-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMLMC_one_level.py
49 lines (38 loc) · 1.34 KB
/
MLMC_one_level.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#Compute the mean of the solutions of the Heat Equation
from fenics import *
'''
Parameters :
A sample of the random parameter
Number of triangles in the mesh (param. of UnitSquare fct)
Number of time steps
Initial solution (for t=0)
'''
'''
Return :
Time mean of the integrals of the solutions on the all domain
'''
def Level_solver(V,random_param, num_time_steps):
time_steps_lenght = 1/(num_time_steps)
integral = 0
'''
Initial solution
'''
mean = [0.5, 0.5] #Mean of the Gaussian
sig = 1 #Variance of the Gaussian
init_fct = Expression('(4/sig - pow(2*(x[0]-m1)/sig,2) - pow(2*(x[1]-m2)/sig,2))*exp(-(pow(x[0]-m1,2) + pow(x[1]-m2,2))/sig)', sig=sig,
m1=mean[0], m2=mean[1], degree=1)
u = TrialFunction(V)
v = TestFunction(V)
def boundary(x, on_boundary): #Define the boundary
return on_boundary
u_D = Constant(0) #Homogeneous Dirichlet Boundary Condition
bc = DirichletBC(V, Constant(0), boundary) #Define the Dirichlet BC
a = (u*v + Constant(random_param*time_steps_lenght)*dot(grad(u),grad(v)))*dx
L = init_fct*v*dx
u = Function(V)
for k in range(num_time_steps-1):
solve(a == L, u, bc)
integral += assemble(u*dx)
init_fct = u
integral = integral/(num_time_steps)
return integral