forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiris_test.py
58 lines (44 loc) · 1.72 KB
/
iris_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Copyright 2018 Google LLC. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
"""Test for the Iris model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import os
import shutil
import tempfile
import unittest
import iris
class IrisTest(unittest.TestCase):
def setUp(self):
self._tmp_dir = tempfile.mkdtemp()
super(IrisTest, self).setUp()
def tearDown(self):
if os.path.isdir(self._tmp_dir):
shutil.rmtree(self._tmp_dir)
super(IrisTest, self).tearDown()
def testTrainAndSaveNonSequential(self):
final_train_accuracy = iris.train(100, self._tmp_dir)
self.assertGreater(final_train_accuracy, 0.9)
# Check that the model json file is created.
json.load(open(os.path.join(self._tmp_dir, 'model.json'), 'rt'))
def testTrainAndSaveSequential(self):
final_train_accuracy = iris.train(100, self._tmp_dir, sequential=True)
self.assertGreater(final_train_accuracy, 0.9)
# Check that the model json file is created.
json.load(open(os.path.join(self._tmp_dir, 'model.json'), 'rt'))
if __name__ == '__main__':
unittest.main()