-
Notifications
You must be signed in to change notification settings - Fork 6
/
model_word.py
131 lines (113 loc) · 5.19 KB
/
model_word.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import pickle
import numpy as np
import pandas as pd
from competition.data_deal import read_seq, explore, shuffle_alternative, label_clf
from competition.net_3a import *
dynamic = 1
cut_level = 'word'
maxlen = [150, 22, 4]
word_num = 80000
DIM = 300
filters = 300
kernel_size = 3
model = rnn_attention_concat(word_num=word_num,
maxlen=maxlen,
DIM=DIM,
filters=filters,
kernel_size=kernel_size,
pre_embedding=True,
trainable=False,
cut_level=cut_level,
dynamic=dynamic
)
data_train = read_seq(
path='./data_transform_%d/%s/%d/data_train.pkl' % (dynamic, cut_level, word_num))
ids_train = data_train['ids']
x_p_train = data_train['x_p']
x_q_train = data_train['x_q']
x_a0_train = data_train['x_a0']
x_a1_train = data_train['x_a1']
x_a2_train = data_train['x_a2']
alternatives_train = data_train['alternatives']
labels_train = data_train['labels']
_, _, error_id_train = label_clf('./label/clf/train_label.pkl',
'./label/clf/train_error_id.pkl')
data_valid = read_seq(
path='./data_transform_%d/%s/%d/data_valid.pkl' % (dynamic, cut_level, word_num))
ids_valid = data_valid['ids']
x_p_valid = data_valid['x_p']
x_q_valid = data_valid['x_q']
x_a0_valid = data_valid['x_a0']
x_a1_valid = data_valid['x_a1']
x_a2_valid = data_valid['x_a2']
alternatives_valid = data_valid['alternatives']
labels_valid = data_valid['labels']
_, _, error_id_valid = label_clf('./label/clf/valid_label.pkl',
'./label/clf/valid_error_id.pkl')
data_test = read_seq(
path='./data_transform_%d/%s/%d/data_test.pkl' % (dynamic, cut_level, word_num),
train=False)
ids_test = data_test['ids']
x_p_test = data_test['x_p']
x_q_test = data_test['x_q']
x_a0_test = data_test['x_a0']
x_a1_test = data_test['x_a1']
x_a2_test = data_test['x_a2']
alternatives_test = data_test['alternatives']
labels_test = data_test['labels']
_, _, error_id_test = label_clf('./label/clf/test_label.pkl',
'./label/clf/test_error_id.pkl')
n_start = 1
n_end = 11
log = []
for i in range(n_start, n_end):
x_a_all_train, labels_train_new = shuffle_alternative([x_a0_train,
x_a1_train,
x_a2_train],
labels_train)
labels_train_new = np.array(labels_train_new).transpose([1, 0])
model.fit(x=[np.array(x_p_train)[:],
np.array(x_q_train)[:],
x_a_all_train[0][:],
x_a_all_train[1][:],
x_a_all_train[2][:]],
y=[labels_train_new[0][:],
labels_train_new[1][:],
labels_train_new[2][:]],
batch_size=256, epochs=1, verbose=2)
model.save('./model/3a/%d_%s_%d_%d_epochs_%d.h5'
% (dynamic, cut_level, filters, word_num, i))
score_valid = model.predict(x=[np.array(x_p_valid)[:],
np.array(x_q_valid)[:],
np.array(x_a0_valid)[:],
np.array(x_a1_valid)[:],
np.array(x_a2_valid)[:]])
score_valid = np.array(score_valid).transpose([1, 0, 2]).reshape(30000, 3)
score_valid = [i.argmax() for i in score_valid]
with open('./model/3a/%d_%s_%d_%d_epochs_%d_valid.txt'
% (dynamic, cut_level, filters, word_num, i),
mode='w', encoding='utf-8') as f:
for num, score_valid_1 in enumerate(score_valid):
line = '%d\t%s' % (ids_valid[num], alternatives_valid[num][score_valid_1])
f.write('%s\n' % line)
labels_valid = [0] * 30000
accu_all = (np.array(score_valid) == np.array(labels_valid)).mean()
index_right_valid = np.where(np.in1d(ids_valid[:], error_id_valid) == False, True, False)
accu_clf = (np.array(score_valid)[index_right_valid] == np.array(labels_valid)[index_right_valid]).mean()
index_error_valid = np.in1d(ids_valid[:], error_id_valid)
accu_error = (np.array(score_valid)[index_error_valid] == np.array(labels_valid)[index_error_valid]).mean()
log.append([i, accu_all, accu_clf, accu_error])
print(pd.DataFrame(log, columns=['epoch', 'accu_all', 'accu_clf', 'accu_error']))
score_test = model.predict(x=[np.array(x_p_test),
np.array(x_q_test),
np.array(x_a0_test),
np.array(x_a1_test),
np.array(x_a2_test)])
score_test = np.array(score_test).transpose([1, 0, 2]).reshape(10000, 3)
score_test = [i.argmax() for i in score_test]
with open('./model/3a/%d_%s_%d_%d_epochs_%d_test.txt'
% (dynamic, cut_level, filters, word_num, i),
mode='w', encoding='utf-8') as f:
for num, score_test_1 in enumerate(score_test):
line = '%d\t%s' % (ids_test[num], alternatives_test[num][score_test_1])
f.write('%s\n' % line)