-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess.py
42 lines (31 loc) · 1.41 KB
/
process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import spacy
import pandas as pd
# Load the spaCy model
nlp = spacy.load('en_core_web_sm')
nlp.max_length = 4000000
# Define function: Filter out the stop words and the punctuation and apply lemmatization
def filter_lemmatize(doc):
filtered_tokens = [token.lemma_ for token in doc if not token.is_stop and not token.is_punct and token.text != '\n']
filtered_text = ' '.join(filtered_tokens)
return filtered_text
# Read the JSON file into a pandas DataFrame
combined_file_path = 'material/collected_data.json'
print('Reading JSON file...')
df = pd.read_json(combined_file_path)
# Apply spaCy model to all documents and perform NER
print('Applying spaCy model and NER to all documents...')
df['spacy_document'] = df['text'].apply(nlp)
df['ner_person'] = df['spacy_document'].apply(lambda doc: [ent.text for ent in doc.ents if ent.label_ == 'PERSON'])
# Process files: Filter and lemmatize
print('Filtering and lemmatizing files...')
df['cleaned_lemmatized_filtered'] = df['spacy_document'].apply(filter_lemmatize)
# Drop the 'text' and 'spacy_document' columns
df.drop(['text', 'spacy_document'], axis=1, inplace=True)
# Print the DataFrame
print('DataFrame:')
with pd.option_context('display.max_rows', None, 'display.max_columns', None):
print(df)
# Save the DataFrame to a CSV file
output_file_path = 'material/processed_data.csv'
df.to_csv(output_file_path, index=False)
print('DataFrame saved to:', output_file_path)