-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexport_model.py
72 lines (58 loc) · 2.96 KB
/
export_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import tensorflow as tf
import numpy as np
import os, argparse
import boto3
from datetime import datetime
from helpers import prefix_to_file
BUCKET_NAME = 'codetroopa-impostor'
dir = os.path.dirname(os.path.realpath(__file__))
# A simpler approach to the Tensorflow freeze_graph.py script
# From: https://gist.github.com/morgangiraud/249505f540a5e53a48b0c1a869d370bf#file-medium-tffreeze-1-py
def freeze_graph(model_dir, output_node_names):
if not tf.gfile.Exists(model_dir):
raise AssertionError(
"Export directory doesn't exists. Please specify an export "
"directory: %s" % model_dir)
if not output_node_names:
print("You need to supply the name of a node to --output_node_names.")
return -1
# We retrieve our checkpoint fullpath
checkpoint = tf.train.get_checkpoint_state(model_dir)
input_checkpoint = checkpoint.model_checkpoint_path
absolute_model_dir = "/".join(input_checkpoint.split('/')[:-1])
output_graph_path = absolute_model_dir + "/frozen_model.pb"
# We clear devices to allow TensorFlow to control on which device it will load operations
clear_devices = True
# We start a session using a temporary fresh Graph
with tf.Session(graph=tf.Graph()) as sess:
saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=clear_devices)
saver.restore(sess, input_checkpoint)
# We use a built-in TF helper to export variables to constants
output_graph_def = tf.graph_util.convert_variables_to_constants(
sess, # The session is used to retrieve the weights
tf.get_default_graph().as_graph_def(), # The graph_def is used to retrieve the nodes
output_node_names.split(",") # The output node names are used to select the usefull nodes
)
# Finally we serialize and dump the output graph to the filesystem
with tf.gfile.GFile(output_graph_path, "wb") as f:
f.write(output_graph_def.SerializeToString())
print("%d ops in the final graph." % len(output_graph_def.node))
return output_graph_path
# Once model has been frozen and saved locally as .pb, use this script to store it to S3
# TODO: make this process streamlined
if __name__ == "__main__":
# Args for exporting model
parser = argparse.ArgumentParser()
parser.add_argument("--model_dir", type=str, default="", help="Model folder to export")
parser.add_argument("--output_node_names", type=str, default="", help="The name of the output nodes, comma separated.")
args = parser.parse_args()
file_path = freeze_graph(args.model_dir, args.output_node_names)
# After successfully freezing the graph, we store it on S3
client = boto3.client('s3')
with open(file_path, 'rb') as f:
client.put_object(
Bucket=BUCKET_NAME,
Key='models/frozen_model_{}.pb'.format(datetime.now().strftime('%Y%m%d-%H%M')),
Body=f
)
print('Successfully stored model on S3')