-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconfig.yaml
59 lines (53 loc) · 1.51 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# NeuralMind Configuration
hardware:
cuda: true
mixed_precision: true
memory_optimization: true
device: "cuda" # Added to match device specifications in the code
model_params:
base_dim: 128 # Added to match DynamicNeuralChild implementation
hidden_dim: 1024
num_layers: 12
num_heads: 16
dropout: 0.1 # Added based on code implementation
curriculum:
stage_thresholds:
newborn: 0.2
early_infancy: 0.3
late_infancy: 0.4
early_toddler: 0.5
late_toddler: 0.6
early_preschool: 0.7
late_preschool: 0.75
early_childhood: 0.8
middle_childhood: 0.85
late_childhood: 0.9
early_elementary: 0.9
middle_elementary: 0.92
late_elementary: 0.94
early_adolescence: 0.95
middle_adolescence: 0.96
late_adolescence: 0.97
young_adult: 0.98
mature_adult: 0.99
memory:
short_term_capacity: 1000 # Added to match memory_module.py
long_term_capacity: 50000 # Added to match memory_module.py
replay_batch_size: 32
consolidation_interval: 3600
working_memory_size: 10 # Added based on code implementation
emotional_regulation:
emotion_dim: 4 # Added based on emotional_regulation.py
context_window: 5
memory_dim: 32
ethical_constraints:
harm_threshold: 0.4
fairness_weight: 0.9
honesty_bias: 0.75
anxiety_threshold: 0.7 # Added based on defense mechanisms implementation
training:
learning_rate: 3e-4 # Added based on self_supervised_trainer.py
weight_decay: 0.01
gradient_clip_norm: 1.0
warmup_steps: 1000
checkpoint_interval: 100