-
Notifications
You must be signed in to change notification settings - Fork 2
/
compiler.cpp
571 lines (497 loc) · 20.2 KB
/
compiler.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
#include <initializer_list>
#include <iostream>
#include "parser.h"
#include "runtime.h"
#include "specializedRuntime.h"
#include "compiler.h"
#include "type_checker.h"
#include "type_analysis.h"
#include "unboxing.h"
#include "boxing_removal.h"
#include "pool.h"
#include "rift.h"
using namespace llvm;
using namespace std;
namespace rift {
namespace type {
/** Initialization type declarations. Each Rift type must be declared to
LLVM.
*/
#define STRUCT(name, ...) \
StructType::create(name, __VA_ARGS__, nullptr)
#define FUN_TYPE(result, ...) \
FunctionType::get(result, std::vector<llvm::Type*>({ __VA_ARGS__}), false)
#define FUN_TYPE_VARARG(result, ...) \
FunctionType::get(result, std::vector<llvm::Type*>({ __VA_ARGS__}), true)
StructType * environmentType();
llvm::Type * Void = llvm::Type::getVoidTy(getGlobalContext());
llvm::Type * Int = IntegerType::get(getGlobalContext(), 32);
llvm::Type * Double = llvm::Type::getDoubleTy(getGlobalContext());
llvm::Type * Character = IntegerType::get(getGlobalContext(), 8);
llvm::Type * Bool = IntegerType::get(getGlobalContext(), 1);
PointerType * ptrInt = PointerType::get(Int, 0);
PointerType * ptrCharacter = PointerType::get(Character, 0);
PointerType * ptrDouble = PointerType::get(Double, 0);
StructType * DoubleVector = STRUCT("DoubleVector", ptrDouble, Int);
StructType * CharacterVector = STRUCT("CharacterVector", ptrCharacter, Int);
PointerType * ptrDoubleVector = PointerType::get(DoubleVector, 0);
PointerType * ptrCharacterVector = PointerType::get(CharacterVector, 0);
StructType * Value = STRUCT("Value", Int, ptrDoubleVector);
PointerType * ptrValue = PointerType::get(Value, 0);
StructType * Binding = STRUCT("Binding", Int, ptrValue);
PointerType * ptrBinding = PointerType::get(Binding, 0);
PointerType * ptrEnvironment;
StructType * Environment = environmentType();
FunctionType * NativeCode = FUN_TYPE(ptrValue, ptrEnvironment);
StructType * Function = STRUCT("Function", ptrEnvironment, NativeCode, ptrInt, Int);
PointerType * ptrFunction = PointerType::get(Function, 0);
FunctionType * dv_d = FUN_TYPE(ptrDoubleVector, Double);
FunctionType * cv_i = FUN_TYPE(ptrCharacterVector, Int);
FunctionType * v_dv = FUN_TYPE(ptrValue, ptrDoubleVector);
FunctionType * v_cv = FUN_TYPE(ptrValue, ptrCharacterVector);
FunctionType * v_ev = FUN_TYPE(ptrValue, ptrEnvironment, ptrValue);
FunctionType * v_vv = FUN_TYPE(ptrValue, ptrValue, ptrValue);
FunctionType * v_vvv = FUN_TYPE(ptrValue, ptrValue, ptrValue, ptrValue);
FunctionType * v_vi = FUN_TYPE(ptrValue, ptrValue, Int);
FunctionType * v_viv = FUN_TYPE(ptrValue, ptrValue, Int, ptrValue);
FunctionType * v_ei = FUN_TYPE(ptrValue, ptrEnvironment, Int);
FunctionType * v_ecv = FUN_TYPE(ptrValue, ptrEnvironment, ptrCharacterVector);
FunctionType * void_eiv = FUN_TYPE(Void, ptrEnvironment, Int, ptrValue);
FunctionType * dv_dvdv = FUN_TYPE(ptrDoubleVector, ptrDoubleVector, ptrDoubleVector);
FunctionType * cv_cvcv = FUN_TYPE(ptrCharacterVector, ptrCharacterVector, ptrCharacterVector);
FunctionType * dv_cvcv = FUN_TYPE(ptrDoubleVector, ptrCharacterVector, ptrCharacterVector);
FunctionType * d_dvd = FUN_TYPE(Double, ptrDoubleVector, Double);
FunctionType * cv_cvdv = FUN_TYPE(ptrCharacterVector, ptrCharacterVector, ptrDoubleVector);
FunctionType * v_f = FUN_TYPE(ptrValue, ptrFunction);
FunctionType * f_ie = FUN_TYPE(ptrFunction, Int, ptrEnvironment);
FunctionType * b_v = FUN_TYPE(Bool, ptrValue);
FunctionType * v_viVA = FUN_TYPE_VARARG(ptrValue, ptrValue, Int);
FunctionType * void_vvv = FUN_TYPE(Void, ptrValue, ptrValue, ptrValue);
FunctionType * void_dvdvdv = FUN_TYPE(Void, ptrDoubleVector, ptrDoubleVector, ptrDoubleVector);
FunctionType * void_cvdvcv = FUN_TYPE(Void, ptrCharacterVector, ptrDoubleVector, ptrCharacterVector);
FunctionType * void_dvdd = FUN_TYPE(Void, ptrDoubleVector, Double, Double);
FunctionType * d_v = FUN_TYPE(Double, ptrValue);
FunctionType * cv_v = FUN_TYPE(ptrCharacterVector, ptrValue);
FunctionType * v_iVA = FUN_TYPE_VARARG(ptrValue, Int);
FunctionType * dv_iVA = FUN_TYPE_VARARG(ptrDoubleVector, Int);
FunctionType * cv_iVA = FUN_TYPE_VARARG(ptrCharacterVector, Int);
FunctionType * dv_v = FUN_TYPE(ptrDoubleVector, ptrValue);
FunctionType * d_dv = FUN_TYPE(Double, ptrDoubleVector);
FunctionType * f_v = FUN_TYPE(ptrFunction, ptrValue);
StructType * environmentType() {
StructType * result = StructType::create(getGlobalContext(), "Environment");
ptrEnvironment = PointerType::get(result, 0);
result->setBody(ptrEnvironment, ptrBinding, Int, nullptr);
return result;
}
} // namespace rift::type
/** The Rift Memory manager extends the default LLVM memory manager with
support for resolving the Rift runtime functions. This is achieved by
extending the behavior of the getSymbolAddress function.
*/
class MemoryManager : public llvm::SectionMemoryManager {
public:
#define NAME_IS(name) if (Name == #name) return reinterpret_cast<uint64_t>(::name)
/** Return the address of symbol, or nullptr if undefind. We extend the
default LLVM resolution with the list of RIFT runtime functions.
*/
uint64_t getSymbolAddress(const std::string & Name) override {
uint64_t addr = SectionMemoryManager::getSymbolAddress(Name);
if (addr != 0) return addr;
// This bit is for some OSes (Windows and OSX where the MCJIT symbol
// loading is broken)
NAME_IS(envCreate);
NAME_IS(envGet);
NAME_IS(envSet);
NAME_IS(doubleVectorLiteral);
NAME_IS(characterVectorLiteral);
NAME_IS(fromDoubleVector);
NAME_IS(fromCharacterVector);
NAME_IS(fromFunction);
NAME_IS(doubleFromValue);
NAME_IS(scalarFromVector);
NAME_IS(characterFromValue);
NAME_IS(functionFromValue);
NAME_IS(doubleGetSingleElement);
NAME_IS(doubleGetElement);
NAME_IS(characterGetElement);
NAME_IS(genericGetElement);
NAME_IS(doubleSetElement);
NAME_IS(scalarSetElement);
NAME_IS(characterSetElement);
NAME_IS(genericSetElement);
NAME_IS(doubleAdd);
NAME_IS(characterAdd);
NAME_IS(genericAdd);
NAME_IS(doubleSub);
NAME_IS(genericSub);
NAME_IS(doubleMul);
NAME_IS(genericMul);
NAME_IS(doubleDiv);
NAME_IS(genericDiv);
NAME_IS(doubleEq);
NAME_IS(characterEq);
NAME_IS(genericEq);
NAME_IS(doubleNeq);
NAME_IS(characterNeq);
NAME_IS(genericNeq);
NAME_IS(doubleLt);
NAME_IS(genericLt);
NAME_IS(doubleGt);
NAME_IS(genericGt);
NAME_IS(createFunction);
NAME_IS(toBoolean);
NAME_IS(call);
NAME_IS(length);
NAME_IS(type);
NAME_IS(eval);
NAME_IS(characterEval);
NAME_IS(genericEval);
NAME_IS(doublec);
NAME_IS(characterc);
NAME_IS(c);
report_fatal_error("Extern function '" + Name + "' couldn't be resolved!");
}
};
/**
The compiler: a visitor over the AST.
*/
class Compiler : public Visitor {
public:
/** Creates the module to which the function will be compiled.
*/
Compiler() : m(new RiftModule()) {}
/** Runtime function call. The first argument is the name of a runtime
function defined in the RiftModule. The remaining arguments are passed
to the function. The string is the name of the register where the result
of the call will be stored, when empty, LLVM picks. The last argument is
the BB where to append. */
#define RUNTIME_CALL(name, ...) \
CallInst::Create(m->name, \
std::vector<llvm::Value*>({__VA_ARGS__}), \
"", \
b)
/** Shorthand for calling runtime functions. */
#define RUNTIME_CALL(name, ...) \
CallInst::Create(m->name, \
std::vector<llvm::Value*>({__VA_ARGS__}), \
"", \
b)
/** Compiles a function and returns a pointer to the native code. JIT
compilation in LLVM finalizes the module, this function can only be
called once.
*/
FunPtr compile(ast::Fun * what) {
unsigned start = Pool::functionsCount();
int result = compileFunction(what);
ExecutionEngine * engine =
EngineBuilder(std::unique_ptr<Module>(m))
.setMCJITMemoryManager(
std::unique_ptr<MemoryManager>(new MemoryManager()))
.create();
optimizeModule(engine);
engine->finalizeObject();
// Compile newly registered functions; update their native code in the
// registered functions vector
for (; start < Pool::functionsCount(); ++start) {
RFun * rec = Pool::getFunction(start);
rec->code = reinterpret_cast<FunPtr>(engine->getPointerToFunction(rec->bitcode));
}
return Pool::getFunction(result)->code;
}
/** Optimize on the bitcode before native code generation. The
TypeAnalysis, Unboxing and BoxingRemoval are Rift passes, the rest is
from LLVM.
*/
void optimizeModule(ExecutionEngine * ee) {
auto *pm = new legacy::FunctionPassManager(m);
m->setDataLayout(*ee->getDataLayout());
pm->add(new TypeChecker());
pm->add(new TypeAnalysis());
pm->add(new Unboxing());
pm->add(new BoxingRemoval());
pm->add(createConstantPropagationPass());
// Optimize each function of this module
for (llvm::Function & f : *m) {
if (not f.empty()) {
if (DEBUG) {
cout << "After translation to bitcode: -------------------------------" << endl;
f.dump();
}
pm->run(f);
if (DEBUG) {
cout << "After LLVM's constant propagation: --------------------------" << endl;
f.dump();
}
}
}
delete pm;
}
/** Translates a function to bitcode, registers it with the runtime, and
returns its index.
*/
int compileFunction(ast::Fun * node) {
// Backup context in case we are creating a nested function
llvm::Function * oldF = f;
BasicBlock * oldB = b;
llvm::Value * oldEnv = env;
// Create the function and its first BB
f = llvm::Function::Create(type::NativeCode,
llvm::Function::ExternalLinkage,
"riftFunction",
m);
b = BasicBlock::Create(getGlobalContext(),
"entry",
f,
nullptr);
// Get the (single) argument of the function and store is as the
// environment
llvm::Function::arg_iterator args = f->arg_begin();
env = args++;
env->setName("env");
if (node->body->body.empty()) {
result = RUNTIME_CALL(doubleVectorLiteral, fromDouble(0));
result = RUNTIME_CALL(fromDoubleVector, result);
} else {
// Compile body
node->body->accept(this);
}
// Append return instruction of the last used value
ReturnInst::Create(getGlobalContext(), result, b);
// Register and get index
int result = Pool::addFunction(node, f);
// Restore context
f = oldF;
b = oldB;
env = oldEnv;
return result;
}
/** Create Value from double scalar . */
llvm::Value * fromDouble(double value) {
return ConstantFP::get(getGlobalContext(), APFloat(value));
}
/** Create Value from integer. */
llvm::Value * fromInt(int value) {
return ConstantInt::get(getGlobalContext(), APInt(32, value));
}
/** Safeguard against forgotten visitor methods. */
void visit(ast::Exp * node) override {
throw "Unexpected: You are missing a visit() method.";
}
/** Get the double value, box it into a vector of length 1, box that into
a Rift Value.
*/
void visit(ast::Num * node) override {
result = RUNTIME_CALL(doubleVectorLiteral, fromDouble(node->value));
result = RUNTIME_CALL(fromDoubleVector, result);
}
/** Similarly string is loaded as character vector and then boxed into value.
*/
void visit(ast::Str * node) override {
result = RUNTIME_CALL(characterVectorLiteral, fromInt(node->index));
result = RUNTIME_CALL(fromCharacterVector, result);
}
/** Variable translates into reading from environment.
*/
void visit(ast::Var * node) override {
result = RUNTIME_CALL(envGet, env, fromInt(node->symbol));
}
/** Sequence is compilation of each of its elements. The last one will stay in the result.
*/
void visit(ast::Seq * node) override {
for (ast::Exp * e : node->body)
e->accept(this);
}
/** Function declaration. Compiles function, use its id as a constant
for createFunction() which binding the function code to the
environment. Box result into a value.
*/
void visit(ast::Fun * node) override {
int fi = compileFunction(node);
result = RUNTIME_CALL(createFunction, fromInt(fi), env);
result = RUNTIME_CALL(fromFunction, result);
}
/** Binary expression. First compile arguments and then call respective
runtime function.
*/
void visit(ast::BinExp * node) override {
node->lhs->accept(this);
llvm::Value * lhs = result;
node->rhs->accept(this);
llvm::Value * rhs = result;
switch (node->type) {
case ast::BinExp::Type::add:
result = RUNTIME_CALL(genericAdd, lhs, rhs);
return;
case ast::BinExp::Type::sub:
result = RUNTIME_CALL(genericSub, lhs, rhs);
return;
case ast::BinExp::Type::mul:
result = RUNTIME_CALL(genericMul, lhs, rhs);
return;
case ast::BinExp::Type::div:
result = RUNTIME_CALL(genericDiv, lhs, rhs);
return;
case ast::BinExp::Type::eq:
result = RUNTIME_CALL(genericEq, lhs, rhs);
return;
case ast::BinExp::Type::neq:
result = RUNTIME_CALL(genericNeq, lhs, rhs);
return;
case ast::BinExp::Type::lt:
result = RUNTIME_CALL(genericLt, lhs, rhs);
return;
case ast::BinExp::Type::gt:
result = RUNTIME_CALL(genericGt, lhs, rhs);
return;
default: // can't happen
return;
}
}
/** Rift Function Call. First obtain the function pointer, then arguments. */
void visit(ast::UserCall * node) override {
node->name->accept(this);
std::vector<Value *> args;
args.push_back(result);
args.push_back(fromInt(node->args.size()));
for (ast::Exp * arg : node->args) {
arg->accept(this);
args.push_back(result);
}
result = CallInst::Create(m->call, args, "", b);
}
/** Call length runtime, box the scalar result */
void visit(ast::LengthCall * node) override {
node->args[0]->accept(this);
result = RUNTIME_CALL(length, result);
result = RUNTIME_CALL(doubleVectorLiteral, result);
result = RUNTIME_CALL(fromDoubleVector, result);
}
/** Call type runtime and then boxing of the character vector. */
void visit(ast::TypeCall * node) override {
node->args[0]->accept(this);
result = RUNTIME_CALL(type, result);
result = RUNTIME_CALL(fromCharacterVector, result);
}
/** Eval. */
void visit(ast::EvalCall * node) override {
node->args[0]->accept(this);
result = RUNTIME_CALL(genericEval, env, result);
}
/** Concatenate. */
void visit(ast::CCall * node) override {
std::vector<llvm::Value *> args;
args.push_back(fromInt(static_cast<int>(node->args.size())));
for (ast::Exp * arg : node->args) {
arg->accept(this);
args.push_back(result);
}
result = CallInst::Create(m->c, args, "", b);
}
/** Indexed read. */
void visit(ast::Index * node) override {
node->name->accept(this);
llvm::Value * obj = result;
node->index->accept(this);
result = RUNTIME_CALL(genericGetElement, obj, result);
}
/** Assign a variable.
*/
void visit(ast::SimpleAssignment * node) override {
node->rhs->accept(this);
RUNTIME_CALL(envSet, env, fromInt(node->name->symbol), result);
}
/** Assign into a vector at an index.
*/
void visit(ast::IndexAssignment * node) override {
node->rhs->accept(this);
llvm::Value * rhs = result;
node->index->name->accept(this);
llvm::Value * var = result;
node->index->index->accept(this);
RUNTIME_CALL(genericSetElement, var, result, rhs);
result = rhs;
}
/** Conditional. Compile the guard, convert the result to a boolean,
and branch on that. PHI nodes have to be inserted when control flow
merges after the conditional.
*/
void visit(ast::IfElse * node) override {
node->guard->accept(this);
llvm::Value * guard = RUNTIME_CALL(toBoolean, result);
// Basic blocks and guard...
BasicBlock * ifTrue = BasicBlock::Create(getGlobalContext(), "trueCase", f, nullptr);
BasicBlock * ifFalse = BasicBlock::Create(getGlobalContext(), "falseCase", f, nullptr);
BasicBlock * merge = BasicBlock::Create(getGlobalContext(), "afterIf", f, nullptr);
// Branch...
BranchInst::Create(ifTrue, ifFalse, guard, b);
// Current BB set to true case, compile, remember result and merge
b = ifTrue;
node->ifClause->accept(this);
llvm::Value * trueResult = result;
BranchInst::Create(merge, b);
// remember the last BB of the case (this will denote the incomming path to the phi node)
ifTrue = b;
// do the same for else case
b = ifFalse;
node->elseClause->accept(this);
llvm::Value * falseResult = result;
BranchInst::Create(merge, b);
ifFalse = b;
// Set BB to merge point
b = merge;
// Emit PHI node with values coming from the if and else cases
PHINode * phi = PHINode::Create(type::ptrValue, 2, "ifPhi", b);
phi->addIncoming(trueResult, ifTrue);
phi->addIncoming(falseResult, ifFalse);
result = phi;
}
/** While. The loop is simple enough that we don't have to worry about
PHI nodes.
*/
void visit(ast::WhileLoop * node) override {
// create BB for loop start (evaluation of the guard), loop body, and exit
BasicBlock * guard = BasicBlock::Create(getGlobalContext(), "guard", f, nullptr);
BasicBlock * body = BasicBlock::Create(getGlobalContext(), "body", f, nullptr);
BasicBlock * cont = BasicBlock::Create(getGlobalContext(), "cont", f, nullptr);
// we need a default value for the loop to evaluate to
BasicBlock * entry = b;
auto zero = RUNTIME_CALL(doubleVectorLiteral, fromDouble(0));
zero = RUNTIME_CALL(fromDoubleVector, zero);
// jump to start
BranchInst::Create(guard, b);
// compile start as the evaluation of the guard and conditional branch
b = guard;
auto phi = PHINode::Create(type::ptrValue, 2, "whilePhi", b);
phi->addIncoming(zero, entry);
node->guard->accept(this);
auto test = RUNTIME_CALL(toBoolean, result);
BranchInst::Create(body, cont, test, b);
// compile loop body, at the end of the loop body, branch to start
b = body;
node->body->accept(this);
// the value of the loop expression should be the last statement executed
phi->addIncoming(result, b);
BranchInst::Create(guard, b);
// set the current BB to the one after the loop, the result is the
// value of the last instruction
b = cont;
result = phi;
}
private:
/** Current BB */
BasicBlock * b;
/** Current function. */
llvm::Function * f;
/** Current Module */
RiftModule * m;
/** Result of visit functions */
llvm::Value * result;
/* Current Environment */
llvm::Value * env;
};
FunPtr compile(ast::Fun * what) {
Compiler c;
return c.compile(what);
}
} // namespace rift