-
Notifications
You must be signed in to change notification settings - Fork 0
/
agile-2020-papers.Rmd
841 lines (699 loc) · 32.7 KB
/
agile-2020-papers.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
---
title: "Reproducibility Review AGILE 2020"
author: "Daniel Nüst"
date: "`r format(Sys.time(), '%d %B, %Y')`"
output:
html_document:
toc: yes
self_contained: true
#pdf_document:
# toc: yes
params:
private_info: yes
---
## Introduction
This document includes scripts and text analysis to support the reproducibility review at the [AGILE conference 2020](https://agile-online.org/conference-2020), in Chania, Greece - _"Geospatial Technologies: seeding the future"_.
The physical conference was cancelled due to the [COVID-19 crisis](https://en.wikipedia.org/wiki/Coronavirus_disease_2019).
The full papers were already reviewed at the time the decision to cancel was taken, so these are still published. However, short papers and posters were not sent out to review but are included here in the summary statistics.
Find out more online [about reproducible publications at AGILE](https://doi.org/10.17605/OSF.IO/PHMCE) and the [review process](https://osf.io/eg4qx/), and visit the Reproducible AGILE website: [https://reproducible-agile.github.io/](https://reproducible-agile.github.io/).
The code of this document is published on GitHub in the repository [reproducible-agile/reviews-2020](https://github.com/reproducible-agile/reviews-2020), where you can inspect the R code in the file `agile-2020-papers.Rmd` and find instructions for reproducing the workflow.
The [report parameter](https://bookdown.org/yihui/rmarkdown/parameterized-reports.html) `private_info` can be set to `yes` to show information which cannot be shared publicly, such as author names, titles, or excerpts of not accepted submissions, and to upload review files to private shares, which requires authentication.
```{r load_libraries, message=FALSE, warning=FALSE, include=FALSE}
library("pdftools")
library("stringr")
library("tidyverse")
library("tidytext")
library("wordcloud")
library("RColorBrewer")
library("here")
library("quanteda")
library("googledrive")
library("kableExtra")
library("httr")
library("xml2")
library("rvest")
library("tidyr")
library("ggplot2")
library("httr")
```
```{r seed, echo=FALSE}
set.seed(23) # 23rd AGILE!
```
## Submitted papers
```{r local_paths, echo=FALSE}
submissions_path <- here::here("submissions")
dir.create(submissions_path, recursive = TRUE, showWarnings = FALSE)
review_files_path <- here::here("review-material")
dir.create(review_files_path, recursive = TRUE, showWarnings = FALSE)
cr_path <- here::here("camera-ready-full-papers")
```
### Submission metadata
Retrieve all information about submissions from the EasyChair submissions system.
The full submission information is not included in the public rendering of this report.
```{r easychair_login}
if(is.na(Sys.getenv("easychair_username", unset = NA)) || is.na(Sys.getenv("easychair_password", unset = NA))) {
stop("Provide login details for EasyChair (e.g., in a file `.Renviron`) in environment variables",
"`easychair_username` and `easychair_password`")
}
# with help from https://github.com/kaytwo/easierchair/blob/master/scrape_easychair.py
# https://stackoverflow.com/questions/23202522/r-httr-post-request-for-signing-in
login_response <- NULL
if(is.null(login_response)) {
login_response <- httr::POST(url = "https://easychair.org/account/verify",
body = list(name = Sys.getenv("easychair_username"),
password = Sys.getenv("easychair_password")),
encode = "form")
}
```
```{r submissions, echo=FALSE}
submission_page <- httr::GET(url = "https://easychair.org/conferences/submissions?a=24268236")
submission_html <- xml2::read_html(submission_page)
submission_table_full <- html_node(submission_html, "#ec\\:table1")
# remove first header row and set names manually later, because the vertical table headers are miages anyway
xml_remove(xml_child(html_node(submission_table_full, "thead")))
submission_table <- rvest::html_table(x = submission_table_full,
fill = TRUE)
names(submission_table) <- c("id", "authors", "title", "information", "paper", "assigment", "update", "type", "time", "decision")
submission_table$id <- str_pad(submission_table$id, width = 3, side = "left", pad = "0")
submission_table <- submission_table %>%
mutate_if(is.character, list(~na_if(.,"")))
links <- html_nodes(submission_table_full, "a[href]") %>% html_attr("href")
submission_table$information <- paste("https://easychair.org",
links[str_detect(links, pattern = "submission_view")], sep = "")
submission_table$submission_id <- str_match(submission_table$information, pattern = "submission=([[:digit:]]+)")[,2]
# FIXME no. 033 has no file
#submission_table$paper <- R.utils::insert(paste("https://easychair.org",
# links[str_detect(links, pattern = "download")],
# sep = ""),
# ats = which(submission_table$id == "033"),
# values = NA)
submission_table$paper <- paste("https://easychair.org",
links[str_detect(links, pattern = "download")],
sep = "")
submission_table %>%
group_by(type) %>%
tally() %>%
kable() %>%
kable_styling("striped")
```
```{r submissions_full_metadata, echo=FALSE}
if(params$private_info) {
submission_table %>%
arrange(id) %>%
kable() %>%
kable_styling("striped") %>%
scroll_box(height = "480px")
}
```
### Load texts
The paper PDFs are downloaded from EasyChair directly using the links provided in the submission overview table.
```{r download_easychair, echo=FALSE}
for (i in 1:nrow(submission_table)) {
if(is.na(submission_table[i,]$paper)) {
cat("No paper URL for ", i, "\n")
next
}
current <- submission_table[i,]
filename <- file.path(submissions_path, paste0(current$id, ".pdf"))
if(!file.exists(filename)) {
httr::GET(url = current$paper,
httr::write_disk(path = filename,
overwrite = TRUE))
}
}
submission_files <- dir(path = submissions_path, pattern = ".pdf$", full.names = TRUE)
submission_table <- left_join(submission_table,
tibble("id" = str_match(submission_files,
pattern = "([:digit:]*)\\.pdf")[,2],
"file" = submission_files),
by = "id")
```
The text is extracted from PDFs and it is processed to create a [tidy](https://www.jstatsoft.org/article/view/v059i10) data structure without [stop words](https://en.wikipedia.org/wiki/Stop_words).
The stop words include specific words, which might be included in the page header, abbreviations, and terms particular to scientific articles, such as `figure`.
```{r tidy_data, echo=FALSE}
texts <- list()
for (i in 1:nrow(submission_table)) {
current <- submission_table[i,]
#cat("Reading ", current$file, "\n")
the_text <- NA
if(!is.na(current$file)) {
the_text <- pdf_text(current$file)
the_text <- str_c(the_text, collapse = TRUE)
}
names(the_text) <- current$id
texts <- c(texts, the_text)
}
pages <- lapply(submission_table$file, function(f) {
if(is.na(f))
NA
else pdf_info(f)$pages
})
tidy_texts <- tibble(id = submission_table$id,
path = submission_table$file,
type = submission_table$type,
text = unlist(texts),
pages = pages)
# create a table of all words
all_words <- tidy_texts %>%
select(id,
type,
text) %>%
unnest_tokens(word, text)
# remove stop words and remove numbers
my_stop_words <- tibble(
word = c(
"et",
"al",
"fig",
"e.g",
"i.e",
"http",
"ing",
"pp",
"figure",
"based",
"conference",
"university",
"table"
),
lexicon = "agile"
)
all_stop_words <- stop_words %>%
bind_rows(my_stop_words)
suppressWarnings({
no_numbers <- all_words %>%
filter(is.na(as.numeric(word)))
})
no_stop_words <- no_numbers %>%
anti_join(all_stop_words, by = "word")
total_words = nrow(all_words)
after_cleanup = nrow(no_stop_words)
```
About `r round(after_cleanup/total_words * 100)` % of the words are considered stop words.
The following table shows how many words and non-stop words each document has, sorted by number of non-stop words.
The `id` is built from the file name plus a prefix:
for full papers, it is the left-padded submission number and the prefix `fp_`;
<!--for short papers and posters, it is the submission number included in the file name and the prefixes `sp_` and `po_` respectively.-->
```{r stop_words, echo=FALSE, message=FALSE, warning=FALSE}
nsw_per_doc <- no_stop_words %>%
group_by(id) %>%
summarise(words = n()) %>%
rename(`non-stop words` = words)
words_per_doc <- all_words %>%
group_by(id, type) %>%
summarise(words = n())
type_counts_totals <- submission_table %>%
group_by(type) %>%
tally()
type_counts_totals$type <- c("FP", "PO", "SP")
type_counts_totals <- paste(
paste(type_counts_totals$type, type_counts_totals$n, sep = ":"),
collapse = "|")
words_joined <- as.data.frame(inner_join(words_per_doc, nsw_per_doc))
summary_row <- tibble(id = "Total",
type = type_counts_totals,
words = sum(words_per_doc$words),
`non-stop words` = sum(nsw_per_doc$`non-stop words`))
if(!params$private_info) {
words_joined$id <- NULL
summary_row$id <- NULL
}
bind_rows(words_joined, summary_row) %>%
kable() %>%
kable_styling("striped", full_width = FALSE) %>%
row_spec(nrow(words_joined) + 1, bold = TRUE) %>%
scroll_box(height = "240px")
```
### Which papers include a "Data and Software Availability" section?
According the the [AGILE Reproducible Paper Guidelines](https://osf.io/c8gtq/), all authors must add a _Data and Software Availability_ section to their paper.
The guidelines themselves are not mandatory yet in 2020, but let's see how many authors did include the statement.
This detection naturally relies on the loaded texts _with_ stop words.
```{r pdfgrep, echo=FALSE, eval=FALSE}
# Quick version with `pdfgrep`
cmd <- paste("pdfgrep", "-e 'Data and Software Availability'", "-i", "-A 3", "2020/*/*")
output <- system(cmd, intern = TRUE)
print(cmd)
print(output)
```
```{r dasa_section, echo=FALSE}
dasa_pattern <- regex("Data and Software Availability", ignore_case = TRUE)
tidy_texts <- tidy_texts %>%
mutate(has_dasa = str_detect(tidy_texts$text, pattern = dasa_pattern))
dasa_count <- tidy_texts %>% filter(has_dasa) %>% nrow()
excerpt_length <- 800
dasa_texts <- tidy_texts %>%
filter(has_dasa) %>%
mutate(dasa_start = str_locate(.data$text, pattern = dasa_pattern)[,1]) %>%
mutate(dasa_text = str_sub(.data$text, start = dasa_start, end = dasa_start + excerpt_length)) %>%
select(id, type, dasa_text)
```
`r dasa_count` papers have the section in question, that is `r round(dasa_count/nrow(submission_table) * 100)` % of all submissions.
Here are the statistics per submission type:
```{r dasa_statistics, echo=FALSE}
dasa_stats <- tidy_texts %>%
filter(has_dasa) %>%
group_by(type, .drop = FALSE) %>%
summarise(n = n())
dasa_stats <- left_join(tidy_texts %>%
group_by(type, .drop = FALSE) %>%
summarise(submissions = n()),
dasa_stats,
by = "type")
dasa_stats <- dasa_stats %>%
mutate(`%` = round(n/submissions*100, digits = 1))
dasa_stats %>%
arrange(desc(n)) %>%
rename(`with DASA` =)
kable() %>%
kable_styling("striped")
```
`r if(!params$private_info) {"<!--"}`
The following table shows the first `r excerpt_length` characters of these sections.
`r if(!params$private_info) {"-->"}`
```{r dasa_section_table, echo=FALSE}
if(params$private_info) {
dasa_texts %>%
arrange(id) %>%
kable() %>%
kable_styling("striped") %>%
scroll_box(height = "320px")
}
```
### Wordstem analysis
```{r wordstem_data, include=FALSE}
wordstems <- no_stop_words %>%
mutate(wordstem = quanteda::char_wordstem(no_stop_words$word))
countPapersUsingWordstem <- function(the_word) {
sapply(the_word, function(w) {
wordstems %>%
filter(wordstem == w) %>%
group_by(id) %>%
count %>%
nrow
})
}
top_wordstems <- wordstems %>%
group_by(wordstem) %>%
tally %>%
arrange(desc(n)) %>%
head(20) %>%
mutate(`# papers` = countPapersUsingWordstem(wordstem)) %>%
mutate(`% papers` = round(countPapersUsingWordstem(wordstem)/nrow(submission_table) * 100)) %>%
add_column(place = c(1:nrow(.)), .before = 0)
minimum_occurence <- 100
cloud_wordstems <- wordstems %>%
group_by(wordstem) %>%
tally %>%
filter(n >= minimum_occurence) %>%
arrange(desc(n))
```
For the following table and figure, the word stems were extracted based on a stemming algorithm from package [`quanteda`](https://cran.r-project.org/package=quanteda).
The word cloud is based on `r length(unique(cloud_wordstems$wordstem))` unique words occuring each at least `r minimum_occurence` times, all in all occuring `r sum(cloud_wordstems$n)` times which comprises `r round(sum(cloud_wordstems$n)/ nrow(no_stop_words) * 100)` % of non-stop words.
```{r top_wordstems, echo=FALSE}
top_wordstems %>%
kable() %>%
kable_styling("striped") %>%
scroll_box(height = "320px")
```
```{r wordstemcloud, dpi=150, echo=FALSE, fig.cap="Wordstem cloud of AGILE 2020 full paper submissions"}
wordcloud(cloud_wordstems$wordstem, cloud_wordstems$n,
max.words = Inf,
random.order = FALSE,
fixed.asp = FALSE,
rot.per = 0,
color = brewer.pal(8,"Dark2"))
```
## Reproducible research-related keywords of all submissions
The following tables lists how often terms related to reproducible research appear in each document.
The detection matches full words using regex option `\b`.
- reproduc (`reproduc.*`, reproducibility, reproducible, reproduce, reproduction)
- replic (`replicat.*`, i.e. replication, replicate)
- repeatab (`repeatab.*`, i.e. repeatability, repeatable)
- software
- (pseudo) code/script(s) [column name _code_]
- algorithm (`algorithm.*`, i.e. algorithms, algorithmic)
- process (`process.*`, i.e. processing, processes, preprocessing)
- data (`data.*`, i.e. dataset(s), database(s))
- result(s) (`results?`)
- repository(ies) (`repositor(y|ies)`)
- collaboration platforms (`git(hub|lab)`)
The following table highlights papers with the Data and Software Availability Section with italic font and grey background.
The entries are sorted by descending sum of all keywords per paper.
```{r keywords_per_paper, echo=FALSE, warning=FALSE}
tidy_texts_lower <- str_to_lower(tidy_texts$text)
word_counts <- tibble(
id = tidy_texts$id,
type = tidy_texts$type,
DASA = tidy_texts$has_dasa,
`reproduc..` = str_count(tidy_texts_lower, "\\breproduc.*\\b"),
`replic..` = str_count(tidy_texts_lower, "\\breplicat.*\\b"),
`repeatab..` = str_count(tidy_texts_lower, "\\brepeatab.*\\b"),
`code` = str_count(tidy_texts_lower,
"(\\bcode\\b|\\bscript.*\\b|\\bpseudo\ code\\b)"),
software = str_count(tidy_texts_lower, "\\bsoftware\\b"),
`algorithm(s)` = str_count(tidy_texts_lower, "\\balgorithm.*\\b"),
`(pre)process..` = str_count(tidy_texts_lower,
"(\\bprocess.*\\b|\\bpreprocess.*\\b|\\bpre-process.*\\b)"),
`data.*` = str_count(tidy_texts_lower, "\\bdata.*\\b"),
`result(s)` = str_count(tidy_texts_lower, "\\bresults?\\b"),
`repository/ies` = str_count(tidy_texts_lower, "\\brepositor(y|ies)\\b"),
`github/lab` = str_count(tidy_texts_lower, "\\bgit(hub|lab)\\b")
)
# https://stackoverflow.com/a/32827260/261210
sumColsInARow <- function(df, list_of_cols, new_col) {
df %>%
mutate_(.dots = ~Reduce(`+`, .[list_of_cols])) %>%
setNames(c(names(df), new_col))
}
word_counts_sums <- sumColsInARow(
word_counts,
names(word_counts)[!(names(word_counts) %in% c("id", "type"))], "all") %>%
arrange(desc(all))
DASA_counts <- word_counts_sums %>%
group_by(DASA) %>%
tally()
word_counts_sums_total <- word_counts_sums %>%
summarise_if(is.numeric, funs(sum)) %>%
add_column(id = "Total",
type = "",
DASA = paste0("T:", DASA_counts[2,2], "|F:", DASA_counts[1,2]),
.before = 0)
word_counts_sums <- rbind(word_counts_sums, word_counts_sums_total)
if(!params$private_info) {
word_counts_sums$id <- NULL
}
word_counts_sums %>%
kable() %>%
kable_styling("striped", font_size = 12, bootstrap_options = "condensed") %>%
row_spec(0, font_size = "x-small", bold = T) %>%
row_spec(word_counts_sums %>% rownames_to_column() %>%
filter(DASA == TRUE, .preserve = TRUE) %>%
select(rowname) %>% unlist() %>% as.numeric(),
italic = TRUE, background = "#eeeeee") %>%
row_spec(nrow(word_counts_sums), bold = T) %>%
scroll_box(height = "480px")
```
------
## Accepted full papers
### Full paper decisions
There is "accept" and "conditionally accept" (after second review)!
```{r scrape_accepted, echo=FALSE}
submission_table %>%
filter(type == "Full-paper") %>%
group_by(decision) %>%
summarise(count = n()) %>%
kable() %>%
kable_styling("striped")
```
```{r compile review data, echo=FALSE}
#page <- httr::GET(url = "https://easychair.org/conferences/status?a=24268236")
#review_status_page <- xml2::read_html(page)
#review_table <- rvest::html_table(html_nodes(review_status_page, ".paperTable")[[1]], header = TRUE)
#names(review_table)[4] <- "average"
#names(review_table)[1] <- "id"
#review_table$id <- str_pad(review_table$id, width = 3, side = "left", pad = "0")
#
## IMPORTANT: "Show paper authors" must be _un_ticked for the following code to work
#review_table <- review_table %>%
# tidyr::separate(col = title, into = c("authors","title"), sep = "\\.+?", extra = "merge")
#
## the tr element of the review table has the internal paper ID in format "r4789577"
#review_table$internal_id <- sapply(X = html_nodes(review_status_page, css = ".paperTable tr[id]"), FUN = function(row) {
# substr(html_attr(row, "id"), 2, 999)
#})
review_data <- left_join(submission_table, dasa_texts %>% select(-type),
by = "id")
if(params$private_info) {
review_data %>%
dplyr::filter(decision == "ACCEPT" | decision == "accept?") %>%
filter(type == "Full-paper") %>%
arrange(id) %>%
kable() %>%
kable_styling("striped") %>%
scroll_box(height = "480px")
}
```
### How does acceptance relate to DASA section availability for full papers?
```{r accepted_dasa, echo=FALSE}
dasa_vs_accepted <- tibble(papers = c("submitted",
"submitted with DASA",
"accepted",
"accepted with DASA",
"rejected with DASA"),
n = c(review_data %>%
filter(type == "Full-paper") %>%
nrow(.),
review_data %>%
filter(type == "Full-paper") %>%
filter(!is.na(dasa_text)) %>%
nrow(.),
review_data %>%
dplyr::filter(decision == "ACCEPT") %>%
filter(type == "Full-paper") %>%
nrow(.),
review_data %>%
dplyr::filter(decision == "ACCEPT") %>%
filter(type == "Full-paper") %>%
filter(!is.na(dasa_text)) %>%
nrow(.),
review_data %>%
dplyr::filter(decision == "REJECT") %>%
filter(!is.na(dasa_text)) %>%
nrow(.))
)
dasa_vs_accepted %>%
kable() %>%
kable_styling("striped")
```
```{r accepted_dasa_barplot_label}
review_data_figure_label <- if(params$private_info) {
"Barplot of Data and Software Availability sections across accepted and rejected full paper submissions"
} else {
"Barplot of Data and Software Availability sections across accepted full paper submissions"
}
```
```{r accepted_dasa_barplot, echo=FALSE, fig.cap=review_data_figure_label, fig.height=4}
if(params$private_info) {
review_data_figure_data <- review_data %>%
mutate(`has DASA` = !is.na(dasa_text)) %>%
filter(!is.na(decision)) %>%
filter(type == "Full-paper") %>%
group_by(type, `has DASA`, decision) %>%
summarise(n = n())
} else {
review_data_figure_data <- review_data %>%
mutate(`has DASA` = !is.na(dasa_text)) %>%
filter(!is.na(decision)) %>%
filter(type == "Full-paper", decision == "ACCEPT") %>%
group_by(type, `has DASA`, decision) %>%
summarise(n = n())
}
review_data_figure <- review_data_figure_data %>%
ggplot(aes(x = decision, y = n, fill = `has DASA`)) +
geom_bar(stat="identity", width = 0.5) +
scale_fill_brewer(palette="Paired") +
labs(title = "AGILE 2020 Submissions: Transparency & Reproducibility",
subtitle = "Data and Software Availability Sections (DASA) across full papers") +
theme_minimal() +
theme(axis.title.y = element_text(angle = 360, hjust = 1, vjust = 0.5))
review_data_figure
```
`r if(!params$private_info) {"<!--"}`
## Reproducibility reviews
### About
The assignment of reviews is done via a privately shared spreadsheet, to handle potential non-public comments.
The main outcome of the reviews is a _report_, which is published in individual OSF projects as components of the [OSF project for the reproducibility reviews 2020](https://osf.io/6k5fh/).
The report should be based on a template from this repository in [`report-template`](report-template).
Find the details on the review process in [this document]https://docs.google.com/document/d/1JHCQV7GP3YkKwp0Nii3dt3p3Y45hU56Xz2cr-xJVz34/edit#).
### Prepare data for reviewers
The review comments for each paper are stored in an HTML file next to the PDF of the submission and uploaded to [a private share](https://drive.google.com/drive/folders/1FMsRlvouWPkpnHU4mJ6dIMDeTwSRgpUP) so that reproducibility reviewers can access them.
This file includes the full reviews, including the names of the original reviewers, and cannot be publicly shared.
```{r upload_settings}
review_data_csv_file <- file.path(review_files_path, "review_data.csv")
```
1. ~~Download PDFs to directory `r review_files_path`~~ Skipped: The camera-ready PDFs are managed outsdie of EasyChair and must be available locall in the directory `r cr_path`, from where they are copied to `r review_files_path`
2. Create HTML from review page and safe to `r review_files_path`
3. Write paper metadata (ID, decision, title) to a CSV file `r review_data_csv_file`
4. **Manually** [import the paper metadata into the spreadsheet](https://www.tillerhq.com/how-to-import-csv-into-a-google-spreadsheet/) (Select cell `A1` then "File" > "Import" > "Import File" > "My Drive" then search for `review_data` and find `review_data.csv` then select the file > "Replace data at selected cell" and click "Import data")
In the future, we could do some text mining to answer questions such as
- Do reviewers findings match the automatic detection of DASA?
- How many comments are there regarding reproducibility?
```{r accepted_fp_files_download_easychair, echo=FALSE, eval=FALSE}
# DO NOT RUN - latest PDFs are not on EasyChair, use next chunk
#if (params$private_info) {
# review_files <- review_data %>%
# filter(type == "Full-paper") %>%
# dplyr::filter(decision != "REJECT") %>%
# select(id, submission_id, decision, title, file, paper)
#
# # first, re-download all accepted full paper PDFs to make sure we have latest copies
# for (i in 1:nrow(review_files)) {
# current <- review_files[i,]
# filename <- file.path(review_files_path, paste0(current$id, ".pdf"))
# httr::GET(url = current$paper,
# httr::write_disk(path = filename,
# overwrite = TRUE))
# }
#}
```
```{r update_camera_ready_file_paths, echo=FALSE}
review_files <- review_data %>%
filter(type == "Full-paper") %>%
dplyr::filter(decision == "ACCEPT") %>%
dplyr::mutate(file = stringr::str_replace(.$file, pattern = "submissions", replacement = "camera-ready-full-papers")) %>%
select(id, submission_id, decision, title, file, paper)
# copy camera ready files to upload directory
for (i in 1:nrow(review_files)) {
current <- review_files[i,]
file.copy(from = file.path(cr_path, paste0(current$id, ".pdf")),
to = file.path(review_files_path, paste0(current$id, ".pdf")))
}
```
```{r review_data_csv, echo=FALSE}
readr::write_csv(review_files %>%
select(ID = id, Decision = decision, Title = title),
path = review_data_csv_file,
append = FALSE)
```
```{r reviewer_comments, echo=FALSE}
# get review contents for each paper
conference_id <- "24268236"
# https://easychair.org/conferences/submission_reviews?submission=4788883;a=24268236#{fr:EZIcStd1tVrf}
retrieve_review <- function(id, submission_id) {
url <- parse_url("https://easychair.org/conferences/submission_reviews")
url$query <- list(submission = submission_id, a = conference_id)
response <- httr::GET(url = build_url(url))
content <- content(response)
page_title <- as.character(
xml_contents(
html_node(
content(response), "title")))
if(grepl("Log in", page_title))
stop("You must (re)login to EasyChair")
# check if id matches
title_id <- str_pad(str_extract(page_title,
"[[:digit:]]"),
width = 3, side = "left", pad = "0")
if(id != title_id)
warning(paste("Ids mismatch, id: ", id, " id in reponse: ", title_id))
# TODO replace lines with <td>PC member:</td> in the reviews for anonymity
review_doc <- xml_new_root(xml_dtd(name = "html", external_id = "-//W3C//DTD XHTML 1.0 Transitional//EN", system_id = "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"))
review_head <- xml2::xml_add_child(review_doc, "head")
review_style <- xml2::xml_add_child(review_head, "style")
xml_text(review_style) <- "
table, th, td {
border: 1px solid black;
padding: 5px;
}
table {
margin-bottom: 20px;
}"
review_body <- xml2::xml_add_child(review_doc, "body")
xml2::xml_add_child(review_body,
xml2::xml_find_first(content,
xpath = "//h3[contains(., 'Submission')]/following-sibling::div"))
review_content <- xml2::xml_find_all(content,
xpath = "//h3[contains(., 'Reviews and Comments')]/following-sibling::div")
for (i in c(1:length(review_content))) {
xml2::xml_add_child(review_body, review_content[[i]])
}
reviews_html_path <- file.path(review_files_path, paste0(id, "_reviews.html"))
xml2::write_html(review_doc, reviews_html_path)
reviews_html_path
}
#retrieve_review(review_files[1,]$id, review_files[1,]$submission_id)
for(i in c(1:nrow(review_files))) {
retrieve_review(review_files[i,]$id, review_files[i,]$submission_id)
}
```
```{r review_files_upload_to_share, echo=FALSE}
if (params$private_info) {
# put accepted full papers to private share
library("googledrive")
googledrive::drive_auth(use_oob = TRUE)
sapply(list.files(review_files_path, full.names = TRUE), function(the_file) {
googledrive::drive_put(media = the_file,
name = basename(the_file),
path = "https://drive.google.com/drive/folders/1FMsRlvouWPkpnHU4mJ6dIMDeTwSRgpUP")
})
googledrive::drive_put(media = review_data_csv_file,
name = basename(review_data_csv_file),
path = "https://drive.google.com/drive/folders/1FMsRlvouWPkpnHU4mJ6dIMDeTwSRgpUP")
}
```
`r if(!params$private_info) {"-->"}`
### Reproducibility reviewer instructions
1. Familiarise yourself with the [AGILE Reproducibility Review Process](https://docs.google.com/document/d/1JHCQV7GP3YkKwp0Nii3dt3p3Y45hU56Xz2cr-xJVz34/edit#heading=h.oheeg2s92zdm); the following steps are just tl;dr version
2. Take a look at the [review report template](https://github.com/reproducible-agile/reviews-2020/blob/master/report-template/reproreview-template.Rmd)
3. Go to the [master spreadsheet](https://docs.google.com/spreadsheets/d/1K6_8NqDfXH5uI07LBmBmgnapVP2fYlvU2QcE84UeqD0/) and find your assignments
4. Conduct your reproducibility review and write the report
- Don't forget to take a look at the scientific reviews for comments on reproducibility; do _not_ worry about the science or read the full paper, unless it really interests you
- If code is available on GitHub, you can fork the project into the [Reproducible AGILE organisation](https://github.com/reproducible-agile/), same [on GitLab in the subgroup "reviews"](https://gitlab.com/reproducible-agile/reviews)
- If need be, limit the review scope, e.g. reproduce only a specific figure; the reproducibility review should not take you longer (not counting computation time) than a scientific review
5. Send the report to the original authors of the paper and add the reproducibility chair in CC, see template below; _only if the authors agree_ with a publication of the report, proceed with the following steps
6. Add a new component to the [OSF project for 2020 reproducibility reviews](https://osf.io/6k5fh/)
- Use the European storage location, "Frankfurt"
- Name the component `Reproducibility review of: FULL PAPER TITLE`
- Add all contributors to the project
- Publish the component and mint a DOI
- Add the DOI to your report
- Upload a PDF of your report and any useful supplemental files
7. Add link to the OSF project in the master spreadsheet
#### Author contact template
```
Dear AUTHORS,
congratulations to the acceptance of your submission "TITLE" as a full paper at the AGILE conference 2020. As part of the Reproducible AGILE initative (https://reproducible-agile.github.io/) I attempted to reproduce the results from your paper. Attached to this email you find my report on your results.
As part of the AGILE reproducibility review (see https://docs.google.com/document/d/1JHCQV7GP3YkKwp0Nii3dt3p3Y45hU56Xz2cr-xJVz34/edit#heading=h.oheeg2s92zdm for details) I hereby ask you if you agree to the report being published on OSF (see https://osf.io/6k5fh/). A publication of the reproduction attempt gives credit to my work as a reproducibility reviewer and helps to improve future work.
[OPTIONAL:] Alongside the report I would like to publish an archive of the used data and script files, and the output files generated by myself. Note these would be published under a CC-BY license on OSF, though the original source and license are noted in the report.
Please don't hesitate to get in touch with me and Daniel Nüst (CC'ed), AGILE conference's Reproducibility Chair, if you have any questions. Please also include your coauthors in any further communication as you see fit.
YOUR SALUTATION OF CHOICE,
NAME
```
```
Dear AUTHORS,
thank you for your participation in a real open science endeavour!
The reproducibility review report on your paper is now published at DOI URL HERE.
Please don't hesitate to get in touch with Daniel Nüst (CC'ed), AGILE conference's Reproducibility Chair, if you have any questions.
YOUR SALUTATION OF CHOICE,
NAME
```
## AGILE General Meeting
```{r general_meeting_figures, fig.height=4, fig.width=4}
data <- tibble(`reproduction attempts` = c(0, 8))
review_data_2019 <- tibble(#id = c(1:19),
`has DASA` = factor("FALSE", levels = c("FALSE", "TRUE")),
decision = "Accept",
n = 19)
review_data_2019 %>%
ggplot(aes(x = decision, y = n, fill = `has DASA`)) +
geom_bar(stat="identity", width = 0.5) +
scale_fill_brewer(palette="Paired", drop = FALSE) +
labs(title = "AGILE 2019 Submissions",
subtitle = "DASA sections in full paper submissions") +
ylim(ggplot_build(review_data_figure)$layout$panel_scales_y[[1]]$range$range) +
theme_minimal() +
theme(axis.title.y = element_text(angle = 360, hjust = 1, vjust = 0.5))
```
## Colophon
This document is licensed under a [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/).
All contained code is licensed under the [Apache License 2.0](https://choosealicense.com/licenses/apache-2.0/).
**Runtime environment description:**
```{r session_info, echo=FALSE}
sessionInfo()
```
**The used MRAN snapshot is `r paste(options("repos"))`**.
```{r upload_to_drive, eval=FALSE, include=FALSE}
# upload the HTML file and source code to the Reproducibility Committee shared folder
drive_put(media = "agile-2020-papers.html",
name = paste0("agile-2020-papers_",
ifelse(params$private_info, "PRIVATE", "public"),
".html"),
path = "https://drive.google.com/drive/folders/1jyYj1hFqbR74D9ljjjcScR4lD3aWCO2U/")
drive_put("agile-2020-papers.Rmd", path = "https://drive.google.com/drive/folders/1jyYj1hFqbR74D9ljjjcScR4lD3aWCO2U/")
```
```{r render_public_version, eval=FALSE, include=FALSE}
rmarkdown::render(input = "agile-2020-papers.Rmd",
params = list(private_info = FALSE),
output_dir = here::here("docs/"),
output_format = rmarkdown::html_document(toc = TRUE, self_contained = FALSE))
```