forked from IntelPython/scikit-learn_bench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
svm.py
87 lines (69 loc) · 3.4 KB
/
svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# ===============================================================================
# Copyright 2020-2021 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===============================================================================
import argparse
import bench
from cuml.svm import SVC
parser = argparse.ArgumentParser(description='cuML SVM benchmark')
parser.add_argument('-C', dest='C', type=float, default=1.0,
help='SVM regularization parameter')
parser.add_argument('--kernel', choices=('linear', 'rbf', 'poly', 'sigmoid'),
default='linear', help='SVM kernel function')
parser.add_argument('--degree', type=int, default=3,
help='Degree of the polynomial kernel function')
parser.add_argument('--gamma', type=float, default=None,
help='Parameter for kernel="rbf"')
parser.add_argument('--max-cache-size', type=int, default=8,
help='Maximum cache size, in gigabytes, for SVM.')
parser.add_argument('--tol', type=float, default=1e-3,
help='Tolerance passed to sklearn.svm.SVC')
parser.add_argument('--probability', action='store_true', default=False,
dest='probability', help="Use probability for SVC")
params = bench.parse_args(parser)
X_train, X_test, y_train, y_test = bench.load_data(params)
if params.gamma is None:
params.gamma = 1.0 / X_train.shape[1]
cache_size_bytes = bench.get_optimal_cache_size(X_train.shape[0],
max_cache=params.max_cache_size)
params.cache_size_mb = cache_size_bytes / 1024**2
params.n_classes = y_train[y_train.columns[0]].nunique()
clf = SVC(C=params.C, kernel=params.kernel, cache_size=params.cache_size_mb,
tol=params.tol, gamma=params.gamma, probability=params.probability,
degree=params.degree)
fit_time, _ = bench.measure_function_time(clf.fit, X_train, y_train, params=params)
if params.probability:
state_predict = 'predict_proba'
metric_type = 'log_loss'
clf_predict = clf.predict_proba
def metric_call(x, y):
return bench.log_loss(x, y)
else:
state_predict = 'prediction'
metric_type = 'accuracy[%]'
clf_predict = clf.predict
def metric_call(x, y):
return 100 * bench.accuracy_score(x, y)
predict_train_time, y_pred = bench.measure_function_time(
clf_predict, X_train, params=params)
train_acc = metric_call(y_train, y_pred)
predict_test_time, y_pred = bench.measure_function_time(
clf_predict, X_test, params=params)
test_acc = metric_call(y_test, y_pred)
bench.print_output(library='cuml', algorithm='SVC',
stages=['training', state_predict], params=params,
functions=['SVM.fit', 'SVM.predict'],
times=[fit_time, predict_train_time], metric_type=metric_type,
metrics=[train_acc, test_acc], data=[X_train, X_train],
alg_instance=clf)