diff --git a/content/modules/ROOT/pages/02-vllm.adoc b/content/modules/ROOT/pages/02-vllm.adoc index f0d0690..826e7bf 100644 --- a/content/modules/ROOT/pages/02-vllm.adoc +++ b/content/modules/ROOT/pages/02-vllm.adoc @@ -17,21 +17,24 @@ Treating the model as an OCI artifact allows us to easily promote the model betw Since we are using a ModelCar container to deploy our model instead of S3, we will need to deploy the resources without the OpenShift AI Dashboard. -1. To start, With the `redhat-ods-applications` namespace selected, navigate to Developer perspective in the OpenShift Web Console. From the `+Add` page, select `All Services`. +. To start, With the `redhat-ods-applications` namespace selected, navigate to Developer perspective in the OpenShift Web Console. From the `+Add` page, select `All Services`. image::02-add-catalog.png[Add Catalog] -2. Search for `vLLM` and select the `vLLM ServingRuntime for KServe` template +[start=2] +. Search for `vLLM` and select the `vLLM ServingRuntime for KServe` template image::02-select-template.png[Select Template] -3. Choose to `Instantiate Template`. Select the `composer-ai-apps` project and click `Create` +[start=3] +. Choose to `Instantiate Template`. Select the `composer-ai-apps` project and click `Create` image::02-instantiate-template.png[Instantiate Template] The vLLM ServingRuntime for KServe `Template` is the same template that the OpenShift AI Dashboard uses when deploying a new instance. Unlike the Dashboard though, the template with just create the `ServingRuntime` object and not the `InferenceService`. -4. Next we will need to create the InferenceService. Click the `+` in the top right hand corner and paste the following object in and click `Create`. +[start=4] +. Next we will need to create the InferenceService. Click the `+` in the top right hand corner and paste the following object in and click `Create`. [source,yaml] ----