forked from gigablast/open-source-search-engine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClusterdb.cpp
859 lines (827 loc) · 26.5 KB
/
Clusterdb.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
#include "gb-include.h"
#include "Clusterdb.h"
#include "Threads.h"
// a global class extern'd in .h file
Clusterdb g_clusterdb;
Clusterdb g_clusterdb2;
/*
// for making the cluster cache key
static key_t makeClusterCacheKey ( unsigned long vfd,
unsigned long pageNum ) {
key_t key;
key.n1 = vfd + 1;
key.n0 = (unsigned long long)pageNum + 1;
return key;
}
// DiskPageCache override functions
static void clusterGetPages ( DiskPageCache *pc,
long vfd,
char *buf,
long numBytes,
long long offset,
long *newNumBytes,
long long *newOffset ) {
bool cacheMiss = false;
// return new disk offset, assume unchanged
*newOffset = offset;
*newNumBytes = numBytes;
// what is the page range?
long long sp = offset / GB_PAGE_SIZE ;
long long ep = (offset + (numBytes-1)) / GB_PAGE_SIZE ;
// setup the cache list
RdbList cacheList;
key_t startKey;
startKey.n1 = 0;
startKey.n0 = 0;
// point to the buffer to fill
char *bufPtr = buf;
char *bufEnd = buf + numBytes;
// read in the pages
while ( sp <= ep && bufPtr < bufEnd ) {
cacheList.reset();
// get the cache key for the page
key_t cacheKey = makeClusterCacheKey ( vfd, sp );
// read in the list from cache
collnum_t collnum = 0;
g_clusterdb.getRdb()->m_cache.getList ( collnum,
(char*)&cacheKey,
(char*)&startKey,
&cacheList,
false,
3600*24*265,
true );
//cacheList.checkList_r ( false, true );
//log ( LOG_INFO, "cache: got list [%li, %lli] [%li]",
// vfd, sp, cacheList.m_listSize );
long size = cacheList.m_listSize;
if ( size == 0 ) {
cacheMiss = true;
goto getPagesEnd;
}
//log ( LOG_INFO, "cache: got list [%li, %li] [%li]",
// vfd, sp, size );
if ( bufPtr + size >= bufEnd )
size = bufEnd - bufPtr;
// copy the list into the buffer
memcpy ( bufPtr, cacheList.m_list, size );
// advance to the next page
bufPtr += size;
*newOffset += size;
*newNumBytes -= size;
sp++;
}
getPagesEnd:
if ( !cacheMiss ) {
pc->m_hits++;
// *newNumBytes = -(*newNumBytes);
}
else
pc->m_misses++;
}
static void clusterAddPages ( DiskPageCache *pc,
long vfd,
char *buf,
long numBytes,
long long offset ) {
// make sure we have a clean vfd
if ( vfd < 0 || vfd >= MAX_NUM_VFDS2 )
return;
// make sure the file didn't get unlinked
if ( ! pc->m_memOff[vfd] )
return;
// get the number of twins, used for filtering
long numTwins = g_hostdb.getNumHostsPerGroup();
long thisTwin = g_hostdb.m_hostId/g_hostdb.m_numGroups;
// get the bias range for this twin
long long biasStart = ((0x0000003fffffffffLL)/(long long)numTwins) *
(long long)thisTwin;
long long biasEnd;
if ( thisTwin == numTwins - 1 )
biasEnd = 0x0000003fffffffffLL + 1LL;
else
biasEnd = ((0x0000003fffffffffLL)/(long long)numTwins) *
(long long)(thisTwin+1);
// get the page range
long long sp = offset / GB_PAGE_SIZE;
// point to it
char *bufPtr = buf;
char *bufEnd = buf + numBytes;
// how much did we exceed the boundary by?
long skip = (long)(offset - sp * GB_PAGE_SIZE);
long size = GB_PAGE_SIZE - skip;
// setup the cache lists, may need to merge with an old list
RdbList cacheList1;
cacheList1.set ( NULL,
0,
NULL,
0,
0,
true,
true,
g_clusterdb.getRdb()->m_ks );
cacheList1.growList(GB_PAGE_SIZE);
// set the buffer data to a list so we can read it nicely
key_t startKey;
key_t endKey;
startKey.n1 = 0;
startKey.n0 = 0;
endKey.n1 = 0xffffffff;
endKey.n0 = 0xffffffffffffffffULL;
// setup our source list
RdbList dataList;
dataList.set ( bufPtr,
numBytes,
bufPtr,
numBytes,
(char*)&startKey,
(char*)&endKey,
0,
false,
true,
g_clusterdb.getRdb()->m_ks );
dataList.resetListPtr();
// add pages to the cache
while ( bufPtr < bufEnd ) {
long filled = 0;
// ensure "size" is not too big
if ( bufPtr + size > bufEnd )
size = bufEnd - bufPtr;
// . add the page to the cache
cacheList1.reset();
// check the first key, if it's too large, we're all done here
key_t key = dataList.getCurrentKey();
long long docId = g_clusterdb.getDocId ( key );
//if ( docId >= biasEnd ) {
// log ( "clusterdb: DocId after bias end, key.n1=%lx key.n0=%llx", key.n1, key.n0 );
// log ( "clusterdb: DocId after bias end, %llx >= %llx", docId, biasEnd );
// return;
//}
// make the cache key using vfd and page number
key_t cacheKey = makeClusterCacheKey ( vfd, sp );
// filter the data into a list to be cached
while ( filled < size && !dataList.isExhausted() ) {
key = dataList.getCurrentKey();
// check the key for filtering
//long long docId = g_clusterdb.getDocId ( key );
//long twin = hashLong((long)docId) % numTwins;
//if ( twin == thisTwin ) {
// add the key to the rdb list
cacheList1.addRecord(key, 0, NULL);
//}
// next key
filled += dataList.getCurrentRecSize();
dataList.skipCurrentRecord();
}
collnum_t collnum = 0;
// if the last key is too small, don't add the page
docId = g_clusterdb.getDocId ( key );
if ( docId >= biasStart )
g_clusterdb.getRdb()->m_cache.addList ( collnum,
cacheKey,
&cacheList1 );
//else
// log ( "clusterdb: DocId before bias start, %lli >= %lli", docId, biasStart );
//cacheList1.checkList_r ( false, true );
//log ( LOG_INFO, "cache: add list [%li, %lli] [%li]",
// vfd, sp, cacheList1.m_listSize );
// advance
bufPtr += filled;
sp++;
size = GB_PAGE_SIZE;
skip = 0;
}
}
static long clusterGetVfd ( DiskPageCache *pc,
long long maxFileSize ) {
// pick a vfd for this file, will be used in the cache key
long i;
long count = MAX_NUM_VFDS2;
for ( i = pc->m_nexti; count-- > 0; i++ ) {
if ( i >= MAX_NUM_VFDS2 ) i = 0;
if ( ! pc->m_memOff[i] ) break;
}
// bail if none left
if ( count == 0 ) {
g_errno = EBADENGINEER;
log ( LOG_LOGIC, "db: pagecache: clusterGetVfd: "
"no vds remaining." );
return -1;
}
// start looking here next time
pc->m_nexti = i + 1;
// set m_memOff[i] to something to hold the vfd
pc->m_memOff[i] = (long*)0x7fffffff;
// return the vfd
return i;
}
static void clusterRmVfd ( DiskPageCache *pc,
long vfd ) {
// make sure it's a clean vfd
if ( vfd < 0 || vfd >= MAX_NUM_VFDS2 )
return;
// clear the vfd for use
pc->m_memOff[vfd] = NULL;
// need to clear out the cache records using this vfd
collnum_t collnum = 0;
key_t startKey, endKey;
startKey.n1 = vfd + 1;
startKey.n0 = 0;
endKey.n1 = vfd + 1;
endKey.n0 = 0xffffffffffffffffULL;
g_clusterdb.getRdb()->m_cache.removeKeyRange ( collnum,
(char*)&startKey,
(char*)&endKey );
//log ( LOG_INFO, "cache: BIASED CACHE REMOVED VFD!!" );
}
*/
// reset rdb
void Clusterdb::reset() { m_rdb.reset(); }
// . this no longer maintains an rdb of cluster recs
// . Msg22 now just uses the cache to hold cluster recs that it computes
// from titlteRecs
// . clusterRecs are now just TitleRec keys...
// . we can load one the same from titledb as we could from clusterdb
// and we still don't need to uncompress the titleRec to get the info
bool Clusterdb::init ( ) {
// this should be about 200/4 = 50 megs per host on my current setup
long maxTreeMem = g_conf.m_clusterdbMaxTreeMem;
// . what's max # of tree nodes?
// . key+4+left+right+parents+dataPtr = 12+4 +4+4+4+4 = 32
// . 28 bytes per record when in the tree
long maxTreeNodes = maxTreeMem / ( 16 + CLUSTER_REC_SIZE );
// . each cahched list is just one key in the tree...
// . 28(tree space) + 24(cacheoverhead) = 52
//long maxCacheMem = g_conf.m_clusterdbMaxCacheMem ;
// do not use any page cache if doing tmp cluster in order to
// prevent swapping
//long pcmem = g_conf.m_clusterdbMaxDiskPageCacheMem;
long pcmem = 0;
if ( g_hostdb.m_useTmpCluster ) pcmem = 0;
// we need that 100MB for termlists! they are >90MB now!!
pcmem = 10000000; // 10MB
// temp hack for rebuild
//pcmem = 0;
// RdbCache has a 4 byte ptr to each rec in the cache
//long maxCacheNodes = maxCacheMem / ( 4 + CLUSTER_REC_SIZE );
//long nodeSize = sizeof(key_t) + sizeof(collnum_t);
long pageSize = GB_TFNDB_PAGE_SIZE;
//long nodeSize = (pageSize + 12) + sizeof(collnum_t) + 20;
//long maxCacheNodes = maxCacheMem / nodeSize ;
// init the page cache
if ( ! m_pc.init ( "clusterdb",
RDB_CLUSTERDB,
pcmem ,
pageSize ) )
//g_conf.m_clusterdbMaxDiskPageCacheMem,
//clusterGetPages,
//clusterAddPages,
//clusterGetVfd,
//clusterRmVfd ))
return log("db: Clusterdb init failed.");
//bool bias = true;
//if ( g_conf.m_fullSplit ) bias = false;
bool bias = false;
// initialize our own internal rdb
return m_rdb.init ( g_hostdb.m_dir ,
"clusterdb" ,
true , // dedup
//CLUSTER_REC_SIZE - sizeof(key_t),//fixedDataSize
0 , // no data now! just docid/s/c
g_conf.m_clusterdbMinFilesToMerge,
g_conf.m_clusterdbMaxTreeMem,
maxTreeNodes , // maxTreeNodes ,
true , //false , // balance tree?
0,//maxCacheMem ,
0,//maxCacheNodes ,
true , // half keys?
g_conf.m_clusterdbSaveCache,
&m_pc ,
false, // is titledb
true , // preload disk page cache
12, // key size
bias ); // bias disk page cache?
}
// init the rebuild/secondary rdb, used by PageRepair.cpp
bool Clusterdb::init2 ( long treeMem ) {
// . what's max # of tree nodes?
// . key+4+left+right+parents+dataPtr = 12+4 +4+4+4+4 = 32
// . 28 bytes per record when in the tree
long maxTreeNodes = treeMem / ( 16 + CLUSTER_REC_SIZE );
// initialize our own internal rdb
return m_rdb.init ( g_hostdb.m_dir ,
"clusterdbRebuild" ,
true , // dedup
0 , // no data now! just docid/s/c
50 , // m_clusterdbMinFilesToMerge,
treeMem , // g_conf.m_clusterdbMaxTreeMem,
maxTreeNodes ,
true , // balance tree?
0 , // maxCacheMem ,
0 , // maxCacheNodes ,
true , // half keys?
false , // g_conf.m_clusterdbSaveCache,
NULL , // &m_pc ,
false , // is titledb
false , // preload disk page cache
12 , // key size
true ); // bias disk page cache
}
bool Clusterdb::addColl ( char *coll, bool doVerify ) {
if ( ! m_rdb.addColl ( coll ) ) return false;
if ( ! doVerify ) return true;
// verify
if ( verify(coll) ) return true;
// if not allowing scale, return false
if ( ! g_conf.m_allowScale ) return false;
// otherwise let it go
log ( "db: Verify failed, but scaling is allowed, passing." );
return true;
}
bool Clusterdb::verify ( char *coll ) {
log ( LOG_INFO, "db: Verifying Clusterdb for coll %s...", coll );
g_threads.disableThreads();
Msg5 msg5;
Msg5 msg5b;
RdbList list;
key_t startKey;
key_t endKey;
startKey.setMin();
endKey.setMax();
//long minRecSizes = 64000;
if ( ! msg5.getList ( RDB_CLUSTERDB ,
coll ,
&list ,
startKey ,
endKey ,
64000 , // minRecSizes ,
true , // includeTree ,
false , // add to cache?
0 , // max cache age
0 , // startFileNum ,
-1 , // numFiles ,
NULL , // state
NULL , // callback
0 , // niceness
false , // err correction?
NULL ,
0 ,
-1 ,
true ,
-1LL ,
&msg5b ,
true )) {
g_threads.enableThreads();
return log("db: HEY! it did not block");
}
long count = 0;
long got = 0;
for ( list.resetListPtr() ; ! list.isExhausted() ;
list.skipCurrentRecord() ) {
key_t k = list.getCurrentKey();
count++;
unsigned long groupId = getGroupId ( RDB_CLUSTERDB , &k );
if ( groupId == g_hostdb.m_groupId ) got++;
}
if ( got != count ) {
log ("db: Out of first %li records in clusterdb, "
"only %li belong to our group.",count,got);
// exit if NONE, we probably got the wrong data
if ( got == 0 ) log("db: Are you sure you have the "
"right "
"data in the right directory? "
"Exiting.");
log ( "db: Exiting due to Clusterdb inconsistency." );
g_threads.enableThreads();
return g_conf.m_bypassValidation;
}
log ( LOG_INFO, "db: Clusterdb passed verification successfully for "
"%li recs.", count );
// DONE
g_threads.enableThreads();
return true;
}
#include "IndexList.h"
// . this routine is very slow...
// . it is used to get a titleRec's (document's) sample vector at query time
// but we should really compute this vector at build time and store it in
// the titleRec itself, to avoid having to compute it at query time.
// . vector must have at least VECTOR_SIZE bytes available
/*
void Clusterdb::getSampleVector ( char *vec ,
class Doc *doc,
char *coll ,
long collLen ,
long niceness) {
long long startTime = gettimeofdayInMilliseconds();
TitleRec *tr = doc->getTitleRec();
SiteRec *sr = doc->getSiteRec();
//sr->set ( tr->getSite() , tr->getColl() , tr->getCollLen() ,
sr->set ( tr->getSite() , coll , collLen ,
tr->getSiteFilenum() , SITEREC_CURRENT_VERSION );
// hashes the whole doc, but more importantly for us, computes
// XmlDoc::m_vector
//doc->set ( niceness );
XmlDoc *xd = doc->getXmlDoc();
xd->set ( tr , sr , NULL, niceness);
// this just sets the vector
doc->getIndexList(NULL,true,true,false,NULL,NULL,NULL, niceness);
// log the time
long long took =gettimeofdayInMilliseconds()-startTime;
if ( took > 3 )
log(LOG_INFO,"query: Took %lli ms to make indexlist.",took);
// so get it
char *p = doc->getSampleVector ( );
// and store it. short vectors are padded with 0's.
memcpy ( vec , p , SAMPLE_VECTOR_SIZE );
}
*/
// if VECTOR_SIZE is 128 bytes then that is 32 termIds (4 bytes each) that we
// use to make this vector. these 32 termids are the lowest 32 termids out of
// all the termids for the document. we can further hash pairs to reduce the
// vector size from 128 to 64 bytes. but we must hash the pair strategically.
// What are the odds of two things being 90% similar when they are not?
#define SAMPLE_VECTOR_LEN (SAMPLE_VECTOR_SIZE / 4)
// . it would be nice to use the new addition to the Words class that allows
// a word to be a tag. this kinda replaces the xml class.
// . returns false and sets g_errno on error
/*
bool Clusterdb::getGigabitVector ( char *vec , Xml *xml ) {
// . get filtered text, no link text since that is usually for menus
// . get first 64k
char buf[64*1024];
xml->getText ( buf , 64*1024 );
// hash into this table
TermTable table;
Query q;
TopicGroup t;
t.m_numTopics = 32;
t.m_maxTopics = 32;
t.m_docsToScanForTopics = 1;
t.m_minTopicScore = 0;
t.m_maxWordsPerTopic = 4;
t.m_meta[0] = '\0';
t.m_delimeter = 0;
t.m_useIdfForTopics = true;
t.m_dedup = false;
t.m_minDocCount = 1;
t.m_ipRestrict = false;
t.m_dedupSamplePercent = 0;
t.m_topicRemoveOverlaps = true;
t.m_topicSampleSize = 64*1024;
t.m_topicMaxPunctLen = 3;
State23 st;
st.m_numRequests = 1;
st->m_msg20[0].m_bufSampleBuf = buf;
st->m_msg20[0].m_bufSampleBufLen = bufLen;
st->m_returnDocIdCount = false;
st->m_returnDocIds = false;
st->m_returnPops = false;
Msg24 msg24;
if ( ! msg24.getTopics ( &st , // State24
&t ,
&table ,
&q ,
0 , // gid
&buf ,
&bufLen ) )
return false;
// now hash the winning topics into our vector
}
*/
/*
void Clusterdb::getSampleVector ( char *vec , TermTable *table ) {
// no compression is used in this list so each docId/termId is 12 bytes
long numTerms = table->getNumTermsUsed();
// . how many can we hold? we'll just use 4 bytes per vector component
// . let's get 2x as many termids as required, then we will combine
// every 2 termids into one via hashing... this makes falsely high
// similarities less likely, but makes truly high similarities less
// likely to be detected as well.
long maxTerms = (1 * SAMPLE_VECTOR_LEN) - 1;
// what portion of them do we want to mask out from the rest?
long ratio = numTerms / maxTerms ;
unsigned char mask = 0x00;
while ( ratio >= 2 ) {
// shift the mask down, ensure hi bit is set
mask >>= 1;
mask |= 0x80;
ratio >>= 1; // /2
}
unsigned long d [ 3000 ];
// if we don't have enough, make them 0's
memset ( d , 0 , SAMPLE_VECTOR_SIZE );
memset ( vec , 0 , SAMPLE_VECTOR_SIZE );
again:
// a buffer to hold the top termIds
long nd = 0;
// . buffer should have at least "maxTerms" in it
// . these should all be 12 byte keys
long i = 0 ;
long n = table->getNumTerms();
long long *termIds = table->getTermIds();
unsigned long *scores = table->getScores ();
for ( ; i < n ; i++ ) {
// skip if empty bucket
if ( ! scores[i] ) continue;
// skip if negative key, since we can be deleting old keys
// from call from Msg14.cpp
// NO! this should be the indexlist directly from Msg16, not
// after subtracting the one from Msg15
//if ( (*p & 0x01) == 0x00 ) continue;
// skip if it's not to be considered
//fprintf(stderr,"%hhu\n",p[11]);
//if ( (p[11] & mask) != 0 ) continue;
if ( ((termIds[i]>>(NUMTERMIDBITS-8)) & mask) != 0 ) continue;
// add it
//d[nd++] = *(long *)(p+12-5); // last byte has del bit, etc.
d[nd] = (unsigned long)(termIds[i] >> (NUMTERMIDBITS-32));
// 0 has special meaning, it terminates the vector
if ( d[nd] == 0 ) d[nd] = 1;
if ( ++nd < 3000 ) continue;
// bitch and break out on error
log(LOG_INFO,"build: Sample vector overflow. Slight "
"performance hit.");
break;
}
// if nd was too small, don't use a mask to save time
if ( nd < maxTerms && nd < numTerms && mask ) {
// sanity check
if ( mask == 0 ) {
log (LOG_LOGIC,"build: Clusterdb sample vector mask "
"is already at 0.");
char *xx = NULL; *xx = 0;
}
// debug msg
//log("AGAIN");
//val >>= 1;
// shift the mask UP, allow more termIds to pass through
mask <<= 1;
goto again;
}
// bubble sort them
bool flag = true;
while ( flag ) {
flag = false;
for ( long i = 1 ; i < nd ; i++ ) {
if ( d[i-1] <= d[i] ) continue;
unsigned long tmp = d[i-1];
d[i-1] = d[i];
d[i] = tmp;
flag = true;
}
}
if ( nd > SAMPLE_VECTOR_LEN - 1 ) nd = SAMPLE_VECTOR_LEN - 1;
// make sure last component is a 0
d [ nd ] = 0;
memcpy ( vec , (char *)d , (nd+1) * 4 );
}
*/
// return the percent similar
char Clusterdb::getSampleSimilarity ( char *vec0 , char *vec1, long size ) {
// . the termIds are sorted
// . point each recs sample vector of termIds
//long *t0 = (long *)(vec0 + sizeof(key_t) + 3*4);
//long *t1 = (long *)(vec1 + sizeof(key_t) + 3*4);
// . we sorted them above as unsigned longs, so we must make sure
// we use unsigned longs here, too
unsigned long *t0 = (unsigned long *)vec0;
unsigned long *t1 = (unsigned long *)vec1;
// if either is empty, return 0 to be on the safe side
if ( *t0 == 0 ) return 0;
if ( *t1 == 0 ) return 0;
//long size0 = *(long *)(rec + sizeof(key_t));
//long *end0 = (long *)(vec0 + *(long *)(vec0+12));
//long *end1 = (long *)(vec1 + *(long *)(vec1+12));
// how many total termIds?
//long total = (end0 - t0 + end1 - t1) / 2;
//if ( total <= 0 ) return 0;
// count matches between the sample vectors
long count = 0;
loop:
if( ((char*)t0 - vec0) > size ) {
log( LOG_INFO, "query: sample vector 0 is malformed. "
"Returning 0%% similarity." );
return 0;
}
if( ((char*)t1 - vec1) > size ) {
log( LOG_INFO, "query: sample vector 1 is malformed. "
"Returning 0%% similarity." );
return 0;
}
// terminate on a 0
if ( *t0 < *t1 ) { if ( *++t0 == 0 ) goto done; }
else if ( *t1 < *t0 ) { if ( *++t1 == 0 ) goto done; }
else {
// if both are zero... do not inc count
if ( *t0 == 0 ) goto done;
count++;
t0++;
t1++;
if ( *t0 == 0 ) goto done;
if ( *t1 == 0 ) goto done;
}
goto loop;
done:
// count total components in each sample vector
while ( *t0 ) {
t0++;
if( ((char*)t0 - vec0) > size ) {
log( LOG_INFO, "query: sample vector 0 is malformed. "
"Returning 0%% similarity." );
return 0;
}
}
while ( *t1 ) {
t1++;
if( ((char*)t1 - vec1) > size ) {
log( LOG_INFO, "query: sample vector 1 is malformed. "
"Returning 0%% similarity." );
return 0;
}
}
long total = 0;
total += t0 - ((unsigned long *)vec0);
total += t1 - ((unsigned long *)vec1);
// how similar are they?
// if both are empty, assume not similar at all. this happens if we
// do not have a content vector for either, or if both are small docs
// with no words or links in them (framesets?)
if ( total == 0 ) return 0;
long sim = (count * 2 * 100) / total;
if ( sim > 100 ) sim = 100;
return (char)sim;
}
/*
// return the percent similar
char Clusterdb::getGigabitSimilarity ( char *vec0 , char *vec1 ,
long *qtable , long numSlots ) {
// . the termIds are sorted
// . point each recs sample vector of termIds
//long *t0 = (long *)(vec0 + sizeof(key_t) + 3*4);
//long *t1 = (long *)(vec1 + sizeof(key_t) + 3*4);
unsigned long *t0 = (unsigned long *)vec0;
unsigned long *t1 = (unsigned long *)vec1;
short *s0 = (short *)(vec0 + 4*GIGABITS_IN_VECTOR);
short *s1 = (short *)(vec1 + 4*GIGABITS_IN_VECTOR);
long i0 = 0;
long i1 = 0;
// if both empty, cluster together... assume same topic
//if ( *t0 == 0 && *t1 == 0 ) return 100;
if ( *t0 == 0 && *t1 == 0 ) return 0;
// if either is empty, return 0 to be on the safe side
if ( *t0 == 0 ) return 0;
if ( *t1 == 0 ) return 0;
if ( numSlots == 0 ) return 0;
//long size0 = *(long *)(rec + sizeof(key_t));
//long *end0 = (long *)(vec0 + *(long *)(vec0+12));
//long *end1 = (long *)(vec1 + *(long *)(vec1+12));
// how many total termIds?
//long total = (end0 - t0 + end1 - t1) / 2;
//if ( total <= 0 ) return 0;
// count matches between the sample vectors
long count = 0;
long n;
unsigned long mask = numSlots - 1;
loop:
// skip if t0[i0] matches a query term
n = t0[i0] & mask;
while ( qtable[n] && qtable[n] != (long)t0[i0] )
if ( ++n >= numSlots ) n = 0;
if ( qtable[n] ) {
s0[i0] = 0; // remove score for tallying up total
i0++; if (t0[i0] == 0 || i0>=GIGABITS_IN_VECTOR) goto done; }
// skip if t1[i1] matches a query term
n = t1[i1] & mask;
while ( qtable[n] && qtable[n] != (long)t1[i1] )
if ( ++n >= numSlots ) n = 0;
if ( qtable[n] ) {
s1[i1] = 0; // remove score for tallying up total
i1++; if (t1[i1] == 0 || i1>=GIGABITS_IN_VECTOR) goto done; }
// terminate on a 0
if ( t0[i0] < t1[i1] ) {
i0++; if (t0[i0] == 0 || i0>=GIGABITS_IN_VECTOR) goto done; }
else if ( t1[i1] < t0[i0] ) {
i1++; if (t1[i1] == 0 || i1>=GIGABITS_IN_VECTOR) goto done; }
else {
// if both are zero... do not inc count
if ( t0[i0] == 0 ) goto done;
//count++;
// now we do a weighted count
count += s0[i0] + s1[i1];
i0++;
i1++;
if ( t0[i0] == 0 || i0>=GIGABITS_IN_VECTOR) goto done;
if ( t1[i1] == 0 || i1>=GIGABITS_IN_VECTOR) goto done;
}
goto loop;
done:
// count total components in each sample vector
while ( t0[i0] && i0 < GIGABITS_IN_VECTOR ) i0++;
while ( t1[i1] && i1 < GIGABITS_IN_VECTOR ) i1++;
long total = 0;
//total += t0 - ((long *)vec0);
//total += t1 - ((long *)vec1);
// get total score
for ( long i = 0 ; i < i0 ; i++ ) total += s0[i] ;
for ( long i = 0 ; i < i1 ; i++ ) total += s1[i] ;
// how similar are they?
// if both are empty, assume not similar at all. this happens if we
// do not have a content vector for either, or if both are small docs
// with no words or links in them (framesets?)
if ( total == 0 ) return 0;
//long sim = (count * 2 * 100) / total;
long sim = (count * 100) / total;
if ( sim > 100 ) sim = 100;
return (char)sim;
}
*/
key_t Clusterdb::makeClusterRecKey ( long long docId,
bool familyFilter,
uint8_t languageBits,
long siteHash,
bool isDelKey,
bool isHalfKey ) {
key_t key;
// set the docId upper bits
key.n1 = (unsigned long)(docId >> 29);
key.n1 &= 0x000001ff;
// set the docId lower bits
key.n0 = docId;
key.n0 <<= 35;
// set the family filter bit
if ( familyFilter ) key.n0 |= 0x0000000400000000ULL;
else key.n0 &= 0xfffffffbffffffffULL;
// set the language bits
key.n0 |= ((unsigned long long)(languageBits & 0x3f)) << 28;
// set the site hash
key.n0 |= (unsigned long long)(siteHash & 0x03ffffff) << 2;
// set the del bit
if ( isDelKey ) key.n0 &= 0xfffffffffffffffeULL;
else key.n0 |= 0x0000000000000001ULL;
// set half bit
if ( !isHalfKey ) key.n0 &= 0xfffffffffffffffdULL;
else key.n0 |= 0x0000000000000002ULL;
// return the key
return key;
}
/*
key_t Clusterdb::convertTitleRecKey ( key_t titleKey ) {
// extract the docid
long long docId;
docId = titleKey.n1;
docId <<= 6;
docId |= titleKey.n0 >> 58;
// extract the family filter
bool familyFilter;
if ( ( titleKey.n1 & 0x0100000000000000ULL ) ||
( titleKey.n1 & 0x0200000000000000ULL ) )
familyFilter = true;
else
familyFilter = false;
// extract the site hash
unsigned long siteHash;
siteHash = (unsigned long)((titleKey.n0 >> 30) & 0x0000000003ffffffULL);
// make and return the key
return makeClusterRecKey ( docId, familyFilter, 0, siteHash, false );
}
void Clusterdb::makeRecFromTitleRec ( char *rec,
TitleRec *titleRec,
bool isDelKey ) {
// get the docId
long long docId = titleRec->getDocId();
// get the family filter
bool familyFilter = titleRec->hasAdultContent();
// get the language byte
unsigned char lang = titleRec->getLanguage();
// . get the site hash
// . this is really the host hash because tfndb key most use
// the host hash in case site changes in tagdb
unsigned long siteHash = titleRec->getHostHash();
// make the key and copy it to rec
key_t key = makeClusterRecKey ( docId,
familyFilter,
lang,
siteHash,
false );
memcpy(rec, &key, sizeof(key_t));
}
void Clusterdb::makeRecFromTitleRecKey ( char *rec,
char *key,
bool isDelKey ) {
// get the docId
long long docId = g_titledb.getDocIdFromKey((key_t*)key);
// get the family filter
bool familyFilter = g_titledb.hasAdultContent(*(key_t*)key);
// . get the site hash
// . this is really the host hash because tfndb key most use
// the host hash in case site changes in tagdb
unsigned long siteHash = g_titledb.getHostHash((key_t*)key);
// make the key and copy it to rec
key_t ckey = makeClusterRecKey ( docId,
familyFilter,
0,
siteHash,
false );
memcpy(rec, &ckey, sizeof(key_t));
}
*/