forked from IntelPython/scikit-learn_bench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
knn_clsf.py
executable file
·108 lines (96 loc) · 4.52 KB
/
knn_clsf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# ===============================================================================
# Copyright 2020-2021 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===============================================================================
import argparse
import bench
import numpy as np
def main():
from sklearn.neighbors import KNeighborsClassifier
# Load generated data
X_train, X_test, y_train, y_test = bench.load_data(params)
params.n_classes = len(np.unique(y_train))
# Create classification object
knn_clsf = KNeighborsClassifier(n_neighbors=params.n_neighbors,
weights=params.weights,
algorithm=params.method,
metric=params.metric,
n_jobs=params.n_jobs)
# Measure time and accuracy on fitting
train_time, _ = bench.measure_function_time(
knn_clsf.fit, X_train, y_train, params=params)
if params.task == 'classification':
y_pred = knn_clsf.predict(X_train)
y_proba = knn_clsf.predict_proba(X_train)
train_acc = bench.accuracy_score(y_train, y_pred)
train_log_loss = bench.log_loss(y_train, y_proba)
train_roc_auc = bench.roc_auc_score(y_train, y_proba)
# Measure time and accuracy on prediction
if params.task == 'classification':
predict_time, yp = bench.measure_function_time(knn_clsf.predict, X_test,
params=params)
y_proba = knn_clsf.predict_proba(X_test)
test_acc = bench.accuracy_score(y_test, yp)
test_log_loss = bench.log_loss(y_test, y_proba)
test_roc_auc = bench.roc_auc_score(y_test, y_proba)
else:
predict_time, _ = bench.measure_function_time(knn_clsf.kneighbors, X_test,
params=params)
if params.task == 'classification':
bench.print_output(
library='sklearn',
algorithm=knn_clsf._fit_method + '_knn_clsf',
stages=['training', 'prediction'],
params=params,
functions=['knn_clsf.fit', 'knn_clsf.predict'],
times=[train_time, predict_time],
metric_type=['accuracy', 'log_loss', 'roc_auc'],
metrics=[
[train_acc, test_acc],
[train_log_loss, test_log_loss],
[train_roc_auc, test_roc_auc],
],
data=[X_train, X_test],
alg_instance=knn_clsf,
)
else:
bench.print_output(
library='sklearn',
algorithm=knn_clsf._fit_method + '_knn_search',
stages=['training', 'search'],
params=params,
functions=['knn_clsf.fit', 'knn_clsf.kneighbors'],
times=[train_time, predict_time],
metric_type=None,
metrics=[],
data=[X_train, X_test],
alg_instance=knn_clsf,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='scikit-learn kNN classifier benchmark')
parser.add_argument('--task', default='classification', type=str,
choices=('search', 'classification'),
help='kNN task: search or classification')
parser.add_argument('--n-neighbors', default=5, type=int,
help='Number of neighbors to use')
parser.add_argument('--weights', type=str, default='uniform',
help='Weight function used in prediction')
parser.add_argument('--method', type=str, default='brute',
choices=('brute', 'kd_tree', 'ball_tree', 'auto'),
help='Algorithm used to compute the nearest neighbors')
parser.add_argument('--metric', type=str, default='euclidean',
help='Distance metric to use')
params = bench.parse_args(parser)
bench.run_with_context(params, main)