-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathseephit.h
979 lines (828 loc) · 24.5 KB
/
seephit.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
#ifndef SEEPHIT_SEEPHIT_H
#define SEEPHIT_SEEPHIT_H
#include "pch.h"
#include "debug.h"
#include "parse_error.h"
#include "tags.h"
#include "util.h"
// maximum nodes and attributes in the tree
#define SPT_MAX_NODES 2048
#define SPT_MAX_ATTRS 2048
#define SPT_MAX_WARNINGS 20
#define SPT_MAX_ATTR_PER_NODE 16
namespace spt
{
using attrs = vec<attr, SPT_MAX_ATTRS>;
using cnodes = vec<cnode, SPT_MAX_NODES>;
using node_attrs = vec<attr, SPT_MAX_ATTR_PER_NODE>;
using warnings = vec<Message, SPT_MAX_WARNINGS>;
// Hardcoded symbols to detect id and style
constexpr const char_view g_symID{"id"};
constexpr const char_view g_symStyle{"style"};
constexpr const char_view g_symPre{"pre"};
// Control structures
constexpr const char_view g_symFor{"for"};
constexpr const char_view g_symIf{"if"};
constexpr const char_view g_symRoot{"root"};
// These two tags are used internally to handle bare text and attributes
constexpr const char_view g_symText{"@text"};
constexpr const char_view g_symAttr{"@attr"};
// Compile time parser
struct parser
{
cnodes m_arrNodes;
sym_tab m_ids;
warnings m_arrWarns;
Messages m_arrErrs {};
int m_iErrRow = -1;
int m_iErrCol = -1;
// Index of the first parentless top level node
// We need this to chain the top level parentless siblings together
int m_iElder = -1;
// Macro to quit the current function if error
#define ON_ERR_RETURN if(m_iErrRow > -1) return
constexpr explicit parser(const char *pszText): m_pszText(pszText), m_pszStart(pszText) {}
// Parse grammar
// HTML :: CONTENT | CONTENT HTML
// CONTENT :: TEXT | TAG
// TAG :: OPENTAG HTML CLOSETAG
// OPENTAG :: "<" TAGNAME ">"
// CLOSETAG :: "<" TAGNAME "/>"
// TEXT :: [~>&]+
// symEndTag represents the point at which the parsing should stop
constexpr void parse_html(int iParentId)
{
while(m_iErrRow == -1 && parse_content(iParentId));
}
// Dumps the tree nodes linearly
void dump() const
{
int i = 0;
for(const auto &node: m_arrNodes )
{
cerr << "n=" << i++ << ",";
node.dump();
cerr << endl;
}
}
private:
// Helper for error handling construct
struct saver
{
const char *saved = nullptr;
bool done = true;
constexpr explicit saver(const char *saved): saved(saved) {}
constexpr const char *finish() {done = false; return saved;}
};
// Macro to execute a block of code, saving and restoring the a value across it
// Use as follows: WITH_SAVE_POS { ... }
#define WITH_SAVE_POS for(saver s(m_pszText); s.done; m_pszText = s.finish())
#define INDEX_OF(ELEM, ARR) find_arr(ARR, (sizeof(ARR) / sizeof(ARR[0])), ELEM)
const char *m_pszText = nullptr; // Position in the stream
const char *m_pszStart = nullptr;
// Return line number of current position
constexpr int cur_row() const
{
// Count the number of newlines
int n = 0;
for(auto p = m_pszStart; p != m_pszText; ++p)
{
if(*p == '\n') ++n;
}
return n + 1;
}
// Return column number of current position
constexpr int cur_col() const
{
// Count the number of chars to reach \n or beginning
int n = 0;
for(auto p = m_pszText; p != m_pszStart && *p-- != '\n'; ++n);
return n;
}
// Raises compiletime error if no more characters left to parse
constexpr void check_eos()
{
if(*m_pszText == 0) PARSE_ERR(Error_Unexpected_end_of_stream);
}
// Advances to first non-whitespace character
// For simplicity assume anything below ascii 33 is white space
constexpr void eat_space()
{
check_eos();
while(*m_pszText && *m_pszText <= 32) ++m_pszText;
}
// Consumes characters matched by isX
template<typename F> constexpr const char_view eat_only(F isX)
{
// Ensure not EOS
check_eos();
// Create a symbol starting here
char_view sym{m_pszText, m_pszText};
// Keep accumulating chars into the symbol until test fails
while(isX(*sym.m_pEnd)) sym.m_pEnd++;
// Ensure at least 1 character is consumed
if(sym.empty()) PARSE_ERR(Error_Expecting_an_identifier);
// Move current pos to end of symbol
m_pszText = sym.m_pEnd;
return sym;
}
// Tries to consume the string pszSym
constexpr const bool eat_str(const char *pszSym)
{
// As long as we dont hit the end
while(*pszSym)
{
// Any mismatch is a parse error
if(*pszSym != *m_pszText ) return false;
++pszSym;
++m_pszText;
// Ensure we are not at end of stream before the symbol has been compared fully
if(*pszSym) check_eos();
}
return true;
}
// Consume stuff until ch is encountered
constexpr const char_view eat_until(char chDelim, const bool *unExpected)
{
char_view sym( m_pszText, m_pszText );
// Keep iterating until we hit the end of the symbol or the delimiting char
while(*sym.m_pEnd && *sym.m_pEnd != chDelim )
{
// If we hit an unexpected char, throw an error
if(unExpected && unExpected[static_cast<unsigned char>(*sym.m_pEnd)])
{
WITH_SAVE_POS
{
m_pszText = sym.m_pEnd;
PARSE_ERR(Error_Unexpected_character_inside_tag_content);
}
break;
}
sym.m_pEnd++;
}
// Point current pos at end of symbol
m_pszText = sym.m_pEnd;
return sym;
}
// Checks if we have an open tag
constexpr bool is_open_tag()
{
auto saved = m_pszText;
eat_space();
// Look for open tag and an alphanumeric character
if( m_pszText[0] == '<')
{
if(is_alpha(m_pszText[1]))
{
m_pszText = saved;
return true;
}
// If its not an open tag, it has to be a close tag, else its invalid
if(m_pszText[1] != '/')
{
m_pszText++;
PARSE_ERR(Error_Expecting_a_tag_name_after_open_bracket);
}
}
m_pszText = saved;
return false;
}
// Checks if we have a close tag, returns the tag symbol
constexpr bool is_close_tag()
{
// Save the pointer, eat whitespace
WITH_SAVE_POS
{
eat_space();
// Check for "</" followed by alpha
if(m_pszText[0] == '<' && m_pszText[1] == '/')
{
return is_alpha(m_pszText[2]);
}
}
return false;
}
// Parses one attribute like NAME=VALUE
// NAME is a sequence of [a-z\-] and VALUE is "text", 'text' or {text}
constexpr bool parse_attrs(node_attrs &attrs)
{
ON_ERR_RETURN false;
// Swallow any space
eat_space();
if(is_alpha(*m_pszText ))
{
// Get the attr name
const char_view &name = eat_only(is_attr);
bool bHasEqual = eat_str("=");
if(bHasEqual)
{
char_view value;
// Check what delimiter is used " or '
char chDelim = m_pszText[0];
if(chDelim == '"' || chDelim == '\'')
{
// Eat the open delim
++m_pszText;
value = eat_until(chDelim, nullptr);
check_eos();
ON_ERR_RETURN false;
// Eat the close delim
m_pszText++;
}
else // no delimiter, stop at space
{
value = eat_only(is_attrval);
eat_space();
}
if(value.empty()) PARSE_ERR(Error_Empty_value_for_non_boolean_attribute);
check_eos();
ON_ERR_RETURN false;
// Swallow any space
eat_space();
// Is it an ID tag
if(name == g_symID)
{
// Verify that the ID has not been used before
if(!m_ids.addSym(value))
{
// Save the pointer, point it to the start of symbol, for the warning
WITH_SAVE_POS
{
m_pszText = value.begin();
PARSE_WARN(Error_Duplicate_ID_on_tag);
}
}
// Add the ID to the array of IDs
m_arrNodes.back().id = value;
}
else // Regular attribute, accumulate it
{
attrs.push_back(attr(name, value));
DUMP << "Parsed attr " << name << "=" << value << ENDL;
}
}
else // No equal sign - test for boolean attributes
{
if(INDEX_OF(name.m_pBeg, g_arrBoolAttrs) == -1)
{
PARSE_ERR(Error_Expecting_a_value_for_attribute);
}
// Add the attribute to the list
attrs.push_back(attr(name, name));
}
return true;
}
return false;
}
// verifies an if tag
// <if cond={{var}}> <div> Stuff rendered if cond is non-zero </div> </if>
constexpr void check_if_tag(node_attrs &attrs)
{
int nAttr = attrs.size();
if(nAttr < 1 || attrs[0].name != "cond")
{
PARSE_ERR(Error_Invalid_syntax_in_if_tag);
}
}
// verifies a for tag
// <for var=name from=N to=N [inc=N]> ...
constexpr void check_for_tag(node_attrs &attrs)
{
// Check that we have var, from, and to atrributes (inc is optional)
int nAttr = attrs.size();
bool bValid = attrs[0].name == "var" && attrs[1].name == "from" && attrs[2].name == "to";
// Check also if the 4th attribute is "inc" if it exists
if(!bValid || (nAttr > 3 && attrs[3].name != "inc"))
{
PARSE_ERR(Error_Invalid_syntax_in_for_tag);
}
else
{
// Verify that the for loop params are sane
int iBeg = attrs[1].value.toInt();
int iEnd = attrs[2].value.toInt();
int iInc = nAttr == 4 ? attrs[3].value.toInt() : 1;
if((iBeg > iEnd && iInc >= 0) || (iBeg < iEnd && iInc <= 0) || iBeg == iEnd)
{
PARSE_ERR(Error_Infinite_loop_in_for_tag);
}
}
}
// Parse "<TAG>", ignores leading whitespace
// https://www.w3.org/TR/REC-xml/#sec-starttags
// No space allowed between < and tag name
constexpr bool parse_open_tag(node_attrs &attrs)
{
ON_ERR_RETURN false;
// Left trim whitespace
eat_space();
check_eos();
// Try to parse the "<"
if(!eat_str("<")) PARSE_ERR(Error_Missing_open_bracket);
// Try to parse an [a-z0-9]+ as a tag -
// is_open_tag would have already ensure first char is [a-z]
char_view sym = eat_only(is_alnum);
DUMP << "Parsed open tag: " << sym << ENDL;
// add a node
m_arrNodes.push_back(cnode(sym));
cnode &node = m_arrNodes.back();
// Eat any trailing whitespace
eat_space();
// Check if valid tag
if(INDEX_OF(sym.m_pBeg, g_arrCtrlTags) == -1 && INDEX_OF(sym.m_pBeg, g_arrTags) == -1)
{
WITH_SAVE_POS
{
m_pszText = sym.m_pBeg;
PARSE_WARN(Error_Unknown_tag_name);
}
}
// Parse all attributes
while(parse_attrs(attrs));
ON_ERR_RETURN false;
// Check for control nodes, if and for, verify if they have the required attrs
if(node.tag == g_symFor)
{
check_for_tag(attrs);
}
else if(node.tag == g_symIf)
{
check_if_tag(attrs);
}
// Check if void tag
bool bIsVoidTag = INDEX_OF(node.tag.m_pBeg, arrVoidTags) != -1;
if(bIsVoidTag)
{
// Void tag, optionally eat the "/" too
eat_space();
eat_str("/");
}
// Grab the final >
if(!eat_str(">"))
{
if(bIsVoidTag)
{
PARSE_ERR(Error_Missing_close_bracket_on_void_tag);
}
else
{
PARSE_ERR(Error_Missing_close_bracket_on_open_tag);
}
}
return bIsVoidTag;
}
// Attempts to parse "</TAG>" given "TAG"
constexpr void parse_close_tag(const char_view &symExpected)
{
ON_ERR_RETURN;
eat_space();
// Try to parse the "</"
if(!eat_str("</"))
{
PARSE_ERR(Error_Expecting_a_close_tag);
}
// Try to parse the tag name
char_view sym = eat_only(is_alnum);
if(sym != symExpected)
{
DUMP << "Expected '" << symExpected << "' got '" << sym << "'" << ENDL;
WITH_SAVE_POS
{
m_pszText = sym.begin();
PARSE_ERR(Error_Mismatched_Close_Tag);
}
}
// Ignore space, parse >
eat_space();
if(!eat_str(">"))
{
PARSE_ERR(Error_Missing_close_bracket_in_close_tag);
}
// Eat trailing space
eat_space();
}
// Creates a node "@attr" under the given node and chains attributes under it if any
constexpr void append_attrs(cnode &node, node_attrs &attrs)
{
ON_ERR_RETURN;
// If there are any attributes, they become the first children of this node
if(attrs.size())
{
// Create a "attr" node, make it the child of this
m_arrNodes.push_back(cnode(g_symAttr));
cnode &nodeAttrs = m_arrNodes.back();
node.child = m_arrNodes.size() - 1;
// Add the first attribute as the child of the "attr" node
m_arrNodes.push_back(cnode(attrs[0].name, attrs[0].value));
int iYoungest = nodeAttrs.child = m_arrNodes.size() - 1;
// Add the rest by chaining as siblings
for(size_t i = 1; i < attrs.size(); ++i)
{
m_arrNodes.push_back(cnode(attrs[i].name, attrs[i].value));
m_arrNodes[iYoungest].sibling = m_arrNodes.size() - 1;
iYoungest = m_arrNodes.size() - 1;
}
}
}
// TAG :: OPENTAG HTML CLOSETAG
constexpr int parse_tag()
{
ON_ERR_RETURN 0;
// Parse the open tag, get its index
int iCurrId = m_arrNodes.size();
node_attrs attrs;
bool bIsVoidTag = parse_open_tag(attrs);
cnode &node = m_arrNodes[iCurrId];
append_attrs(node, attrs);
if(!bIsVoidTag)
{
// Now we parse recursively
parse_html(iCurrId);
// Finally parse the close tag
parse_close_tag(node.tag);
}
else
{
node.child = VOID_TAG;
}
return iCurrId;
}
constexpr void check_template_braces(const char_view &text)
{
int nBrace = 0;
auto p = text.begin();
while(p != text.end())
{
// Check for {{
if(p[0] == '{' && p[1] == '{')
{
++nBrace;
}
else
{
// If we had one before check for a }}
if(nBrace)
{
if(p[0] == '}' && p[1] == '}')
{
--nBrace;
}
}
}
++p;
}
// If the counts mismatch, raise error
if(nBrace)
{
PARSE_ERR(Error_Missing_close_brace_in_template);
}
}
// Parse text until a <, forbidding & and >, optionally trims whitespace on bothe ends
constexpr int parse_text(bool bTrim)
{
ON_ERR_RETURN 0;
// make sure we have something
check_eos();
bool contentUnexpectedChars[256] = {false};
contentUnexpectedChars[int('>')] = true;
auto text = eat_until('<', contentUnexpectedChars);
// Make sure we have something left
check_eos();
// Check if the braces are {{ matching }}
check_template_braces(text);
// Trim whitespace if needed
if(bTrim) text.trim();
// Add a text meta node and return its index
m_arrNodes.push_back(cnode(g_symText, text));
return m_arrNodes.size() - 1;
}
// CONTENT :: TEXT | TAG
constexpr const bool parse_content(int iParentId)
{
// If we are out of text, were done
// Else if we found a close tag, were done
if(*m_pszText && !is_close_tag() && m_iErrRow == -1)
{
// Parse either an open tag or text, get the new child nodes ID
int iChild = -1;
bool bIsOpenTag = is_open_tag();
ON_ERR_RETURN false;
if(bIsOpenTag)
{
iChild = parse_tag();
}
else
{
// Trim the text unless the parent node is a <pre>
iChild = parse_text(m_arrNodes[iParentId].tag != g_symPre);
}
ON_ERR_RETURN false;
// If it's not the topmost level
if(iParentId >= 0)
{
// Does parent have a child?
if(m_arrNodes[iParentId].child != -1)
{
// Walk down the sibling chain to get the last child
int iYoungest = m_arrNodes[iParentId].child;
while(m_arrNodes[iYoungest].sibling != -1)
{
iYoungest = m_arrNodes[iYoungest].sibling;
}
// Assign us as the last sibling
m_arrNodes[iYoungest].sibling = iChild;
}
else
{
// Assign the parents "firstborn" to us
m_arrNodes[iParentId].child = iChild;
}
}
else // This is a top level node with no parent
{
// Do we know of an elder?
if(m_iElder > -1)
{
// Set us to be the sibling of that elder
m_arrNodes[m_iElder].sibling = iChild;
}
// We are the youngest elder
m_iElder = iChild;
}
return true;
}
return false;
}
};
// Runtime tree node
class rnode
{
friend class tree;
using attr_dict = unordered_map<string, string>;
// children if any
vector<rnode> m_arrChildren;
// attributes of this node
attr_dict m_dctAttrs;
// node tag, content text and id
char_view m_symTag, m_symText, m_symId;
// If content has template tags of the form {{key}}, store them in this
template_text m_templates;
// Whether it's a void node
bool m_bVoidNode {};
// Render the children of this node recursively
void render_children(ostream &ostr, template_vals &dctVals, template_funs &dctFuns, int indent)
{
for(auto& child: m_arrChildren)
{
child.render(ostr, dctVals, dctFuns, indent);
}
}
// Render the children in a for tag
void render_for(ostream &ostr, template_vals &dctVals, template_funs &dctFuns, int indent)
{
// Get the for loop params
auto iStart = std::stoi(m_dctAttrs.at("from"));
auto iStop = std::stoi(m_dctAttrs.at("to"));
auto iInc = m_dctAttrs.count("inc") ? std::stoi(m_dctAttrs.at("inc")) : 1;
string sVar = m_dctAttrs.at("var");
// Save the existing variable if any (allows nested loops with same var)
bool bUsed = dctVals.count(sVar);
template_val varSaved;
if(bUsed) varSaved = dctVals.at(sVar);
// Loop and render
for(int i = iStart; iInc > 0 ? i < iStop : i > iStop; i += iInc)
{
dctVals[sVar] = i;
render_children(ostr, dctVals, dctFuns, indent);
}
// Restore the loop var in the template dictionary or delete it if it didnt exits before
if(bUsed)
{
dctVals[sVar] = varSaved;
}
else
{
dctVals.erase(sVar);
}
}
// Render an if tag
void render_if(ostream &ostr, template_vals &dctVals, template_funs &dctFuns, int indent)
{
if(std::stoi(m_dctAttrs.at("cond")))
{
render_children(ostr, dctVals, dctFuns, indent);
}
}
public:
rnode() = default;
rnode(const char_view &tag, const char_view &text, bool bVoidNode, int index)
: m_symTag(tag), m_symText(text), m_bVoidNode(bVoidNode)
{
// Iterate through the text and detect if we have a template strings
const char *szOpen = "{{";
const char *szClose = "}}";
auto itCurr = text.begin();
do
{
// Find a "{{"
auto itStart = std::search(itCurr, text.end(), szOpen, szOpen + 2);
// The part from itCurr to itStart is a non template chunk iff itCurr != itStart
if(itCurr != itStart)
{
m_templates.add(char_view(itCurr, itStart), false);
itCurr = itStart;
}
// Now either itStart is at {{ or its text.end()
if(itStart != text.end())
{
// find the closing }}, if found add this chunk as a template
auto itEnd = std::search(itStart, text.end(), szClose, szClose + 2);
if(itEnd != text.end())
{
// Check if non empty tag
if((itEnd - itStart) > 2)
{
char_view sKey(itStart + 2, itEnd);
m_templates.add(sKey, true);
}
else
{
cerr << "Found an empty template tag {{}}";
}
// Set the current pointer beyond the template }}
itCurr = itEnd + 2;
}
else
{
// Set the current pointer to the end;
itCurr = text.end();
}
}
}
while(itCurr != text.end());
}
void render(ostream &ostr, template_vals &dctVals, template_funs &dctFuns, int indent = 0)
{
string sIndent(indent * 2, ' ');
string sTag{m_symTag.m_pBeg, m_symTag.m_pEnd};
bool bCtrlNode = false;
bool bTextNode = m_symTag == g_symText;
// Check if the tag is a control tag
for(const char *p: g_arrCtrlTags)
{
if(p == sTag)
{
bCtrlNode = true;
break;
}
}
// For non text nodes we render tags
if(!bTextNode)
{
// Ignore tag for control nodes
if(!bCtrlNode)
{
// Render the open tag, and the ID if any
ostr << sIndent << "<" << m_symTag;
if(!m_symId.empty())
{
ostr << " ID" << "='" << m_symId << '\'';
}
// Render the attributes and close the >
for(const auto &attr: m_dctAttrs )
{
ostr << ' ' << attr.first << '=' << '\'' << attr.second << '\'';
}
ostr << ">";
// If tag has children add a newline
if(!m_arrChildren.empty())
{
ostr << '\n';
// Render children if any
render_children(ostr, dctVals, dctFuns, indent + 1);
}
}
else // control tags, do not indent
{
// Render children conditionally for if
if(m_symTag == g_symIf)
{
render_if(ostr, dctVals, dctFuns, indent);
}
else if(m_symTag == g_symFor)
{
render_for(ostr, dctVals, dctFuns, indent);
}
else
{
render_children(ostr, dctVals, dctFuns, indent);
}
}
}
// Skip text and close tag for void tags and control tags
if(!m_bVoidNode)
{
if(!m_templates.parts().empty())
{
ostr << sIndent;
m_templates.render(ostr, dctVals, dctFuns);
ostr << "\n";
}
if(!bTextNode && !bCtrlNode)
{
ostr << sIndent << "</" << m_symTag << ">" << "\n";
}
}
else
{
if(!bTextNode)
{
ostr << "\n";
}
}
}
};
// Encapsulates the runtime DOM tree including templates
class tree
{
private:
rnode m_Root;
public:
template_vals m_dctTemplateVals;
template_funs m_dctTemplateFuns;
// Takes the compile time parser data and constructs thr runtime node tree
// Also generates a map for templates
tree(const parser &parser): m_Root ("root", "", false, -1)
{
build(parser, m_Root, 0);
}
// Test function that returns a map of all the keys with value == key
template_vals get_default_dict()
{
template_vals ret;
for(const auto &i: m_dctTemplateVals)
{
ret[i.first] = i.first;
}
return ret;
}
rnode root() const
{
return m_Root;
}
// Recursively builds the runtime tree structure from the compile time parser
// Detects strings of the form {{key}} inside node content and adds it to a template_dict
static void build(const parser &parser, rnode &parent, int index)
{
// Get the node tag and content
const cnode &cNode = parser.m_arrNodes[index];
// Create a SPTNode and set ID if any
rnode rNode(cNode.tag, cNode.text, cNode.child == VOID_TAG, index);
if(!cNode.id.empty())
{
rNode.m_symId = cNode.id;
}
// Place this node as a child of the parent
parent.m_arrChildren.emplace_back(rNode);
// If there are children for this node
if(cNode.child > NULL_NODE)
{
// Check if first child is "@ATTR"
const auto &child = parser.m_arrNodes[cNode.child];
if(child.tag == g_symAttr)
{
// Put the chain of attribute nodes into ther attrs array
auto attr = parser.m_arrNodes[child.child];
while(true)
{
parent.m_arrChildren.back().m_dctAttrs[attr.getTag()] = attr.getText();
if(attr.sibling == NULL_NODE) break;
attr = parser.m_arrNodes[attr.sibling];
}
// If there were more nodes after @ATTR, recursively process them
if(child.sibling > NULL_NODE)
{
build(parser, parent.m_arrChildren.back(), child.sibling);
}
}
else // No @ATTR
{
// Process children
build(parser, parent.m_arrChildren.back(), cNode.child);
}
}
// Process siblings
if(cNode.sibling > NULL_NODE)
{
build(parser, parent, cNode.sibling);
}
}
};
} // namespace spt
constexpr spt::parser operator"" _html(const char *pszText, size_t /*unused*/)
{
spt::parser parser(pszText);
parser.parse_html(spt::NULL_NODE);
return parser;
}
#endif