-
Notifications
You must be signed in to change notification settings - Fork 0
/
day24.rs
262 lines (218 loc) · 7.72 KB
/
day24.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
//! [Day 24: Crossed Wires](https://adventofcode.com/2024/day/24)
// Circuit diagrams are copied from:
// https://www.researchgate.net/publication/349727409_PyQUBO_Python_Library_for_Mapping_Combinatorial_Optimization_Problems_to_QUBO_Form
//
// @unknown{unknown,
// author = {Zaman, Mashiyat and Tanahashi, Kotaro and Tanaka, Shu},
// year = {2021},
// month = {03},
// pages = {},
// title = {PyQUBO: Python Library for Mapping Combinatorial Optimization Problems to QUBO Form},
// doi = {10.48550/arXiv.2103.01708}
// }
//
use std::collections::{HashMap, HashSet};
#[derive(Eq, PartialEq, Hash, Clone, Debug)]
enum Role {
CarryOut, // the Cout wire
IntXorXor, // intermediate wire between the two XOR gates
ABAndGate, // intermediate wires between AB and the (bottom) AND gate
AndGateWires, // wiring of the AND gates
SumOut, // the S wire
}
#[derive(Eq, PartialEq, Hash, Clone)]
enum Operation {
And,
Or,
Xor,
}
impl Operation {
fn from(s: &str) -> Self {
match s {
"AND" => Self::And,
"OR" => Self::Or,
"XOR" => Self::Xor,
_ => panic!("unknown op {s}"),
}
}
const fn eval(&self, a: u8, b: u8) -> u8 {
match self {
Self::And => a & b,
Self::Or => a | b,
Self::Xor => a ^ b,
}
}
}
#[derive(Eq, PartialEq, Hash, Clone)]
struct Gate {
a: String, // input wire
b: String, // input wire
op: Operation, // type of gate
r: String, // output wire
}
fn is_role(set: &HashSet<Role>, f: &Role) -> bool {
set.len() == 1 && (set.iter().next().unwrap() == f)
}
fn is_roles(set: &HashSet<Role>, f1: &Role, f2: &Role) -> bool {
if set.len() != 2 {
return false;
}
let roles: Vec<_> = set.iter().collect();
(roles[0] == f1 && roles[1] == f2) || (roles[0] == f2 && roles[1] == f1)
}
struct Puzzle {
// data: String,
wires: HashMap<String, u8>,
gates: Vec<Gate>,
}
impl Puzzle {
fn new() -> Self {
Self {
wires: HashMap::new(),
gates: Vec::new(),
}
}
/// Get the puzzle input.
fn configure(&mut self, path: &str) {
let data = std::fs::read_to_string(path).unwrap_or_else(|_| {
eprintln!("cannot read input file {path}");
std::process::exit(1);
});
for line in data.lines() {
if line.contains(": ") {
let (wire, value) = line.split_once(": ").unwrap();
self.wires.insert(wire.to_string(), value.parse().unwrap());
}
if line.contains(" -> ") {
let v = line.split_ascii_whitespace().collect::<Vec<_>>();
let gate = Gate {
a: v[0].to_string(),
op: Operation::from(v[1]),
b: v[2].to_string(),
r: v[4].to_string(),
};
self.gates.push(gate);
}
}
}
/// Solve part one.
fn part1(&self) -> u64 {
let mut waiting_gates = self.gates.iter().collect::<Vec<_>>();
let mut wires = self.wires.clone();
while !waiting_gates.is_empty() {
let mut next_waiting = Vec::new();
for gate in &waiting_gates {
if let Some(&a) = wires.get(&gate.a) {
if let Some(&b) = wires.get(&gate.b) {
let r = gate.op.eval(a, b);
*wires.entry(gate.r.to_string()).or_default() = r;
continue;
}
}
next_waiting.push(*gate);
}
waiting_gates = next_waiting;
}
wires
.iter()
.filter(|(r, &v)| r.starts_with('z') && v == 1)
.fold(0_u64, |acc, (r, _)| {
acc | (1 << r[1..].parse::<u64>().unwrap())
})
}
/// Solve part two.
fn part2(&self) -> String {
let mut input_types: HashMap<&str, HashSet<Role>> = HashMap::new();
let mut result_types: HashMap<&str, HashSet<Role>> = HashMap::new();
// analyse the role of each gate
for gate in &self.gates {
if gate.a == "x00" && gate.b == "y00" || gate.b == "x00" && gate.a == "y00" {
// ignore first half adder
continue;
}
let mut add_result_role =
|r: &Role| result_types.entry(&gate.r).or_default().insert(r.clone());
// full adder
if (gate.a.starts_with('x') && gate.b.starts_with('y'))
|| (gate.a.starts_with('y') && gate.b.starts_with('x'))
{
add_result_role(match gate.op {
Operation::Xor => &Role::IntXorXor, // xy connected to the 1st XOR gate: output is the wire between the both XOR
Operation::And => &Role::ABAndGate, // xy wired to a AND gate
Operation::Or => panic!("OR gate should be wired to x/y"),
});
} else {
let role = match gate.op {
Operation::Xor => &Role::SumOut, // actually the 2nd XOR gate
Operation::And => &Role::AndGateWires, // connections of AND gates
Operation::Or => &Role::CarryOut, // the only one OR gate is wired to Cout
};
input_types.entry(&gate.a).or_default().insert(role.clone());
input_types.entry(&gate.b).or_default().insert(role.clone());
add_result_role(role);
}
}
// branch all logical adders
let last_z_wire = result_types
.keys()
.filter(|wire| wire.starts_with('z'))
.max()
.unwrap();
let mut bad_wires: Vec<&str> = Vec::new();
for wire in result_types.keys() {
let inp = &input_types.entry(wire).or_default();
let res = &result_types[wire];
if wire == last_z_wire && is_role(res, &Role::CarryOut) {
// ok, last wire/bit of the result register should be wired to CarryOut
continue;
}
if inp.is_empty() && wire.starts_with('z') && is_role(res, &Role::SumOut) {
// ok, other z wires are Sum outputs
continue;
}
if is_role(inp, &Role::CarryOut)
&& (is_role(res, &Role::AndGateWires) || is_role(res, &Role::ABAndGate))
{
// ok: CarryOut should be wired to 2nd XOR or a AND gate
continue;
}
if is_roles(inp, &Role::SumOut, &Role::AndGateWires)
&& (is_role(res, &Role::CarryOut) || is_role(res, &Role::IntXorXor))
{
// ok: Cin and Sum should be wired to Cout or
continue;
}
#[cfg(debug_assertions)]
eprintln!("❌ {wire} : {inp:?} → {res:?}");
// ⚠️ swapped wire pairs are not determined,
// ⚠️ just the eight incorrectly wired
bad_wires.push(wire);
}
bad_wires.sort_unstable();
bad_wires.join(",")
}
}
fn main() {
let args = aoc::parse_args();
let mut puzzle = Puzzle::new();
puzzle.configure(args.path.as_str());
println!("{}", puzzle.part1());
println!("{}", puzzle.part2());
}
/// Test from puzzle input
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_part1() {
let mut puzzle = Puzzle::new();
puzzle.configure("sample_1.txt");
assert_eq!(puzzle.part1(), 4);
}
#[test]
fn test_part2() {
let mut puzzle = Puzzle::new();
puzzle.configure("sample_2.txt");
assert_eq!(puzzle.part1(), 2024);
}
}