This repository has been archived by the owner on May 18, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
wk3.tex
501 lines (350 loc) · 18.3 KB
/
wk3.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
%
% This is a borrowed LaTeX template file for lecture notes for CS267,
% Applications of Parallel Computing, UCBerkeley EECS Department.
% Now being used for CMU's 10725 Fall 2012 Optimization course
% taught by Geoff Gordon and Ryan Tibshirani. When preparing
% LaTeX notes for this class, please use this template.
%
% To familiarize yourself with this template, the body contains
% some examples of its use. Look them over. Then you can
% run LaTeX on this file. After you have LaTeXed this file then
% you can look over the result either by printing it out with
% dvips or using xdvi. "pdflatex template.tex" should also work.
%
\documentclass[twoside]{article}
\setlength{\oddsidemargin}{0.25 in}
\setlength{\evensidemargin}{-0.25 in}
\setlength{\topmargin}{-0.6 in}
\setlength{\textwidth}{6.5 in}
\setlength{\textheight}{8.5 in}
\setlength{\headsep}{0.75 in}
\setlength{\parindent}{0 in}
\setlength{\parskip}{0.1 in}
%
% ADD PACKAGES here:
%
\usepackage{amsmath,amsfonts,graphicx,soul}
%
% The following commands set up the lecnum (lecture number)
% counter and make various numbering schemes work relative
% to the lecture number.
%
\newcounter{lecnum}
\renewcommand{\thepage}{\thelecnum-\arabic{page}}
\renewcommand{\thesection}{\thelecnum.\arabic{section}}
\renewcommand{\theequation}{\thelecnum.\arabic{equation}}
\renewcommand{\thefigure}{\thelecnum.\arabic{figure}}
\renewcommand{\thetable}{\thelecnum.\arabic{table}}
\newcommand*\conj[1]{\bar{#1}}
\newcommand*\mean[1]{\bar{#1}}
\newcommand{\indep}{\rotatebox[origin=c]{90}{$\models$}}
%
% The following macro is used to generate the header.
%
\newcommand{\lecture}[4]{
\pagestyle{myheadings}
\thispagestyle{plain}
\newpage
\setcounter{lecnum}{#1}
\setcounter{page}{1}
\noindent
\begin{center}
\framebox{
\vbox{\vspace{2mm}
\hbox to 6.28in { {\bf STAT7017 Big Data Statistics
\hfill Semester 2 2018} }
\vspace{4mm}
\hbox to 6.28in { {\Large \hfill Lecture #1: #2 \hfill} }
\vspace{2mm}
\hbox to 6.28in { {\it Lecturer: #3 \hfill Scribes: #4} }
\vspace{2mm}}
}
\end{center}
\markboth{Lecture #1: #2}{Lecture #1: #2}
{\bf Note}: {\it LaTeX template courtesy of UC Berkeley EECS dept.}
{\bf Disclaimer}: {\it These notes have not been subjected to the
usual scrutiny reserved for formal publications. They may be distributed
outside this class only with the permission of the Instructor.}
\vspace*{4mm}
}
%
% Convention for citations is authors' initials followed by the year.
% For example, to cite a paper by Leighton and Maggs you would type
% \cite{LM89}, and to cite a paper by Strassen you would type \cite{S69}.
% (To avoid bibliography problems, for now we redefine the \cite command.)
% Also commands that create a suitable format for the reference list.
\renewcommand{\cite}[1]{[#1]}
\def\beginrefs{\begin{list}%
{[\arabic{equation}]}{\usecounter{equation}
\setlength{\leftmargin}{2.0truecm}\setlength{\labelsep}{0.4truecm}%
\setlength{\labelwidth}{1.6truecm}}}
\def\endrefs{\end{list}}
\def\bibentry#1{\item[\hbox{[#1]}]}
%Use this command for a figure; it puts a figure in wherever you want it.
%usage: \fig{NUMBER}{SPACE-IN-INCHES}{CAPTION}
\newcommand{\fig}[3]{
\vspace{#2}
\begin{center}
Figure \thelecnum.#1:~#3
\end{center}
}
% Use these for theorems, lemmas, proofs, etc.
\newtheorem{theorem}{Theorem}[lecnum]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{claim}[theorem]{Claim}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{definition}[theorem]{Definition}
\newenvironment{proof}{{\bf Proof:}}{\hfill\rule{2mm}{2mm}}
% **** IF YOU WANT TO DEFINE ADDITIONAL MACROS FOR YOURSELF, PUT THEM HERE:
\newcommand\E{\mathbb{E}}
\begin{document}
%FILL IN THE RIGHT INFO.
%\lecture{**LECTURE-NUMBER**}{**DATE**}{**LECTURER**}{**SCRIBE**}
\lecture{3}{6 August}{Dr Dale Roberts}{Rui Qiu}
%\footnotetext{These notes are partially based on those of Nigel Mansell.}
% **** YOUR NOTES GO HERE:
% Some general latex examples and examples making use of the
% macros follow.
%**** IN GENERAL, BE BRIEF. LONG SCRIBE NOTES, NO MATTER HOW WELL WRITTEN,
%**** ARE NEVER READ BY ANYBODY.
\textbf{\underline{Limiting Spectral Distribution}}
$\mathbf{x}_1,\mathbf{x}_2,\dots,\mathbf{x}_n$ $n$ random samples of dimension $p$ (vectors). Sample covariance matrix:
$$S_n=\frac1{n-1}\sum^n_{i=1}(\mathbf{x}_i-\mean{\mathbf{x}})(\mathbf{x}_i-\mean{\mathbf{x}})^*$$ which gives you a $p\times p$ matrix.
$\mean{\mathbf{x}}$ is sample mean given by $\mean{\mathbf{x}}:=\frac{1}{n}\sum^n_{i=1}\mathbf{x}_i$.
Many traditional \underline{multivariate statistics} are functions of the eigenvalues $(\lambda_i$) of $S_n$.
In the most basic form, $T_n=\frac{1}{p}\sum^p_{k=1}\phi(\lambda_k)$. This is just a generalized form, because we don't know what $\phi$ is. But it takes an eigenvalue and gives back a number. $\phi:\mathbb{C}\rightarrow\mathbb{R}.$\\
\underline{\textbf{Example:}} The \underline{generalized variance} (last week) can be written
$$T_n=\frac{1}{p}\log\lvert S_n\rvert=\frac{1}{p}\sum^p_{k=1}\log(\lambda_k)$$
$T_n$ is a ``\underline{linear} spectral statistic of the sample covariance matrix $S_n$ with \underline{test function} $\phi(x)=\log(x)$".\\
First order Random matrix limits are concerned with \underline{when} and \underline{how} shall $T_n\rightarrow c$ (converges to some constant $c$) as $p,n\rightarrow \infty$.
It concerns the ``joint limit" of the $p$ eigenvalues. $(\lambda_k)^p_{k=1}$.\\
\underline{\textbf{Empirical distributions and their limits}}
Let $\mathbb{M}_p(\mathbb{C})$ be $p\times p$ matrices with $\mathbb{C}$-valued entries and let $(\lambda_k)^p_{k=1}$ be the eigenvalues of $A\in\mathbb{M}_p(\mathbb{C})$.
Let $\delta_a(x)=\begin{cases}
1\ \text{if}\ x=a\\
0\ \text{otherwise}
\end{cases}$
The \underline{empirical spectral distribution} (ESD) of $A$ is given by
$$F^A_{(x)}:=\frac{1}{p}\sum^p_{k=1}\delta_{\lambda_k}(x)$$
Generally, $F^A$ takes $\mathbb{C}$ values. If $A\in\mathbb{H}_p$, then $F^A(x)\in\mathbb{R}.$\\
\underline{\textbf{Example:}} $A=\begin{pmatrix}
0 & -1\\
1 & 0\\
\end{pmatrix}$ eigenvalues are $-i, +i$.
$$F^A=\frac{1}{2}(\delta_i+\delta_{-1})$$
(empirical density ``histogram" vs limiting density)\\
Take a sequence of matrices $\left(A_n\right)_{n\geq 1}\in\mathbb{M}_p(\mathbb{C})$, if the sequence of corresponding ESD $F^{A_n}$ \underline{vaguely converges} to a (possibly defective) measure $F$, we call $F$ the \underline{limiting spectral distribution} (LSD) of $\left(A_n\right)_{n\geq 1}.$\\
\underline{\textbf{Vague convergence}} means that for \underline{any} continuous function that is compactly supported, called $\phi$,
$$F^{A_n}(\phi)\rightarrow F(\phi)\text{ as } n\rightarrow\infty.$$
Here, we use the notation
$$F(\phi):=\int_{\mathbb{R}^p}\phi(x)F(dx).$$
(\textbf{compact supported}: zero outside the range $[a,b]$.)
If the distribution $F$ is \underline{\textbf{non-defective}} (i.e. $\int F(dx)=1$.) then vague convergence becomes \underline{\textbf{weak convergence}}, that is,
$$F^{A_n}(\phi)\rightarrow F(\phi)\text{ as } n\rightarrow\infty$$
for all $\phi$ continuous and \underline{\textbf{bounded}} (below value $a$, say).
In our situation, we shall be dealing with sample covariance matrices ($S_n$). This means that:
\begin{itemize}
\item support of $F^{S_n}$ is $\mathbb{R}_+$ since $S_n$ are Hermitian and non-negative definite.
\item $F^{S_n}(x)=\frac{1}{p}\sum^p_{k=1}\mathbf{1}_{(\lambda_k\leq x)}\ \ \ \ \text{ ESD}.$
\item Eigenvalues are random variable and ESDs ($F^{S_n}$) are \underline{random} probability distributions on $\mathbb{R}_+$.
\end{itemize}
The \underline{fundamental question} is: Does the limit of $(F^{S_n})$ exist?\\
How can we show this?\\
The eigenvalues of a matrix are continuous functions of the entries of the matrix.
There is no closed-form solution for eigenvalues when dimension of a square matrix is greater than 4.
There are three main techniques used in RMT:
\begin{itemize}
\item Method of moments.
\item Orthogonal polynomial decomposition.
\item Stieltjes transform. (ST)
\end{itemize}
We shall focus on the ST approach.\\
\underline{\textbf{Stieltjes transfrom (ST)}}
The ST plays nearly as useful role in RMT as the Moment generating function (MGF) or characteristic function (CF) in classic probability theory.
It is defined for a measure $\mu$ as:
$$S_\mu(z)=\int\frac{1}{x-z}\mu(dx),\ z\in\mathbb{C}^+$$
where $\mathbb{C}^+=\{x+iy: y>0\}.$
The following lemma allows us to reconstruct the distribution function from its Stieltjes transform.\\
\begin{lemma}
(Inversion): Let $\mu$ be a probability measure on $\mathbb{R}$. If $a<b$ are points of continuity of the associated distribution, then
$$\mu((a,b))=\lim_{\nu\rightarrow 0^+}\frac{1}{\pi}\int^b_a Im(S_\mu(x+i\nu))dx.$$
\end{lemma}
The following lemma gives a necessary and sufficient condition for a sequence of ST to be the ST of a probability measure.\\
\begin{lemma}
(Geronimo and Hill, 2003): Suppose that $(\mu_n)$ is a sequence of probability measures on $\mathbb{R}$ with Stieltjes transforms $(S_{\mu_n})$. If $\lim_{n\to\infty}S_{\mu_n}(
z)=S_{\mu}(z)$ for all $z\in\mathbb{C}^+$, then there exists a probability measure $\mu$ with ST given by $S_\mu$ if and only if
$$\lim_{\nu\to\infty}i\nu S_\mu(i\nu)=-1.$$
In which case, $\mu_n\to\mu$ in distribution.
\end{lemma}
There are some more technical results that I will now state without proof.
First, we say that a function $f$ is \underline{\textbf{holomorphic}} if it is complex differentiable at every point of its domain, i.e.
$$f'(z_0)=\lim_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}\text{ exists}.$$
Holomorphic functions are very nice:
\begin{itemize}
\item Infinitely differentiable.
\item Equals to its Taylor series.
\end{itemize}
\begin{proposition}
The Stieltjes transform has the following properties:
\begin{itemize}
\item $S_\mu$ is holomorphic on $\mathbb{C}\backslash\Gamma_\mu$ where $\Gamma_\mu:=Supp(\mu)$.
\item $z\in\mathbb{C}^+\iff S_\mu(z)\in\mathbb{C}^+.$
\item If $\Gamma_\mu\subset \mathbb{R}_+$ and $z\in\mathbb{C}^+$, then $zS_\mu(z)\in\mathbb{C}^+$.
\item $\lvert S_\mu(z)\rvert \leq \frac{\mu(1)}{dist(z, \Gamma_\mu) \vee \lvert Im(z)\rvert}$ (Distance of $z$ to support and the maximum of imaginary part of $z$)
\end{itemize}
\end{proposition}
\begin{proposition}
The mass $\mu(1)$ can be recovered through the formula
$$\mu(1)=\lim_{\nu\to\infty}-i\nu S_\mu(i\nu)$$
Moreover, for all continuous and compactly supported $\phi:\mathbb{R}\to\mathbb{R}$
$$\mu(\phi)=\int\phi(x)\mu(dx)=\lim_{\nu\to0}\frac1\pi\int\phi(x)Im[S_\mu(x+i\nu)]dx$$
\end{proposition}
\begin{proposition}
Assume that the following conditions hold for a complex-valued $g(z)$:
\begin{itemize}
\item $g$ is holomorphic on $\mathbb{C}^+$.
\item $g(z)\in\mathbb{C}^+$ for all $z\in\mathbb{C}^+$.
\item $\lim_{\nu\to\infty}\sup\lvert i\nu g(i\nu)\rvert<\infty$.
\end{itemize}
The $g$ is a ST of a bounded measure on $\mathbb{R}$.
\end{proposition}
\begin{theorem}
A sequence of measures $(\mu_n)$ converges vaguely to some positive measure $\mu\iff (S_{\mu_n})$ converges to $S_\mu$ on $\mathbb{C}^+$.
\end{theorem}
The idea is that we show $S_{\mu_n}\to S_\mu$ (vague convergence) and then show that $\mu$ is a probability measure by checking that $\mu(1)=1$.
We have $A$ positive semidefinite and symmetric. Then ESD of $A$ is $F^A=\frac{1}{p}\sum^p_{j=1}\delta_{\lambda_j}$, where $A$ is $p\times p$.
\begin{equation}
\begin{split}
S_A(z)&=\int\frac{1}{x-z}F^A(dx)\\
&=\frac{1}{p}\sum^p_{k=1}\int\frac{1}{x-z}\delta_{\lambda_k}(dx)\\
&=\frac{1}{p}\sum^p_{k=1}\frac{1}{\lambda_k-z}\\
&=\frac{1}{p}tr[(A-zI)^{-1}]
\end{split}
\end{equation}
Note: $tr(A+B)=tr(A)+tr(B), tr(A^k)=\sum^p_{i=1}\lambda_i^k.$\\
\underline{\textbf{Trace of an inverse matrix:}} For $n\times n$ matrix $Q$, define $Q_k$ to be the submatrix obtained by deleting $k$-th row and column.
\begin{theorem}
(Bai and Silvestein, Thm A.U.???): If $B$ and $B_k, k=1,\dots, n,$ are nonsingular and writing $B^{-1}=[b^{kl}]$, then
$$tr(B^{-1})=\sum^n_{k=1}\frac{1}{b_{kk}-B'_kB^{-1}_kB_k}$$
$b_{kk}$: $k$-th diagonal entry of $B$.\\
$B_k'$: vector obtained from $k$-th row of $B$ by deleting $k$-th entry.\\
$B_k$: vector obtained from $k$-th column of $B$ by deleting $k$-th entry.
\end{theorem}
Applying this theorem:
\begin{equation}
S_A(z)=\frac{1}{p}\sum^p_{k=1}\frac{1}{\alpha_{kk}-z-\mathbf{\alpha}_k'(A_k-zI)^{-1}\mathbf{\alpha}_k}
\end{equation}
We would like to show that denominator is equal to
$$g(z, S_A(z))+ o(1)$$
Then we can solve for $S_A(z)=\frac{1}{g(z, S_A(z))}$ to obtain the ST of the ESD.\\
\underline{\textbf{Marchenko-Pastur distributions}}
The \underline{Marchenko-Pastur distribution} $F_{y,\sigma^2}$ with index $y$ and scale parameter $\sigma$ has density
$$P_{y,\sigma^2}(x)=\begin{cases}
\frac{1}{2\pi xy\sigma^2}\sqrt{(b-x)(x-a)'},&\text{ if } a\leq x\leq b\\
0,&\text{ otherwise }
\end{cases}$$
Note $a=\sigma^2(1-\sqrt{y})^2,\ b=\sigma^2(1+\sqrt{y})^2$.
If $\sigma^2=1$: \underline{standard MP distribution.}
Special case: $y=1, \sigma^2=1$.
$$P_1(x)=\begin{cases}
\frac{1}{2\pi x}\sqrt{x(4-x)},&\ 0<x\leq 4,\\
0,&\ \text{otherwise}.
\end{cases}$$
$\implies$ Hence density is unbounded in region.
As $y\to 0, F_y\to \delta_1$.\\
\underline{\textbf{MP distribution for independent vectors without cross-correlation}}
\begin{equation}
\begin{split}
Sn=&=\frac{1}{n-1}\sum^n_{i=1}\mathbf{x}_i\mathbf{x}^*-\cdots\\
&\approx\frac{1}{n-1}\sum\mathbf{x}_i\mathbf{x}^*
\end{split}
\end{equation}
We shall sometimes write $n$ sample vectors as $p\times n$ random matrix
$$\mathbf{X}=(\mathbf{x}_1,\mathbf{x}_2,\dots,\mathbf{x}_n)$$
So
$$\implies S_n=\frac{1}{n}\mathbf{X}\mathbf{X}^*$$
Marchenko and Pastur found the LSD of the large sample covariance matrix $S_n$.\\
\begin{theorem}
(MP) Suppose that the entries $[x_{ij}]$ of $\mathbf{X}$ are iid complex random variables with mean zero and variance $\sigma^2$, and $p/n\to y\in(0,\infty)$. Then, almost surely,
$$F^{S_n}\to F_{y,\sigma^2}$$
\end{theorem}
This theorem was shown in a special case in 1960s but its influence in statistics was only recognized recently.\\
\underline{How does the MP dist. appear in the limit?}
$\sigma^2=1$.
\begin{equation}
\begin{split}
P_y(x)&=\frac{1}{2\pi xy}\sqrt{(b-x)(x-a)}, a\leq x\leq b\\
a&=(1-\sqrt{{y}})^2, b=(1+\sqrt{y})^2
\end{split}
\end{equation}
The Stieltjes transform is
\begin{equation}
\begin{split}
S(z)&=\int^b_a\frac{1}{x-z}P_y(x)dx\\
&=\frac{(1-y)-z+\sqrt{(z-1-y)^2-4y}}{2yz}
\end{split}
\end{equation}
rearranging notice that $s=S(z)$ satisfies the quadratic equation
$$yzs^2+(z+y-1)s+1=0$$
The ST of the ESD of $S_n$ is $S_n(z)=\frac{1}{p}tr[(S_n-zI_p)^{-1}]$.
If we can show $S_n(z)\to S(z)$ as $n\to \infty$ for every $z\in\mathbb{C}^+$, then $F^{S_n}\to F_y$.
By (3.2),
$$S_n(z)=\frac{1}{p}\sum^p_{k=1}\frac{1}{\frac{1}{n}\alpha_k'\mean{\alpha}_k-z-\frac{1}{n^2}\alpha_k'\mathbf{X}_k^*\left(\frac1n\mathbf{X}_k\mathbf{X}_k^*-zI_{p-1}\right)^{-1}\mathbf{X}_k\mean{\alpha}_k}$$
$\mathbf{X}_k=\mathbf{X}$ with $k$-th row removed.
$\alpha_k'=$ $k$-th row of $\mathbf{X}$, size $n\times 1$.
Assume $\mathbb{E}$[``denominator terms with rows removed"]$\to\mathbb{E}$[``terms with rows intact"],
i.e. random error caused by approximation is small for large $p$ and $n$.
$$\mathbb{E}\left[\frac{1}{n}\alpha_k'\mean{\alpha}_k\right]=\frac{1}{n}\sum^n_{j=1}\lvert x_{kj}\rvert ^2=1.$$
\begin{lemma}
Let $u$ be a $n\times 1$ random vector with entries $u_i$ that are all independent with mean $0$ and unit variance. Let $\mathbf{Q}$ be a (non-random) $n\times n$ complex matrix. Then
$$\mathbb{E}\left[u^*\mathbf{Q} u\right]=tr\mathbf{Q}.$$
\end{lemma}
Note $\mathbf{A},\mathbf{B}$ matrices, $(\mathbf{A}\mathbf{B})_{ik}=\sum^m_{j=1}a_{ij}b_{jk}.$
\begin{proof}
As $u^*\mathbf{Q}u=\sum^n_{i=1}\sum^n_{j=1}\mean{u_i}\mathbf{Q}_{ij}u_j$.
\begin{equation}
\begin{split}
\mathbb{E}\left[u^*\mathbf{Q}u\right] &=\sum^n_{i=1}\sum^n_{j=1}\mathbb{E}\left[\mathbf{Q}_{ij}\mean{u_i}u_j\right]\\
&=\sum^n_{i=1}\mathbf{Q}_{ii}\mathbb{E}\left[\mean{u_i}u_i\right]\\
&=tr\mathbf{Q}\text{ as } \mathbb{E}[\mean{u_i}u_i]=1.
\end{split}
\end{equation}
\end{proof}
\begin{corollary}
$\mathbb{E}\left[u^*u\right]=n.$
\end{corollary}
\begin{proof}
Take $\mathbf{Q}=\mathbf{I}_n$, then $tr\mathbf{Q}=tr\mathbf{I}_n=n$.
\end{proof}
\begin{equation}
\begin{split}
&\mathbb{E}\left[\frac1{n^2}\alpha'_k\mathbf{X}_k^*\left(\frac1n\mathbf{X}_k\mathbf{X}_k^*-z\mathbf{I}_{p-1}\right)^{-1}\mathbf{X}_k\mean{\alpha}_k\right]\\
&=\frac{1}{n^2}\mathbb{E}\left[tr\left\{\mathbf{X}_k^*\left(\frac1n\mathbf{X}_k\mathbf{X}_k^*-z\mathbf{I}_{p-1}\right)^{-1}\mathbf{X}_k\mean{\alpha}_k\alpha_k'\right\}\right]\\
&=\frac{1}{n^2}tr\left\{\mathbb{E}\left[\mathbf{X}_k^*\left(\frac1n\mathbf{X}_k\mathbf{X}_k^*-z\mathbf{I}_{p-1}\right)^{-1}\right]\mathbb{E}\left[\mean{\alpha}_k\alpha_k'\right]\right\}\\
&=\frac{1}{n^2}tr\left\{\mathbb{E}\left[\mathbf{X}_k^*\left(\frac1n\mathbf{X}_k\mathbf{X}_k^*-z\mathbf{I}_{p-1}\right)^{-1}\mathbf{X}_k\right]\right\}\\
&=\frac{1}{n^2}\mathbb{E}\left[tr\left\{\mathbf{X}_k^*\left(\frac1n\mathbf{X}_k\mathbf{X}_k^*-z\mathbf{I}_{p-1}\right)^{-1}\mathbf{X}_k\right\}\right]\\
&=\frac{1}{n^2}\mathbb{E}\left[tr\left\{\left(\frac1n\mathbf{X}_k\mathbf{X}_k^*-z\mathbf{I}_{p-1}\right)^{-1}\mathbf{X}_k\mathbf{X}^*_k\right\}\right]
\end{split}
\end{equation}
We note that $\frac{1}{n}\mathbf{X}_k\mathbf{X}^*_k\approx S_n$ (only 1 vector removed).
So
\begin{equation}
\begin{split}
&\frac{1}{n^2}\mathbb{E}\left[tr\left\{\left(\frac{1}{n}\mathbf{X}_k\mathbf{X}_k^*-z\mathbf{I}_{p-1}\right)^{-1}\mathbf{X}_k\mathbf{X}_k^*\right\}\right]\\
&\approx\frac{1}{n^2}\mathbb{E}\left[tr\left\{\left(\frac{1}{n}\mathbf{X}\mathbf{X}^*-z\mathbf{I}_{p}\right)^{-1}\mathbf{X}\mathbf{X}^*\right\}\right]\\
&=\frac{1}{n}\mathbb{E}\left[tr\left\{\mathbf{I}_p+z\left(\frac{1}{n}\mathbf{X}\mathbf{X}^*-z\mathbf{I}_p\right)^{-1}\right\}\right]\\
&=\frac{p}{n}+z\frac{p}{n}\mathbb{E}\left[S_n(z)\right].
\end{split}
\end{equation}
So denominator is roughly
$$1-z-\left\{\frac{p}{n}+z\frac{p}{n}\mathbb{E}\left[S_n(z)\right]\right\}$$
as $p\to\infty, n\to\infty$ and $p/n\to y> 0$.
$$\mathbb{E}\left[S_n(z)\right]\to S(z)$$
So denominator
$$\to 1-z-(y+zyS(z))$$
and
$$S(z)=\frac{1}{1-z-(y+yzS(z))}$$
This is ST of MP distribution $F_y$!
% **** THIS ENDS THE EXAMPLES. DON'T DELETE THE FOLLOWING LINE:
\end{document}