diff --git a/README.md b/README.md index bc44bb7..7744577 100644 --- a/README.md +++ b/README.md @@ -31,6 +31,7 @@ Please cite [our survey paper](https://arxiv.org/pdf/1809.09337) if this index i ### Comprehensive |Name|Code|Comment| |---|---|---| +|[causal-learn](https://causal-learn.readthedocs.io/en/latest/)|[Python](https://github.com/cmu-phil/causal-learn)|Causal Discovery, Causal Representation Learning, Statistical Tests.| |Trustworthy AI|[Python](https://github.com/huawei-noah/trustworthyAI)|Causal Structure Learning, Causal Disentangled Representation Learning, gCastle (or pyCastle, pCastle).| |[YLearn](https://ylearn.readthedocs.io/en/latest/)|[Python](https://github.com/DataCanvasIO/YLearn)|Python package for causal discovery,causal effect identification/estimation, counterfactual inference,policy learning,etc.| @@ -48,7 +49,7 @@ Please cite [our survey paper](https://arxiv.org/pdf/1809.09337) if this index i |Name|Paper|Code|Comment| |---|---|---|---| |[Bench Press](https://benchpressdocs.readthedocs.io/en/latest/)|[Benchpress: a scalable and versatile workflow for benchmarking structure learning algorithms for graphical models](https://arxiv.org/abs/2107.03863)|[Code](https://github.com/felixleopoldo/benchpress)|Reproducible and scalable execution and benchmarks of **41** structure learning algorithms supporting multiple language| -|[causal-learn](https://causal-learn.readthedocs.io/en/latest/)|NA|[Python](https://github.com/cmu-phil/causal-learn)|Causal Discovery for Python. A translation and extension of TETRAD.| +|[causal-learn](https://causal-learn.readthedocs.io/en/latest/)|[Causal-learn: Causal Discovery in Python](https://jmlr.org/papers/volume25/23-0970/23-0970.pdf)|[Python](https://github.com/cmu-phil/causal-learn)|Causal Discovery, Causal Representation Learning, Statistical Tests.| |[TETRAD R/Java](http://www.phil.cmu.edu/tetrad/about.html)|[TETRAD-A Toolbox FOR CAUSAL DISCOVERY](https://www.atmos.colostate.edu/~iebert/PAPERS/CI2018_paper_35.pdf)|[R](https://github.com/bd2kccd/r-causal)/[Java](https://github.com/cmu-phil/tetrad)|Causal Discovery Toolbox from CMU| |Causaldag|NA|[code](https://github.com/uhlerlab/causaldag)|Python package for the creation, manipulation, and learning of Causal DAGs| |CausalNex|NA|[Python](https://github.com/quantumblacklabs/causalnex)|A toolkit for causal reasoning with Bayesian Networks.|