-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
564 lines (483 loc) · 26.4 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
<!DOCTYPE html>
<html prefix="og: http://ogp.me/ns# article: http://ogp.me/ns/article# " lang="en">
<head>
<meta charset="utf-8">
<meta name="description" content="My journey to become a data scientist">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>In Machines We Trust</title>
<link href="assets/css/bootstrap.min.css" rel="stylesheet" type="text/css">
<link href="assets/css/html4css1.css" rel="stylesheet" type="text/css">
<link href="assets/css/nikola_rst.css" rel="stylesheet" type="text/css">
<link href="assets/css/code.css" rel="stylesheet" type="text/css">
<link href="assets/css/colorbox.css" rel="stylesheet" type="text/css">
<link href="assets/css/theme.css" rel="stylesheet" type="text/css">
<link href="assets/css/ipython.min.css" rel="stylesheet" type="text/css">
<link href="assets/css/nikola_ipython.css" rel="stylesheet" type="text/css">
<meta name="theme-color" content="#0078D7">
<meta name="generator" content="Nikola (getnikola.com)">
<link rel="alternate" type="application/rss+xml" title="RSS" href="rss.xml">
<link rel="canonical" href="https://inmachineswetrust.com/">
<link rel="next" href="index-1.html" type="text/html">
<!--[if lt IE 9]><script src="assets/js/html5.js"></script><![endif]--><link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/font-awesome/latest/css/font-awesome.min.css">
<link rel="prefetch" href="posts/git-deep-dive-checkout/" type="text/html">
</head>
<body>
<a href="#content" class="sr-only sr-only-focusable">Skip to main content</a>
<!-- Menubar -->
<nav class="navbar navbar-inverse navbar-static-top"><div class="container">
<!-- This keeps the margins nice -->
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#bs-navbar" aria-controls="bs-navbar" aria-expanded="false">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="https://inmachineswetrust.com/">
<span id="blog-title">In Machines We Trust</span>
</a>
</div>
<!-- /.navbar-header -->
<div class="collapse navbar-collapse" id="bs-navbar" role="navigation" aria-expanded="false">
<ul class="nav navbar-nav">
<li>
<a href="pages/about/">About</a>
</li>
<li>
<a href="archive.html">Archive</a>
</li>
<li>
<a href="categories/">Tags</a>
</li>
</ul>
<ul class="nav navbar-nav navbar-right"></ul>
</div>
<!-- /.navbar-collapse -->
</div>
<!-- /.container -->
</nav><!-- End of Menubar --><div class="container" id="content" role="main">
<div class="body-content">
<!--Body content-->
<div class="row">
<div class="postindex">
<article class="h-entry post-text"><header><h1 class="p-name entry-title"><a href="posts/git-deep-dive-checkout/" class="u-url">He who dove too deep into git checkout and git reset, Part 1</a></h1>
<div class="metadata">
<p class="byline author vcard"><span class="byline-name fn" itemprop="author">
Red Huq
</span></p>
<p class="dateline"><a href="posts/git-deep-dive-checkout/" rel="bookmark"><time class="published dt-published" datetime="2020-06-20T09:00:00-05:00" title="2020-06-20 09:00">2020-06-20 09:00</time></a></p>
<p class="commentline">
<a href="posts/git-deep-dive-checkout/#disqus_thread" data-disqus-identifier="cache/posts/post14.html">Comments</a>
</p>
</div>
</header><div class="p-summary entry-summary">
<div>
<style type="text/css">
div.prompt {
display: none;
}
div.rendered_html table, .rendered_html th, .rendered_html tr, .rendered_html td {
font-size: 16px;
border: 1px solid black;
}
</style>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>I love git. I think it's a brilliant masterpiece of design and programming by Linus Torvalds. To me it's more than just a tool—it's art. Ok I'm a little weird but we know that today git is the de facto tool for version control and an unequivocal cornerstone of successful software development.</p>
<p>In this blog post series, I'm going to dive <em>really</em> deep into the inner workings of the commands <code>git checkout</code> and <code>git reset</code>, break them down logically, and expose the method to the madness. You might already be familiar with a few aspects of these commands, but both of them conceal surprisingly powerful and useful functionality. Some of it might be new territory but I hope a lot of it will absolutely blow your mind. Either way, let's started with <code>git checkout</code>.</p>
<p class="more"><a href="posts/git-deep-dive-checkout/">Read more…</a></p>
</div>
</div>
</div>
</div>
</div>
</article><article class="h-entry post-text"><header><h1 class="p-name entry-title"><a href="posts/drop-first-columns/" class="u-url">Think twice before dropping that first one-hot encoded column</a></h1>
<div class="metadata">
<p class="byline author vcard"><span class="byline-name fn" itemprop="author">
Red Huq
</span></p>
<p class="dateline"><a href="posts/drop-first-columns/" rel="bookmark"><time class="published dt-published" datetime="2019-05-06T19:30:00-05:00" title="2019-05-06 19:30">2019-05-06 19:30</time></a></p>
<p class="commentline">
<a href="posts/drop-first-columns/#disqus_thread" data-disqus-identifier="cache/posts/post13.html">Comments</a>
</p>
</div>
</header><div class="p-summary entry-summary">
<div>
<style type="text/css">
div.prompt {
display: none;
}
div.rendered_html table, .rendered_html th, .rendered_html tr, .rendered_html td {
font-size: 16px;
border: 1px solid black;
}
</style>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Many machine learning models demand that categorical features are converted to a format they can comprehend via a widely used feature engineering technique called <strong>one-hot encoding</strong>. Machines aren't <em>that</em> smart.</p>
<p>A common convention after one-hot encoding is to remove one of the one-hot encoded columns from each categorical feature. For example, the feature <code>sex</code> containing values of <code>male</code> and <code>female</code> are transformed into the columns <code>sex_male</code> and <code>sex_female</code>, each containing binary values. Because using either of these columns provides sufficient information to determine a person's sex, we can drop one of them.</p>
<p>In this post, we dive deep into the circumstances where this convention is relevant, necessary, or even prudent.
</p>
<p class="more"><a href="posts/drop-first-columns/">Read more…</a></p>
</div>
</div>
</div>
</div>
</div>
</article><article class="h-entry post-text"><header><h1 class="p-name entry-title"><a href="posts/dev-setup/" class="u-url">An opinionated guide for gearing up for data science</a></h1>
<div class="metadata">
<p class="byline author vcard"><span class="byline-name fn" itemprop="author">
Red Huq
</span></p>
<p class="dateline"><a href="posts/dev-setup/" rel="bookmark"><time class="published dt-published" datetime="2019-04-28T21:30:00-05:00" title="2019-04-28 21:30">2019-04-28 21:30</time></a></p>
<p class="commentline">
<a href="posts/dev-setup/#disqus_thread" data-disqus-identifier="cache/posts/post12.html">Comments</a>
</p>
</div>
</header><div class="p-summary entry-summary">
<div>
<style type="text/css">
div.prompt {
display: none;
}
div.rendered_html table, .rendered_html th, .rendered_html tr, .rendered_html td {
font-size: 16px;
border: 1px solid black;
}
</style>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>This post couldn't be any more overdue, but going forward, I'm hoping to be more active and to continue sharing my data science knowledge, particularly the nuances that you acquire on the job.</p>
<p>Whether you're a data scientist, machine learning engineer, or data engineer, your day-to-day typically involves writing code—we <em>are</em> developers after all. Today I'd like share my <del>idiosyncrasies</del> thoughts for setting up a solid local machine for data science, sprinkled with tips and software engineering best practices. What this post <em>doesn't</em> cover are prerequisites for entering the field.
</p>
<p class="more"><a href="posts/dev-setup/">Read more…</a></p>
</div>
</div>
</div>
</div>
</div>
</article><article class="h-entry post-text"><header><h1 class="p-name entry-title"><a href="posts/update-december2017/" class="u-url">A few words about my experience at Insight Data Science</a></h1>
<div class="metadata">
<p class="byline author vcard"><span class="byline-name fn" itemprop="author">
Red Huq
</span></p>
<p class="dateline"><a href="posts/update-december2017/" rel="bookmark"><time class="published dt-published" datetime="2017-12-14T06:00:00-06:00" title="2017-12-14 06:00">2017-12-14 06:00</time></a></p>
<p class="commentline">
<a href="posts/update-december2017/#disqus_thread" data-disqus-identifier="cache/posts/post11.html">Comments</a>
</p>
</div>
</header><div class="p-summary entry-summary">
<div>
<style type="text/css">
div.prompt {
display: none;
}
div.rendered_html table, .rendered_html th, .rendered_html tr, .rendered_html td {
font-size: 16px;
border: 1px solid black;
}
</style>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>For the past few months, I attended <a href="http://insightdatascience.com/">Insight Data Science</a>—a self-directed fellowship (not a bootcamp) designed to help PhDs from all fields transition into a career as a data scientist in industry. I'll say it upfront: Insight was the most challenging and intense professional endeavor I've undertaken (tops even the PhD or building a nonprofit for me!), but also one of the most rewarding. I'd like to take this opportunity to share some of my experiences.
</p>
<p class="more"><a href="posts/update-december2017/">Read more…</a></p>
</div>
</div>
</div>
</div>
</div>
</article><article class="h-entry post-text"><header><h1 class="p-name entry-title"><a href="posts/update-august2017/" class="u-url">The next stage in my data science training</a></h1>
<div class="metadata">
<p class="byline author vcard"><span class="byline-name fn" itemprop="author">
Red Huq
</span></p>
<p class="dateline"><a href="posts/update-august2017/" rel="bookmark"><time class="published dt-published" datetime="2017-08-03T09:00:00-05:00" title="2017-08-03 09:00">2017-08-03 09:00</time></a></p>
<p class="commentline">
<a href="posts/update-august2017/#disqus_thread" data-disqus-identifier="cache/posts/post10.html">Comments</a>
</p>
</div>
</header><div class="p-summary entry-summary">
<div>
<style type="text/css">
div.prompt {
display: none;
}
div.rendered_html table, .rendered_html th, .rendered_html tr, .rendered_html td {
font-size: 16px;
border: 1px solid black;
}
</style>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>So far my data science training has been entirely self-directed but I'm aware completing the final steps—networking and landing a job—can be exceedingly difficult on your own. Because it's been nearly 7 months since I decided to embark on this journey, I figured this is a good opportunity to share my plan going forward.
</p>
<p class="more"><a href="posts/update-august2017/">Read more…</a></p>
</div>
</div>
</div>
</div>
</div>
</article><article class="h-entry post-text"><header><h1 class="p-name entry-title"><a href="posts/deep-learning-setup/" class="u-url">How to install Keras with a TensorFlow backend for deep learning</a></h1>
<div class="metadata">
<p class="byline author vcard"><span class="byline-name fn" itemprop="author">
Red Huq
</span></p>
<p class="dateline"><a href="posts/deep-learning-setup/" rel="bookmark"><time class="published dt-published" datetime="2017-07-28T09:00:00-05:00" title="2017-07-28 09:00">2017-07-28 09:00</time></a></p>
<p class="commentline">
<a href="posts/deep-learning-setup/#disqus_thread" data-disqus-identifier="cache/posts/post9.html">Comments</a>
</p>
</div>
</header><div class="p-summary entry-summary">
<div>
<style type="text/css">
div.prompt {
display: none;
}
div.rendered_html table, .rendered_html th, .rendered_html tr, .rendered_html td {
font-size: 16px;
border: 1px solid black;
}
</style>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Some of the biggest challenges I've faced while teaching myself data science have been determining what tools are available, which one to invest in learning, or how to access them. For example, once I reached the stage in my training where I was ready to add deep learning to my repertoire, I was baffled on <a href="https://stackoverflow.com/questions/38233996/how-to-import-tensorflow-in-jupyter-notebook-from-conda-with-gpu-support">how</a> <a href="https://stackoverflow.com/questions/37061089/trouble-with-tensorflow-in-jupyter-notebook">troublesome</a> it was to setup Keras and TensorFlow to work with Jupyter notebooks via the Anaconda distribution. Most solutions glossed over key steps, others just didn't work. After some digging, I came up with my own solution and decided to share it in detail with the community.
</p>
<p class="more"><a href="posts/deep-learning-setup/">Read more…</a></p>
</div>
</div>
</div>
</div>
</div>
</article><article class="h-entry post-text"><header><h1 class="p-name entry-title"><a href="posts/sms-spam-filter/" class="u-url">Using natural language processing to build a spam filter for text messages</a></h1>
<div class="metadata">
<p class="byline author vcard"><span class="byline-name fn" itemprop="author">
Red Huq
</span></p>
<p class="dateline"><a href="posts/sms-spam-filter/" rel="bookmark"><time class="published dt-published" datetime="2017-05-30T08:00:00-05:00" title="2017-05-30 08:00">2017-05-30 08:00</time></a></p>
<p class="commentline">
<a href="posts/sms-spam-filter/#disqus_thread" data-disqus-identifier="cache/posts/post8.html">Comments</a>
</p>
</div>
</header><div class="p-summary entry-summary">
<div>
<style type="text/css">
div.prompt {
display: none;
}
div.rendered_html table, .rendered_html th, .rendered_html tr, .rendered_html td {
font-size: 16px;
border: 1px solid black;
}
</style>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>After watching the film <em>Arrival</em>, I developed a deep appreciation for the field of linguistics (also my favorite movie of 2016). Human language is the most unstructured type of data, and yet we effortlessly parse and interpret it, and even generate our own. On the other hand, understanding everyday language is a significant challenge for machines; this is the focus of <strong>natural language processing</strong> (NLP)—the crossroads between linguistics and AI. In this post, we'll make use of some NLP concepts and combine them with machine learning to build a spam filter for SMS text messages.
</p>
<p class="more"><a href="posts/sms-spam-filter/">Read more…</a></p>
</div>
</div>
</div>
</div>
</div>
</article><article class="h-entry post-text"><header><h1 class="p-name entry-title"><a href="posts/mushroom-classification/" class="u-url">Training a machine to determine whether a mushroom is edible</a></h1>
<div class="metadata">
<p class="byline author vcard"><span class="byline-name fn" itemprop="author">
Red Huq
</span></p>
<p class="dateline"><a href="posts/mushroom-classification/" rel="bookmark"><time class="published dt-published" datetime="2017-05-15T11:00:00-05:00" title="2017-05-15 11:00">2017-05-15 11:00</time></a></p>
<p class="commentline">
<a href="posts/mushroom-classification/#disqus_thread" data-disqus-identifier="cache/posts/post7.html">Comments</a>
</p>
</div>
</header><div class="p-summary entry-summary">
<div>
<style type="text/css">
div.prompt {
display: none;
}
div.rendered_html table, .rendered_html th, .rendered_html tr, .rendered_html td {
font-size: 16px;
border: 1px solid black;
}
</style>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>It's been awhile since my last blog post but we've been busy with a big move from Houston to Brooklyn. The opportunities in New York City for data science and AI seem endless! I've also been spending some time putting to practice my newly acquired knowledge of machine learning by browsing through open datasets.</p>
<p>One dataset that piqued my interest is the <a href="http://archive.ics.uci.edu/ml/datasets/Mushroom?ref=datanews.io">mushroom dataset</a> from the UCI Machine Learning Repository describing different species from the genera <em>Agaricus</em> and <em>Lepiota</em>. The data are taken from The Audubon Society Field Guide to North American Mushrooms, which states "there is no simple rule for determining the edibility of a mushroom". Challenged by this bold claim, I wanted to explore if a machine could succeed here. In addition to answering this question, this post explores some common issues in machine learning and how to use Python's go-to machine learning library, Scikit-learn, to address them.
</p>
<p class="more"><a href="posts/mushroom-classification/">Read more…</a></p>
</div>
</div>
</div>
</div>
</div>
</article><article class="h-entry post-text"><header><h1 class="p-name entry-title"><a href="posts/k-means_clustering/" class="u-url">Applying k-means clustering to flow cytometry analysis</a></h1>
<div class="metadata">
<p class="byline author vcard"><span class="byline-name fn" itemprop="author">
Red Huq
</span></p>
<p class="dateline"><a href="posts/k-means_clustering/" rel="bookmark"><time class="published dt-published" datetime="2017-03-16T09:00:00-05:00" title="2017-03-16 09:00">2017-03-16 09:00</time></a></p>
<p class="commentline">
<a href="posts/k-means_clustering/#disqus_thread" data-disqus-identifier="cache/posts/post6.html">Comments</a>
</p>
</div>
</header><div class="p-summary entry-summary">
<div>
<style type="text/css">
div.prompt {
display: none;
}
div.rendered_html table, .rendered_html th, .rendered_html tr, .rendered_html td {
font-size: 16px;
border: 1px solid black;
}
</style>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Is it possible for a machine to group together similar data on its own? Absolutely—this is what clustering algorithms are all about. These algorithms fall under a branch of machine learning called <strong>unsupervised learning</strong>. In this branch, we give a machine an <em>unlabeled</em> training set containing data regarding the features but not the classes. Algorithms are left to their own devices to discover the underlying structure concealed within the data. This is in stark contrast to <a href="http://machinemadephd.com/posts/building-logistic-regression/">supervised learning</a>, where the correct answers are available and utilized to train a predictive model.</p>
<p>In this post, I'd like to introduce an algorithm called <strong>$k$-means clustering</strong> and also construct one from scratch. Additionally, I'll demonstrate how this algorithm can be used automate an aspect of a widely used life sciences technique called <strong>flow cytometry</strong>.
</p>
<p class="more"><a href="posts/k-means_clustering/">Read more…</a></p>
</div>
</div>
</div>
</div>
</div>
</article><article class="h-entry post-text"><header><h1 class="p-name entry-title"><a href="posts/understanding-generators/" class="u-url">Iterables, iterators and generators, oh my! Part 2</a></h1>
<div class="metadata">
<p class="byline author vcard"><span class="byline-name fn" itemprop="author">
Red Huq
</span></p>
<p class="dateline"><a href="posts/understanding-generators/" rel="bookmark"><time class="published dt-published" datetime="2017-03-03T10:00:00-06:00" title="2017-03-03 10:00">2017-03-03 10:00</time></a></p>
<p class="commentline">
<a href="posts/understanding-generators/#disqus_thread" data-disqus-identifier="cache/posts/post5.html">Comments</a>
</p>
</div>
</header><div class="p-summary entry-summary">
<div>
<style type="text/css">
div.prompt {
display: none;
}
div.rendered_html table, .rendered_html th, .rendered_html tr, .rendered_html td {
font-size: 16px;
border: 1px solid black;
}
</style>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>In a <a href="http://inmachineswetrust.com/posts/understanding-iterators/">previous post</a>, we learned about iterators—one of the most powerful programming constructs. Our discussion divulged their role as a fundamental but hidden component of Python's <code>for</code> loop, which led to a startling revelation regarding the <code>for</code> loop itself (no spoilers here). We also discovered how to implement the iterator protocol to create our very own iterators, even constructing ones that represent infinite data structures. In this post, I'd like to build upon our knowledge and introduce a more elegant and efficient means for producing iterators. However, if you're not comfortable with the iterator protocol and the inner workings of iterators, I <em>strongly</em> recommend familiarizing yourself with <a href="http://inmachineswetrust.com/posts/understanding-iterators/">Part 1</a> first.
</p>
<p class="more"><a href="posts/understanding-generators/">Read more…</a></p>
</div>
</div>
</div>
</div>
</div>
</article>
</div>
<nav class="postindexpager"><ul class="pager">
<li class="next">
<a href="index-1.html" rel="next">Older posts</a>
</li>
</ul></nav><script>var disqus_shortname="machinemade";(function(){var a=document.createElement("script");a.async=true;a.src="https://"+disqus_shortname+".disqus.com/count.js";(document.getElementsByTagName("head")[0]||document.getElementsByTagName("body")[0]).appendChild(a)}());</script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML" integrity="sha256-SDRP1VVYu+tgAGKhddBSl5+ezofHKZeI+OzxakbIe/Y=" crossorigin="anonymous"></script><script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'], ["\\(","\\)"] ],
displayMath: [ ['$$','$$'], ["\\[","\\]"] ],
processEscapes: true
},
displayAlign: 'center', // Change this to 'center' to center equations.
"HTML-CSS": {
styles: {'.MathJax_Display': {"margin": 0}}
}
});
</script>
</div>
<!--End of body content-->
<footer id="footer"><div class="text-center">
<p>
<span class="fa-stack fa-2x">
<a href="rss.xml">
<i class="fa fa-circle fa-stack-2x"></i>
<i class="fa fa-rss fa-inverse fa-stack-1x"></i>
</a>
</span>
<span class="fa-stack fa-2x">
<a href="https://twitter.com/redwanhuq">
<i class="fa fa-circle fa-stack-2x"></i>
<i class="fa fa-twitter fa-inverse fa-stack-1x"></i>
</a>
</span>
<span class="fa-stack fa-2x">
<a href="https://github.com/redwanhuq">
<i class="fa fa-circle fa-stack-2x"></i>
<i class="fa fa-github fa-inverse fa-stack-1x"></i>
</a>
</span>
<span class="fa-stack fa-2x">
<a href="https://www.linkedin.com/in/redwanhuq">
<i class="fa fa-circle fa-stack-2x"></i>
<i class="fa fa-linkedin fa-inverse fa-stack-1x"></i>
</a>
</span>
<span class="fa-stack fa-2x">
<a href="mailto:[email protected]">
<i class="fa fa-circle fa-stack-2x"></i>
<i class="fa fa-envelope fa-inverse fa-stack-1x"></i>
</a>
</span>
</p>
<p>
Contents © 2020 <a href="mailto:[email protected]">Red Huq</a>
—
Powered by <a href="https://getnikola.com" rel="nofollow">Nikola</a>
</p>
</div>
</footer>
</div>
</div>
<script src="assets/js/jquery.min.js"></script><script src="assets/js/bootstrap.min.js"></script><script src="assets/js/moment-with-locales.min.js"></script><script src="assets/js/fancydates.js"></script><script src="assets/js/jquery.colorbox-min.js"></script><script>$('a.image-reference:not(.islink) img:not(.islink)').parent().colorbox({rel:"gal",maxWidth:"100%",maxHeight:"100%",scalePhotos:true});</script><!-- fancy dates --><script>
moment.locale("en");
fancydates(2, "YYYY-MM-DD HH:mm");
</script><!-- end fancy dates --><script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-90799006-1', 'auto');
ga('send', 'pageview');
</script>
</body>
</html>