-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate_config.py
executable file
·129 lines (114 loc) · 4.18 KB
/
generate_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os
from embdi.edgelist import EdgeList
import pandas as pd
abbreviations = {
"bb": "beer",
"ia": "itunes_amazon",
"im": "imdb_movielens",
"wa": "walmart_amazon",
"fz": "fodors_zagats",
"ag": "amazon_google",
"ds": "dblp_scholar",
"da": "dblp_acm",
}
default_values = {
"ntop": 10,
"ncand": 1,
"max_rank": 3,
"follow_sub": "false",
"smoothing_method": "no",
"backtrack": "true",
"training_algorithm": "word2vec",
"write_walks": "true",
"flatten": "all",
"n_sentences": "default",
"walks_strategy": "basic",
"learning_method": "skipgram",
"sentence_length": 60,
"window_size": 3,
"n_dimensions": 300,
"experiment_type": "ER",
"intersection": "false",
"mlflow": "false",
"repl_numbers": False,
"repl_strings": False,
}
###### ER CASE
for ds in abbreviations:
os.makedirs("pipeline/config_files/reproducibility/er", exist_ok=True)
config = {
"task": "train-test",
}
dataset = abbreviations[ds]
print(f"ER - {dataset}")
config["input_file"] = f"pipeline/edgelists/{dataset}-er-edgelist.txt"
config["dataset_info"] = f"pipeline/info/info-{dataset}.txt"
config["output_file"] = f"{dataset}-ER"
config["flatten"] = "tt"
config["experiment_type"] = "ER"
config["match_file"] = f"pipeline/matches/er-matches/matches-{dataset}.txt"
config["dataset_file"] = f"pipeline/datasets/{dataset}/{dataset}-master.csv"
for k in default_values:
if k not in config:
config[k] = default_values[k]
with open(f"pipeline/config_files/reproducibility/er/config-{dataset}-er", "w") as fp:
for k, v in config.items():
s = f"{k}:{v}\n"
fp.write(s)
pref = ["3#__tn", "3$__tt", "5$__idx", "1$__cid"]
df = pd.read_csv(config["dataset_file"])
# el = EdgeList(df, config['input_file'], pref,
# config['dataset_info'], flatten=False)
##### EQ CASE
for ds in abbreviations:
os.makedirs("pipeline/config_files/reproducibility/eq", exist_ok=True)
config = {
"task": "train-test",
}
dataset = abbreviations[ds]
print(f"EQ - {dataset}")
config["input_file"] = f"pipeline/edgelists/{dataset}-eq-edgelist.txt"
config["dataset_info"] = f"pipeline/info/info-{dataset}.txt"
config["output_file"] = f"{dataset}-EQ"
config["flatten"] = "false"
config["experiment_type"] = "EQ"
config["test_dir"] = f"pipeline/test_dir/{dataset}"
config["intersection"] = "true"
config["dataset_file"] = f"pipeline/datasets/{dataset}/{dataset}-master.csv"
for k in default_values:
if k not in config:
config[k] = default_values[k]
with open(f"pipeline/config_files/reproducibility/eq/config-{dataset}-eq", "w") as fp:
for k, v in config.items():
s = f"{k}:{v}\n"
fp.write(s)
pref = ["3#__tn", "3$__tt", "4$__idx", "1$__cid"]
df = pd.read_csv(config["dataset_file"])
# el = EdgeList(df, config['input_file'], pref,
# config['dataset_info'], flatten=False)
##### SM CASE
for ds in abbreviations:
os.makedirs("pipeline/config_files/reproducibility/sm", exist_ok=True)
config = {
"task": "train-test",
}
dataset = abbreviations[ds]
print(f"SM - {dataset}")
config["input_file"] = f"pipeline/edgelists/{dataset}-sm-edgelist.txt"
config["dataset_info"] = f"pipeline/info/info-{dataset}.txt"
config["output_file"] = f"{dataset}-SM"
config["flatten"] = "tt"
config["experiment_type"] = "SM"
config["test_dir"] = f"pipeline/test_dir/{dataset}"
config["dataset_file"] = f"pipeline/datasets/{dataset}/{dataset}-master-sm.csv"
config["match_file"] = f"pipeline/matches/sm-matches/sm-matches-{dataset}.txt"
for k in default_values:
if k not in config:
config[k] = default_values[k]
with open(f"pipeline/config_files/reproducibility/sm/config-{dataset}-sm", "w") as fp:
for k, v in config.items():
s = f"{k}:{v}\n"
fp.write(s)
pref = ["3#__tn", "3$__tt", "5$__idx", "1$__cid"]
df = pd.read_csv(config["dataset_file"], low_memory=False)
# el = EdgeList(df, config['input_file'], pref, flatten=False)