forked from Raymo111/i3lock-color
-
Notifications
You must be signed in to change notification settings - Fork 0
/
blur.c
149 lines (131 loc) · 5.63 KB
/
blur.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
/*
* Copyright © 2008 Kristian Høgsberg
* Copyright © 2009 Chris Wilson
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that copyright
* notice and this permission notice appear in supporting documentation, and
* that the name of the copyright holders not be used in advertising or
* publicity pertaining to distribution of the software without specific,
* written prior permission. The copyright holders make no representations
* about the suitability of this software for any purpose. It is provided "as
* is" without express or implied warranty.
*
* THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
* EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
* DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THIS SOFTWARE.
*/
#include <math.h>
#include "blur.h"
/* Performs a simple 2D Gaussian blur of standard devation @sigma surface @surface. */
void
blur_image_surface (cairo_surface_t *surface, int sigma)
{
cairo_surface_t *tmp;
int width, height;
uint32_t *src, *dst;
if (cairo_surface_status (surface))
return;
width = cairo_image_surface_get_width (surface);
height = cairo_image_surface_get_height (surface);
switch (cairo_image_surface_get_format (surface)) {
case CAIRO_FORMAT_A1:
default:
/* Don't even think about it! */
return;
case CAIRO_FORMAT_A8:
/* Handle a8 surfaces by effectively unrolling the loops by a
* factor of 4 - this is safe since we know that stride has to be a
* multiple of uint32_t. */
width /= 4;
break;
case CAIRO_FORMAT_RGB24:
case CAIRO_FORMAT_ARGB32:
break;
}
tmp = cairo_image_surface_create (CAIRO_FORMAT_ARGB32, width, height);
if (cairo_surface_status (tmp))
return;
src = (uint32_t*)cairo_image_surface_get_data (surface);
dst = (uint32_t*)cairo_image_surface_get_data (tmp);
// according to a paper by Peter Kovesi [1], box filter of width w, equals to Gaussian blur of following sigma:
// σ_av = sqrt((w*w-1)/12)
// for our 7x7 filter we have σ_av = 2.0.
// applying the same Gaussian filter n times results in σ_n = sqrt(n*σ_av*σ_av) [2]
// after some trivial math, we arrive at n = ((σ_d)/(σ_av))^2
// since it's a box blur filter, n >= 3
//
// [1]: http://www.peterkovesi.com/papers/FastGaussianSmoothing.pdf
// [2]: https://en.wikipedia.org/wiki/Gaussian_blur#Mathematics
int n = lrintf((sigma*sigma)/(SIGMA_AV*SIGMA_AV));
if (n < 3) n = 3;
for (int i = 0; i < n; i++)
{
// horizontal pass includes image transposition:
// instead of writing pixel src[x] to dst[x],
// we write it to transposed location.
// (to be exact: dst[height * current_column + current_row])
#ifdef __SSE2__
blur_impl_horizontal_pass_sse2(src, dst, width, height);
blur_impl_horizontal_pass_sse2(dst, src, height, width);
#else
blur_impl_horizontal_pass_generic(src, dst, width, height);
blur_impl_horizontal_pass_generic(dst, src, height, width);
#endif
}
cairo_surface_destroy (tmp);
cairo_surface_flush (surface);
cairo_surface_mark_dirty (surface);
}
void blur_impl_horizontal_pass_generic(uint32_t *src, uint32_t *dst, int width, int height) {
uint32_t *o_src = src;
for (int row = 0; row < height; row++) {
for (int column = 0; column < width; column++, src++) {
uint32_t rgbaIn[KERNEL_SIZE + 1];
// handle borders
int leftBorder = column < HALF_KERNEL;
int rightBorder = column > width - HALF_KERNEL;
int i = 0;
if (leftBorder) {
// for kernel size 7x7 and column == 0, we have:
// x x x P0 P1 P2 P3
// first loop mirrors P{0..3} to fill x's,
// second one loads P{0..3}
for (; i < HALF_KERNEL - column; i++)
rgbaIn[i] = *(src + (HALF_KERNEL - i));
for (; i < KERNEL_SIZE; i++)
rgbaIn[i] = *(src - (HALF_KERNEL - i));
} else if (rightBorder) {
for (; i < width - column; i++)
rgbaIn[i] = *(src + i);
for (int k = 0; i < KERNEL_SIZE; i++, k++)
rgbaIn[i] = *(src - k);
} else {
for (; i < KERNEL_SIZE; i++) {
if ((uintptr_t) ((src + 4*i - HALF_KERNEL) + 1)
> (uintptr_t) (o_src + (height * width)))
break;
rgbaIn[i] = *(src + i - HALF_KERNEL);
}
}
uint32_t acc[4] = {0};
for (i = 0; i < KERNEL_SIZE; i++) {
acc[0] += (rgbaIn[i] & 0xFF000000) >> 24;
acc[1] += (rgbaIn[i] & 0x00FF0000) >> 16;
acc[2] += (rgbaIn[i] & 0x0000FF00) >> 8;
acc[3] += (rgbaIn[i] & 0x000000FF) >> 0;
}
for(i = 0; i < 4; i++)
acc[i] *= 1.0/KERNEL_SIZE;
*(dst + height * column + row) = (acc[0] << 24) |
(acc[1] << 16) |
(acc[2] << 8 ) |
(acc[3] << 0);
}
}
}