forked from mudigonda/HMC_reducedflip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrf2vHMC.m
483 lines (429 loc) · 18.5 KB
/
rf2vHMC.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
% HMC sampler with reduced flip using two momentum variables.
%Mayur Mudigonda
% X is the current sample
% state holds the complete state of the sampler, and can be passed back in to resume
% at the same location
% varargin contains arguments that are passed through to E( X, varargin ) and dEdX( X, varargin )
% opts contains options for the sampler
function [X, state] = rf2vHMC( opts, state, varargin )
% load parameters
f_E = getField( opts, 'E', 0 );
f_dEdX = getField( opts, 'dEdX', 0 );
%max_leaps = getField( opts, 'MaxLeaps', 10);
max_leaps = getField( opts, 'MaxLeaps', 4);
epsilon = getField( opts, 'epsilon', 0.1 );
LeapSize = getField(opts, 'LeapSize',1);
opts.LeapSize = LeapSize; % opts gets passed around
opts.epsilon = epsilon;
alpha = getField( opts, 'alpha', 0.2);
beta = alpha^(1 / (epsilon*LeapSize));
beta = getField( opts, 'beta', beta);
%assert(nobeta == -1); % make sure nowhere is using the old scheme
% fprintf('Value of Beta is %f',beta);
% this controls whether or not to use the reduced flip mode
% default (0) is reduced flip mode
flip_on_rej = getField( opts, 'FlipOnReject', 0); % remember, 0 is standard
%1 is reduced flipping and 2 is 2 momentum variable
T = getField( opts, 'T', 1 ); %%%T is not being defined in make_figures
szb = getField( opts, 'BatchSize', 1 );
%szb = 1; % for now, this is always 1...
szd = getField( opts, 'DataSize', 10 );
debug = getField( opts, 'Debug', 0 );
% initialize the state variable if not already initialized
if isempty(state)
% the random seed reset will make experiments exactly repeatable
%reset(RandStream.getDefaultStream);
%Scaling the initializations to be from interest distr
%Not doing this for circle
% DEBUG
state.X = randn( szd, szb );
state.X = getField( opts, 'Xinit', state.X );
state.V1 = randn( szd, szb );
if flip_on_rej == 2
state.V2 = randn(szd,szb);
end
%state.X(:) = 0;% use this for not initalizing the samples from the interest distrib
%state.X(1,:) = 1;% ditto above
% state.steps provides counters for each kind of transition
state.steps = [];
state.steps.leap = zeros(max_leaps,1);
state.steps.flip = 0;
state.steps.stay = 0;
state.steps.total = 0;
state.funcevals = 0;
% state.steps.rej = 0;
if flip_on_rej == 2
state.steps.swap = 0;
state.steps.flip_swap = 0;
state.optim.fval(state.steps.total+1)=0;
state.optim.exit(state.steps.total+1)=0;
state.optim.pval(state.steps.total+1,1:5)=zeros(1,5);
end
% populate the energy and gradient at the initial position
state.dEdX = f_dEdX( state.X, varargin{:} );
state.E = f_E( state.X, varargin{:} );
end
global funcevals_inc;
funcevals_inc = 0;
for t = 1:T % iterate over update steps
if debug
fprintf( '.' );
end
if flip_on_rej==2
state.optim.pval(state.steps.total+1,:) = zeros(1,5);
state.optim.fval(state.steps.total+1) = 0;
state.optim.exit(state.steps.total+1) = 0;
end
% state.X(:,1)'
%assert(max(state.E)<5); %DEBUG
L_state = leap_HMC(state,[],opts,varargin{:});
%assert(max(L_state.E)<5); %DEBUG
% % DEBUG
% L_state.X(:,1)'
r_L = leap_prob(state,L_state,flip_on_rej); % this should be the same as p_lea
% compare against a random number to decide whether to accept
rnd_cmp = rand(1,szb);
gd = (rnd_cmp < r_L);
% update the current state for the samples where the forward transition
% was accepted
% TODO this will only work for batch size 1
if sum(gd) > 0
state = update_state(state,L_state,gd,flip_on_rej);
state.steps.leap(1) = state.steps.leap(1) + sum(gd);
end
% bd indexes the samples for which the forward transition was rejected
bd = rnd_cmp > r_L;
%If there are samples that are rejected
if sum(bd) > 0
switch flip_on_rej
%run the reverse dynamics.
%Standard HMC flipping = 1 - leap
case 0
state = flip_HMC(state,bd);
%state.V1(:,bd) = -state.V1(:,bd);
state.steps.flip = state.steps.flip + sum(bd);
%Jascha - reduced flipping
case 1
%run the leaps
F_state = flip_HMC(state,bd);
LF_state = leap_HMC(F_state,bd,opts,varargin{:});
r_LF = leap_prob(F_state,LF_state,flip_on_rej);
r_F = r_LF - r_L;
r_F(r_F < 0) = 0;
flip_ind = (rnd_cmp < r_L + r_F) & bd;
state = flip_HMC(state,flip_ind);
%state.V1(:,flip_ind) = -state.V1(:,flip_ind);
state.steps.flip = state.steps.flip + sum(flip_ind);
state.steps.stay = state.steps.stay + sum(~flip_ind) - sum(gd);
case 3
% n steps
state_ladder = {};
bd_lad = bd;
%bd_lad
state_ladder{1} = state; % Present State
state_ladder{2} = L_state; % Leap State
%state_ladder{1}.E %DEBUG
%state_ladder{2}.E %DEBUG
for nn = 3:max_leaps+1 % Evaluating How far we can leap
state_ladder{nn} = leap_HMC(state_ladder{nn-1}, bd_lad, opts, varargin{:});
%assert(max(abs(hamiltonian_HMC(state_ladder{nn-1}, [], 3) - hamiltonian_HMC(state_ladder{nn}, [], 3)))<3);
%state_ladder{nn}.E %DEBUG
[~,~,p_cum] = leap_prob_recurse(state_ladder{1:nn});
%assert(max(p_cum.*state_ladder{nn}.E)<5); %DEBUG
%p_cum
jump_ind = (rnd_cmp < p_cum) & bd_lad;
state = update_state(state,state_ladder{nn},jump_ind,flip_on_rej);
bd_lad = bd_lad & ~jump_ind;
state.steps.leap(nn-1) = state.steps.leap(nn-1) + sum(jump_ind);
if sum(bd_lad) == 0
break
end
end
% and if there are any left, flip them
if sum(bd_lad) > 0
state = flip_HMC(state,bd_lad);
state.steps.flip = state.steps.flip + sum(bd_lad);
end
%state.E
%Jascha + Mayur - 2 momentum variable
case 2
%we now have to calculate the 16 different probabilities
%r_I, r_F, r_S, r_FS of state \zeta
%r_I, r_F, r_S, r_FS of state \F\zeta
%r_I, r_F, r_S, r_FS of state \S\zeta
%r_I, r_F, r_S, r_FS of state \F\S \zeta
%But, remember only 4 of these (that belong to zeta)are actually what we care about!
%because we set the Leap probabilities
%Let's set the leap probabilities first
%To do this, we need to calculate prob of leap(ed) states, but while we
%are at that we can also calculate the prob of the other states
%that we need for the linprog (from notes/equations)
%Basic states
%L_state = leap_HMC(state,bd,opts,varargin{:});
S_state = swap_HMC(state,bd);
F_state = flip_HMC(state,bd);
FS_state = flip_HMC(S_state,bd);
%two operations
LS_state = leap_HMC(S_state,bd,opts,varargin{:});
LF_state = leap_HMC(F_state,bd,opts,varargin{:});
FL_state = flip_HMC(L_state,bd);
%three operations
LFS_state = leap_HMC(FS_state,bd,opts,varargin{:});
FLF_state = flip_HMC(LF_state,bd);
FLS_state = flip_HMC(LS_state,bd);
%four operations
FLFS_state = flip_HMC(LFS_state,bd);
%Inverse states %%This is why we are not using L_inv
%state!
Linv_state = FLF_state; %leap_inv_HMC(state,bd,opts,varargin{:});
LinvF_state = FL_state; %leap_inv_HMC(F_state,bd,opts,varargin{:});
LinvFS_state = FLS_state; %leap_inv_HMC(FS_state,bd,opts,varargin{:});
LinvS_state = FLFS_state; %leap_inv_HMC(S_state,bd,opts,varargin{:});
%compute the leap probabilities we need!
% r_L = leap_prob(state,L_state,flip_on_rej);
r_L_Linv = leap_prob(Linv_state,state,flip_on_rej);
r_L_S = leap_prob(S_state,LS_state,flip_on_rej);
r_L_LinvS = leap_prob(LinvS_state,S_state,flip_on_rej);
r_L_FS = leap_prob(FS_state,LFS_state,flip_on_rej);
r_L_LinvFS = leap_prob(LinvFS_state,FS_state,flip_on_rej);
r_L_F = leap_prob(F_state,LF_state,flip_on_rej);
r_L_LinvF = leap_prob(LinvF_state,F_state,flip_on_rej);
%Lin prog constraints
%lb and ub
lb = zeros(1,16);
ub = ones(1,16);
%aeq and beq
%Zeta S_Zeta F_Zeta FS_Zeta
%I F S FS I F S FS I F S FS I F S FS
aeq=...
[1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0; %make pdf
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0; %make pdf
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0; %make pdf
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1; %make pdf
0 1 1 1 0 0 -1 0 0 -1 0 0 0 0 0 -1; %equlibiria Zeta
0 0 -1 0 0 1 1 1 0 0 0 -1 0 -1 0 0; %equilibria S Zeta
0 -1 0 0 0 0 0 -1 0 1 1 1 0 0 -1 0; %equilibria F Zeta
0 0 0 -1 0 -1 0 0 0 0 -1 0 0 1 1 1 %equlibria for FS Zeta
];
beq=...
[1-r_L;
1-r_L_S;
1-r_L_F;
1-r_L_FS;
((exp(hamiltonian_HMC(FLF_state,[],flip_on_rej)).*r_L_Linv)...
./exp(hamiltonian_HMC(state,[],flip_on_rej))) - r_L;
((exp(hamiltonian_HMC(FLFS_state,[],flip_on_rej)).*r_L_LinvS)...
./exp(hamiltonian_HMC(S_state,[],flip_on_rej))) - r_L_S;
((exp(hamiltonian_HMC(FL_state,[],flip_on_rej)).*r_L_LinvF)...
./exp(hamiltonian_HMC(F_state,[],flip_on_rej))) - r_L_F;
((exp(hamiltonian_HMC(FLS_state,[],flip_on_rej)).*r_L_LinvFS)...
./exp(hamiltonian_HMC(FS_state,[],flip_on_rej))) - r_L_FS;
];
% f = [0 1 -1 0 0 1 -1 0 0 1 -1 0 0 1 -1 0];
f = [0 1 -1e-4 0 0 1 -1e-4 0 0 1 -1e-4 0 0 1 -1e-4 0];
f = f + rand(1,16)/1e6;
try
for i=1:size(beq,2)
[x_tmp,fval,exitflag,output] = linprog(f,[],[],aeq,...
beq(:,i),lb,ub, [], optimset('Display', 'off'));
if i==1
x = x_tmp;
else
x = horzcat(x,x_tmp);
end
end
catch err
err.message
keyboard
if (sum(x(1:4))+r_L~=1)
disp('did not sum to 1')
end
end
stay = (r_L < rnd_cmp & rnd_cmp < r_L+x(1) & bd);
if sum(stay)>0
state.steps.stay = state.steps.stay + sum(stay);
% break;
end
flip = (r_L+x(1) < rnd_cmp & rnd_cmp < r_L+x(1)+x(2) & bd);
if sum(flip)>0
state.steps.flip = state.steps.flip +sum(flip);
state = flip_HMC(state,bd);
% break;
end
swap = (r_L+x(1)+x(2) < rnd_cmp & rnd_cmp < r_L+x(1)+x(2)+x(3) & bd);
if sum(swap)>0
state.steps.swap = state.steps.swap + sum(swap);
state = swap_HMC(state,bd);
% break;
end
flipswap = (r_L+x(1)+x(2)+x(3) < rnd_cmp & bd);
if sum(flipswap)>0
state.steps.flip_swap = state.steps.flip_swap + sum(flipswap);
state = flip_swap_HMC(state,bd);
end
end
end
% slightly randomize the momentum
N1 = randn( szd, szb );
% N1 = repmat(randn(szd,1),1,szb);
state.V1 = real(sqrt(1-beta)) * state.V1 + sqrt(beta) * N1; % numerical errors if beta == 1
% %maybe for v2
if flip_on_rej == 2
N2 = randn( szd, szb );
state.V2 = real(sqrt(1-beta)) * state.V2 + sqrt(beta) * N2; % numerical errors if beta == 1
state.V2 = N2;
end
state.steps.total = state.steps.total + szb;
end
state.funcevals = state.funcevals + funcevals_inc/szb;
X = state.X;
end
% to process the fields in our options structure
% this function taken from Mark Schmidt's minFunc
% http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
function [v] = getField(options,opt,default)
options = toUpper(options); % make fields case insensitive
opt = upper(opt);
if isfield(options,opt)
if ~isempty(getfield(options,opt))
v = getfield(options,opt);
else
v = default;
end
else
v = default;
end
end
function [o] = toUpper(o)
if ~isempty(o)
fn = fieldnames(o);
for i = 1:length(fn)
o = setfield(o,upper(fn{i}),getfield(o,fn{i}));
end
end
end
%%function that describes the Flipping Operation
function [state] = flip_HMC(state,ind)
if nargin < 2
ind = 1:size(state.V1,2);
end
state.V1(:,ind) = -state.V1(:,ind);
if isfield(state,{'V2'})
state.V2(:,ind) = -state.V2(:,ind);
end
end
%%%should return state
function [state] = leap_HMC(state,ind,opts,varargin)
global funcevals_inc
if isempty(ind)
ind = (ones(size(state.V1,2),1)>0);
end
f_E = getField( opts, 'E', 0 );
f_dEdX = getField( opts, 'dEdX', 0 );
% dut = 0.5; % fraction of the momentum to be replaced per unit time
epsilon = getField( opts, 'epsilon', 0.1 );
LeapSize = getField(opts, 'LeapSize',1);
% run a single Langevin dynamics step.
% TODO: make this a variable number of leapfrog steps
%%USE LEAPSIZE here to do stuffs
V0 = state.V1; V0(:) = 0;
X0 = state.X; X0(:) = 0;
E0 = state.E; E0(:) = 0;
V1 = state.V1; V1(:) = 0;
X1 = state.X; X1(:) = 0;
E1 = state.E; E1(:) = 0;
for ii=1:LeapSize
funcevals_inc = funcevals_inc + sum(ind);
assert(max(ind) < 2);
V0(:,ind) = state.V1(:,ind);
X0(:,ind) = state.X(:,ind);
E0(:,ind) = state.E(:,ind);
dEdX0(:,ind) = state.dEdX(:,ind);
Vhalf(:,ind) = V0(:,ind) - epsilon/2 * dEdX0(:,ind);
X1(:,ind) = X0(:,ind) + epsilon * Vhalf(:,ind);
dEdX1(:,ind) = f_dEdX( X1(:,ind), varargin{:} );
E1(:,ind) = f_E( X1(:,ind), varargin{:});
V1(:,ind) = Vhalf(:,ind) - epsilon/2 * dEdX1(:,ind);
state.V1(:,ind) = V1(:,ind);
% fprintf('v0 ')
% V0(:,1)'
% fprintf('v1 ')
% V1(:,1)'
% fprintf('dedx0 ')
% dEdX0(:,1)'
% fprintf('dedx1 ')
% dEdX1(:,1)'
% fprintf('x0 ')
% X0(:,1)'
% fprintf('x1 ')
% X1(:,1)'
state.X(:,ind) = X1(:,ind);
state.E(:,ind) = E1(:,ind);
state.dEdX(:,ind) = dEdX1(:,ind);
end
end
function [state] = swap_HMC(state,ind)
if nargin < 2
ind = 1:size(state.V1,2);
end
%first init tmp
tmp = state.V2; tmp(:)=0;
%copy over only the indices that need swapping
tmp(:,ind) = state.V2(:,ind);
state.V2(:,ind)= state.V1(:,ind);
state.V1(:,ind) = tmp(:,ind);
end
% I'll implement FS as a function
function [state] = flip_swap_HMC(state,ind)
if nargin < 2
ind = 1:size(state.V1,2);
end
state = flip_HMC(state,ind);
state = swap_HMC(state,ind);
end
%function to evaluate hamiltonian of a state
%%Use a buffer
% TODO(jascha) naming scheme -- potential to energy and/or log_probability
function [H] = hamiltonian_HMC(state,ind,flip_on_rej)
if isempty(ind)
ind = 1:size(state.V1,2);
end
E = state.E(:,ind);
V1 = state.V1(:,ind);
if flip_on_rej ==2
V2 = state.V2(:,ind);
% potential = E + (1/2) * (V1'*V1) + (1/2) * (V2'*V2);
%to generalize this needs to be sum(v1.*v1)
H = E + (1/2) * (sum(V1.*V1)) + (1/2) * (sum(V2.*V2));
else
% potential = E + (1/2) * (V1'*V1);
H = E + (1/2) * (sum(V1.*V1));
end
% %negate the energy so you can just exponentiate directly
% potential = -potential;
end
function [prob, resid, cumu] = leap_prob_recurse(varargin)
% returns [prob making this transition], [residual probability], [cumulative probability of any transition]
state = varargin;
if size(state,2) == 2
prob = leap_prob( state{1}, state{2}, 3 );
cumu = prob;
resid = 1 - prob;
return;
end
[~, residual_forward, cumulative_forward] = leap_prob_recurse(state{1:end-1});
[~, residual_reverse, cumulative_reverse] = leap_prob_recurse(state{end:-1:2});
start_state_ratio = exp(hamiltonian_HMC(state{1},[],3) - hamiltonian_HMC(state{end},[],3));
prob = min([residual_forward; residual_reverse.*start_state_ratio], [], 1);
cumu = cumulative_forward + prob;
resid = 1 - cumu;
end
%
function [prob] = leap_prob(start_state, leap_state,flip_on_rej)
% numerator = hamiltonian_HMC(leap_state,[],flip_on_rej);
% denominator = hamiltonian_HMC(start_state,[],flip_on_rej);
% prob = min(1,exp(numerator - denominator));
H_leap = hamiltonian_HMC(leap_state,[],flip_on_rej);
H_start = hamiltonian_HMC(start_state,[],flip_on_rej);
prob = min(1,exp(H_start - H_leap));
end