, U, D);
for (int64_t i = 0; i < params->L_lower; i += params->L_tmp) {
int64_t len = std::min(params->L_lower - i, params->L_tmp);
cublasDgemmBatched(cublasH, CUBLAS_OP_T, CUBLAS_OP_N, N, N, N, &one,
¶ms->V_x[i + D], N, ¶ms->A_x[i + D], N, &zero, params->B_x, N, len);
cublasDgemmBatched(cublasH, CUBLAS_OP_N, CUBLAS_OP_N, R, N, N, &one,
params->B_x, N, ¶ms->U_r[i + D], N, &zero, ¶ms->A_x[i + D], R, len);
cublasDgemmBatched(cublasH, CUBLAS_OP_N, CUBLAS_OP_N, S, S, N, &one,
params->A_sx, N, ¶ms->U_s[i + D], N, &zero, ¶ms->A_upper[i + D], U, len);
}
int64_t offsetU = D + params->L_lower;
int64_t lenU = params->L_nnz - offsetU;
for (int64_t i = 0; i < lenU; i += params->L_tmp) {
int64_t len = std::min(lenU - i, params->L_tmp);
cublasDgemmBatched(cublasH, CUBLAS_OP_T, CUBLAS_OP_N, N, N, N, &one,
¶ms->V_x[i + offsetU], N, ¶ms->A_x[i + offsetU], N, &zero, params->B_x, N, len);
cublasDgemmBatched(cublasH, CUBLAS_OP_N, CUBLAS_OP_N, R, S, N, &one,
params->B_x, N, ¶ms->U_s[i + offsetU], N, &zero, ¶ms->A_s[i + offsetU], R, len);
cublasDgemmBatched(cublasH, CUBLAS_OP_N, CUBLAS_OP_N, S, S, N, &one,
params->A_sx, N, ¶ms->U_s[i + offsetU], N, &zero, ¶ms->A_upper[i + offsetU], U, len);
}
}
void batchForwardULV(BatchedFactorParams* params, const CellComm* comm) {
int64_t R = params->N_r, S = params->N_s, N = R + S, D = params->L_diag, ONE = 1;
int64_t K = params->Kfwd;
double one = 1., zero = 0., minus_one = -1.;
int info_host = 0;
level_merge_gpu(params->X_data, params->L_rows * N, comm);
neighbor_reduce_gpu(params->X_data, N, comm);
cublasDgemmStridedBatched(cublasH, CUBLAS_OP_T, CUBLAS_OP_N, R, ONE, N, &one,
params->U_d0, N, N * N, params->X_d0, N, N * ONE, &zero, params->V_data, R, R * ONE, D);
cublasDgemmBatched(cublasH, CUBLAS_OP_T, CUBLAS_OP_N, S, ONE, N, &one,
params->U_s, N, params->X_d, N, &zero, params->Xo_Y, S, D);
cudaMemsetAsync(params->X_data, 0, sizeof(double) * params->L_rows * R, stream);
cublasDcopy(cublasH, R * D, params->V_data, 1, params->Xc_d0, 1);
cublasDgetrsBatched(cublasH, CUBLAS_OP_T, R, ONE, params->A_x, R, params->ipiv, params->Xc_X, R, &info_host, D);
cudaMemsetAsync(params->ACC_data, 0, sizeof(double) * params->L_rows * N * K, stream);
cublasDgemmBatched(cublasH, CUBLAS_OP_T, CUBLAS_OP_N, S, ONE, R, &one,
params->A_s, R, params->Xc_X, R, &zero, params->ACC_Y, N, params->L_nnz);
cublasDgemmBatched(cublasH, CUBLAS_OP_N, CUBLAS_OP_N, S, ONE, K, &minus_one,
params->ACC_I, N, params->ONE_LIST, K, &one, params->Xo_I, S, params->L_rows);
cudaMemsetAsync(params->ACC_data, 0, sizeof(double) * params->L_rows * N * K, stream);
cublasDgemmBatched(cublasH, CUBLAS_OP_T, CUBLAS_OP_N, R, ONE, R, &one,
¶ms->A_x[D], R, ¶ms->Xc_X[D], R, &zero, ¶ms->ACC_Y[D], N, params->L_lower);
cublasDgemmStridedBatched(cublasH, CUBLAS_OP_N, CUBLAS_OP_N, R, ONE, K, &minus_one,
params->ACC_data, N, N * K, params->ONE_DATA, K, 0, &one, params->X_data, R, R, params->L_rows);
}
void batchBackwardULV(BatchedFactorParams* params, const CellComm* comm) {
int64_t R = params->N_r, S = params->N_s, N = R + S, D = params->L_diag, ONE = 1;
int64_t K = params->Kback;
double one = 1., zero = 0., minus_one = -1.;
int info_host;
neighbor_reduce_gpu(params->X_data, R, comm);
cublasDgetrsBatched(cublasH, CUBLAS_OP_N, R, ONE, params->A_x, R, params->ipiv, params->Xc_Y, R, &info_host, D);
neighbor_bcast_gpu(params->X_data, R, comm);
cudaMemsetAsync(params->ACC_data, 0, sizeof(double) * D * N * K, stream);
cublasDgemmBatched(cublasH, CUBLAS_OP_N, CUBLAS_OP_N, R, ONE, S, &one,
params->A_s, R, params->Xo_Y, S, &zero, params->ACC_X, N, params->L_nnz);
cublasDgemmBatched(cublasH, CUBLAS_OP_N, CUBLAS_OP_N, R, ONE, R, &one,
¶ms->A_x[D], R, ¶ms->Xc_Y[D], R, &one, ¶ms->ACC_X[D], N, params->L_lower);
cublasDgemmStridedBatched(cublasH, CUBLAS_OP_N, CUBLAS_OP_N, R, ONE, K, &minus_one,
params->ACC_data, N, N * K, params->ONE_DATA, K, 0, &zero, params->V_data, R, R, D);
cublasDgetrsBatched(cublasH, CUBLAS_OP_N, R, ONE, params->A_x, R, params->ipiv, params->Xc_X, R, &info_host, D);
cublasDaxpy(cublasH, R * D, &one, params->Xc_d0, 1, params->V_data, 1);
cublasDgemmStridedBatched(cublasH, CUBLAS_OP_N, CUBLAS_OP_N, N, ONE, R, &one,
params->U_d0, N, N * N, params->V_data, R, R * ONE, &zero, params->X_d0, N, N * ONE, D);
cublasDgemmBatched(cublasH, CUBLAS_OP_N, CUBLAS_OP_N, N, ONE, S, &one,
params->U_s, N, params->Xo_Y, S, &one, params->X_d, N, D);
neighbor_bcast_gpu(params->X_data, N, comm);
dup_bcast_gpu(params->X_data, params->L_rows * N, comm);
}
void lastParamsCreate(BatchedFactorParams* params, double* A, double* X, int64_t N, int64_t S, int64_t clen, const int64_t cdims[]) {
memset((void*)params, 0, sizeof(BatchedFactorParams));
params->A_data = A;
params->X_data = X;
params->N_r = N;
int Lwork;
cusolverDnDgetrf_bufferSize(cusolverH, N, N, A, N, &Lwork);
Lwork = std::max((int64_t)Lwork, N);
cudaMalloc((void**)¶ms->ONE_DATA, sizeof(double) * Lwork);
params->L_tmp = Lwork;
std::vector<double> I(N, 1.);
for (int64_t i = 0; i < clen; i++)
std::fill(I.begin() + i * S, I.begin() + i * S + cdims[i], 0.);
cudaMemcpy(params->ONE_DATA, &I[0], sizeof(double) * N, cudaMemcpyHostToDevice);
cudaMalloc((void**)¶ms->ipiv, sizeof(int) * N);
cudaMalloc((void**)¶ms->info, sizeof(int));
}
void chol_decomp(BatchedFactorParams* params, const CellComm* comm) {
double* A = params->A_data;
int64_t N = params->N_r;
double one = 1.;
level_merge_gpu(params->A_data, N * N, comm);
cublasDaxpy(cublasH, N, &one, params->ONE_DATA, 1, A, N + 1);
cusolverDnDgetrf(cusolverH, N, N, A, N, params->ONE_DATA, params->ipiv, params->info);
}
void chol_solve(BatchedFactorParams* params, const CellComm* comm) {
const double* A = params->A_data;
double* X = params->X_data;
int64_t N = params->N_r;
level_merge_gpu(X, N, comm);
cusolverDnDgetrs(cusolverH, CUBLAS_OP_N, N, 1, A, N, params->ipiv, X, N, params->info);
}
void allocNodes(Node A[], double** Workspace, int64_t* Lwork, const Base basis[], const CSR rels_near[], const CSR rels_far[], const CellComm comm[], int64_t levels) {
int64_t work_size = 0;
for (int64_t i = levels; i >= 0; i--) {
int64_t n_i = 0, ulen = 0, nloc = 0;
content_length(&n_i, &ulen, &nloc, &comm[i]);
int64_t nnz = rels_near[i].RowIndex[n_i];
int64_t nnz_f = rels_far[i].RowIndex[n_i];
Matrix* arr_m = (Matrix*)malloc(sizeof(Matrix) * (nnz + nnz_f));
A[i].A = arr_m;
A[i].S = &arr_m[nnz];
A[i].lenA = nnz;
A[i].lenS = nnz_f;
int64_t dimn = basis[i].dimR + basis[i].dimS;
int64_t dimn_up = i > 0 ? basis[i - 1].dimN : 0;
int64_t stride = dimn * dimn;
A[i].sizeA = stride * nnz;
A[i].sizeU = stride * ulen + n_i * basis[i].dimR;
allocBufferedList((void**)&A[i].A_ptr, (void**)&A[i].A_buf, sizeof(double), A[i].sizeA);
allocBufferedList((void**)&A[i].X_ptr, (void**)&A[i].X_buf, sizeof(double), dimn * ulen);
allocBufferedList((void**)&A[i].U_ptr, (void**)&A[i].U_buf, sizeof(double), A[i].sizeU);
std::copy(basis[i].U, &basis[i].U[A[i].sizeU], A[i].U_buf);
int64_t k1, k2;
countMaxIJ(&k1, &k2, &rels_near[i]);
int64_t acc_required = std::max(k1 * ulen, k2 * n_i);
int64_t work_required = std::max(n_i * stride, (acc_required + n_i) * dimn);
work_size = std::max(work_size, work_required);
for (int64_t x = 0; x < n_i; x++) {
for (int64_t yx = rels_near[i].RowIndex[x]; yx < rels_near[i].RowIndex[x + 1]; yx++)
arr_m[yx] = (Matrix) { &A[i].A_buf[yx * stride], dimn, dimn, dimn }; // A
for (int64_t yx = rels_far[i].RowIndex[x]; yx < rels_far[i].RowIndex[x + 1]; yx++)
arr_m[yx + nnz] = (Matrix) { NULL, basis[i].dimS, basis[i].dimS, dimn_up }; // S
}
if (i < levels) {
int64_t ploc = 0;
content_length(NULL, NULL, &ploc, &comm[i + 1]);
int64_t seg = basis[i + 1].dimS;
for (int64_t j = 0; j < rels_near[i].N; j++) {
int64_t x0 = std::get<0>(comm[i].LocalChild[j + nloc]) - ploc;
int64_t lenx = std::get<1>(comm[i].LocalChild[j + nloc]);
for (int64_t ij = rels_near[i].RowIndex[j]; ij < rels_near[i].RowIndex[j + 1]; ij++) {
int64_t li = rels_near[i].ColIndex[ij];
int64_t y0 = std::get<0>(comm[i].LocalChild[li]);
int64_t leny = std::get<1>(comm[i].LocalChild[li]);
for (int64_t x = 0; x < lenx; x++)
if ((x + x0) >= 0 && (x + x0) < rels_far[i + 1].N)
for (int64_t yx = rels_far[i + 1].RowIndex[x + x0]; yx < rels_far[i + 1].RowIndex[x + x0 + 1]; yx++)
for (int64_t y = 0; y < leny; y++)
if (rels_far[i + 1].ColIndex[yx] == (y + y0))
A[i + 1].S[yx].A = &A[i].A[ij].A[(y * dimn + x) * seg];
}
}
}
}
set_work_size(work_size, Workspace, Lwork);
for (int64_t i = levels; i > 0; i--) {
int64_t ibegin = 0, N_rows = 0, N_cols = 0;
content_length(&N_cols, &N_rows, &ibegin, &comm[i]);
int64_t nnz = A[i].lenA;
int64_t dimc = basis[i].dimR;
int64_t dimr = basis[i].dimS;
int64_t n_next = basis[i - 1].dimR + basis[i - 1].dimS;
int64_t ibegin_next = 0;
content_length(NULL, NULL, &ibegin_next, &comm[i - 1]);
std::vector<double*> A_next(nnz);
for (int64_t x = 0; x < N_cols; x++)
for (int64_t yx = rels_near[i].RowIndex[x]; yx < rels_near[i].RowIndex[x + 1]; yx++) {
int64_t y = rels_near[i].ColIndex[yx];
std::pair<int64_t, int64_t> px = comm[i].LocalParent[x + ibegin];
std::pair<int64_t, int64_t> py = comm[i].LocalParent[y];
int64_t ij = rels_near[i - 1].lookupIJ(std::get<0>(py), std::get<0>(px) - ibegin_next);
A_next[yx] = &A[i - 1].A_ptr[(std::get<1>(py) * n_next + std::get<1>(px)) * basis[i].dimS + ij * n_next * n_next];
}
std::vector<double*> X_next(N_rows);
for (int64_t x = 0; x < N_rows; x++) {
std::pair<int64_t, int64_t> p = comm[i].LocalParent[x];
X_next[x] = &A[i - 1].X_ptr[std::get<1>(p) * basis[i].dimS + std::get<0>(p) * n_next];
}
batchParamsCreate(&A[i].params, dimc, dimr, A[i].U_ptr, A[i].A_ptr, A[i].X_ptr, n_next, &A_next[0], &X_next[0],
*Workspace, work_size, N_rows, N_cols, ibegin, &rels_near[i].ColIndex[0], &rels_near[i].RowIndex[0]);
}
int64_t child = std::get<0>(comm[0].LocalChild[0]);
int64_t clen = std::get<1>(comm[0].LocalChild[0]);
std::vector<int64_t> cdims(clen);
if (child >= 0)
for (int64_t i = 0; i < clen; i++)
cdims[i] = basis[1].DimsLr[child + i];
else
cdims.emplace_back(basis[0].Dims[0]);
int64_t low_s = clen > 0 ? basis[1].dimS : 0;
lastParamsCreate(&A[0].params, A[0].A_ptr, A[0].X_ptr, basis[0].dimN, low_s, cdims.size(), &cdims[0]);
}
void node_free(Node* node) {
freeBufferedList(node->A_ptr, node->A_buf);
freeBufferedList(node->X_ptr, node->X_buf);
freeBufferedList(node->U_ptr, node->U_buf);
free(node->A);
batchParamsDestory(&node->params);
}
void factorA_mov_mem(Node A[], int64_t levels) {
for (int64_t i = 0; i <= levels; i++) {
flushBuffer('S', A[i].A_ptr, A[i].A_buf, sizeof(double), A[i].sizeA);
flushBuffer('S', A[i].U_ptr, A[i].U_buf, sizeof(double), A[i].sizeU);
}
}