-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathperformance_metrics.py
71 lines (55 loc) · 2.26 KB
/
performance_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# -*- coding: utf-8 -*-
"""Copy of performance_metrics.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1vm6XtZySA05niZRavz3c650RyA_TtfZV
"""
import numpy as np
from numpy.testing import assert_allclose
from keras.models import Sequential, load_model
from keras.layers import LSTM, Dropout, Dense
from keras.callbacks import ModelCheckpoint
!pip install plotly --upgrade # make sure your plotly is up to date
import plotly.express as px
import numpy as np
import pandas as pd
from scipy.io import loadmat
import matplotlib.pyplot as plt
"""tp = num_pairs
fp = in pred modes but not in modes = len(predicted_modes) - num_pairs
tn = does not exist
fn = in modes but not in pred modes = len(modes) - num_pairs
"""
# Inputs: sorted np.arrays of modes, predicted modes, and optional threshold
# Outputs: number of correct predictions, list of correct actual modes, list of correct predicted modes
def get_correct_preds(modes, predicted_modes, threshold = 50):
modes = np.array(modes)
modes.sort()
mode_dists = np.abs(predicted_modes[:, np.newaxis] - modes)
dist_df = pd.DataFrame(mode_dists.flatten(), columns = ['distance'])
dist_df['predicted_index'] = np.indices((mode_dists.shape[0], mode_dists.shape[1]))[0].flatten()
dist_df['actual_index'] = np.indices((mode_dists.shape[0], mode_dists.shape[1]))[1].flatten()
filter_df = dist_df[dist_df['distance']<50]
sort_df = filter_df.sort_values(filter_df.columns[0])
dist_arr = sort_df.to_numpy()
p_actual= []
p_pred = []
num_pairs = 0
for item in dist_arr:
if item[1] not in p_pred and item[2] not in p_actual:
p_pred.append(item[1])
p_actual.append(item[2])
num_pairs += 1
return num_pairs, p_actual, p_pred
# Inputs: number of correct predictions, actual modes, predicted modes
def get_precision_recall_f1(num_pairs, modes, predicted_modes):
fp = len(predicted_modes) - num_pairs
fn = len(modes) - num_pairs
precision = num_pairs / (num_pairs + fp)
recall = num_pairs / (num_pairs + fn)
f1 = 2 * precision * recall / (precision + recall)
return precision, recall, f1
# final_neighbors = get_correct_preds(modes, predicted_modes, 50)
# tp = final_neighbors[0]
# tp
# get_precision_recall_f1(tp, modes, predicted_modes)