-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
206 lines (177 loc) · 8.63 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import torch
from torch.utils.data import DataLoader
import numpy as np
import argparse
import matplotlib.pyplot as plt
from copy import deepcopy
from tqdm import tqdm
from dataset.rh20t import RH20TDataset as RH20TPretrain, collate_fn
from dataset.utils import compute_dict_mean, set_seed, detach_dict
from models.policy import ACTPolicy
def main(args):
set_seed(1)
# command line parameters
ckpt_dir = args['ckpt_dir']
task_name = args['task_name']
dataset_root = args['dataset_root']
batch_size = args['batch_size']
num_epochs = args['num_epochs']
chunk_size = args['chunk_size']
save_epoch = args['save_epoch']
resume_ckpt = args['resume_ckpt']
# get task parameters
camera_names = ['top']
state_dim = 8
# fixed parameters
backbone = 'resnet18'
enc_layers = 4
dec_layers = 7
nheads = 8
policy_config = {'lr': args['lr'],
'num_queries': chunk_size,
'kl_weight': args['kl_weight'],
'hidden_dim': args['hidden_dim'],
'dim_feedforward': args['dim_feedforward'],
'lr_backbone': args['lr'],
'backbone': backbone,
'enc_layers': enc_layers,
'dec_layers': dec_layers,
'nheads': nheads,
'camera_names': camera_names,
'state_dim': state_dim
}
config = {
'num_epochs': num_epochs,
'ckpt_dir': ckpt_dir,
'state_dim': state_dim,
'lr': args['lr'],
'policy_config': policy_config,
'task_name': task_name,
'seed': args['seed'],
'camera_names': camera_names,
'save_epoch': save_epoch,
'resume_ckpt': resume_ckpt
}
task_config = ['RH20T_cfg1','RH20T_cfg2','RH20T_cfg3','RH20T_cfg4','RH20T_cfg5','RH20T_cfg6','RH20T_cfg7']
train_dataset = RH20TPretrain(dataset_root, task_config, 'train', num_input=1, horizon=1+chunk_size, top_down_view=True, selected_tasks=[task_name])
val_dataset = RH20TPretrain(dataset_root, task_config, 'val', num_input=1, horizon=1+chunk_size, top_down_view=True, selected_tasks=[task_name])
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=20, collate_fn=collate_fn)
val_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=20, collate_fn=collate_fn)
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
best_ckpt_info = train_bc(train_dataloader, val_dataloader, config)
best_epoch, min_val_loss, best_state_dict = best_ckpt_info
# save best checkpoint
ckpt_path = os.path.join(ckpt_dir, f'policy_best.ckpt')
torch.save(best_state_dict, ckpt_path)
print(f'Best ckpt, val loss {min_val_loss:.6f} @ epoch{best_epoch}')
def forward_pass(data, policy, device):
image_data = data['input_frame_list']
qpos_data = data['input_frame_tcp_normalized']
action_data = data['target_frame_tcp_normalized']
is_pad = data['padding_mask']
image_data, qpos_data, action_data, is_pad = image_data.to(device), qpos_data.to(device), action_data.to(device), is_pad.to(device)
return policy(qpos_data, image_data, action_data, is_pad)
def train_bc(train_dataloader, val_dataloader, config):
num_epochs = config['num_epochs']
ckpt_dir = config['ckpt_dir']
seed = config['seed']
policy_config = config['policy_config']
set_seed(seed)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
policy = ACTPolicy(policy_config)
if config['resume_ckpt'] is not None:
policy.load_state_dict(torch.load(config['resume_ckpt'], map_location = device))
print('Loaded checkpoint from %s' % (config['resume_ckpt']))
optimizer = policy.configure_optimizers()
train_history = []
validation_history = []
min_val_loss = np.inf
best_ckpt_info = None
for epoch in range(num_epochs):
print(f'\nEpoch {epoch}')
# validation
with torch.inference_mode():
policy.eval()
epoch_dicts = []
with tqdm(val_dataloader) as pbar:
for data in pbar:
forward_dict = forward_pass(data, policy, device)
epoch_dicts.append(forward_dict)
epoch_summary = compute_dict_mean(epoch_dicts)
validation_history.append(epoch_summary)
epoch_val_loss = epoch_summary['loss']
if epoch_val_loss < min_val_loss:
min_val_loss = epoch_val_loss
best_ckpt_info = (epoch, min_val_loss, deepcopy(policy.state_dict()))
print(f'Val loss: {epoch_val_loss:.5f}')
summary_string = ''
for k, v in epoch_summary.items():
summary_string += f'{k}: {v.item():.3f} '
print(summary_string)
# training
policy.train()
optimizer.zero_grad()
num_steps = len(train_dataloader)
with tqdm(train_dataloader) as pbar:
for data in pbar:
forward_dict = forward_pass(data, policy, device)
# backward
loss = forward_dict['loss']
loss.backward()
optimizer.step()
optimizer.zero_grad()
train_history.append(detach_dict(forward_dict))
epoch_summary = compute_dict_mean(train_history[num_steps*epoch:num_steps*(epoch+1)])
epoch_train_loss = epoch_summary['loss']
print(f'Train loss: {epoch_train_loss:.5f}')
summary_string = ''
for k, v in epoch_summary.items():
summary_string += f'{k}: {v.item():.3f} '
print(summary_string)
if epoch % config["save_epoch"] == 0:
ckpt_path = os.path.join(ckpt_dir, f'policy_epoch_{epoch}_seed_{seed}.ckpt')
torch.save(policy.state_dict(), ckpt_path)
plot_history(train_history, validation_history, epoch, ckpt_dir, seed)
ckpt_path = os.path.join(ckpt_dir, f'policy_last.ckpt')
torch.save(policy.state_dict(), ckpt_path)
best_epoch, min_val_loss, best_state_dict = best_ckpt_info
ckpt_path = os.path.join(ckpt_dir, f'policy_epoch_{best_epoch}_seed_{seed}.ckpt')
torch.save(best_state_dict, ckpt_path)
print(f'Training finished:\nSeed {seed}, val loss {min_val_loss:.6f} at epoch {best_epoch}')
# save training curves
plot_history(train_history, validation_history, num_epochs, ckpt_dir, seed)
return best_ckpt_info
def plot_history(train_history, validation_history, num_epochs, ckpt_dir, seed):
# save training curves
for key in train_history[0]:
plot_path = os.path.join(ckpt_dir, f'train_val_{key}_seed_{seed}.png')
plt.figure()
train_values = [summary[key].item() for summary in train_history]
val_values = [summary[key].item() for summary in validation_history]
plt.plot(np.linspace(0, num_epochs-1, len(train_history)), train_values, label='train')
plt.plot(np.linspace(0, num_epochs-1, len(validation_history)), val_values, label='validation')
# plt.ylim([-0.1, 1])
plt.tight_layout()
plt.legend()
plt.title(key)
plt.savefig(plot_path)
print(f'Saved plots to {ckpt_dir}')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--ckpt_dir', action='store', type=str, help='ckpt_dir', required=True)
parser.add_argument('--dataset_root', action='store', type=str, help='dataset_root', required=True)
parser.add_argument('--task_name', action='store', type=str, help='task_name', required=True)
parser.add_argument('--batch_size', action='store', type=int, help='batch_size', required=True)
parser.add_argument('--seed', action='store', type=int, help='seed', required=True)
parser.add_argument('--num_epochs', action='store', type=int, help='num_epochs', required=True)
parser.add_argument('--save_epoch', action='store', type=int, help='save frequency (epoch)', default=10, required=False)
parser.add_argument('--lr', action='store', type=float, help='lr', required=True)
parser.add_argument('--resume_ckpt', action='store', type=str, help='checkpoint to resume training', default=None, required=False)
# for ACT
parser.add_argument('--kl_weight', action='store', type=int, help='KL Weight', required=False)
parser.add_argument('--chunk_size', action='store', type=int, help='chunk_size', required=False)
parser.add_argument('--hidden_dim', action='store', type=int, help='hidden_dim', required=False)
parser.add_argument('--dim_feedforward', action='store', type=int, help='dim_feedforward', required=False)
main(vars(parser.parse_args()))