forked from modern-fortran/neural-fortran
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnf_activation.f90
654 lines (567 loc) · 20.4 KB
/
nf_activation.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
module nf_activation
! A collection of activation functions and their derivatives.
implicit none
private
public :: activation_function
public :: get_activation_by_name
public :: elu
public :: exponential
public :: gaussian
public :: linear
public :: relu
public :: leaky_relu
public :: sigmoid
public :: softmax
public :: softplus
public :: step
public :: tanhf
public :: celu
type, abstract :: activation_function
contains
procedure(eval_1d_i), deferred :: eval_1d
procedure(eval_1d_i), deferred :: eval_1d_prime
procedure(eval_3d_i), deferred :: eval_3d
procedure(eval_3d_i), deferred :: eval_3d_prime
procedure :: get_name
generic :: eval => eval_1d, eval_3d
generic :: eval_prime => eval_1d_prime, eval_3d_prime
end type activation_function
abstract interface
pure function eval_1d_i(self, x) result(res)
import :: activation_function
class(activation_function), intent(in) :: self
real, intent(in) :: x(:)
real :: res(size(x))
end function eval_1d_i
pure function eval_3d_i(self, x) result(res)
import :: activation_function
class(activation_function), intent(in) :: self
real, intent(in) :: x(:,:,:)
real :: res(size(x,1),size(x,2),size(x,3))
end function eval_3d_i
end interface
type, extends(activation_function) :: elu
real :: alpha = 1 ! Keras & PyTorch default
contains
procedure :: eval_1d => eval_1d_elu
procedure :: eval_1d_prime => eval_1d_elu_prime
procedure :: eval_3d => eval_3d_elu
procedure :: eval_3d_prime => eval_3d_elu_prime
end type elu
type, extends(activation_function) :: exponential
contains
procedure :: eval_1d => eval_1d_exponential
procedure :: eval_1d_prime => eval_1d_exponential
procedure :: eval_3d => eval_3d_exponential
procedure :: eval_3d_prime => eval_3d_exponential
end type exponential
type, extends(activation_function) :: gaussian
contains
procedure :: eval_1d => eval_1d_gaussian
procedure :: eval_1d_prime => eval_1d_gaussian_prime
procedure :: eval_3d => eval_3d_gaussian
procedure :: eval_3d_prime => eval_3d_gaussian_prime
end type gaussian
type, extends(activation_function) :: linear
contains
procedure :: eval_1d => eval_1d_linear
procedure :: eval_1d_prime => eval_1d_linear_prime
procedure :: eval_3d => eval_3d_linear
procedure :: eval_3d_prime => eval_3d_linear_prime
end type linear
type, extends(activation_function) :: relu
contains
procedure :: eval_1d => eval_1d_relu
procedure :: eval_1d_prime => eval_1d_relu_prime
procedure :: eval_3d => eval_3d_relu
procedure :: eval_3d_prime => eval_3d_relu_prime
end type relu
type, extends(activation_function) :: leaky_relu
real :: alpha = 0.3 ! Keras default (PyTorch default is 0.01)
contains
procedure :: eval_1d => eval_1d_leaky_relu
procedure :: eval_1d_prime => eval_1d_leaky_relu_prime
procedure :: eval_3d => eval_3d_leaky_relu
procedure :: eval_3d_prime => eval_3d_leaky_relu_prime
end type leaky_relu
type, extends(activation_function) :: sigmoid
contains
procedure :: eval_1d => eval_1d_sigmoid
procedure :: eval_1d_prime => eval_1d_sigmoid_prime
procedure :: eval_3d => eval_3d_sigmoid
procedure :: eval_3d_prime => eval_3d_sigmoid_prime
end type sigmoid
type, extends(activation_function) :: softmax
contains
procedure :: eval_1d => eval_1d_softmax
procedure :: eval_1d_prime => eval_1d_softmax_prime
procedure :: eval_3d => eval_3d_softmax
procedure :: eval_3d_prime => eval_3d_softmax_prime
end type softmax
type, extends(activation_function) :: softplus
contains
procedure :: eval_1d => eval_1d_softplus
procedure :: eval_1d_prime => eval_1d_softplus_prime
procedure :: eval_3d => eval_3d_softplus
procedure :: eval_3d_prime => eval_3d_softplus_prime
end type softplus
type, extends(activation_function) :: step
contains
procedure :: eval_1d => eval_1d_step
procedure :: eval_1d_prime => eval_1d_step_prime
procedure :: eval_3d => eval_3d_step
procedure :: eval_3d_prime => eval_3d_step_prime
end type step
type, extends(activation_function) :: tanhf
contains
procedure :: eval_1d => eval_1d_tanh
procedure :: eval_1d_prime => eval_1d_tanh_prime
procedure :: eval_3d => eval_3d_tanh
procedure :: eval_3d_prime => eval_3d_tanh_prime
end type tanhf
type, extends(activation_function) :: celu
real:: alpha = 1.0 ! Pytorch default
contains
procedure :: eval_1d => eval_1d_celu
procedure :: eval_1d_prime => eval_1d_celu_prime
procedure :: eval_3d => eval_3d_celu
procedure :: eval_3d_prime => eval_3d_celu_prime
end type celu
contains
pure function eval_1d_elu(self, x) result(res)
! Exponential Linear Unit (ELU) activation function.
class(elu), intent(in) :: self
real, intent(in) :: x(:)
real :: res(size(x))
where (x >= 0)
res = x
elsewhere
res = self % alpha * (exp(x) - 1)
end where
end function eval_1d_elu
pure function eval_1d_elu_prime(self, x) result(res)
! First derivative of the Exponential Linear Unit (ELU)
! activation function.
class(elu), intent(in) :: self
real, intent(in) :: x(:)
real :: res(size(x))
where (x >= 0)
res = 1
elsewhere
res = self % alpha * exp(x)
end where
end function eval_1d_elu_prime
pure function eval_3d_elu(self, x) result(res)
! Exponential Linear Unit (ELU) activation function.
class(elu), intent(in) :: self
real, intent(in) :: x(:,:,:)
real :: res(size(x,1),size(x,2),size(x,3))
where (x >= 0)
res = x
elsewhere
res = self % alpha * (exp(x) - 1)
end where
end function eval_3d_elu
pure function eval_3d_elu_prime(self, x) result(res)
! First derivative of the Exponential Linear Unit (ELU)
! activation function.
class(elu), intent(in) :: self
real, intent(in) :: x(:,:,:)
real :: res(size(x,1),size(x,2),size(x,3))
where (x >= 0)
res = 1
elsewhere
res = self % alpha * exp(x)
end where
end function eval_3d_elu_prime
pure function eval_1d_exponential(self, x) result(res)
! Exponential activation function.
class(exponential), intent(in) :: self
real, intent(in) :: x(:)
real :: res(size(x))
res = exp(x)
end function eval_1d_exponential
pure function eval_3d_exponential(self, x) result(res)
! Exponential activation function.
class(exponential), intent(in) :: self
real, intent(in) :: x(:,:,:)
real :: res(size(x,1),size(x,2),size(x,3))
res = exp(x)
end function eval_3d_exponential
pure function eval_1d_gaussian(self, x) result(res)
! Gaussian activation function.
class(gaussian), intent(in) :: self
real, intent(in) :: x(:)
real :: res(size(x))
res = exp(-x**2)
end function eval_1d_gaussian
pure function eval_1d_gaussian_prime(self, x) result(res)
! First derivative of the Gaussian activation function.
class(gaussian), intent(in) :: self
real, intent(in) :: x(:)
real :: res(size(x))
res = -2 * x * self % eval_1d(x)
end function eval_1d_gaussian_prime
pure function eval_3d_gaussian(self, x) result(res)
! Gaussian activation function.
class(gaussian), intent(in) :: self
real, intent(in) :: x(:,:,:)
real :: res(size(x,1),size(x,2),size(x,3))
res = exp(-x**2)
end function eval_3d_gaussian
pure function eval_3d_gaussian_prime(self, x) result(res)
! First derivative of the Gaussian activation function.
class(gaussian), intent(in) :: self
real, intent(in) :: x(:,:,:)
real :: res(size(x,1),size(x,2),size(x,3))
res = -2 * x * self % eval_3d(x)
end function eval_3d_gaussian_prime
pure function eval_1d_linear(self, x) result(res)
! Linear activation function.
class(linear), intent(in) :: self
real, intent(in) :: x(:)
real :: res(size(x))
res = x
end function eval_1d_linear
pure function eval_1d_linear_prime(self, x) result(res)
! First derivative of the Linear activation function.
class(linear), intent(in) :: self
real, intent(in) :: x(:)
real :: res(size(x))
res = 1
end function eval_1d_linear_prime
pure function eval_3d_linear(self, x) result(res)
! Linear activation function.
class(linear), intent(in) :: self
real, intent(in) :: x(:,:,:)
real :: res(size(x,1),size(x,2),size(x,3))
res = x
end function eval_3d_linear
pure function eval_3d_linear_prime(self, x) result(res)
! First derivative of the Linear activation function.
class(linear), intent(in) :: self
real, intent(in) :: x(:,:,:)
real :: res(size(x,1),size(x,2),size(x,3))
res = 1
end function eval_3d_linear_prime
pure function eval_1d_relu(self, x) result(res)
!! Rectified Linear Unit (ReLU) activation function.
class(relu), intent(in) :: self
real, intent(in) :: x(:)
real :: res(size(x))
res = max(0., x)
end function eval_1d_relu
pure function eval_1d_relu_prime(self, x) result(res)
! First derivative of the Rectified Linear Unit (ReLU) activation function.
class(relu), intent(in) :: self
real, intent(in) :: x(:)
real :: res(size(x))
res = merge(1., 0., x > 0)
end function eval_1d_relu_prime
pure function eval_3d_relu(self, x) result(res)
!! Rectified Linear Unit (ReLU) activation function.
class(relu), intent(in) :: self
real, intent(in) :: x(:,:,:)
real :: res(size(x,1),size(x,2),size(x,3))
res = max(0., x)
end function eval_3d_relu
pure function eval_3d_relu_prime(self, x) result(res)
! First derivative of the Rectified Linear Unit (ReLU) activation function.
class(relu), intent(in) :: self
real, intent(in) :: x(:,:,:)
real :: res(size(x,1),size(x,2),size(x,3))
res = merge(1., 0., x > 0)
end function eval_3d_relu_prime
pure function eval_1d_leaky_relu(self, x) result(res)
!! Leaky Rectified Linear Unit (Leaky ReLU) activation function.
class(leaky_relu), intent(in) :: self
real, intent(in) :: x(:)
real :: res(size(x))
res = max(self % alpha * x, x)
end function eval_1d_leaky_relu
pure function eval_1d_leaky_relu_prime(self, x) result(res)
! First derivative of the Leaky Rectified Linear Unit (Leaky ReLU) activation function.
class(leaky_relu), intent(in) :: self
real, intent(in) :: x(:)
real :: res(size(x))
res = merge(1., self%alpha, x > 0)
end function eval_1d_leaky_relu_prime
pure function eval_3d_leaky_relu(self, x) result(res)
!! Leaky Rectified Linear Unit (Leaky ReLU) activation function.
class(leaky_relu), intent(in) :: self
real, intent(in) :: x(:,:,:)
real :: res(size(x,1),size(x,2),size(x,3))
res = max(self % alpha * x, x)
end function eval_3d_leaky_relu
pure function eval_3d_leaky_relu_prime(self, x) result(res)
! First derivative of the Leaky Rectified Linear Unit (Leaky ReLU) activation function.
class(leaky_relu), intent(in) :: self
real, intent(in) :: x(:,:,:)
real :: res(size(x,1),size(x,2),size(x,3))
res = merge(1., self%alpha, x > 0)
end function eval_3d_leaky_relu_prime
pure function eval_1d_sigmoid(self, x) result(res)
! Sigmoid activation function.
class(sigmoid), intent(in) :: self
real, intent(in) :: x(:)
real :: res(size(x))
res = 1 / (1 + exp(-x))
endfunction eval_1d_sigmoid
pure function eval_1d_sigmoid_prime(self, x) result(res)
! First derivative of the sigmoid activation function.
class(sigmoid), intent(in) :: self
real, intent(in) :: x(:)
real :: res(size(x))
res = self % eval_1d(x) * (1 - self % eval_1d(x))
end function eval_1d_sigmoid_prime
pure function eval_3d_sigmoid(self, x) result(res)
! Sigmoid activation function.
class(sigmoid), intent(in) :: self
real, intent(in) :: x(:,:,:)
real :: res(size(x,1),size(x,2),size(x,3))
res = 1 / (1 + exp(-x))
endfunction eval_3d_sigmoid
pure function eval_3d_sigmoid_prime(self, x) result(res)
! First derivative of the sigmoid activation function.
class(sigmoid), intent(in) :: self
real, intent(in) :: x(:,:,:)
real :: res(size(x,1),size(x,2),size(x,3))
res = self % eval_3d(x) * (1 - self % eval_3d(x))
end function eval_3d_sigmoid_prime
pure function eval_1d_softmax(self, x) result(res)
!! Softmax activation function
class(softmax), intent(in) :: self
real, intent(in) :: x(:)
real :: res(size(x))
res = exp(x - maxval(x))
res = res / sum(res)
end function eval_1d_softmax
pure function eval_1d_softmax_prime(self, x) result(res)
!! Derivative of the softmax activation function.
class(softmax), intent(in) :: self
real, intent(in) :: x(:)
real :: res(size(x))
res = self%eval_1d(x) * (1 - self%eval_1d(x))
end function eval_1d_softmax_prime
pure function eval_3d_softmax(self, x) result(res)
!! Softmax activation function
class(softmax), intent(in) :: self
real, intent(in) :: x(:,:,:)
real :: res(size(x,1),size(x,2),size(x,3))
res = exp(x - maxval(x))
res = res / sum(res)
end function eval_3d_softmax
pure function eval_3d_softmax_prime(self, x) result(res)
!! Derivative of the softmax activation function.
class(softmax), intent(in) :: self
real, intent(in) :: x(:,:,:)
real :: res(size(x,1),size(x,2),size(x,3))
res = self % eval_3d(x) * (1 - self % eval_3d(x))
end function eval_3d_softmax_prime
pure function eval_1d_softplus(self, x) result(res)
! Softplus activation function.
class(softplus), intent(in) :: self
real, intent(in) :: x(:)
real :: res(size(x))
res = log(exp(x) + 1)
end function eval_1d_softplus
pure function eval_1d_softplus_prime(self, x) result(res)
class(softplus), intent(in) :: self
! First derivative of the softplus activation function.
real, intent(in) :: x(:)
real :: res(size(x))
res = exp(x) / (exp(x) + 1)
end function eval_1d_softplus_prime
pure function eval_3d_softplus(self, x) result(res)
! Softplus activation function.
class(softplus), intent(in) :: self
real, intent(in) :: x(:,:,:)
real :: res(size(x,1),size(x,2),size(x,3))
res = log(exp(x) + 1)
end function eval_3d_softplus
pure function eval_3d_softplus_prime(self, x) result(res)
class(softplus), intent(in) :: self
! First derivative of the softplus activation function.
real, intent(in) :: x(:,:,:)
real :: res(size(x,1),size(x,2),size(x,3))
res = exp(x) / (exp(x) + 1)
end function eval_3d_softplus_prime
pure function eval_1d_step(self, x) result(res)
! Step activation function.
class(step), intent(in) :: self
real, intent(in) :: x(:)
real :: res(size(x))
res = merge(1., 0., x > 0)
end function eval_1d_step
pure function eval_1d_step_prime(self, x) result(res)
! First derivative of the step activation function.
class(step), intent(in) :: self
real, intent(in) :: x(:)
real :: res(size(x))
res = 0
end function eval_1d_step_prime
pure function eval_3d_step(self, x) result(res)
! Step activation function.
class(step), intent(in) :: self
real, intent(in) :: x(:,:,:)
real :: res(size(x,1),size(x,2),size(x,3))
res = merge(1., 0., x > 0)
end function eval_3d_step
pure function eval_3d_step_prime(self, x) result(res)
! First derivative of the step activation function.
class(step), intent(in) :: self
real, intent(in) :: x(:,:,:)
real :: res(size(x,1),size(x,2),size(x,3))
res = 0
end function eval_3d_step_prime
pure function eval_1d_tanh(self, x) result(res)
! Tangent hyperbolic activation function.
class(tanhf), intent(in) :: self
real, intent(in) :: x(:)
real :: res(size(x))
res = tanh(x)
end function eval_1d_tanh
pure function eval_1d_tanh_prime(self, x) result(res)
! First derivative of the tanh activation function.
class(tanhf), intent(in) :: self
real, intent(in) :: x(:)
real :: res(size(x))
res = 1 - tanh(x)**2
end function eval_1d_tanh_prime
pure function eval_3d_tanh(self, x) result(res)
! Tangent hyperbolic activation function.
class(tanhf), intent(in) :: self
real, intent(in) :: x(:,:,:)
real :: res(size(x,1),size(x,2),size(x,3))
res = tanh(x)
end function eval_3d_tanh
pure function eval_3d_tanh_prime(self, x) result(res)
! First derivative of the tanh activation function.
class(tanhf), intent(in) :: self
real, intent(in) :: x(:,:,:)
real :: res(size(x,1),size(x,2),size(x,3))
res = 1 - tanh(x)**2
end function eval_3d_tanh_prime
pure function eval_1d_celu(self, x) result(res)
! Celu activation function.
class(celu), intent(in) :: self
real, intent(in) :: x(:)
real :: res(size(x))
where (x >= 0.0)
res = x
else where
res = self % alpha * (exp(x / self % alpha) - 1.0)
end where
end function
pure function eval_1d_celu_prime(self, x) result(res)
! Celu activation function.
class(celu), intent(in) :: self
real, intent(in) :: x(:)
real :: res(size(x))
where (x >= 0.0)
res = 1.0
else where
res = exp(x / self % alpha)
end where
end function
pure function eval_3d_celu(self, x) result(res)
! Celu activation function.
class(celu), intent(in) :: self
real, intent(in) :: x(:,:,:)
real :: res(size(x,1),size(x,2),size(x,3))
where (x >= 0.0)
res = x
else where
res = self % alpha * (exp(x / self % alpha) - 1.0)
end where
end function
pure function eval_3d_celu_prime(self, x) result(res)
! Celu activation function.
class(celu), intent(in) :: self
real, intent(in) :: x(:,:,:)
real :: res(size(x,1),size(x,2),size(x,3))
where (x >= 0.0)
res = 1.0
else where
res = exp(x / self % alpha)
end where
end function
function get_activation_by_name(activation_name) result(res)
! Workaround to get activation_function with some
! hardcoded default parameters by its name.
! Need this function since we get only activation name
! from keras files.
character(len=*), intent(in) :: activation_name
class(activation_function), allocatable :: res
select case(trim(activation_name))
case('elu')
allocate ( res, source = elu(alpha = 0.1) )
case('exponential')
allocate ( res, source = exponential() )
case('gaussian')
allocate ( res, source = gaussian() )
case('linear')
allocate ( res, source = linear() )
case('relu')
allocate ( res, source = relu() )
case('leaky_relu')
allocate ( res, source = leaky_relu(alpha = 0.1) )
case('sigmoid')
allocate ( res, source = sigmoid() )
case('softmax')
allocate ( res, source = softmax() )
case('softplus')
allocate ( res, source = softplus() )
case('step')
allocate ( res, source = step() )
case('tanh')
allocate ( res, source = tanhf() )
case('celu')
allocate ( res, source = celu() )
case default
error stop 'activation_name must be one of: ' // &
'"elu", "exponential", "gaussian", "linear", "relu", ' // &
'"leaky_relu", "sigmoid", "softmax", "softplus", "step", "tanh" or "celu".'
end select
end function get_activation_by_name
pure function get_name(self) result(name)
!! Return the name of the activation function.
!!
!! Normally we would place this in the definition of each type, however
!! accessing the name variable directly from the type would require type
!! guards just like we have here. This at least keeps all the type guards
!! in one place.
class(activation_function), intent(in) :: self
!! The activation function instance.
character(:), allocatable :: name
!! The name of the activation function.
select type (self)
class is (elu)
name = 'elu'
class is (exponential)
name = 'exponential'
class is (gaussian)
name = 'gaussian'
class is (linear)
name = 'linear'
class is (relu)
name = 'relu'
class is (leaky_relu)
name = 'leaky_relu'
class is (sigmoid)
name = 'sigmoid'
class is (softmax)
name = 'softmax'
class is (softplus)
name = 'softplus'
class is (step)
name = 'step'
class is (tanhf)
name = 'tanh'
class is (celu)
name = 'celu'
class default
error stop 'Unknown activation function type.'
end select
end function get_name
end module nf_activation