forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathembedding.js
118 lines (107 loc) · 3.84 KB
/
embedding.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* Utilites for extracting the embedding matrix and output them as files.
*/
import {writeFileSync} from 'fs';
import * as tf from '@tensorflow/tfjs';
/**
* Extract the first embedding matrix from a TensorFlow.js model.
*
* @param {tf.model} model An instance of tf.Model, assumed to contain an
* Embedding layer.
* @retuns {tf.Tensor} The embedding matrix from the first Embedding
* layer encoutnered while iterating through all layers of the model.
* @throws Error if no embedding layer can be found in the model.
*/
function extractEmbeddingMatrix(model) {
for (const layer of model.layers) {
if (layer.getClassName() === 'Embedding') {
const embed = layer.getWeights()[0];
tf.util.assert(
embed.rank === 2,
`Expected the rank of an embedding matrix to be 2, ` +
`but got ${embed.rank}`);
return embed;
}
}
throw new Error('Cannot find any Embedding layer in model.');
}
/**
* Write the values of the first embedding matrix of a model to files.
*
* The word labels are writen as well. The vectors and labels files are
* directly loadable into the Embedding Projector
* (https://projector.tensorflow.org/).
*
* @param {tf.model} model An instance of tf.Model, assumed to contain an
* Embedding layer.
* @param {string} prefix Path prefix for writing the vectors and labels files.
* For exapmle if `prefix` is `/tmp/embed`, then
* - the vectors will be written to `/tmp/embed_vectors.tsv`
* - the labels will be written to `/tmp/embed_labels.tsv`
* @param {{[word: string]: number}} wordIndex A dictionary mapping words to
* their integer indices.
* @param {number} indexFrom The basevalue of the integer indices.
*/
export async function writeEmbeddingMatrixAndLabels(
model, prefix, wordIndex, indexFrom) {
tf.util.assert(
prefix != null && prefix.length > 0,
`Null, undefined or empty path prefix`);
const embed = extractEmbeddingMatrix(model);
const numWords = embed.shape[0];
const embedDims = embed.shape[1];
const embedData = await embed.data();
// Write the ebmedding matrix to file.
let vectorsStr = '';
let index = 0;
for (let i = 0; i < numWords; ++i) {
for (let j = 0; j < embedDims; ++j) {
vectorsStr += embedData[index++].toFixed(5);
if (j < embedDims - 1) {
vectorsStr += '\t';
} else {
vectorsStr += '\n';
}
}
}
const vectorsFilePath = `${prefix}_vectors.tsv`;
writeFileSync(vectorsFilePath, vectorsStr, {encoding: 'utf-8'});
console.log(
`Written embedding vectors (${numWords} * ${embedDims}) to: ` +
`${vectorsFilePath}`);
// Collect and write the word labels.
const indexToWord = {};
for (const word in wordIndex) {
indexToWord[wordIndex[word]] = word;
}
let labelsStr = '';
for(let i = 0; i < numWords; ++i) {
if (i >= indexFrom) {
labelsStr += indexToWord[i - indexFrom];
} else {
labelsStr += 'not-a-word';
}
labelsStr += '\n';
}
const labelsFilePath = `${prefix}_labels.tsv`;
writeFileSync(labelsFilePath, labelsStr, {encoding: 'utf-8'});
console.log(
`Written embedding labels (${numWords}) to: ` +
`${labelsFilePath}`);
}