-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathconfig-example.toml
66 lines (53 loc) · 1.42 KB
/
config-example.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
version = "1.9"
debug = false
[path]
input = "data/input"
output = "data/output"
[nlp]
language = "de" # de, en
embeddings = "spacy"
nltk_model = "german" # english, german
spacy_model = "de_core_news_md" # en_core_web_lg, de_core_news_md
[flask]
name = "ReCAP-Argument-Mining"
host = "0.0.0.0"
port = 80
[export]
picture = true
json = true
[evaluation]
similarity = "edit"
[relation]
en_model = "data/relation/logreg_en.sav"
de_model = "data/relation/logreg_de.sav"
method = "adu_position" # adu_position, flat_tree, pairwise_comparison
threshold = 0.6
fallback = "support" # none, support, attack
[adu]
#["RandomForest","SVC","LogisticRegression","AdaBoost","XGBoost","XGBRF","AutoML","Stacking"]
#["standard","GridSearch", "RandomSearch"]
model = "Stacking"
train_method = "RandomSearch"
n_splits = 3
[adu.MC]
method = "pairwise" # pairwise, centroid, first, relations
[adu.path]
input = "data/ADU/in/PE/en"
output = "data/out/out.txt"
label = "data/ADU/in/PE/en"
[adu.stacking]
estimator_stack = ["rf","ada","log"]
final_estimator = "xgbrf"
passthrough = true
[adu.auxiliary]
dir = "data/ADU/auxiliary"
vocab = "vocab.pkl"
tfidf = "TF-IDF.pkl"
freqdist = "FreqDist.pkl"
[adu.feature_selection]
#["VT","scale","PCA","select_kbest","PCA_selectk_union"]
methods = ["VT","scale"]
dir = "data/ADU/feature_selection"
scaler = "scaler"
#["Robust","Power","MinMax","Standard","QuantileUniform","QuantileGaussian"]
scaling_method = "Robust"