-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcvpr_data.json
14525 lines (14525 loc) · 449 KB
/
cvpr_data.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
"Machine Learning": [
{
"paperId": "11954",
"posterId": "1a",
"title": "Efficient Deep Embedded Subspace Clustering",
"authors": [
"Jinyu Cai",
" Jicong Fan",
" Wenzhong Guo",
" Shiping Wang",
" Yunhe Zhang",
" Zhao Zhang"
]
},
{
"paperId": "11402",
"posterId": "2a",
"title": "Clipped Hyperbolic Classifiers Are Super-Hyperbolic Classifiers",
"authors": [
"Yunhui Guo",
" Xudong Wang",
" Yubei Chen",
" Stella X. Yu"
]
},
{
"paperId": "9445",
"posterId": "3a",
"title": "CO-SNE: Dimensionality Reduction and Visualization for Hyperbolic Data",
"authors": [
"Yunhui Guo",
" Haoran Guo",
" Stella X. Yu"
]
},
{
"paperId": "8776",
"posterId": "4a",
"title": "Noise Is Also Useful: Negative Correlation-Steered Latent Contrastive Learning",
"authors": [
"Jiexi Yan",
" Lei Luo",
" Chenghao Xu",
" Cheng Deng",
" Heng Huang"
]
},
{
"paperId": "6978",
"posterId": "5a",
"title": "Active Learning for Open-Set Annotation",
"authors": [
"Kun-Peng Ning",
" Xun Zhao",
" Yu Li",
" Sheng-Jun Huang"
]
},
{
"paperId": "9075",
"posterId": "6a",
"title": "Understanding and Increasing Efficiency of Frank-Wolfe Adversarial Training",
"authors": [
"Theodoros Tsiligkaridis",
" Jay Roberts"
]
},
{
"paperId": "6601",
"posterId": "7a",
"title": "Robust Optimization As Data Augmentation for Large-Scale Graphs",
"authors": [
"Kezhi Kong",
" Guohao Li",
" Mucong Ding",
" Zuxuan Wu",
" Chen Zhu",
" Bernard Ghanem",
" Gavin Taylor",
" Tom Goldstein"
]
},
{
"paperId": "6298",
"posterId": "8a",
"title": "A Re-Balancing Strategy for Class-Imbalanced Classification Based on Instance Difficulty",
"authors": [
"Sihao Yu",
" Jiafeng Guo",
" Ruqing Zhang",
" Yixing Fan",
" Zizhen Wang",
" Xueqi Cheng"
]
},
{
"paperId": "6106",
"posterId": "9a",
"title": "The Devil Is in the Margin: Margin-Based Label Smoothing for Network Calibration",
"authors": [
"Bingyuan Liu",
" Ismail Ben Ayed",
" Adrian Galdran",
" Jose Dolz"
]
},
{
"paperId": "6705",
"posterId": "10a",
"title": "Towards Better Plasticity-Stability Trade-Off in Incremental Learning: A Simple Linear Connector",
"authors": [
"Guoliang Lin",
" Hanlu Chu",
" Hanjiang Lai"
]
},
{
"paperId": "10071",
"posterId": "11a",
"title": "GCR: Gradient Coreset Based Replay Buffer Selection for Continual Learning",
"authors": [
"Rishabh Tiwari",
" Krishnateja Killamsetty",
" Rishabh Iyer",
" Pradeep Shenoy"
]
},
{
"paperId": "7829",
"posterId": "12a",
"title": "Learning Bayesian Sparse Networks With Full Experience Replay for Continual Learning",
"authors": [
"Qingsen Yan",
" Dong Gong",
" Yuhang Liu",
" Anton van den Hengel",
" Javen Qinfeng Shi"
]
},
{
"paperId": "5988",
"posterId": "13a",
"title": "A Variational Bayesian Method for Similarity Learning in Non-Rigid Image Registration",
"authors": [
"Daniel Grzech",
" Mohammad Farid Azampour",
" Ben Glocker",
" Julia Schnabel",
" Nassir Navab",
" Bernhard Kainz",
" Loïc Le Folgoc"
]
},
{
"paperId": "2503",
"posterId": "14a",
"title": "Learning To Learn by Jointly Optimizing Neural Architecture and Weights",
"authors": [
"Yadong Ding",
" Yu Wu",
" Chengyue Huang",
" Siliang Tang",
" Yi Yang",
" Longhui Wei",
" Yueting Zhuang",
" Qi Tian"
]
},
{
"paperId": "9806",
"posterId": "15a",
"title": "Learning To Prompt for Continual Learning",
"authors": [
"Zifeng Wang",
" Zizhao Zhang",
" Chen-Yu Lee",
" Han Zhang",
" Ruoxi Sun",
" Xiaoqi Ren",
" Guolong Su",
" Vincent Perot",
" Jennifer Dy",
" Tomas Pfister"
]
},
{
"paperId": "2016",
"posterId": "16a",
"title": "Meta-Attention for ViT-Backed Continual Learning",
"authors": [
"Mengqi Xue",
" Haofei Zhang",
" Jie Song",
" Mingli Song"
]
},
{
"paperId": "1343",
"posterId": "17a",
"title": "Multi-Frame Self-Supervised Depth With Transformers",
"authors": [
"Vitor Guizilini",
" Rareș Ambruș",
" Dian Chen",
" Sergey Zakharov",
" Adrien Gaidon"
]
},
{
"paperId": "10018",
"posterId": "18a",
"title": "Continual Learning With Lifelong Vision Transformer",
"authors": [
"Zhen Wang",
" Liu Liu",
" Yiqun Duan",
" Yajing Kong",
" Dacheng Tao"
]
},
{
"paperId": "780",
"posterId": "19a",
"title": "Rethinking Bayesian Deep Learning Methods for Semi-Supervised Volumetric Medical Image Segmentation",
"authors": [
"Jianfeng Wang",
" Thomas Lukasiewicz"
]
},
{
"paperId": "4874",
"posterId": "20a",
"title": "Revisiting Random Channel Pruning for Neural Network Compression",
"authors": [
"Yawei Li",
" Kamil Adamczewski",
" Wen Li",
" Shuhang Gu",
" Radu Timofte",
" Luc Van Gool"
]
},
{
"paperId": "8330",
"posterId": "21a",
"title": "Deep Safe Multi-View Clustering: Reducing the Risk of Clustering Performance Degradation Caused by View Increase",
"authors": [
"Huayi Tang",
" Yong Liu"
]
},
{
"paperId": "9551",
"posterId": "22a",
"title": "Hypergraph-Induced Semantic Tuplet Loss for Deep Metric Learning",
"authors": [
"Jongin Lim",
" Sangdoo Yun",
" Seulki Park",
" Jin Young Choi"
]
},
{
"paperId": "10484",
"posterId": "23a",
"title": "Towards Robust and Reproducible Active Learning Using Neural Networks",
"authors": [
"Prateek Munjal",
" Nasir Hayat",
" Munawar Hayat",
" Jamshid Sourati",
" Shadab Khan"
]
},
{
"paperId": "7082",
"posterId": "24a",
"title": "Non-Iterative Recovery From Nonlinear Observations Using Generative Models",
"authors": [
"Jiulong Liu",
" Zhaoqiang Liu"
]
},
{
"paperId": "11093",
"posterId": "25a",
"title": "Gaussian Process Modeling of Approximate Inference Errors for Variational Autoencoders",
"authors": [
"Minyoung Kim"
]
},
{
"paperId": "4542",
"posterId": "26a",
"title": "Robust Combination of Distributed Gradients Under Adversarial Perturbations",
"authors": [
"Kwang In Kim"
]
},
{
"paperId": "11143",
"posterId": "27a",
"title": "Do Learned Representations Respect Causal Relationships?",
"authors": [
"Lan Wang",
" Vishnu Naresh Boddeti"
]
},
{
"paperId": "11220",
"posterId": "28a",
"title": "How Much More Data Do I Need? Estimating Requirements for Downstream Tasks",
"authors": [
"Rafid Mahmood",
" James Lucas",
" David Acuna",
" Daiqing Li",
" Jonah Philion",
" Jose M. Alvarez",
" Zhiding Yu",
" Sanja Fidler",
" Marc T. Law"
]
},
{
"paperId": "8156",
"posterId": "29a",
"title": "Pushing the Envelope of Gradient Boosting Forests via Globally-Optimized Oblique Trees",
"authors": [
"Magzhan Gabidolla",
" Miguel Á. Carreira-Perpiñán"
]
},
{
"paperId": "11131",
"posterId": "30a",
"title": "Contrastive Test-Time Adaptation",
"authors": [
"Dian Chen",
" Dequan Wang",
" Trevor Darrell",
" Sayna Ebrahimi"
]
},
{
"paperId": "448",
"posterId": "31a",
"title": "AutoSDF: Shape Priors for 3D Completion, Reconstruction and Generation",
"authors": [
"Paritosh Mittal",
" Yen-Chi Cheng",
" Maneesh Singh",
" Shubham Tulsiani"
]
},
{
"paperId": "1561",
"posterId": "32a",
"title": "Selective-Supervised Contrastive Learning With Noisy Labels",
"authors": [
"Shikun Li",
" Xiaobo Xia",
" Shiming Ge",
" Tongliang Liu"
]
},
{
"paperId": "7807",
"posterId": "33a",
"title": "RecDis-SNN: Rectifying Membrane Potential Distribution for Directly Training Spiking Neural Networks",
"authors": [
"Yufei Guo",
" Xinyi Tong",
" Yuanpei Chen",
" Liwen Zhang",
" Xiaode Liu",
" Zhe Ma",
" Xuhui Huang"
]
},
{
"paperId": "3279",
"posterId": "34a",
"title": "Hierarchical Nearest Neighbor Graph Embedding for Efficient Dimensionality Reduction",
"authors": [
"Saquib Sarfraz",
" Marios Koulakis",
" Constantin Seibold",
" Rainer Stiefelhagen"
]
}
],
"Statistical Methods": [
{
"paperId": "3348",
"posterId": "35a",
"title": "Scalable Penalized Regression for Noise Detection in Learning With Noisy Labels",
"authors": [
"Yikai Wang",
" Xinwei Sun",
" Yanwei Fu"
]
},
{
"paperId": "7912",
"posterId": "36a",
"title": "Nested Hyperbolic Spaces for Dimensionality Reduction and Hyperbolic NN Design",
"authors": [
"Xiran Fan",
" Chun-Hao Yang",
" Baba C. Vemuri"
]
},
{
"paperId": "8877",
"posterId": "37a",
"title": "Learning Structured Gaussians To Approximate Deep Ensembles",
"authors": [
"Ivor J. A. Simpson",
" Sara Vicente",
" Neill D. F. Campbell"
]
},
{
"paperId": "11673",
"posterId": "38a",
"title": "Out-of-Distribution Generalization With Causal Invariant Transformations",
"authors": [
"Ruoyu Wang",
" Mingyang Yi",
" Zhitang Chen",
" Shengyu Zhu"
]
},
{
"paperId": "8393",
"posterId": "39a",
"title": "Split Hierarchical Variational Compression",
"authors": [
"Tom Ryder",
" Chen Zhang",
" Ning Kang",
" Shifeng Zhang"
]
},
{
"paperId": "9244",
"posterId": "40a",
"title": "Implicit Feature Decoupling With Depthwise Quantization",
"authors": [
"Iordanis Fostiropoulos",
" Barry Boehm"
]
},
{
"paperId": "282",
"posterId": "41a",
"title": "Understanding Uncertainty Maps in Vision With Statistical Testing",
"authors": [
"Jurijs Nazarovs",
" Zhichun Huang",
" Songwong Tasneeyapant",
" Rudrasis Chakraborty",
" Vikas Singh"
]
}
],
"Optimization Methods": [
{
"paperId": "785",
"posterId": "42a",
"title": "A Hybrid Quantum-Classical Algorithm for Robust Fitting",
"authors": [
"Anh-Dzung Doan",
" Michele Sasdelli",
" David Suter",
" Tat-Jun Chin"
]
},
{
"paperId": "5911",
"posterId": "43a",
"title": "A Scalable Combinatorial Solver for Elastic Geometrically Consistent 3D Shape Matching",
"authors": [
"Paul Roetzer",
" Paul Swoboda",
" Daniel Cremers",
" Florian Bernard"
]
},
{
"paperId": "6021",
"posterId": "44a",
"title": "FastDOG: Fast Discrete Optimization on GPU",
"authors": [
"Ahmed Abbas",
" Paul Swoboda"
]
},
{
"paperId": "9232",
"posterId": "45a",
"title": "Data-Free Network Compression via Parametric Non-Uniform Mixed Precision Quantization",
"authors": [
"Vladimir Chikin",
" Mikhail Antiukh"
]
},
{
"paperId": "10092",
"posterId": "46a",
"title": "AdaSTE: An Adaptive Straight-Through Estimator To Train Binary Neural Networks",
"authors": [
"Huu Le",
" Rasmus Kjær Høier",
" Che-Tsung Lin",
" Christopher Zach"
]
},
{
"paperId": "11171",
"posterId": "47a",
"title": "Training Quantised Neural Networks With STE Variants: The Additive Noise Annealing Algorithm",
"authors": [
"Matteo Spallanzani",
" Gian Paolo Leonardi",
" Luca Benini"
]
},
{
"paperId": "2028",
"posterId": "48a",
"title": "AME: Attention and Memory Enhancement in Hyper-Parameter Optimization",
"authors": [
"Nuo Xu",
" Jianlong Chang",
" Xing Nie",
" Chunlei Huo",
" Shiming Xiang",
" Chunhong Pan"
]
},
{
"paperId": "9259",
"posterId": "49a",
"title": "Accelerating Neural Network Optimization Through an Automated Control Theory Lens",
"authors": [
"Jiahao Wang",
" Baoyuan Wu",
" Rui Su",
" Mingdeng Cao",
" Shuwei Shi",
" Wanli Ouyang",
" Yujiu Yang"
]
},
{
"paperId": "11189",
"posterId": "50a",
"title": "Efficient Maximal Coding Rate Reduction by Variational Forms",
"authors": [
"Christina Baek",
" Ziyang Wu",
" Kwan Ho Ryan Chan",
" Tianjiao Ding",
" Yi Ma",
" Benjamin D. Haeffele"
]
},
{
"paperId": "10155",
"posterId": "51a",
"title": "A Unified Framework for Implicit Sinkhorn Differentiation",
"authors": [
"Marvin Eisenberger",
" Aysim Toker",
" Laura Leal-Taixé",
" Florian Bernard",
" Daniel Cremers"
]
},
{
"paperId": "6845",
"posterId": "52a",
"title": "Computing Wasserstein-p Distance Between Images With Linear Cost",
"authors": [
"Yidong Chen",
" Chen Li",
" Zhonghua Lu"
]
},
{
"paperId": "9064",
"posterId": "53a",
"title": "An Iterative Quantum Approach for Transformation Estimation From Point Sets",
"authors": [
"Natacha Kuete Meli",
" Florian Mannel",
" Jan Lellmann"
]
}
],
"Deep Learning Architectures & Techniques": [
{
"paperId": "116",
"posterId": "121a",
"title": "Demystifying the Neural Tangent Kernel From a Practical Perspective: Can It Be Trusted for Neural Architecture Search Without Training?",
"authors": [
"Jisoo Mok",
" Byunggook Na",
" Ji-Hoon Kim",
" Dongyoon Han",
" Sungroh Yoon"
]
},
{
"paperId": "5389",
"posterId": "122a",
"title": "BaLeNAS: Differentiable Architecture Search via the Bayesian Learning Rule",
"authors": [
"Miao Zhang",
" Shirui Pan",
" Xiaojun Chang",
" Steven Su",
" Jilin Hu",
" Gholamreza (Reza) Haffari",
" Bin Yang"
]
},
{
"paperId": "7704",
"posterId": "123a",
"title": "Arch-Graph: Acyclic Architecture Relation Predictor for Task-Transferable Neural Architecture Search",
"authors": [
"Minbin Huang",
" Zhijian Huang",
" Changlin Li",
" Xin Chen",
" Hang Xu",
" Zhenguo Li",
" Xiaodan Liang"
]
},
{
"paperId": "4143",
"posterId": "124a",
"title": "Shapley-NAS: Discovering Operation Contribution for Neural Architecture Search",
"authors": [
"Han Xiao",
" Ziwei Wang",
" Zheng Zhu",
" Jie Zhou",
" Jiwen Lu"
]
},
{
"paperId": "5167",
"posterId": "125a",
"title": "GreedyNASv2: Greedier Search With a Greedy Path Filter",
"authors": [
"Tao Huang",
" Shan You",
" Fei Wang",
" Chen Qian",
" Changshui Zhang",
" Xiaogang Wang",
" Chang Xu"
]
},
{
"paperId": "1115",
"posterId": "126a",
"title": "Neural Architecture Search With Representation Mutual Information",
"authors": [
"Xiawu Zheng",
" Xiang Fei",
" Lei Zhang",
" Chenglin Wu",
" Fei Chao",
" Jianzhuang Liu",
" Wei Zeng",
" Yonghong Tian",
" Rongrong Ji"
]
},
{
"paperId": "7148",
"posterId": "127a",
"title": "Performance-Aware Mutual Knowledge Distillation for Improving Neural Architecture Search",
"authors": [
"Pengtao Xie",
" Xuefeng Du"
]
},
{
"paperId": "8841",
"posterId": "128a",
"title": "Knowledge Distillation With the Reused Teacher Classifier",
"authors": [
"Defang Chen",
" Jian-Ping Mei",
" Hailin Zhang",
" Can Wang",
" Yan Feng",
" Chun Chen"
]
},
{
"paperId": "2812",
"posterId": "129a",
"title": "Self-Distillation From the Last Mini-Batch for Consistency Regularization",
"authors": [
"Yiqing Shen",
" Liwu Xu",
" Yuzhe Yang",
" Yaqian Li",
" Yandong Guo"
]
},
{
"paperId": "142",
"posterId": "130a",
"title": "Decoupled Knowledge Distillation",
"authors": [
"Borui Zhao",
" Quan Cui",
" Renjie Song",
" Yiyu Qiu",
" Jiajun Liang"
]
},
{
"paperId": "7053",
"posterId": "131a",
"title": "Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs",
"authors": [
"Xiaohan Ding",
" Xiangyu Zhang",
" Jungong Han",
" Guiguang Ding"
]
},
{
"paperId": "123",
"posterId": "132a",
"title": "A ConvNet for the 2020s",
"authors": [
"Zhuang Liu",
" Hanzi Mao",
" Chao-Yuan Wu",
" Christoph Feichtenhofer",
" Trevor Darrell",
" Saining Xie"
]
},
{
"paperId": "7254",
"posterId": "133a",
"title": "Beyond Fixation: Dynamic Window Visual Transformer",
"authors": [
"Pengzhen Ren",
" Changlin Li",
" Guangrun Wang",
" Yun Xiao",
" Qing Du",
" Xiaodan Liang",
" Xiaojun Chang"
]
},
{
"paperId": "7867",
"posterId": "134a",
"title": "Lite Vision Transformer With Enhanced Self-Attention",
"authors": [
"Chenglin Yang",
" Yilin Wang",
" Jianming Zhang",
" He Zhang",
" Zijun Wei",
" Zhe Lin",
" Alan Yuille"
]
},
{
"paperId": "7428",
"posterId": "135a",
"title": "Swin Transformer V2: Scaling Up Capacity and Resolution",
"authors": [
"Ze Liu",
" Han Hu",
" Yutong Lin",
" Zhuliang Yao",
" Zhenda Xie",
" Yixuan Wei",
" Jia Ning",
" Yue Cao",
" Zheng Zhang",
" Li Dong",
" Furu Wei",
" Baining Guo"
]
},
{
"paperId": "4325",
"posterId": "136a",
"title": "The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy",
"authors": [
"Tianlong Chen",
" Zhenyu Zhang",
" Yu Cheng",
" Ahmed Awadallah",
" Zhangyang Wang"
]
},
{
"paperId": "9412",
"posterId": "137a",
"title": "MulT: An End-to-End Multitask Learning Transformer",
"authors": [
"Deblina Bhattacharjee",
" Tong Zhang",
" Sabine Süsstrunk",
" Mathieu Salzmann"
]
},
{
"paperId": "3664",
"posterId": "138a",
"title": "Towards Robust Vision Transformer",
"authors": [
"Xiaofeng Mao",
" Gege Qi",
" Yuefeng Chen",
" Xiaodan Li",
" Ranjie Duan",
" Shaokai Ye",
" Yuan He",
" Hui Xue"
]
},
{
"paperId": "9773",
"posterId": "139a",
"title": "DearKD: Data-Efficient Early Knowledge Distillation for Vision Transformers",
"authors": [
"Xianing Chen",
" Qiong Cao",
" Yujie Zhong",
" Jing Zhang",
" Shenghua Gao",
" Dacheng Tao"
]
},
{
"paperId": "2434",
"posterId": "140a",
"title": "MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens",
"authors": [
"Jiemin Fang",
" Lingxi Xie",
" Xinggang Wang",
" Xiaopeng Zhang",
" Wenyu Liu",
" Qi Tian"
]
},
{
"paperId": "1032",
"posterId": "141a",
"title": "NomMer: Nominate Synergistic Context in Vision Transformer for Visual Recognition",
"authors": [
"Hao Liu",
" Xinghua Jiang",
" Xin Li",
" Zhimin Bao",
" Deqiang Jiang",
" Bo Ren"
]
},
{
"paperId": "2029",
"posterId": "142a",
"title": "TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation",
"authors": [
"Wenqiang Zhang",
" Zilong Huang",
" Guozhong Luo",
" Tao Chen",
" Xinggang Wang",
" Wenyu Liu",
" Gang Yu",
" Chunhua Shen"
]
},
{
"paperId": "4853",
"posterId": "143a",
"title": "Multi-Scale High-Resolution Vision Transformer for Semantic Segmentation",
"authors": [
"Jiaqi Gu",
" Hyoukjun Kwon",
" Dilin Wang",
" Wei Ye",
" Meng Li",
" Yu-Hsin Chen",
" Liangzhen Lai",
" Vikas Chandra",
" David Z. Pan"
]
},
{
"paperId": "10350",
"posterId": "144a",
"title": "Scaling Vision Transformers",
"authors": [
"Xiaohua Zhai",
" Alexander Kolesnikov",
" Neil Houlsby",
" Lucas Beyer"
]
},
{
"paperId": "7298",
"posterId": "145a",
"title": "Bridged Transformer for Vision and Point Cloud 3D Object Detection",
"authors": [
"Yikai Wang",
" TengQi Ye",
" Lele Cao",
" Wenbing Huang",
" Fuchun Sun",
" Fengxiang He",
" Dacheng Tao"
]
},
{
"paperId": "1981",
"posterId": "146a",
"title": "CSWin Transformer: A General Vision Transformer Backbone With Cross-Shaped Windows",
"authors": [
"Xiaoyi Dong",
" Jianmin Bao",
" Dongdong Chen",
" Weiming Zhang",
" Nenghai Yu",
" Lu Yuan",
" Dong Chen",
" Baining Guo"
]
},
{
"paperId": "3562",
"posterId": "147a",
"title": "TransMix: Attend To Mix for Vision Transformers",
"authors": [
"Jie-Neng Chen",
" Shuyang Sun",
" Ju He",
" Philip H.S. Torr",
" Alan Yuille",
" Song Bai"
]
},
{
"paperId": "2388",
"posterId": "148a",
"title": "MiniViT: Compressing Vision Transformers With Weight Multiplexing",
"authors": [
"Jinnian Zhang",
" Houwen Peng",
" Kan Wu",
" Mengchen Liu",
" Bin Xiao",
" Jianlong Fu",
" Lu Yuan"
]
},
{
"paperId": "11460",
"posterId": "149a",
"title": "Fine-Tuning Image Transformers Using Learnable Memory",
"authors": [
"Mark Sandler",
" Andrey Zhmoginov",
" Max Vladymyrov",
" Andrew Jackson"
]
},
{
"paperId": "4430",
"posterId": "150a",
"title": "Patch Slimming for Efficient Vision Transformers",
"authors": [
"Yehui Tang",
" Kai Han",
" Yunhe Wang",
" Chang Xu",
" Jianyuan Guo",
" Chao Xu",