-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPlaytune.cpp
786 lines (688 loc) · 27.5 KB
/
Playtune.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
/******************************************************************************
*
* Playtune: An Arduino Tune Generator library
*
* Plays a polyphonic musical score.
*
* (C) Copyright 2011, Len Shustek
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of version 3 of the GNU General Public License as
* published by the Free Software Foundation at http://www.gnu.org/licenses,
* with Additional Permissions under term 7(b) that the original copyright
* notice and author attibution must be preserved and under term 7(c) that
* modified versions be marked as different from the original.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* This was inspired by and adapted from "A Tone Generator Library",
* written by Brett Hagman, http://www.roguerobotics.com/
*
**************************************************************************/
/*
* Change log
* 19 January 2011, L.Shustek, V1.0
* - Initial release.
* 23 February 2011, L. Shustek, V1.1
* - prevent hang if delay rounds to count of 0
* 4 December 2011, L. Shustek, V1.2
* - add special TESLA_COIL mods
* 10 June 2013, L. Shustek, V1.3
* - change to be compatible with Arduino IDE version 1.0.5
*
*/
/*---------------------------------------------------------------------------------
*
*
* About Playtune
*
*
* Playtune interprets a bytestream of commands that represent a polyphonic musical
* score. It uses the Arduino counters for generating tones, so the number of
* simultaneous notes that can be played depends on which processor you have.
* The NANO allows 3, and the MEGA 2560 allows 6. Each timer (tone generator) can
* be associated with any digital output pin, not just the pins that are internally
* connected to the timer.
*
* Once a score starts playing, all of the processing happens in interrupt routines,
* so any other "real" program can be running at the same time, as long as it doesn't
* use the timers or output pins that Playtune is using. Playtune generates a lot of
* interrupts because the toggling of the output bits is done in software, not by the
* timer hardware. But measurements I've made on a NANO show that Playtune uses less
* than 10% of the available processor cycles even when playing all three channels at
* pretty high frequencies.
*
* The easiest way to hear the music is to connect each of the output pins to a resistor
* (500 ohms, say). Connect other ends of the resistors together and then to one
* terminal of an 8-ohm speaker. The other terminal of the speaker is connected to
* ground. No other hardware is needed! If you are going to connect to an amplifier,
* you should DC-isolate the signal using a capacitor.
*
* There is no volume modulation. All tones are played at the same volume, which
* makes some scores sound strange. This is definitely not a high-quality synthesizer.
*
*
* ***** The public Playtune interface *****
*
* There are five public functions and one public variable.
*
* void tune_initchan(byte pin)
*
* Call this to initialize each of the tone generators you want to use. The argument
* says which pin to use as output. The pin numbers are the digital "D" pins
* silkscreened on the Arduino board. Calling this more times than your processor
* has timers will do no harm, but will not help either.
*
* void tune_playscore (byte *score)
*
* Call this pointing to a "score bytestream" to start playing a tune. It will
* only play as many simultaneous notes as you have initialized tone generators;
* any more will be ignored. See below for the format of the score bytestream.
*
* boolean tune_playing
*
* This global variable will be "true" if a score is playing, and "false" if not.
* You can use this to see when a score has finished.
*
* void tune_stopscore()
*
* This will stop a currently playing score without waiting for it to end by itself.
*
* void tune_delay (unsigned int msec)
*
* Delay for "msec" milliseconds. This is provided because the usual Arduino
* "delay" function will stop working if you use all of your processor's
* timers for generating tones.
*
* void tune_stopchans ()
*
* This disconnects all the timers from their pins and stops the interrupts.
* Do this when you don't want to play any more tunes.
*
*
* ***** The score bytestream *****
*
* The bytestream is a series of commands that can turn notes on and off, and can
* start a waiting period until the next note change. Here are the details, with
* numbers shown in hexadecimal.
*
* If the high-order bit of the byte is 1, then it is one of the following commands:
*
* 9t nn Start playing note nn on tone generator t. Generators are numbered
* starting with 0. The notes numbers are the MIDI numbers for the chromatic
* scale, with decimal 60 being Middle C, and decimal 69 being Middle A
* at 440 Hz. The highest note is decimal 127 at about 12,544 Hz.
*
* 8t Stop playing the note on tone generator t.
*
* F0 End of score: stop playing.
*
* E0 End of score: start playing again from the beginning.
*
* If the high-order bit of the byte is 0, it is a command to wait. The other 7 bits
* and the 8 bits of the following byte are interpreted as a 15-bit big-endian integer
* that is the number of milliseconds to wait before processing the next command.
* For example,
*
* 07 D0
*
* would cause a wait of 0x07d0 = 2000 decimal millisconds or 2 seconds. Any tones
* that were playing before the wait command will continue to play.
*
* The score is stored in Flash memory ("PROGMEM") along with the program, because
* there's a lot more of that than data memory.
*
*
* ***** Where does the score data come from? *****
*
* Well, you can write the score by hand from the instructions above, but that's
* pretty hard. An easier way is to translate MIDI files into these score commands,
* and I've written a program called "miditones" to do that. See the separate
* documentation for that program, which is also open source.
*
*
* ***** More gory details *****
*
* The number of hardware timers, and therefore the number of tones that can be
* played simultaneously, depends on the processor that is on your board:
*
* ATMega8: 2 tones (timers 2 and 1)
* ATmega168/328: 3 tones (timers 2, 1, and 0)
* ATmega1280/2560: 6 tones (timers 2, 3, 4, 5, 1, and 0)
*
* The order listed above is the order that timers are assigned as you make
* succesive calls to play_initchan(). Timer 0 is assigned last, because using
* it will disable the Arduino millis(), delay(), and the PWM functions.
*
* The lowest MIDI note that can be played using the 8-bit timers (0 and 2)
* depends on your processor's clock frequency.
* 8 Mhz clock: note 12 (about 16.5 Hz, which is below the piano keyboard)
* 16 Mhz clock: note 24 (about 32.5 Hz, C in octave 1)
*
* The highest MIDI note (127, about 12,544 Hz) can always be played, but can't
* always be heard.
*
*
* ***** Nostalgia from me *****
*
* Writing Playtune was a lot of fun, because it essentially duplicates what I did
* as a graduate student at Stanford University in about 1973. That project used the
* then-new Intel 8008 microprocessor, plus three hardware square-wave generators that
* I built out of 7400-series TTL. The music compiler was written in Pascal and read
* scores that were hand-written in a notation I made up that looked something like
* C Eb 4G 8G+ 2R + F D#
* This was done was before MIDI had been invented, and anyway I wasn't a pianist so I
* would not have been able to record my own playing. I could barely read music well
* enough to transcribe scores, but I created, slowly, quite a few of them.
*
* Len Shustek, 4 Feb 2011
*
-------------------------------------------------------------------------------------*/
#define DBUG 0 /* debugging? */
#define TESLA_COIL 0 /* special Tesla Coil version? */
#include <avr/arduino.h>
#include "playtune.h"
#if defined(__AVR_ATmega8__)
#define TCCR2A TCCR2
#define TCCR2B TCCR2
#define COM2A1 COM21
#define COM2A0 COM20
#define OCR2A OCR2
#define TIMSK2 TIMSK
#define OCIE2A OCIE2
#define TIMER2_COMPA_vect TIMER2_COMP_vect
#define TIMSK1 TIMSK
#endif
//******* private variables ***************
// timer ports and masks
#if !defined(__AVR_ATmega8__)
volatile byte *timer0_pin_port;
volatile byte timer0_pin_mask;
#endif
volatile byte *timer1_pin_port;
volatile byte timer1_pin_mask;
volatile byte *timer2_pin_port;
volatile byte timer2_pin_mask;
#if defined(__AVR_ATmega1280__)||defined(__AVR_ATmega2560__)
volatile byte *timer3_pin_port;
volatile byte timer3_pin_mask;
volatile byte *timer4_pin_port;
volatile byte timer4_pin_mask;
volatile byte *timer5_pin_port;
volatile byte timer5_pin_mask;
#endif
// Define the order to allocate timers, leaving timers 1 and 0 to last.
#if defined(__AVR_ATmega1280__)||defined(__AVR_ATmega2560__)
#define AVAILABLE_TIMERS 6
const byte PROGMEM tune_pin_to_timer_PGM[] = {
2, 3, 4, 5, 1, 0 };
#elif defined(__AVR_ATmega8__)
#define AVAILABLE_TIMERS 2
const byte PROGMEM tune_pin_to_timer_PGM[] = {
2, 1 };
#else
#define AVAILABLE_TIMERS 3
const byte PROGMEM tune_pin_to_timer_PGM[] = {
2, 1, 0 };
#endif
// Other local varables
byte _tune_pins[AVAILABLE_TIMERS];
byte _tune_num_chans = 0;
/* one of the timers is also used to time
- score waits (whether or not that timer is playing a note)
- tune_delay() delay requests
We currently use timer2, since that one is the first to be allocated.
*/
volatile unsigned wait_timer_frequency2; /* its current frequency */
volatile unsigned wait_timer_old_frequency2; /* its previous frequency */
volatile boolean wait_timer_playing = false; /* is it currently playing a note? */
volatile boolean doing_delay = false; /* are we using it for a tune_delay()? */
volatile unsigned long wait_toggle_count; /* countdown score waits */
volatile unsigned long delay_toggle_count; /* countdown tune_ delay() delays */
volatile byte *score_start = 0;
volatile byte *score_cursor = 0;
volatile boolean Playtune::tune_playing = false;
// Table of midi note frequencies * 2
// They are times 2 for greater accuracy, yet still fits in a word.
// Generated from Excel by =ROUND(2*440/32*(2^((x-9)/12)),0) for 0<x<128
// The lowest notes might not work, depending on the Arduino clock frequency
const unsigned int PROGMEM tune_frequencies2_PGM[128] =
{
16,17,18,19,21,22,23,24,26,28,29,31,33,35,37,39,41,
44,46,49,52,55,58,62,65,69,73,78,82,87,92,98,104,110,
117,123,131,139,147,156,165,175,185,196,208,220,233,
247,262,277,294,311,330,349,370,392,415,440,466,494,
523,554,587,622,659,698,740,784,831,880,932,988,1047,
1109,1175,1245,1319,1397,1480,1568,1661,1760,1865,1976,
2093,2217,2349,2489,2637,2794,2960,3136,3322,3520,3729,
3951,4186,4435,4699,4978,5274,5588,5920,6272,6645,7040,
7459,7902,8372,8870,9397,9956,10548,11175,11840,12544,
13290,14080,14917,15804,16744,17740,18795,19912,21096,
22351,23680,25088};
void tune_playnote (byte chan, byte note);
void tune_stopnote (byte chan);
void tune_stepscore (void);
#if TESLA_COIL
void teslacoil_rising_edge(byte timernum);
byte teslacoil_checknote(byte note);
#endif
//------------------------------------------------------
// Initialize a music channel on a specific output pin
//------------------------------------------------------
void Playtune::tune_initchan(byte pin) {
byte timer_num;
if (_tune_num_chans < AVAILABLE_TIMERS) {
timer_num = pgm_read_byte(tune_pin_to_timer_PGM + _tune_num_chans);
_tune_pins[_tune_num_chans] = pin;
_tune_num_chans++;
pinMode(pin, OUTPUT);
// Set timer specific stuff
// All timers in CTC mode
// 8 bit timers will require changing prescalar values,
// whereas 16 bit timers are set to either ck/1 or ck/64 prescalar
switch (timer_num) {
#if !defined(__AVR_ATmega8__)
case 0:
// 8 bit timer
TCCR0A = 0;
TCCR0B = 0;
bitWrite(TCCR0A, WGM01, 1);
bitWrite(TCCR0B, CS00, 1);
timer0_pin_port = portOutputRegister(digitalPinToPort(pin));
timer0_pin_mask = digitalPinToBitMask(pin);
break;
#endif
case 1:
// 16 bit timer
TCCR1A = 0;
TCCR1B = 0;
bitWrite(TCCR1B, WGM12, 1);
bitWrite(TCCR1B, CS10, 1);
timer1_pin_port = portOutputRegister(digitalPinToPort(pin));
timer1_pin_mask = digitalPinToBitMask(pin);
break;
case 2:
// 8 bit timer
TCCR2A = 0;
TCCR2B = 0;
bitWrite(TCCR2A, WGM21, 1);
bitWrite(TCCR2B, CS20, 1);
timer2_pin_port = portOutputRegister(digitalPinToPort(pin));
timer2_pin_mask = digitalPinToBitMask(pin);
tune_playnote (0, 60); /* start and stop channel 0 (timer 2) on middle C so wait/delay works */
tune_stopnote (0);
break;
#if defined(__AVR_ATmega1280__)||defined(__AVR_ATmega2560__)
case 3:
// 16 bit timer
TCCR3A = 0;
TCCR3B = 0;
bitWrite(TCCR3B, WGM32, 1);
bitWrite(TCCR3B, CS30, 1);
timer3_pin_port = portOutputRegister(digitalPinToPort(pin));
timer3_pin_mask = digitalPinToBitMask(pin);
break;
case 4:
// 16 bit timer
TCCR4A = 0;
TCCR4B = 0;
bitWrite(TCCR4B, WGM42, 1);
bitWrite(TCCR4B, CS40, 1);
timer4_pin_port = portOutputRegister(digitalPinToPort(pin));
timer4_pin_mask = digitalPinToBitMask(pin);
break;
case 5:
// 16 bit timer
TCCR5A = 0;
TCCR5B = 0;
bitWrite(TCCR5B, WGM52, 1);
bitWrite(TCCR5B, CS50, 1);
timer5_pin_port = portOutputRegister(digitalPinToPort(pin));
timer5_pin_mask = digitalPinToBitMask(pin);
break;
#endif
}
}
}
//-----------------------------------------------
// Start playing a note on a particular channel
//-----------------------------------------------
void tune_playnote (byte chan, byte note) {
byte timer_num;
byte prescalarbits = 0b001;
unsigned int frequency2; /* frequency times 2 */
unsigned long ocr;
#if DBUG
Serial.print ("Play at ");
Serial.print(score_cursor-score_start,HEX);
Serial.print(", ");
Serial.print(chan,HEX);
Serial.println(note,HEX);
#endif
if (chan < _tune_num_chans) {
timer_num = pgm_read_byte(tune_pin_to_timer_PGM + chan);
#if TESLA_COIL
note = teslacoil_checknote(note); // let teslacoil modify the note
#endif
if (note>127) note=127;
frequency2 = pgm_read_word (tune_frequencies2_PGM + note);
if (timer_num == 0 || timer_num == 2) { //***** 8 bit timer ******
// make sure the note isn't too low to be playable
if (note <
#if F_CPU <= 8000000UL
12
#else
24
#endif
) return; // ignore if so
// scan through prescalars to find the best fit
ocr = F_CPU / frequency2 - 1;
prescalarbits = 0b001; // ck/1: same for both timers
if (ocr > 255) {
ocr = F_CPU / frequency2 / 8 - 1;
prescalarbits = 0b010; // ck/8: same for both timers
if (timer_num == 2 && ocr > 255) {
ocr = F_CPU / frequency2 / 32 - 1;
prescalarbits = 0b011;
}
if (ocr > 255) {
ocr = F_CPU / frequency2 / 64 - 1;
prescalarbits = timer_num == 0 ? 0b011 : 0b100;
if (timer_num == 2 && ocr > 255) {
ocr = F_CPU / frequency2 / 128 - 1;
prescalarbits = 0b101;
}
if (ocr > 255) {
ocr = F_CPU / frequency2 / 256 - 1;
prescalarbits = timer_num == 0 ? 0b100 : 0b110;
if (ocr > 255) {
// can't do any better than /1024
ocr = F_CPU / frequency2 / 1024 - 1;
prescalarbits = timer_num == 0 ? 0b101 : 0b111;
}
}
}
}
#if !defined(__AVR_ATmega8__)
if (timer_num == 0) TCCR0B = (TCCR0B & 0b11111000) | prescalarbits;
else
#endif
TCCR2B = (TCCR2B & 0b11111000) | prescalarbits;
}
else //****** 16-bit timer *********
{ // two choices for the 16 bit timers: ck/1 or ck/64
ocr = F_CPU / frequency2 - 1;
prescalarbits = 0b001;
if (ocr > 0xffff) {
ocr = F_CPU / frequency2 / 64 - 1;
prescalarbits = 0b011;
}
if (timer_num == 1) TCCR1B = (TCCR1B & 0b11111000) | prescalarbits;
#if defined(__AVR_ATmega1280__)||defined(__AVR_ATmega2560__)
else if (timer_num == 3) TCCR3B = (TCCR3B & 0b11111000) | prescalarbits;
else if (timer_num == 4) TCCR4B = (TCCR4B & 0b11111000) | prescalarbits;
else if (timer_num == 5) TCCR5B = (TCCR5B & 0b11111000) | prescalarbits;
#endif
}
// Set the OCR for the given timer, then turn on the interrupts
switch (timer_num) {
#if !defined(__AVR_ATmega8__)
case 0:
OCR0A = ocr;
bitWrite(TIMSK0, OCIE0A, 1);
break;
#endif
case 1:
OCR1A = ocr;
bitWrite(TIMSK1, OCIE1A, 1);
break;
case 2:
OCR2A = ocr;
wait_timer_frequency2 = frequency2; // for "tune_delay" function
wait_timer_playing = true;
bitWrite(TIMSK2, OCIE2A, 1);
break;
#if defined(__AVR_ATmega1280__)||defined(__AVR_ATmega2560__)
case 3:
OCR3A = ocr;
bitWrite(TIMSK3, OCIE3A, 1);
break;
case 4:
OCR4A = ocr;
bitWrite(TIMSK4, OCIE4A, 1);
break;
case 5:
OCR5A = ocr;
bitWrite(TIMSK5, OCIE5A, 1);
break;
#endif
}
}
}
//-----------------------------------------------
// Stop playing a note on a particular channel
//-----------------------------------------------
void tune_stopnote (byte chan) {
byte timer_num;
#if DBUG
Serial.print ("Stop note ");
Serial.println(chan,DEC);
#endif
timer_num = pgm_read_byte(tune_pin_to_timer_PGM + chan);
switch (timer_num) {
#if !defined(__AVR_ATmega8__)
case 0:
TIMSK0 &= ~(1 << OCIE0A); // disable the interrupt
*timer0_pin_port &= ~(timer0_pin_mask); // keep pin low after stop
break;
#endif
case 1:
TIMSK1 &= ~(1 << OCIE1A); // disable the interrupt
*timer1_pin_port &= ~(timer1_pin_mask); // keep pin low after stop
break;
case 2:
// We leave the timer2 interrupt running for the "tune_delay" function.
wait_timer_playing = false;
*timer2_pin_port &= ~(timer2_pin_mask); // keep pin low after stop
break;
#if defined(__AVR_ATmega1280__)||defined(__AVR_ATmega2560__)
case 3:
TIMSK3 &= ~(1 << OCIE3A); // disable the interrupt
*timer3_pin_port &= ~(timer3_pin_mask); // keep pin low after stop
break;
case 4:
TIMSK4 &= ~(1 << OCIE4A); // disable the interrupt
*timer4_pin_port &= ~(timer4_pin_mask); // keep pin low after stop
break;
case 5:
TIMSK5 &= ~(1 << OCIE5A); // disable the interrupt
*timer5_pin_port &= ~(timer5_pin_mask); // keep pin low after stop
break;
#endif
}
}
//-----------------------------------------------
// Start playing a score
//-----------------------------------------------
void Playtune::tune_playscore (byte *score) {
score_start = score;
score_cursor = score;
tune_stepscore(); /* execute initial commands */
Playtune::tune_playing = true; /* release the interrupt routine */
}
/* Do score commands until a "wait" is found, or the score is stopped.
This is called initially from tune_playcore, but then is called
from the interrupt routine when waits expire.
*/
#define CMD_PLAYNOTE 0x90 /* play a note: low nibble is generator #, note is next byte */
#define CMD_STOPNOTE 0x80 /* stop a note: low nibble is generator # */
#define CMD_RESTART 0xe0 /* restart the score from the beginning */
#define CMD_STOP 0xf0 /* stop playing */
/* if CMD < 0x80, then the other 7 bits and the next byte are a 15-bit big-endian number of msec to wait */
void tune_stepscore (void) {
byte cmd, opcode, chan;
unsigned duration;
while (1) {
cmd = pgm_read_byte(score_cursor++);
#if DBUG
// Serial.print("cmd ");
// Serial.println(cmd, HEX);
#endif
if (cmd < 0x80) { /* wait count in msec. */
duration = ((unsigned)cmd << 8) | (pgm_read_byte(score_cursor++));
wait_toggle_count = ((unsigned long) wait_timer_frequency2 * duration + 500) / 1000;
if (wait_toggle_count == 0) wait_toggle_count = 1;
#if DBUG
Serial.print("wait ");
Serial.print(duration,DEC);
Serial.print(", cnt ");
Serial.println(wait_toggle_count, DEC);
#endif
break;
}
opcode = cmd & 0xf0;
chan = cmd & 0x0f;
if (opcode == CMD_STOPNOTE) { /* stop note */
tune_stopnote (chan);
}
else if (opcode == CMD_PLAYNOTE) { /* play note */
tune_playnote (chan, pgm_read_byte(score_cursor++));
}
else if (opcode == CMD_RESTART) { /* restart score */
score_cursor = score_start;
}
else if (opcode == CMD_STOP) { /* stop score */
Playtune::tune_playing = false;
break;
}
}
}
//-----------------------------------------------
// Stop playing a score
//-----------------------------------------------
void Playtune::tune_stopscore (void) {
int i;
for (i=0; i<_tune_num_chans; ++i)
tune_stopnote(i);
Playtune::tune_playing = false;
}
//-----------------------------------------------
// Delay a specified number of milliseconds
//-----------------------------------------------
void Playtune::tune_delay (unsigned duration) {
// We provide this because using timer 0 breaks the Arduino delay() function.
// We compute the toggle count based on whatever frequency the timer used for
// score waits is running at. If the frequency of that timer changes, the
// toggle count will be adjusted by the interrupt routine.
boolean notdone;
noInterrupts();
delay_toggle_count = ((unsigned long) wait_timer_frequency2 * duration + 500) / 1000;
doing_delay = true;
interrupts();
do { // wait until the interrupt routines decrements the toggle count to zero
noInterrupts();
notdone = delay_toggle_count != 0; /* interrupt-safe test */
interrupts();
}
while (notdone);
doing_delay = false;
}
//-----------------------------------------------
// Stop all channels
//-----------------------------------------------
void Playtune::tune_stopchans(void) {
byte chan;
byte timer_num;
for (chan=0; chan<_tune_num_chans; ++chan) {
timer_num = pgm_read_byte(tune_pin_to_timer_PGM + chan);
switch (timer_num) {
#if !defined(__AVR_ATmega8__)
case 0:
TIMSK0 &= ~(1 << OCIE0A); // disable all timer interrupts
break;
#endif
case 1:
TIMSK1 &= ~(1 << OCIE1A);
break;
case 2:
TIMSK2 &= ~(1 << OCIE2A);
break;
#if defined(__AVR_ATmega1280__)||defined(__AVR_ATmega2560__)
case 3:
TIMSK3 &= ~(1 << OCIE3A);
break;
case 4:
TIMSK4 &= ~(1 << OCIE4A);
break;
case 5:
TIMSK5 &= ~(1 << OCIE5A);
break;
#endif
}
digitalWrite(_tune_pins[chan], 0);
}
_tune_num_chans = 0;
}
//-----------------------------------------------
// Timer interrupt Service Routines
//-----------------------------------------------
#if !defined(__AVR_ATmega8__) && !TESLA_COIL // TIMER 0
ISR(TIMER0_COMPA_vect) {
*timer0_pin_port ^= timer0_pin_mask; // toggle the pin
}
#endif
#if !TESLA_COIL
ISR(TIMER1_COMPA_vect) { // TIMER 1
*timer1_pin_port ^= timer1_pin_mask; // toggle the pin
}
#endif
ISR(TIMER2_COMPA_vect) { // TIMER 2
// Timer 2 is the one assigned first, so we keep it running always
// and use it to time score waits, whether or not it is playing a note.
if (wait_timer_playing) { // toggle the pin if we're sounding a note
*timer2_pin_port ^= timer2_pin_mask;
#if TESLA_COIL
if (*timer2_pin_port & timer2_pin_mask) teslacoil_rising_edge (2); // do a tesla coil pulse
#endif
}
if (Playtune::tune_playing && wait_toggle_count && --wait_toggle_count == 0) {
// end of a score wait, so execute more score commands
wait_timer_old_frequency2 = wait_timer_frequency2; // save this timer's frequency
tune_stepscore (); // execute commands
// If this timer's frequency has changed and we're using it for a tune_delay(),
// recompute the number of toggles to wait for
if (doing_delay && wait_timer_old_frequency2 != wait_timer_frequency2) {
if (delay_toggle_count >= 0x20000UL && wait_timer_frequency2 >= 0x4000U) {
// Need to avoid 32-bit overflow...
delay_toggle_count = ( (delay_toggle_count+4>>3) * (wait_timer_frequency2+2>>2) / wait_timer_old_frequency2 )<<5;
}
else {
delay_toggle_count = delay_toggle_count * wait_timer_frequency2 / wait_timer_old_frequency2;
}
}
}
if (doing_delay && delay_toggle_count) --delay_toggle_count; // countdown for tune_delay()
}
#if defined(__AVR_ATmega1280__)||defined(__AVR_ATmega2560__)
ISR(TIMER3_COMPA_vect) { // TIMER 3
*timer3_pin_port ^= timer3_pin_mask; // toggle the pin
#if TESLA_COIL
if (*timer3_pin_port & timer3_pin_mask) teslacoil_rising_edge (3); // do a tesla coil pulse
#endif
}
ISR(TIMER4_COMPA_vect) { // TIMER 4
*timer4_pin_port ^= timer4_pin_mask; // toggle the pin
#if TESLA_COIL
if (*timer4_pin_port & timer4_pin_mask) teslacoil_rising_edge (4); // do a tesla coil pulse
#endif
}
ISR(TIMER5_COMPA_vect) { // TIMER 5
*timer5_pin_port ^= timer5_pin_mask; // toggle the pin
#if TESLA_COIL
if (*timer5_pin_port & timer5_pin_mask) teslacoil_rising_edge (5); // do a tesla coil pulse
#endif
}
#endif