forked from nod-ai/shark-ai
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconftest.py
382 lines (328 loc) · 11.4 KB
/
conftest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
# Copyright 2024 Advanced Micro Devices, Inc.
#
# Licensed under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
from pathlib import Path
import pytest
from pytest import FixtureRequest
from typing import Optional, Any
# Tests under each top-level directory will get a mark.
TLD_MARKS = {
"tests": "unit",
"integration": "integration",
}
def pytest_collection_modifyitems(items, config):
# Add marks to all tests based on their top-level directory component.
root_path = Path(__file__).parent
for item in items:
item_path = Path(item.path)
rel_path = item_path.relative_to(root_path)
tld = rel_path.parts[0]
mark = TLD_MARKS.get(tld)
if mark:
item.add_marker(mark)
def pytest_addoption(parser):
parser.addoption(
"--mlir",
type=Path,
default=None,
help="Path to exported MLIR program. If not specified a temporary file will be used.",
)
parser.addoption(
"--module",
type=Path,
default=None,
help="Path to exported IREE module. If not specified a temporary file will be used.",
)
parser.addoption(
"--parameters",
type=Path,
default=None,
help="Exported model parameters. If not specified a temporary file will be used.",
)
parser.addoption(
"--prefix",
type=str,
default=None,
help=(
"Path prefix for test artifacts. "
"Other arguments may override this for specific values."
),
)
parser.addoption(
"--caching",
action="store_true",
default=False,
help="Load cached results if present instead of recomputing.",
)
parser.addoption(
"--longrun",
action="store_true",
dest="longrun",
default=False,
help="Enable long tests",
)
parser.addoption(
"--run-quick-llama-test",
action="store_true",
dest="run-quick-llama-test",
default=False,
help="Enable llama 8b f16 decomposed benchmarking test",
)
parser.addoption(
"--run-nightly-llama-tests",
action="store_true",
dest="run-nightly-llama-tests",
default=False,
help="Enable all llama benchmarking tests",
)
parser.addoption(
"--with-clip-data",
action="store_true",
default=False,
help=(
"Enable tests that use CLIP data like models that is not a part of the source "
"code. The user is expected to provide the data"
),
)
parser.addoption(
"--with-flux-data",
action="store_true",
default=False,
help=(
"Enable tests that use Flux data like models that is not a part of the source "
"code. The user is expected to provide the data"
),
)
parser.addoption(
"--with-t5-data",
action="store_true",
default=False,
help=(
"Enable tests that use T5 data like models that is not a part of the source "
"code. The user is expected to provide the data"
),
)
parser.addoption(
"--with-vae-data",
action="store_true",
default=False,
help=(
"Enable tests that use vae data such as models not part of the source code."
),
)
# TODO: Remove all hardcoded paths in CI tests
parser.addoption(
"--llama3-8b-tokenizer-path",
type=Path,
action="store",
help="Llama3.1 8b tokenizer path, defaults to 30F CI system path",
)
parser.addoption(
"--llama3-8b-f16-model-path",
type=Path,
action="store",
help="Llama3.1 8b model path, defaults to 30F CI system path",
)
parser.addoption(
"--llama3-8b-fp8-model-path",
type=Path,
action="store",
default=None,
help="Llama3.1 8b fp8 model path",
)
parser.addoption(
"--llama3-405b-tokenizer-path",
type=Path,
action="store",
help="Llama3.1 405b tokenizer path, defaults to 30F CI system path",
)
parser.addoption(
"--llama3-405b-f16-model-path",
type=Path,
action="store",
help="Llama3.1 405b model path, defaults to 30F CI system path",
)
parser.addoption(
"--llama3-405b-fp8-model-path",
type=Path,
action="store",
default=None,
help="Llama3.1 405b fp8 model path",
)
# To obtain a T5 GGUF file you can use llama.cpp's convert_hf_to_gguf.py.
# https://github.com/ggerganov/llama.cpp/blob/9abe9eeae98b11fa93b82632b264126a010225ff/convert_hf_to_gguf.py
# E.g.
# git lfs install
# git clone https://huggingface.co/google/t5-v1_1-small
# convert_hf_to_gguf.py \
# --outfile t5-v1_1-small.gguf \
# --outtype=f32 \
# t5-v1_1-small
parser.addoption(
"--google-t5-v1-1-small-f32-model-path",
type=Path,
default="/data/t5/small/google__t5-v1_1-small_f32.gguf",
help="Google T5 v1.1 small float32 model path",
)
parser.addoption(
"--google-t5-v1-1-small-bf16-model-path",
type=Path,
default="/data/t5/small/google__t5-v1_1-small_bf16.gguf",
help="Google T5 v1.1 small bfloat16 model path",
)
parser.addoption(
"--google-t5-v1-1-xxl-f32-model-path",
type=Path,
default="/data/t5/xxl/google__t5-v1_1-xxl_f32.gguf",
help="Google T5 v1.1 XXL float32 model path",
)
parser.addoption(
"--google-t5-v1-1-xxl-bf16-model-path",
type=Path,
default="/data/t5/xxl/google__t5-v1_1-xxl_bf16.gguf",
help="Google T5 v1.1 XXL bfloat16 model path",
)
parser.addoption(
"--baseline-perplexity-scores",
type=Path,
action="store",
default="sharktank/tests/evaluate/baseline_perplexity_scores.json",
help="Llama3.1 8B & 405B model baseline perplexity scores",
)
parser.addoption(
"--iree-device",
type=str,
action="store",
help="List an IREE device from iree-run-module --list_devices",
)
parser.addoption(
"--iree-hip-target",
action="store",
help="Specify the iree-hip target version (e.g., gfx942)",
)
parser.addoption(
"--iree-hal-target-device",
action="store",
help="Specify the iree-hal target device (e.g., hip)",
)
parser.addoption(
"--tensor-parallelism-size",
action="store",
type=int,
default=1,
help="Number of devices for tensor parallel sharding",
)
parser.addoption(
"--bs",
action="store",
type=int,
default=4,
help="Batch size for mlir export",
)
def set_fixture_from_cli_option(
request: FixtureRequest,
cli_option_name: str,
class_attribute_name: Optional[str] = None,
) -> Optional[Any]:
res = request.config.getoption(cli_option_name)
if request.cls is None:
return res
else:
if class_attribute_name is None:
class_attribute_name = cli_option_name
setattr(request.cls, class_attribute_name, res)
@pytest.fixture(scope="class")
def mlir_path(request: FixtureRequest) -> Optional[Path]:
return set_fixture_from_cli_option(request, "mlir", "mlir_path")
@pytest.fixture(scope="class")
def module_path(request: FixtureRequest) -> Optional[Path]:
return set_fixture_from_cli_option(request, "module", "module_path")
@pytest.fixture(scope="class")
def parameters_path(request: FixtureRequest) -> Optional[Path]:
return set_fixture_from_cli_option(request, "parameters", "parameters_path")
@pytest.fixture(scope="class")
def path_prefix(request: FixtureRequest) -> Optional[str]:
return set_fixture_from_cli_option(request, "prefix", "path_prefix")
@pytest.fixture(scope="class")
def caching(request: FixtureRequest) -> Optional[bool]:
return set_fixture_from_cli_option(request, "caching")
@pytest.fixture(scope="class")
def tensor_parallelism_size(request: FixtureRequest) -> Optional[str]:
return set_fixture_from_cli_option(
request, "tensor_parallelism_size", "tensor_parallelism_size"
)
@pytest.fixture(scope="class")
def baseline_perplexity_scores(request: FixtureRequest) -> Optional[str]:
return set_fixture_from_cli_option(
request, "baseline_perplexity_scores", "baseline_perplexity_scores"
)
@pytest.fixture(scope="class")
def batch_size(request: FixtureRequest) -> Optional[str]:
return set_fixture_from_cli_option(request, "bs", "batch_size")
@pytest.fixture(scope="class")
def get_model_artifacts(request: FixtureRequest):
model_path = {}
model_path["llama3_8b_tokenizer_path"] = set_fixture_from_cli_option(
request, "--llama3-8b-tokenizer-path", "llama3_8b_tokenizer"
)
model_path["llama3_8b_f16_model_path"] = set_fixture_from_cli_option(
request, "--llama3-8b-f16-model-path", "llama3_8b_f16_model"
)
model_path["llama3_8b_fp8_model_path"] = set_fixture_from_cli_option(
request, "--llama3-8b-fp8-model-path", "llama3_8b_fp8_model"
)
model_path["llama3_405b_tokenizer_path"] = set_fixture_from_cli_option(
request, "--llama3-405b-tokenizer-path", "llama3_405b_tokenizer"
)
model_path["llama3_405b_f16_model_path"] = set_fixture_from_cli_option(
request, "--llama3-405b-f16-model-path", "llama3_405b_f16_model"
)
model_path["llama3_405b_fp8_model_path"] = set_fixture_from_cli_option(
request, "--llama3-405b-fp8-model-path", "llama3_405b_fp8_model"
)
model_path["google__t5_v1_1_small_f32_model_path"] = set_fixture_from_cli_option(
request,
"--google-t5-v1-1-small-f32-model-path",
"google__t5_v1_1_small_f32_model",
)
model_path["google__t5_v1_1_small_bf16_model_path"] = set_fixture_from_cli_option(
request,
"--google-t5-v1-1-small-bf16-model-path",
"google__t5_v1_1_small_bf16_model",
)
model_path["google__t5_v1_1_xxl_f32_model_path"] = set_fixture_from_cli_option(
request,
"--google-t5-v1-1-xxl-f32-model-path",
"google__t5_v1_1_xxl_f32_model",
)
return model_path
@pytest.fixture(scope="class")
def get_iree_flags(request: FixtureRequest):
model_path = {}
model_path["iree_device"] = set_fixture_from_cli_option(
request, "--iree-device", "iree_device"
)
model_path["iree_hip_target"] = set_fixture_from_cli_option(
request, "--iree-hip-target", "iree_hip_target"
)
model_path["iree_hal_target_device"] = set_fixture_from_cli_option(
request, "--iree-hal-target-device", "iree_hal_target_device"
)
# The following three functions allow us to add a "XFail Reason" column to the html reports for each test
@pytest.hookimpl(optionalhook=True)
def pytest_html_results_table_header(cells):
cells.insert(2, "<th>XFail Reason</th>")
@pytest.hookimpl(optionalhook=True)
def pytest_html_results_table_row(report, cells):
if hasattr(report, "wasxfail"):
cells.insert(2, f"<td>{report.wasxfail}</td>")
else:
cells.insert(2, f"<td></td>")
@pytest.hookimpl(hookwrapper=True)
def pytest_runtest_makereport(item, call):
outcome = yield
report = outcome.get_result()
if report.when == "call" and hasattr(item, "wasxfail"):
report.wasxfail = item.wasxfail