forked from IntelPython/scikit-learn_bench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pca.py
56 lines (46 loc) · 2.2 KB
/
pca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# ===============================================================================
# Copyright 2020-2021 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===============================================================================
import argparse
import bench
from cuml import PCA
parser = argparse.ArgumentParser(description='cuML PCA benchmark')
parser.add_argument('--svd-solver', type=str, default='full',
choices=['auto', 'full', 'jacobi'],
help='SVD solver to use')
parser.add_argument('--n-components', type=int, default=None,
help='Number of components to find')
parser.add_argument('--whiten', action='store_true', default=False,
help='Perform whitening')
params = bench.parse_args(parser)
# Load random data
X_train, X_test, _, _ = bench.load_data(params, generated_data=['X_train'])
if params.n_components is None:
p, n = X_train.shape
params.n_components = min((n, (2 + min((n, p))) // 3))
# Create our PCA object
pca = PCA(svd_solver=params.svd_solver, whiten=params.whiten,
n_components=params.n_components)
# Time fit
fit_time, _ = bench.measure_function_time(pca.fit, X_train, params=params)
# Time transform
transform_time, _ = bench.measure_function_time(
pca.transform, X_train, params=params)
bench.print_output(library='cuml', algorithm='PCA',
stages=['training', 'transformation'],
params=params, functions=['PCA.fit', 'PCA.transform'],
times=[fit_time, transform_time], metric_type=None,
metrics=[None, None], data=[X_train, X_test],
alg_instance=pca)