This week's data is from Wikipedia - by way of the Data Is Beautiful Subreddit.
Additional info and graphics can be found at Our World in Data.
Moore's Law: Transistors per microprocessor
- The observation that the number of transistors in a dense integrated circuit doubles approximately every two years.
cpu <- readr::read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2019/2019-09-03/cpu.csv")
gpu <- readr::read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2019/2019-09-03/gpu.csv")
ram <- readr::read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2019/2019-09-03/ram.csv")
variable | class | description |
---|---|---|
processor | character | Processor name |
transistor_count | double | Number of transitors |
date_of_introduction | double | year introduced |
designer | character | Designer |
process | double | Size of manufacturing process (in nanometers) |
area | double | Area of chip in square millimeters |
variable | class | description |
---|---|---|
processor | character | Processor name |
transistor_count | double | Transistor count |
date_of_introduction | double | year introduced |
designer_s | character | designer |
manufacturer_s | character | manufacturer |
process | double | size of manufacturing process (nanometers) |
area | double | area of chip in square millimeters |
ref | character | reference |
variable | class | description |
---|---|---|
chip_name | character | Chip name |
capacity_bits | character | capacity bits - essentially how many units of information it can work on, units in next column |
bit_units | character | Units for bit capacity (bits < kb < Mb < Gb) |
ram_type | character | Ram type |
transistor_count | double | Transistor count |
date_of_introduction | double | Year introduced |
manufacturer_s | character | Manufactured |
process | double | Size of manufacturing process (nanometers) |
area | double | Area of chip in square millimeters |
ref | character | reference |
library(tidyverse)
library(rvest)
url <- "https://en.wikipedia.org/wiki/Transistor_count"
tables <- url %>%
read_html() %>%
html_table(fill = TRUE)
df1 <- tables %>% chuck(1) %>%
janitor::clean_names() %>%
as_tibble()
df1_clean <- df1 %>%
mutate(
# transistor_count = gsub("\\[[^\\]]*\\]", "", transistor_count, perl=TRUE),
transistor_count = str_remove(transistor_count, "\\[[^\\]]*\\]"),
transistor_count = str_remove(transistor_count, "[:punct:]+"),
transistor_count = str_remove(transistor_count, "\\[[^\\]]*\\]"),
transistor_count = str_remove(transistor_count, "[:punct:]+"),
transistor_count = str_remove(transistor_count, "[:punct:]+"),
transistor_count = str_extract(transistor_count, "[:digit:]+"),
date_of_introduction = str_sub(date_of_introduction, 1, 4),
process = str_remove(process, ","),
process = str_extract(process, "[:digit:]+"),
area = str_extract(area, "[:digit:]+")
) %>%
mutate_at(.vars = vars(transistor_count:date_of_introduction, process:area), as.double)
df1_clean %>%
mutate()
df2 <- tables %>% chuck(2) %>%
janitor::clean_names() %>%
as_tibble()
df2_clean <- df2 %>%
mutate(
# transistor_count = gsub("\\[[^\\]]*\\]", "", transistor_count, perl=TRUE),
transistor_count = str_remove(transistor_count, "\\[[^\\]]*\\]"),
transistor_count = str_remove(transistor_count, "[:punct:]+"),
transistor_count = str_remove(transistor_count, "\\[[^\\]]*\\]"),
transistor_count = str_remove(transistor_count, "[:punct:]+"),
transistor_count = str_remove(transistor_count, "[:punct:]+"),
transistor_count = str_extract(transistor_count, "[:digit:]+"),
process = str_remove(process, ","),
process = str_extract(process, "[:digit:]+"),
area = str_extract(area, "[:digit:]+")
) %>%
mutate_at(.vars = vars(transistor_count:date_of_introduction, process:area), as.double)
df3 <- tables %>% chuck(4) %>%
janitor::clean_names() %>%
as_tibble()
df3
df3_clean <- df3 %>%
mutate(
# transistor_count = gsub("\\[[^\\]]*\\]", "", transistor_count, perl=TRUE),
transistor_count = str_remove(transistor_count, "\\[[^\\]]*\\]"),
transistor_count = str_remove(transistor_count, "[:punct:]+"),
transistor_count = str_remove(transistor_count, "\\[[^\\]]*\\]"),
transistor_count = str_remove(transistor_count, "[:punct:]+"),
transistor_count = str_remove(transistor_count, "[:punct:]+"),
transistor_count = str_extract(transistor_count, "[:digit:]+"),
date_of_introduction = if_else(
str_length(date_of_introduction) >= 5,
str_sub(date_of_introduction, -4),
str_sub(date_of_introduction, 1, 4)),
process = str_remove(process, ","),
process = str_extract(process, "[:digit:]+"),
area = str_extract(area, "[:digit:]+"),
bit_units = case_when(
str_detect(capacity_bits, "bit") ~ "Bits",
str_detect(capacity_bits, "kb") ~ "kb",
str_detect(capacity_bits, "Mb") ~ "Mb",
str_detect(capacity_bits, "Gb") ~ "Gb",
TRUE ~ ""
)
) %>%
mutate_at(.vars = vars(transistor_count:date_of_introduction, process:area), as.double) %>%
select(chip_name, capacity_bits, bit_units, everything()) %>%
mutate(capacity_bits = str_extract(capacity_bits, "[:digit:]+"))
df3_clean
write_csv(df1_clean, here::here("2019", "2019-09-03", "cpu.csv"))
write_csv(df2_clean, here::here("2019", "2019-09-03", "gpu.csv"))
write_csv(df3_clean, here::here("2019", "2019-09-03", "ram.csv"))