-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmoPlots.py
270 lines (261 loc) · 11 KB
/
moPlots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from matplotlib.patches import Ellipse
from matplotlib.collections import PatchCollection
from lsst.sims.maf.plots import BasePlotter
mag_sun = -27.1 # apparent r band magnitude of the sun. this sets the band for the magnitude limit.
# see http://www.ucolick.org/~cnaw/sun.html for apparent magnitudes in other bands.
mag_sun = -26.74 # apparent V band magnitude of the Sun (our H mags translate to V band)
km_per_au = 1.496e8
m_per_km = 1000
class MetricVsH(BasePlotter):
"""
Plot metric values versus H.
Marginalize over metric values in each H bin using 'npReduce'.
"""
def __init__(self):
self.plotType = 'MetricVsH'
self.objectPlotter = False
self.defaultPlotDict = {'title':None, 'xlabel':'H (mag)', 'ylabel':None, 'label':None,
'npReduce':None, 'nbins':None, 'albedo':None, 'Hmark':None}
self.minHrange=1.0
def __call__(self, metricValue, slicer, userPlotDict, fignum=None):
if 'linestyle' not in userPlotDict:
userPlotDict['linestyle'] = '-'
fig = plt.figure(fignum)
plotDict = {}
plotDict.update(self.defaultPlotDict)
plotDict.update(userPlotDict)
Hvals = slicer.slicePoints['H']
reduceFunc = plotDict['npReduce']
if reduceFunc is None:
reduceFunc = np.mean
if Hvals.shape == metricValue.shape:
# We have a simple set of values to plot against H.
# This may be due to running a secondary metric, such as completeness.
mVals = metricValue.filled()
elif len(Hvals) == slicer.slicerShape[1]:
# Using cloned H distribution.
# Apply 'npReduce' method directly to metric values, and plot at matching H values.
mVals = reduceFunc(metricValue, axis=0)
else:
# Probably each object has its own H value.
hrange = Hvals.max() - Hvals.min()
minH = Hvals.min()
if hrange < self.minHrange:
hrange = self.minHrange
minH = Hvals.min() - hrange/2.0
nbins = plotDict['nbins']
if nbins is None:
nbins = 30
stepsize = hrange / float(nbins)
bins = np.arange(minH, minH + hrange + stepsize/2.0, stepsize)
# In each bin of H, calculate the 'npReduce' value of the corresponding metricValues.
inds = np.digitize(Hvals, bins)
inds = inds-1
mVals = np.zeros(len(bins), float)
for i in range(len(bins)):
match = metricValue[inds == i]
if len(match) == 0:
mVals[i] = slicer.badval
else:
mVals[i] = reduceFunc(match.filled())
Hvals = bins
plt.plot(Hvals, mVals, color=plotDict['color'], linestyle=plotDict['linestyle'],
label=plotDict['label'])
if 'xMin' in plotDict:
plt.xlim(xmin = plotDict['xMin'])
if 'xMax' in plotDict:
plt.xlim(xmax = plotDict['xMax'])
if 'yMin' in plotDict:
plt.ylim(ymin = plotDict['yMin'])
if 'yMax' in plotDict:
plt.ylim(ymax = plotDict['yMax'])
# Convert Hvals to diameter, using 'albedo'
albedo = plotDict['albedo']
y = 1.0
if albedo is not None:
ax = plt.axes()
ax2 = ax.twiny()
Hmin, Hmax = ax.get_xlim()
dmax = 2.0 * np.sqrt(10**((mag_sun - Hmin - 2.5*np.log10(albedo))/2.5))
dmin = 2.0 * np.sqrt(10**((mag_sun - Hmax - 2.5*np.log10(albedo))/2.5))
dmax = dmax * km_per_au * m_per_km
dmin = dmin * km_per_au * m_per_km
ax2.set_xlim(dmax, dmin)
ax2.set_xscale('log')
ax2.set_xlabel('D (m)', labelpad=-10, horizontalalignment='right')
ax2.grid(False)
plt.sca(ax)
y = 1.1
plt.grid(True)
if plotDict['Hmark'] is not None:
plt.axvline(x=plotDict['Hmark'], color='r', linestyle=':', alpha=0.3)
plt.title(plotDict['title'], y=y)
plt.xlabel(plotDict['xlabel'])
plt.ylabel(plotDict['ylabel'])
plt.tight_layout()
return fig.number
class MetricVsOrbit(BasePlotter):
"""
Plot metric values (at a particular H value) vs. orbital parameters.
Marginalize over metric values in each orbital bin using 'npReduce'.
"""
def __init__(self, xaxis='q', yaxis='e'):
self.plotType = 'MetricVsOrbit_%s%s' %(xaxis, yaxis)
self.objectPlotter = False
self.defaultPlotDict = {'title':None, 'xlabel':xaxis, 'ylabel':yaxis,
'xaxis':xaxis, 'yaxis':yaxis,
'label':None, 'cmap':cm.cubehelix,
'npReduce':None,
'nxbins':None, 'nybins':None, 'levels':None,
'Hval':None, 'Hwidth':None}
def __call__(self, metricValue, slicer, userPlotDict, fignum=None):
fig = plt.figure(fignum)
plotDict = {}
plotDict.update(self.defaultPlotDict)
plotDict.update(userPlotDict)
xvals = slicer.slicePoints['orbits'][plotDict['xaxis']]
yvals = slicer.slicePoints['orbits'][plotDict['yaxis']]
# Set x/y bins.
nxbins = plotDict['nxbins']
nybins = plotDict['nybins']
if nxbins is None:
nxbins = 100
if nybins is None:
nybins = 100
if 'xbins' in plotDict:
xbins = plotDict['xbins']
else:
xbinsize = (xvals.max() - xvals.min())/float(nxbins)
xbins = np.arange(xvals.min(), xvals.max() + xbinsize/2.0, xbinsize)
if 'ybins' in plotDict:
ybins = plotDict['ybins']
else:
ybinsize = (yvals.max() - yvals.min())/float(nybins)
ybins = np.arange(yvals.min(), yvals.max() + ybinsize/2.0, ybinsize)
nxbins = len(xbins)
nybins = len(ybins)
# Identify the relevant metricValues for the Hvalue we want to plot.
Hvals = slicer.slicePoints['H']
Hwidth = plotDict['Hwidth']
if Hwidth is None:
Hwidth = 1.0
if len(Hvals) == slicer.slicerShape[1]:
if plotDict['Hval'] is None:
Hidx = len(Hvals) / 2
Hval = Hvals[Hidx]
else:
Hval = plotDict['Hval']
Hidx = np.where(np.abs(Hvals - Hval) == np.abs(Hvals - Hval).min())[0]
Hidx = Hidx[0]
else:
if plotDict['Hval'] is None:
Hval = np.median(Hvals)
Hidx = np.where(np.abs(Hvals - Hval) <= Hwidth/2.0)[0]
else:
Hval = plotDict['Hvals']
Hidx = np.where(np.abs(Hvals - Hval) <= Hwidth/2.0)[0]
if len(Hvals) == slicer.slicerShape[1]:
mVals = np.swapaxes(metricValue, 1, 0)[Hidx].filled()
else:
mVals = metricValue[Hidx].filled()
# Calculate the npReduce'd metric values at each x/y bin.
if 'colorMin' in plotDict:
badval = plotDict['colorMin'] - 1
else:
badval = slicer.badval
binvals = np.zeros((nybins, nxbins), dtype='float') + badval
xidxs = np.digitize(xvals, xbins) - 1
yidxs = np.digitize(yvals, ybins) - 1
reduceFunc = plotDict['npReduce']
if reduceFunc is None:
reduceFunc = np.mean
for iy in range(nybins):
ymatch = np.where(yidxs == iy)[0]
for ix in range(nxbins):
xmatch = np.where(xidxs[ymatch] == ix)[0]
matchVals = mVals[ymatch][xmatch]
if len(matchVals) > 0:
binvals[iy][ix] = reduceFunc(matchVals)
xi, yi = np.meshgrid(xbins, ybins)
if 'colorMin' in plotDict:
vMin = plotDict['colorMin']
else:
vMin = binvals.min()
if 'colorMax' in plotDict:
vMax = plotDict['colorMax']
else:
vMax = binvals.max()
nlevels = plotDict['levels']
if nlevels is None:
nlevels = 200
levels = np.arange(vMin, vMax, (vMax-vMin)/float(nlevels))
plt.contourf(xi, yi, binvals, levels, extend='max',
zorder=0, cmap=plotDict['cmap'])
cbar = plt.colorbar()
label = plotDict['label']
if label is None:
label = ''
cbar.set_label(label + ' @ H=%.1f' %(Hval))
plt.title(plotDict['title'])
plt.xlabel(plotDict['xlabel'])
plt.ylabel(plotDict['ylabel'])
return fig.number
class MetricVsOrbitPoints(BasePlotter):
"""
Plot metric values (at a particular H value) as function of orbital parameters,
using points for each metric value.
"""
def __init__(self, xaxis='q', yaxis='e'):
self.plotType = 'MetricVsOrbit'
self.objectPlotter = False
self.defaultPlotDict = {'title':None, 'xlabel':xaxis, 'ylabel':yaxis,
'label':None, 'cmap':cm.cubehelix,
'xaxis':xaxis, 'yaxis':yaxis,
'Hval':None, 'Hwidth':None,
'foregroundPoints':True, 'backgroundPoints':False}
def __call__(self, metricValue, slicer, userPlotDict, fignum=None):
fig = plt.figure(fignum)
plotDict = {}
plotDict.update(self.defaultPlotDict)
plotDict.update(userPlotDict)
xvals = slicer.slicePoints['orbits'][plotDict['xaxis']]
yvals = slicer.slicePoints['orbits'][plotDict['yaxis']]
# Identify the relevant metricValues for the Hvalue we want to plot.
Hvals = slicer.slicePoints['H']
Hwidth = plotDict['Hwidth']
if Hwidth is None:
Hwidth = 1.0
if plotDict['Hval'] is None:
if len(Hvals) == slicer.slicerShape[1]:
Hidx = len(Hvals) / 2
Hval = Hvals[Hidx]
else:
Hval = np.median(Hvals)
Hidx = np.where(np.abs(Hvals - Hval) <= Hwidth/2.0)[0]
if len(Hvals) == slicer.slicerShape[1]:
mVals = np.swapaxes(metricValue, 1, 0)[Hidx]
else:
mVals = metricValue[Hidx]
if 'colorMin' in plotDict:
vMin = plotDict['colorMin']
else:
vMin = mVals.min()
if 'colorMax' in plotDict:
vMax = plotDict['colorMax']
else:
vMax = mVals.max()
if plotDict['backgroundPoints']:
# This isn't quite right for the condition .. but will do for now.
condition = np.where(mVals == 0)
plt.plot(xvals[condition], yvals[condition], 'r.', markersize=4, alpha=0.5, zorder=3)
if plotDict['foregroundPoints']:
plt.scatter(xvals, yvals, c=mVals, vmin=vMin, vmax=vMax,
cmap=plotDict['cmap'], s=15, alpha=0.8, zorder=0)
cb = plt.colorbar()
plt.title(plotDict['title'])
plt.xlabel(plotDict['xlabel'])
plt.ylabel(plotDict['ylabel'])
return fig.number