-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain_pipeline.py
77 lines (68 loc) · 2.3 KB
/
train_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# %%
# import
import os
import sys
import pathlib
import yaml
import hydra
from omegaconf import DictConfig, OmegaConf
import pytorch_lightning as pl
from datasets.conv_implicit_wnf_dataset import ConvImplicitWNFDataModule
from networks.pointnet2_nocs import PointNet2NOCS
from networks.conv_implicit_wnf import ConvImplicitWNFPipeline
# %%
# main script
@hydra.main(config_path="config", config_name="train_pipeline_default")
def main(cfg: DictConfig) -> None:
# hydra creates working directory automatically
print(os.getcwd())
os.mkdir("checkpoints")
datamodule = ConvImplicitWNFDataModule(**cfg.datamodule)
batch_size = datamodule.kwargs['batch_size']
pointnet2_model = PointNet2NOCS.load_from_checkpoint(
cfg.pointnet2_model.checkpoint_path)
pointnet2_model.batch_size = batch_size
pointnet2_params = dict(pointnet2_model.hparams)
pipeline_model = ConvImplicitWNFPipeline(
pointnet2_params=pointnet2_params,
batch_size=batch_size, **cfg.conv_implicit_model)
pipeline_model.pointnet2_nocs = pointnet2_model
category = pathlib.Path(cfg.datamodule.zarr_path).stem
cfg.logger.tags.append(category)
logger = pl.loggers.WandbLogger(
project=os.path.basename(__file__),
**cfg.logger)
# logger.watch(pipeline_model, **cfg.logger_watch)
wandb_run = logger.experiment
wandb_meta = {
'run_name': wandb_run.name,
'run_id': wandb_run.id
}
all_config = {
'config': OmegaConf.to_container(cfg, resolve=True),
'output_dir': os.getcwd(),
'wandb': wandb_meta
}
yaml.dump(all_config, open('config.yaml', 'w'), default_flow_style=False)
logger.log_hyperparams(all_config)
checkpoint_callback = pl.callbacks.ModelCheckpoint(
dirpath="checkpoints",
filename="{epoch}-{val_loss:.4f}",
monitor='val_loss',
save_last=True,
save_top_k=20,
mode='min',
save_weights_only=False,
every_n_epochs=1,
save_on_train_epoch_end=True)
trainer = pl.Trainer(
callbacks=[checkpoint_callback],
checkpoint_callback=True,
logger=logger,
check_val_every_n_epoch=1,
**cfg.trainer)
trainer.fit(model=pipeline_model, datamodule=datamodule)
# %%
# driver
if __name__ == "__main__":
main()