diff --git a/ProvenZk/Misc.lean b/ProvenZk/Misc.lean index 52eea7f..471c6b5 100644 --- a/ProvenZk/Misc.lean +++ b/ProvenZk/Misc.lean @@ -1,6 +1,8 @@ import ProvenZk.Gates import ProvenZk.Binary +open GatesEquivalence + variable {N : Nat} variable [Fact (Nat.Prime N)] @@ -8,46 +10,57 @@ theorem or_rw (a b out : (ZMod N)) : Gates.or a b out ↔ (Gates.is_bool a ∧ Gates.is_bool b ∧ ( (out = 1 ∧ (a = 1 ∨ b = 1) ∨ (out = 0 ∧ a = 0 ∧ b = 0)))) := by - unfold Gates.or - unfold Gates.is_bool - simp - intro ha hb - cases ha <;> cases hb <;> { subst_vars; simp } + rw [or_equivalence] + rw [is_bool_equivalence] + rw [is_bool_equivalence] + apply Iff.intro + . intro h + casesm* (_ ∨ _) + repeat ( + casesm* (_ ∧ _) + subst_vars + simp + ) + . intro h + casesm* (_ ∧ _) + rename_i ha hb hout + cases ha <;> cases hb <;> { + subst_vars + simp at hout + simp + tauto + } lemma select_rw {b i1 i2 out : (ZMod N)} : (Gates.select b i1 i2 out) ↔ is_bit b ∧ match zmod_to_bit b with | Bit.zero => out = i2 | Bit.one => out = i1 := by - unfold Gates.select - unfold Gates.is_bool - apply Iff.intro <;> { - intro h; rcases h with ⟨is_b, _⟩ - refine ⟨is_b, ?_⟩ - cases is_b - case inl => { - simp [*, zmod_to_bit] at * - assumption - } - case inr => { - simp [*, zmod_to_bit] at * - have : Nat.Prime N := (inferInstance : Fact (Nat.Prime N)).elim - have : N > 1 := by - apply Nat.Prime.one_lt - assumption - cases N - case zero => simp [ZMod.val] at * - case succ n _ _ _ _=> { - cases n - case zero => simp [ZMod.val] at * - case succ => { - simp [ZMod.val] at * - assumption - } - } - } - } + rw [select_equivalence] + apply Iff.intro + . intro h + casesm* (_ ∧ _) + rename_i hb hout + cases hb + repeat ( + subst_vars + simp at hout + simp [zmod_to_bit, ZMod.val_one] + tauto + ) + . intro h + simp [is_bit] at h + casesm* (_ ∧ _) + rename_i hb hout + cases hb + repeat ( + subst_vars + simp [zmod_to_bit, ZMod.val_one] at hout + simp + tauto + ) @[simp] -theorem is_bool_is_bit (a : ZMod n) [Fact (Nat.Prime n)]: Gates.is_bool a = is_bit a := by rfl +theorem is_bool_is_bit (a : ZMod n) [Fact (Nat.Prime n)]: Gates.is_bool a = is_bit a := by + rw [is_bool_equivalence] @[simp] theorem select_zero {a b r : ZMod N}: Gates.select 0 a b r = (r = b) := by