diff --git a/ProvenZk/GatesEquivalence.lean b/ProvenZk/GatesEquivalence.lean index 6d9dd05..effd4e6 100644 --- a/ProvenZk/GatesEquivalence.lean +++ b/ProvenZk/GatesEquivalence.lean @@ -306,10 +306,95 @@ lemma lookup_equivalence {b0 b1 i0 i1 i2 i3 out : ZMod N} : simp [add_assoc] ) +--#eval (3:ZMod 9) = (12:ZMod 9) + @[simp] lemma cmp_equivalence {a b out : ZMod N} : GatesDef.cmp_9 a b out ↔ if a = b then out = 0 else (if a.val < b.val then out = -1 else out = 1) := by - sorry -- TODO + unfold GatesDef.cmp_9 + apply Iff.intro + . intro h + casesm* (_ ∧ _) + split + . casesm* (_ ∨ _) + . tauto + . casesm* (_ ∧ _) + rename_i heq hlt _ + have : a.val = b.val := by + apply congrArg (h := heq) + apply False.elim (by + linarith + ) + . casesm* (_ ∧ _) + rename_i heq hlt _ + have : a.val = b.val := by + apply congrArg (h := heq) + apply False.elim (by + linarith + ) + . split + . casesm* (_ ∨ _) + . casesm* (_ ∧ _) + rename_i hlt heq _ + have : a.val = b.val := by + apply congrArg (h := heq) + apply False.elim (by + linarith + ) + . tauto + . casesm* (_ ∧ _) + apply False.elim (by + linarith + ) + . casesm* (_ ∨ _) + . apply False.elim (by + tauto + ) + . apply False.elim (by + tauto + ) + . tauto + . intro h + have : 2^(binary_length N) > N := by + apply binary_lt_two_pow_length + simp only [nat_to_binary_self] + simp only [<-ZMod.val_nat_cast] + refine ⟨?_, ?_, ?_⟩ + . rw [ZMod.val_nat_cast_of_lt] + have : a.val < N := by + simp [ZMod.val_lt] + linarith + . rw [ZMod.val_nat_cast_of_lt] + have : b.val < N := by + simp [ZMod.val_lt] + linarith + . if a = b then + subst_vars + simp at h + simp + tauto + else + if ZMod.val a < ZMod.val b then + rename_i hne hle + simp [hle, hne] at h + simp [*] + else + rename_i hne hnle + simp [hne, hnle] at h + simp [*] + simp at hnle + if hval : ZMod.val a = ZMod.val b then + have : a = b := by + rw [<-ZMod.nat_cast_zmod_val (a := a)] + rw [<-ZMod.nat_cast_zmod_val (a := b)] + rw [hval] + apply False.elim (by + contradiction + ) + else + apply lt_of_le_of_ne + . tauto + . tauto @[simp] lemma is_zero_equivalence {a out: ZMod N} :