-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathutils.py
507 lines (452 loc) · 18.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
from argparse import ArgumentParser
from copy import deepcopy
from json import load, dump
from os.path import dirname, basename, exists, splitext, isdir
from os import makedirs
import os
from tensorboardX import SummaryWriter
from environment import (
GraspSimulationEnv,
GraspObjectGenerationEnv,
ImprintGenerationEnv
)
from learning import (
ObjectDataset,
ImprintObjectDataset,
GraspDataset,
ConcatGraspDataset,
BalancedGraspDataset,
GripperDesigner,
get_loader,
grasp_dataset_concat_collate_fn,
VAEDatasetHDF,
GraspDatasetType,
)
from torch.cuda import is_available as is_cuda_available
from torch.utils.data import ConcatDataset, DataLoader
from git import Repo
from pathlib import Path
from signal import signal, SIGINT
import socket
from contextlib import closing
import numpy as np
import random
import torch
import pickle
def seed_all(seed=0):
print(f"SEEDING WITH {seed}")
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def parse_args():
parser = ArgumentParser('Fit2Form')
parser.add_argument('--name',
help='name of experiment',
type=str,
default=None)
parser.add_argument('--seed',
type=int,
default=0)
parser.add_argument('--config',
help='path to JSON config file',
type=str,
default="configs/default.json")
parser.add_argument('--objects',
help='path to grasp objects directory',
type=str,
default="data/ShapeNetCore.v2")
parser.add_argument("--ae_checkpoint_path", type=str, default=None)
parser.add_argument("--gn_checkpoint_path", type=str, default=None)
parser.add_argument("--fn_checkpoint_path", type=str, default=None)
parser.add_argument('--grasp_dataset',
help='path to HDF5 grasp dataset',
type=str,
default=None)
parser.add_argument('--train',
help='path to train.txt file',
type=str,
default=None)
parser.add_argument('--val',
help='path to val.txt file',
type=str,
default=None)
parser.add_argument("--test",
help="path to test.txt file",
default=None
)
parser.add_argument('--split',
help='choose which dataset split to use',
choices=['train', 'val'],
default=None
)
parser.add_argument("--shapenet_train_hdf", help="path to processed shapenet train hdf file", default=None)
parser.add_argument("--shapenet_val_hdf", help="path to processed shapenet val hdf file", default=None)
parser.add_argument("--imprint_train_hdf", help="path to processed imprint train hdf file", default=None)
parser.add_argument("--imprint_val_hdf", help="path to processed imprint val hdf file", default=None)
parser.add_argument('--mode',
choices=[
# 1. collision mesh for .obj files
'collision_mesh',
# 2. create urdf for all visual and collision mesh
'urdf',
# 3. create OBJ mesh, collision mesh, URDF, and
# TSDF of random, stable orientation of object
'grasp_objects',
# 4. generate chopped and rescaled shapenet grasp dataset
'pretrain_dataset',
# 5. generate imprint baseline for grasp objects
'imprint_baseline',
# # 6. generate imprint grasp dataset
'pretrain_imprint_dataset',
'vae',
'pretrain',
'pretrain_gn', # pretrain gn to regress imprint fingers
'cotrain'
],
default='cotrain')
parser.add_argument('--gpus',
type=str,
default='0',
help='comma-separated GPU device ids')
parser.add_argument('--num_processes',
help='number of environment processes',
type=int,
default=32)
parser.add_argument('--num_grasp_objects',
help='number of grasp_objects to generate',
type=int,
default=200000)
parser.add_argument('--num_pretrain_dataset',
help='number of grasp simuations to do for pretrain dataset',
type=int,
default=1000000)
parser.add_argument('--gui', action='store_true',
default=False, help='Run headless or render')
args = parser.parse_args()
return args
def merge(a, b):
# Merge two dictionaries
if isinstance(b, dict) and isinstance(a, dict):
a_and_b = a.keys() & b.keys()
every_key = a.keys() | b.keys()
return {k: merge(a[k], b[k]) if k in a_and_b else
deepcopy(a[k] if k in a else b[k]) for k in every_key}
return deepcopy(b)
def load_config(path, merge_with_default=True):
print(path)
base_dirname = basename(dirname(path))
merge_with_default = (base_dirname == 'configs')
if splitext(basename(path))[0] != 'default'\
and merge_with_default:
config = load(open(dirname(path) + '/default.json'))
additional_config = load(open(path))
config = merge(config, additional_config)
else:
config = load(open(path))
return config
def load_evaluate_config(path):
print(f"Loading evaluation config from path: {path}")
config = load(open(path))
for finger_generator_config in config["evaluations"]:
if not finger_generator_config["evaluate"]:
continue
if "train_config_path" in finger_generator_config:
train_config_path = finger_generator_config["train_config_path"]
elif len(finger_generator_config['checkpoint_dict']):
train_config_path = Path(list(finger_generator_config["checkpoint_dict"].values())[
0]).parent.joinpath("config.json")
else:
continue
finger_generator_config["train_config"] = load_config(
train_config_path, merge_with_default=False)
return config["evaluations"]
def find_free_port():
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s:
s.bind(('', 0))
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
return s.getsockname()[1]
def dicts_get(dicts, key):
return [item[key] for item in dicts
if item is not None and key in item]
def get_experiment_directory(args):
if args.name is None and args.load is not None:
args.name = basename(dirname(args.load))
experiment_directory = f'runs/{args.name}/'
if not exists(experiment_directory):
makedirs(experiment_directory)
return experiment_directory
class Logger:
def __init__(self, args, config):
self.logdir = get_experiment_directory(args)
print("[Logger] logging to ", self.logdir)
dump(config, open(self.logdir + 'config.json', 'w'), indent=4)
pickle.dump(args,open(self.logdir + 'args.pkl','wb'))
self.writer = SummaryWriter(logdir=self.logdir)
def log(self, data, step):
for key in data:
self.writer.add_scalar(key, data[key], step)
def log_histogram(self, data, step):
for key in data:
self.writer.add_histogram(key, data[key], step)
def log_text(self, data, step):
for key in data:
self.writer.add_text(key, str(data[key]), step)
def log_histogram(self, data, step):
for key in data:
self.writer.add_histogram(key, data[key], step)
def log_scalars(self, data, step): # For plotting multiple plots in same graph
for key in data:
self.writer.add_scalars(key, data[key], step)
def exit_handler():
print("Gracefully terminating")
exit(0)
def setup_pretrain_dataset_generation(
args,
config,
is_imprint=False,
batch_size=512):
if args.name is None:
print("Please supply directory to store pretrain dataset with --name")
exit()
if args.name[-1] != '/':
args.name += '/'
if args.objects is None:
print("Please provide path to shapenet root with --objects")
exit()
if args.split is None:
print("Specify which dataset split to use with --split")
exit()
split_map = {
"train": args.train,
"val": args.val,
"test": args.test
}
if split_map[args.split] is None:
print(f"Please specify category split file with --{split_map[args.split]} corresponding to args.split {args.split}")
exit()
category_file = split_map[args.split]
if not exists(args.name):
makedirs(args.name)
GraspObjectDataset = ImprintObjectDataset\
if is_imprint\
else ObjectDataset
return (
[GraspSimulationEnv.remote(
config=config,
gui=args.gui)
for _ in range(args.num_processes)],
GraspObjectDataset(
directory_path=args.objects,
batch_size=batch_size,
category_file=category_file,
),
GraspDataset(
directory_path=args.name,
batch_size=batch_size,
suffix = args.split
),
config['environment']['tsdf_voxel_size'],
args.num_pretrain_dataset,
)
def setup_imprint_generation(args, config):
if args.objects is None:
print("Please supply path to shapenet root with --objects")
exit()
return (
[ImprintGenerationEnv.remote(
config=config,
gui=args.gui)
for _ in range(args.num_processes)],
ObjectDataset(
directory_path=args.objects,
batch_size=args.num_processes)
)
def setup_network(args, hyperparameters):
device = 'cuda' if is_cuda_available() else 'cpu'
net = GripperDesigner(
embedding_dim=hyperparameters['embedding_dim'],
designer_weight_decay=hyperparameters['designer_weight_decay'],
designer_lr=hyperparameters['designer_lr'],
vae_weight_decay=hyperparameters['vae_weight_decay'],
vae_lr=hyperparameters['vae_lr'],
device=device,
fitness_class_str=hyperparameters["fitness_class"]
if "fitness_class" in hyperparameters else None,
generator_class_str=hyperparameters["generator_class"]
if "generator_class" in hyperparameters else None,
optimize_objectives=hyperparameters['optimize_objectives'],
use_1_robustness=hyperparameters["use_1_robustness"]
if "use_1_robustness" in hyperparameters else None,
checkpoint_dict={
"ae_checkpoint_path": args.ae_checkpoint_path,
"gn_checkpoint_path": args.fn_checkpoint_path,
"fn_checkpoint_path": args.gn_checkpoint_path,
}
)
return net
def setup_pretrain_dataset(hdf5_paths, hyperparameters, dataset_class):
assert len(hdf5_paths)
datasets = []
for dataset_path in hdf5_paths:
dataset_path = str(dataset_path)
datasets.append(
dataset_class(
dataset_path=dataset_path,
batch_size=hyperparameters['pretrain_batch_size'],
optimize_objectives=hyperparameters['optimize_objectives'],
use_1_robustness=hyperparameters['use_1_robustness'] if 'use_1_robustness' in hyperparameters else False,
))
return ConcatGraspDataset(datasets)
def get_pretrain_hdf_paths(args):
if args.imprint_train_hdf is None or args.imprint_val_hdf is None:
print("Supply paths to imprint_train_hdf(imprint_val_hdf) with --imprint_train_hdf(--imprint_val_hdf)")
exit()
train_hdf5_paths = [args.imprint_train_hdf]
val_hdf5_paths=[args.imprint_val_hdf]
if args.mode == "pretrain":
if args.shapenet_train_hdf is None or args.shapenet_val_hdf is None:
print("Supply paths to shapenet_train_hdf(shapenet_val_hdf) with --shapenet_train_hdf(--shapenet_val_hdf)")
exit()
train_hdf5_paths.append(args.shapenet_train_hdf)
val_hdf5_paths.append(args.shapenet_val_hdf)
return train_hdf5_paths, val_hdf5_paths
def setup_pretrain_datasets(args, hyperparameters):
"""
This function abstracts away from the dataset
and only returns a function to get a dataloader.
This prevents accidental modifications to the
pretrain dataset
"""
dataset_class = BalancedGraspDataset\
if hyperparameters['balanced_sampling']\
else GraspDataset
collate_fn = grasp_dataset_concat_collate_fn\
if hyperparameters['balanced_sampling']\
else None
train_hdf5_paths, val_hdf5_paths = get_pretrain_hdf_paths(args)
train_dataset = setup_pretrain_dataset(
hdf5_paths=train_hdf5_paths,
hyperparameters=hyperparameters,
dataset_class=dataset_class
)
val_dataset = setup_pretrain_dataset(
hdf5_paths=val_hdf5_paths,
hyperparameters=hyperparameters,
dataset_class=dataset_class
)
def get_train_loader(batch_size=hyperparameters['pretrain_batch_size']):
if hyperparameters['balanced_sampling']:
batch_size = int(batch_size / 2)
return get_loader(dataset=train_dataset,
batch_size=batch_size,
collate_fn=collate_fn,
distributed=False)
def get_val_loader(batch_size=hyperparameters['pretrain_batch_size']):
if hyperparameters['balanced_sampling']:
batch_size = int(batch_size / 2)
return get_loader(dataset=val_dataset,
batch_size=batch_size,
collate_fn=collate_fn,
distributed=False)
return get_train_loader, get_val_loader
def setup_pretrain(args, config):
if args.name is None:
print("Supply experiment name with --name")
elif args.config is None:
print("Supply path to JSON config file with --config")
elif args.objects is None:
print("Supply root of shapenet with --objects")
hyperparameters = config['training']['hyperparameters']
net = setup_network(args, hyperparameters)
get_train_loader, get_val_loader = \
setup_pretrain_datasets(args, hyperparameters)
return net, hyperparameters,\
get_train_loader, get_val_loader, Logger(args, config)
def setup_train_vae(args, config):
if args.name is None:
print("Supply experiment name with --name")
exit()
if args.config is None:
print("Supply path to JSON config file with --config")
exit()
if args.objects is None:
print("Supply root of shapenet with --objects")
exit()
if args.shapenet_train_hdf is None or args.shapenet_val_hdf is None:
print("Supply paths to shapenet_train_hdf(shapenet_val_hdf) with --shapenet_train_hdf(--shapenet_val_hdf)")
exit()
if args.imprint_train_hdf is None or args.imprint_val_hdf is None:
print("Supply paths to imprint_train_hdf(imprint_val_hdf) with --imprint_train_hdf(--imprint_val_hdf)")
exit()
hyperparameters = config['training']['hyperparameters']
logger = Logger(args, config)
# add logic for making train and val loader
train_vae_datasets = list()
val_vae_datasets = list()
# imprint
train_vae_datasets.append(VAEDatasetHDF(dataset_path=args.imprint_train_hdf))
val_vae_datasets.append(VAEDatasetHDF(dataset_path=args.imprint_val_hdf))
# shapenet
train_vae_datasets.append(VAEDatasetHDF(dataset_path=args.shapenet_train_hdf))
val_vae_datasets.append(VAEDatasetHDF(dataset_path=args.shapenet_val_hdf))
# concatenate datasets
train_vae_dataset = ConcatDataset(train_vae_datasets)
val_vae_dataset = ConcatDataset(val_vae_datasets)
train_loader = DataLoader(train_vae_dataset,
batch_size=hyperparameters['vae_batch_size'],
num_workers=6,
shuffle=True)
val_loader = DataLoader(val_vae_dataset,
batch_size=hyperparameters['vae_batch_size'],
num_workers=6,
shuffle=True)
return setup_network(args, hyperparameters),\
hyperparameters, \
train_loader, \
val_loader, \
logger
def setup(args, config):
if args.mode == 'pretrain_dataset':
return setup_pretrain_dataset_generation(args, config)
elif args.mode == 'pretrain_imprint_dataset':
return setup_pretrain_dataset_generation(args, config, is_imprint=True)
elif args.mode == 'imprint_baseline':
return setup_imprint_generation(args, config)
if args.mode == 'cotrain':
Env = GraspSimulationEnv
elif args.mode == 'grasp_objects':
Env = GraspObjectGenerationEnv
signal(SIGINT, lambda sig, frame: exit_handler())
envs = [Env.remote(
config=config,
gui=args.gui)
for _ in range(args.num_processes)]
if args.mode == 'grasp_objects':
return envs, args.objects, args.num_grasp_objects
logger = Logger(args, config)
hyperparameters = config['training']['hyperparameters']
net = setup_network(args, hyperparameters)
train_hdf_paths, _ = get_pretrain_hdf_paths(args)
pretrain_training_dataset = setup_pretrain_dataset(
hdf5_paths=train_hdf_paths,
hyperparameters=hyperparameters,
dataset_class=GraspDataset)
return (
envs,
net,
hyperparameters,
ObjectDataset(
directory_path=args.objects,
batch_size=hyperparameters['cotrain_batch_size']),
GraspDataset(
directory_path=logger.logdir,
batch_size=hyperparameters['cotrain_batch_size'],
use_latest_points=hyperparameters['use_latest_points'],
optimize_objectives=hyperparameters['optimize_objectives'],
use_1_robustness=hyperparameters['use_1_robustness'] if 'use_1_robustness' in hyperparameters else False,
grasp_dataset_type=GraspDatasetType.COTRAIN),
pretrain_training_dataset,
logger
)