diff --git a/.gitignore b/.gitignore index fead972..f870c50 100644 --- a/.gitignore +++ b/.gitignore @@ -1,4 +1,4 @@ -.ipynb_checkpoints +.ipynb_checkpoints/ # Byte-compiled / optimized / DLL files __pycache__/ diff --git a/README.md b/README.md index 32f75a3..45fa15f 100644 --- a/README.md +++ b/README.md @@ -11,403 +11,145 @@ -### New Intro Tutorial - -[Entry Point: Data](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/python_data_entry_point.ipynb?create=1) -- Using Python's sci-packages to prepare data for Machine Learning tasks and other data analyses -
-
-
- -

-
-
- -## Machine-learning tutorials for Python's scikit-learn - -- [An Introduction to simple linear supervised classification using `scikit-learn`](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/machine_learning/scikit-learn/scikit_linear_classification.ipynb) +# Machine Learning and Pattern Classification

- -# Sections
- • Techniques for Dimensionality -Reduction
- - - -   • Projection
-      • Component Analyses
-          • Linear Transformation
-              • Principal Component Analysis (PCA)
-              • Multiple Discriminant Analysis (MDA)
- -   • Feature Selection
-      • Sequential Feature Selection Algorithms
- - • Techniques for Parameter Estimation
-      • Parametric Techniques
-         • Introduction to the Maximum Likelihood Estimate (MLE)
-         • How to calculate Maximum Likelihood Estimates (MLE) for different distributions -
-      • Non-Parametric Techniques
-         • Kernel density estimation via the Parzen-window technique
-         • The K-Nearest Neighbor (KNN) technique -
-
-• Regression Analysis
-   • Linear Regression
-   • Non-Linear Regression
- -• Statistical Pattern Recognition Examples
-   • Supervised Learning
-      • Parametric Techniques
-         • Univariate Normal Density
-         • Multivariate Normal Density
-      • Non-Parametric Techniques
- - -   • Unsupervised Learning
-
- - - - -

+### Machine learning and pattern classification with scikit-learn -
-
-
-

- -#Techniques for Dimensionality Reduction -[[back to top](#sections)] +- Entry Point: Data - Using Python's sci-packages to prepare data for Machine Learning tasks and other data analyses [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/python_data_entry_point.ipynb)] -
- -

+- An Introduction to simple linear supervised classification using `scikit-learn` [[IPython nb](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/machine_learning/scikit-learn/scikit_linear_classification.ipynb)] -## Projection -[[back to top](#sections)] -

-### Component Analyses -[[back to top](#sections)] -

- -### Linear Transformation -[[back to top](#sections)] -
+

+### Techniques for Dimensionality Reduction -

- -#### Principal Component Analyses (PCA) -[[back to top](#sections)] -

-![./Images/principal_component_analysis.png](./Images/principal_component_analysis.png) -

-[View IPython Notebook](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/dimensionality_reduction/projection/principal_component_analysis.ipynb?create=1) - -[Download PDF](https://github.com/rasbt/pattern_classification/raw/master/PDFs/principal_component_analysis_sebastian_raschka.pdf) - -

-
-
- -#### Multiple Discriminant Analysis (MDA) -[[back to top](#sections)] -

-![./Images/mda_overview2.png](./Images/mda_overview2.png) -

-[View IPython Notebook](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/dimensionality_reduction/projection/multiple_discriminant_analysis.ipynb?create=1) -
-
-
-
+- **Projection** + - Component Analyses + - Linear Transformation + - Principal Component Analysis (PCA) [[IPython nb]](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/dimensionality_reduction/projection/principal_component_analysis.ipynb) + - Linear Discriminant Analysis (LDA) [[IPython nb]](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/dimensionality_reduction/projection/multiple_discriminant_analysis.ipynb) -

-## Feature Selection -[[back to top](#sections)] -

+- **Feature Selection** + - Sequential Feature Selection Algorithms [[IPython nb](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/dimensionality_reduction/feature_selection/sequential_selection_algorithms.ipynb)] -#### Sequential Feature Selection Algorithms -[[back to top](#sections)] -![](./Images/feat_sele_alg.png) -[View IPython Notebook](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/dimensionality_reduction/feature_selection/sequential_selection_algorithms.ipynb?create=1) -
-[Download PDF](https://github.com/rasbt/pattern_classification/tree/master/dimensionality_reduction/feature_selection/sequential_selection_algorithms.pdf) -
-
-
-
-

-## Techniques for Parameter Estimation -[[back to top](#sections)]
+

-

-### Parametric Techniques -[[back to top](#sections)] -

-### Introduction to the Maximum Likelihood Estimate (MLE) -[[back to top](#sections)] -
-![](./Images/mle.png) +### Techniques for Parameter Estimation -[View IPython Notebook](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/parameter_estimation_techniques/maximum_likelihood_estimate.ipynb?create=1) -
-

-### Maximum Liklihood parameter Estimation (MLE) for different distributions -[[back to top](#sections)] -
-
-![](./Images/mle_distributions.png) -[View IPython Notebook](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/parameter_estimation_techniques/max_likelihood_est_distributions.ipynb?create=1) -

-

+- **Parametric Techniques** + - Introduction to the Maximum Likelihood Estimate (MLE) [[IPython nb]](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/parameter_estimation_techniques/maximum_likelihood_estimate.ipynb) + - How to calculate Maximum Likelihood Estimates (MLE) for different distributions [[IPython nb]](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/parameter_estimation_techniques/max_likelihood_est_distributions.ipynb) + +- **Non-Parametric Techniques** + - Kernel density estimation via the Parzen-window technique [[IPython nb](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/parameter_estimation_techniques/parzen_window_technique.ipynb)] + - The K-Nearest Neighbor (KNN) technique -

-### Non-Parametric Techniques -[[back to top](#sections)] +- **Regression Analysis** + - Linear Regression + - Least-Squares fit [[IPython nb](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/data_fitting/regression/linregr_least_squares_fit.ipynb)] + + - Non-Linear Regression -
-
-

-### Kernel density estimation via the Parzen-window technique -[[back to top](#sections)] -
-![](./Images/parzen_window_effect.png) -[View IPython Notebook](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/parameter_estimation_techniques/parzen_window_technique.ipynb?create=1) - -[Download PDF](https://github.com/rasbt/pattern_classification/raw/master/PDFs/parzen_window_sebastian_raschka.pdf) -
-
-
-

+

-

-#Regression Analysis -[[back to top](#sections)] - - - -

-##Linear Regression -[[back to top](#sections)] - - -#### Implementing the least squares fit method for linear regression and speeding it up via Cython - -![](./Images/lin_least_square_fit.png) -[View IPython Notebook](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/benchmarks/cython_least_squares.ipynb?create=1) +### Statistical Pattern Recognition Examples -
-
-
+- **Supervised Learning** + + - Parametric Techniques + - Univariate Normal Density + - Ex1: 2-classes, equal variances, equal priors [[IPython nb](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/stat_pattern_class/supervised/parametric/1_stat_superv_parametric.ipynb)] + - Ex2: 2-classes, different variances, equal priors [[IPython nb](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/stat_pattern_class/supervised/parametric/2_stat_superv_parametric.ipynb)] + - Ex3: 2-classes, equal variances, different priors [[IPython nb](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/stat_pattern_class/supervised/parametric/3_stat_superv_parametric.ipynb)] + - Ex4: 2-classes, different variances, different priors, loss function [[IPython nb](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/stat_pattern_class/supervised/parametric/4_stat_superv_parametric.ipynb)] + - Ex5: 2-classes, different variances, equal priors, loss function, cauchy distr. [[IPython nb](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/stat_pattern_class/supervised/parametric/4_stat_superv_parametric.ipynb)] + + + + - Multivariate Normal Density + - Ex5: 2-classes, different variances, equal priors, loss function [[IPython nb](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/stat_pattern_class/supervised/parametric/6_stat_superv_parametric.ipynb)] - Ex7: 2-classes, equal variances, equal priors [[IPython nb](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/stat_pattern_class/supervised/parametric/6_stat_superv_parametric.ipynb)] + + - Non-Parametric Techniques -

-##Non-Linear Regression -[[back to top](#sections)] +- **Unsupervised Learning**
-
-
-
-
-
- - - -

-# Statistical Pattern Recognition -[[back to top](#sections)] - -

-## Supervised Learning - -[[back to top](#sections)] -

-### Parametric Techniques - -[[back to top](#sections)] -

-#### Univariate Normal Density -[[back to top](#sections)] -
-## Example 1 -[[back to top](#sections)] - -##### Problem Category: -- Statistical Pattern Recognition -- Supervised Learning -- Parametric Learning -- Bayes Decision Theory -- Univariate data -- 2-class problem -- equal variances -- equal priors -- Gaussian model (2 parameters) -- No Risk function - -![](./Images/1_stat_superv_parametric.png) - - -[View IPython Notebook](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/stat_pattern_class/supervised/parametric/1_stat_superv_parametric.ipynb?create=1)
-[Download PDF](https://github.com/rasbt/pattern_classification/raw/master/stat_pattern_class/supervised/parametric/1_stat_superv_parametric.pdf) - -
-## Example 2 -[[back to top](#sections)] +## Links to useful resources -##### Problem Category: -- Statistical Pattern Recognition -- Supervised Learning -- Parametric Learning -- Bayes Decision Theory -- Univariate data -- 2-class problem -- different variances -- equal priors -- Gaussian model (2 parameters) -- No Risk function - -![](./Images/2_stat_superv_parametric.png) - - -[View IPython Notebook](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/stat_pattern_class/supervised/parametric/2_stat_superv_parametric.ipynb?create=1)
-[Download PDF](https://github.com/rasbt/pattern_classification/raw/master/stat_pattern_class/supervised/parametric/2_stat_superv_parametric.pdf) - -
- -## Example 3 -[[back to top](#sections)] - -##### Problem Category: -- Statistical Pattern Recognition -- Supervised Learning -- Parametric Learning -- Bayes Decision Theory -- Univariate data -- 2-class problem -- equal variances -- different priors -- Gaussian model (2 parameters) -- No Risk function - -![](./Images/3_stat_superv_parametric.png) - - -[View IPython Notebook](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/stat_pattern_class/supervised/parametric/3_stat_superv_parametric.ipynb?create=1)
-[Download PDF](https://github.com/rasbt/pattern_classification/raw/master/stat_pattern_class/supervised/parametric/3_stat_superv_parametric.pdf) -
+ -## Example 4 -[[back to top](#sections)] +#### Dataset Collections -##### Problem Category: -- Statistical Pattern Recognition -- Supervised Learning -- Parametric Learning -- Bayes Decision Theory -- Univariate data -- 2-class problem -- different variances -- different priors -- Gaussian model (2 parameters) -- With conditional Risk (loss functions) +- [Kaggle](https://www.kaggle.com/competitions) - Kaggle, the leading platform for predictive modeling competitions. -![](./Images/4_stat_superv_parametric.png) +- [UCI MLR](http://archive.ics.uci.edu/ml/) - UC Irvine Machine Learning Repository +- [google.com/publicdata](http://www.google.com/publicdata/directory) - public data maintained by Google -[View IPython Notebook](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/stat_pattern_class/supervised/parametric/4_stat_superv_parametric.ipynb?create=1) +- [Freebase](http://www.freebase.com) - A community-curated database of well-known people, places, and things +

-[Download PDF](https://github.com/rasbt/pattern_classification/raw/master/stat_pattern_class/supervised/parametric/4_stat_superv_parametric.pdf) - -
- -## Example 5 -[[back to top](#sections)] - -##### Problem Category: -- Statistical Pattern Recognition -- Supervised Learning -- Parametric Learning -- Bayes Decision Theory -- Univariate data -- 2-class problem -- different variances -- equal priors -- **Cauchy model** (2 parameters) -- With conditional Risk (1-0 loss functions) -![](./Images/6_stat_superv_parametric.png) +#### Specialized Datasets +- [SMS Spam Collection](http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/) - A collection of 425 SMS spam messages was manually extracted from the Grumbletext Web site -[View IPython Notebook](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/stat_pattern_class/supervised/parametric/6_stat_superv_parametric.ipynb?create=1) -
-[Download PDF](https://github.com/rasbt/pattern_classification/raw/master/stat_pattern_class/supervised/parametric/6_stat_superv_parametric.pdf) +- [SNAP](http://snap.stanford.edu/data/index.html) - Stanford Large Network Dataset Collection -
+- [Amazon Google Books Ngrams](http://aws.amazon.com/datasets/8172056142375670) - A data set containing Google Books n-gram corpuses +- [The Million Song Dataset](http://labrosa.ee.columbia.edu/millionsong/) - Audio features and metadata for a million contemporary popular music tracks. -

-#### Multivariate Normal Density +- [Modeling Online Auctions](http://www.modelingonlineauctions.com/datasets) - Datasets of bidding for different ebay auctions -## Example 1 -[[back to top](#sections)] +- [CAT Dataset](http://137.189.35.203/WebUI/CatDatabase/catData.html) - A dataset of 10,000 cat images -##### Problem Category: -- Statistical Pattern Recognition -- Supervised Learning -- Parametric Learning -- Bayes Decision Theory -- Multivariate data (2-dimensional) -- 2-class problem -- different variances -- equal prior probabilities -- Gaussian model (2 parameters) -- with conditional Risk (1-0 loss functions) +- [Click Dataset](http://cnets.indiana.edu/groups/nan/webtraffic/click-dataset/) - A large dataset of about 53.5 billion HTTP requests made by users at Indiana University -![](./Images/5_stat_superv_parametric.png) +- [Meteorites](http://www.analyticbridge.com/profiles/blogs/registered-meteorites-that-has-impacted-on-earth-visualized) - Registered meteorites that have impacted on Earth +- [Common Crawl 2012 web corpus](http://www.bigdatanews.com/profiles/blogs/big-data-set-3-5-billion-web-pages-made-available-for-all-of-us) - A hyperlink graph of 3.5 billion web pages and 128 billion hyperlinks between these pages -[View IPython Notebook](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/stat_pattern_class/supervised/parametric/5_stat_superv_parametric.ipynb?create=1) -
-[Download PDF](https://github.com/rasbt/pattern_classification/raw/master/stat_pattern_class/supervised/parametric/5_stat_superv_parametric.pdf) - -
+- [PyPi/Maven Dependency Data](http://ogirardot.wordpress.com/2013/01/31/sharing-pypimaven-dependency-data/) - State of the Maven/Java dependency graph and state of the PyPi/Python dependency graph. +- [NYPD Crash Data Band-Aid](http://nypd.openscrape.com/#/) - NYPD traffic crash data as a geocoded CSV - +- [Pass rates, race & gender](http://home.cc.gatech.edu/ice-gt/556) - Detailed data on pass rates, race, and gender for 2013 +- [Nominate/vote data](http://voteview.com/dwnl.htm) - Datasets including all the D-NOMINATE and W-NOMINATE scores +- [aiHit Datasets](http://endb-consolidated.aihit.com/datasets.htm) - Information on random 10,000 UK companies sampled from aiHit DB +- [Amsterdam Library of Object Images (ALOI)](http://aloi.science.uva.nl) - A color image collection of one-thousand small objects, recorded for scientific purposes \ No newline at end of file diff --git a/READMEold.md b/READMEold.md new file mode 100644 index 0000000..32f75a3 --- /dev/null +++ b/READMEold.md @@ -0,0 +1,413 @@ + + +![logo](./Images/logo.png) + +
+**A collection of tutorials and examples for solving and understanding machine learning and pattern classification tasks.** +
+
+ + + + + +### New Intro Tutorial + +[Entry Point: Data](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/python_data_entry_point.ipynb?create=1) +- Using Python's sci-packages to prepare data for Machine Learning tasks and other data analyses +
+
+
+ +
+
+ +
+
+ + +## Machine-learning tutorials for Python's scikit-learn + +- [An Introduction to simple linear supervised classification using `scikit-learn`](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/machine_learning/scikit-learn/scikit_linear_classification.ipynb) + +
+
+ +# Sections +
+ • Techniques for Dimensionality +Reduction
+ + + +   • Projection
+      • Component Analyses
+          • Linear Transformation
+              • Principal Component Analysis (PCA)
+              • Multiple Discriminant Analysis (MDA)
+ +   • Feature Selection
+      • Sequential Feature Selection Algorithms
+ + • Techniques for Parameter Estimation
+      • Parametric Techniques
+         • Introduction to the Maximum Likelihood Estimate (MLE)
+         • How to calculate Maximum Likelihood Estimates (MLE) for different distributions +
+      • Non-Parametric Techniques
+         • Kernel density estimation via the Parzen-window technique
+         • The K-Nearest Neighbor (KNN) technique +
+
+• Regression Analysis
+   • Linear Regression
+   • Non-Linear Regression
+ +• Statistical Pattern Recognition Examples
+   • Supervised Learning
+      • Parametric Techniques
+         • Univariate Normal Density
+         • Multivariate Normal Density
+      • Non-Parametric Techniques
+ + +   • Unsupervised Learning
+ +
+ + + + +
+
+ + +
+
+
+

+ +#Techniques for Dimensionality Reduction +[[back to top](#sections)] + + +
+ +

+ +## Projection +[[back to top](#sections)] + +

+ +### Component Analyses +[[back to top](#sections)] + +

+ +### Linear Transformation +[[back to top](#sections)] +
+
+ + +

+ +#### Principal Component Analyses (PCA) +[[back to top](#sections)] +

+![./Images/principal_component_analysis.png](./Images/principal_component_analysis.png) +

+[View IPython Notebook](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/dimensionality_reduction/projection/principal_component_analysis.ipynb?create=1) + +[Download PDF](https://github.com/rasbt/pattern_classification/raw/master/PDFs/principal_component_analysis_sebastian_raschka.pdf) + +

+
+
+ +#### Multiple Discriminant Analysis (MDA) +[[back to top](#sections)] +

+![./Images/mda_overview2.png](./Images/mda_overview2.png) +

+[View IPython Notebook](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/dimensionality_reduction/projection/multiple_discriminant_analysis.ipynb?create=1) +
+
+
+
+ + +

+ +## Feature Selection +[[back to top](#sections)] +

+ +#### Sequential Feature Selection Algorithms +[[back to top](#sections)] +![](./Images/feat_sele_alg.png) + +[View IPython Notebook](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/dimensionality_reduction/feature_selection/sequential_selection_algorithms.ipynb?create=1) +
+[Download PDF](https://github.com/rasbt/pattern_classification/tree/master/dimensionality_reduction/feature_selection/sequential_selection_algorithms.pdf) +
+
+
+
+

+## Techniques for Parameter Estimation +[[back to top](#sections)] +
+
+

+### Parametric Techniques +[[back to top](#sections)] + +

+### Introduction to the Maximum Likelihood Estimate (MLE) +[[back to top](#sections)] +
+![](./Images/mle.png) + +[View IPython Notebook](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/parameter_estimation_techniques/maximum_likelihood_estimate.ipynb?create=1) +
+

+### Maximum Liklihood parameter Estimation (MLE) for different distributions +[[back to top](#sections)] +
+
+![](./Images/mle_distributions.png) + +[View IPython Notebook](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/parameter_estimation_techniques/max_likelihood_est_distributions.ipynb?create=1) +

+

+ +

+ +### Non-Parametric Techniques +[[back to top](#sections)] + +
+
+

+### Kernel density estimation via the Parzen-window technique +[[back to top](#sections)] +
+![](./Images/parzen_window_effect.png) + +[View IPython Notebook](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/parameter_estimation_techniques/parzen_window_technique.ipynb?create=1) + +[Download PDF](https://github.com/rasbt/pattern_classification/raw/master/PDFs/parzen_window_sebastian_raschka.pdf) +
+
+
+
+
+
+ +

+#Regression Analysis +[[back to top](#sections)] + + + +

+##Linear Regression +[[back to top](#sections)] + + +#### Implementing the least squares fit method for linear regression and speeding it up via Cython + +![](./Images/lin_least_square_fit.png) +[View IPython Notebook](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/benchmarks/cython_least_squares.ipynb?create=1) + + +
+
+
+ +

+##Non-Linear Regression +[[back to top](#sections)] + + +
+
+
+
+
+
+ + + +

+# Statistical Pattern Recognition +[[back to top](#sections)] + +

+## Supervised Learning + +[[back to top](#sections)] +

+### Parametric Techniques + +[[back to top](#sections)] +

+#### Univariate Normal Density +[[back to top](#sections)] + +
+## Example 1 +[[back to top](#sections)] + +##### Problem Category: +- Statistical Pattern Recognition +- Supervised Learning +- Parametric Learning +- Bayes Decision Theory +- Univariate data +- 2-class problem +- equal variances +- equal priors +- Gaussian model (2 parameters) +- No Risk function + +![](./Images/1_stat_superv_parametric.png) + + +[View IPython Notebook](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/stat_pattern_class/supervised/parametric/1_stat_superv_parametric.ipynb?create=1) +
+[Download PDF](https://github.com/rasbt/pattern_classification/raw/master/stat_pattern_class/supervised/parametric/1_stat_superv_parametric.pdf) + +
+ +## Example 2 +[[back to top](#sections)] + +##### Problem Category: +- Statistical Pattern Recognition +- Supervised Learning +- Parametric Learning +- Bayes Decision Theory +- Univariate data +- 2-class problem +- different variances +- equal priors +- Gaussian model (2 parameters) +- No Risk function + +![](./Images/2_stat_superv_parametric.png) + + +[View IPython Notebook](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/stat_pattern_class/supervised/parametric/2_stat_superv_parametric.ipynb?create=1) +
+[Download PDF](https://github.com/rasbt/pattern_classification/raw/master/stat_pattern_class/supervised/parametric/2_stat_superv_parametric.pdf) + +
+ +## Example 3 +[[back to top](#sections)] + +##### Problem Category: +- Statistical Pattern Recognition +- Supervised Learning +- Parametric Learning +- Bayes Decision Theory +- Univariate data +- 2-class problem +- equal variances +- different priors +- Gaussian model (2 parameters) +- No Risk function + +![](./Images/3_stat_superv_parametric.png) + + +[View IPython Notebook](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/stat_pattern_class/supervised/parametric/3_stat_superv_parametric.ipynb?create=1) +
+[Download PDF](https://github.com/rasbt/pattern_classification/raw/master/stat_pattern_class/supervised/parametric/3_stat_superv_parametric.pdf) + +
+ +## Example 4 +[[back to top](#sections)] + +##### Problem Category: +- Statistical Pattern Recognition +- Supervised Learning +- Parametric Learning +- Bayes Decision Theory +- Univariate data +- 2-class problem +- different variances +- different priors +- Gaussian model (2 parameters) +- With conditional Risk (loss functions) + +![](./Images/4_stat_superv_parametric.png) + + +[View IPython Notebook](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/stat_pattern_class/supervised/parametric/4_stat_superv_parametric.ipynb?create=1) +
+[Download PDF](https://github.com/rasbt/pattern_classification/raw/master/stat_pattern_class/supervised/parametric/4_stat_superv_parametric.pdf) + +
+ +## Example 5 +[[back to top](#sections)] + +##### Problem Category: +- Statistical Pattern Recognition +- Supervised Learning +- Parametric Learning +- Bayes Decision Theory +- Univariate data +- 2-class problem +- different variances +- equal priors +- **Cauchy model** (2 parameters) +- With conditional Risk (1-0 loss functions) + +![](./Images/6_stat_superv_parametric.png) + + +[View IPython Notebook](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/stat_pattern_class/supervised/parametric/6_stat_superv_parametric.ipynb?create=1) +
+[Download PDF](https://github.com/rasbt/pattern_classification/raw/master/stat_pattern_class/supervised/parametric/6_stat_superv_parametric.pdf) + +
+ + +

+#### Multivariate Normal Density + +## Example 1 +[[back to top](#sections)] + +##### Problem Category: +- Statistical Pattern Recognition +- Supervised Learning +- Parametric Learning +- Bayes Decision Theory +- Multivariate data (2-dimensional) +- 2-class problem +- different variances +- equal prior probabilities +- Gaussian model (2 parameters) +- with conditional Risk (1-0 loss functions) + +![](./Images/5_stat_superv_parametric.png) + + +[View IPython Notebook](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/stat_pattern_class/supervised/parametric/5_stat_superv_parametric.ipynb?create=1) +
+[Download PDF](https://github.com/rasbt/pattern_classification/raw/master/stat_pattern_class/supervised/parametric/5_stat_superv_parametric.pdf) + +
+ + + + + + diff --git a/data_fitting/.ipynb_checkpoints/lin_reg_least_squares-checkpoint.ipynb b/data_fitting/.ipynb_checkpoints/lin_reg_least_squares-checkpoint.ipynb deleted file mode 100644 index d7a99e2..0000000 --- a/data_fitting/.ipynb_checkpoints/lin_reg_least_squares-checkpoint.ipynb +++ /dev/null @@ -1,538 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:31eb26fecdd2c5ba3d0118b4ef83a3c706cb6a705b0feea63dff75ab13ec6828" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Sebastian Raschka \n", - "last updated: 05/04/2014\n", - "\n", - "[Link to this IPython Notebook on GitHub](https://github.com/rasbt/python_reference/blob/master/not_so_obvious_python_stuff.ipynb)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "I am really looking forward to your comments and suggestions to improve and \n", - "extend this little collection! Just send me a quick note \n", - "via Twitter: [@rasbt](https://twitter.com/rasbt) \n", - "or Email: [bluewoodtree@gmail.com](mailto:bluewoodtree@gmail.com)\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### All code was executed in Python 3.4" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Linear regression - data fitting via the least squares approach" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A mathematical procedure for finding the best-fitting curve to a given set of points by minimizing the sum of the squares of the offsets (\"the residuals\") of the points from the curve. The sum of the squares of the offsets is used instead of the offset absolute values because this allows the residuals to be treated as a continuous differentiable quantity. However, because squares of the offsets are used, outlying points can have a disproportionate effect on the fit, a property which may or may not be desirable depending on the problem at hand." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![](../../Images/least_squares_vertical.png)\n", - "![](../../Images/least_squares_perpendicular.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The goal is to compute the best fit to *n* points $(x_i, y_i)$ with $i=1,2,...n,$ via linear equation of the form \n", - "$f(x) = a + bx$. \n", - "Here, we assume that the y-component is functionally dependent on the x-component. \n", - "In a cartesian coordinate system, *a* is the intercept of the straight line with the y-axis, and *b* is the slope of this line." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To compute the best fit, the approach of the least-squares method is to minimize the squared distance for each point to the straight line. \n", - "In terms of mathematical equations, the slope *b* and the intercept *a* can be expressed as follows:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$b = \\frac{covariance_{x,y}}{variance_x}$ \n", - "\n", - "\n", - "$a = \\bar{y} - b\\bar{x}$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "with \n", - "\n", - "\n", - "$covariance_{x,y} = S_{xy} = \\sum_{i=1}^{n} (x_i - \\bar{x})(y_i - \\bar{y})$ \n", - "\n", - "\n", - "$variance_{x} = \\sigma^2 = \\sum_{i=1}^{n} (x_i - \\bar{x})^2$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Generating sample data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "First, we will generate some sample data:\n", - "- 100 sample points for the x-component within the range [0,100) \n", - "- 100 sample points for the y-component within the range [50,150) \n", - "where each sample point is multiplied by a random value within\n", - "the range [0.8, 12)." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import random\n", - "random.seed(1234)\n", - "\n", - "x = [x_i*random.randrange(8,12)/10 for x_i in range(100)]\n", - "y = [y_i*random.randrange(8,12)/10 for y_i in range(50,150)]" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 67 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## A step-by-step solution using standard library functions" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In order to solve the linear equation $f(x) = a + bx$ of the least-squares fit, let us step-wise define some simple functions." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def calc_cov(x, y):\n", - " \"\"\" Calculates the covariance between to lists of values. \"\"\"\n", - " x_avg = sum(x)/len(x)\n", - " y_avg = sum(y)/len(y)\n", - " return sum([(x_i - x_avg)*(y_i - y_avg) for x_i,y_i in zip(x,y)])" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 29 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def calc_var(x):\n", - " \"\"\" Calculates the variance from a list of values. \"\"\"\n", - " x_avg = sum(x)/len(x)\n", - " return sum([(x_i - x_avg)**2 for x_i in x])" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 9 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def calc_slope(cov_xy, var_x):\n", - " \"\"\" Calculates the linear slope based on covariance and variance. \"\"\"\n", - " return cov_xy / var_x" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 6 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def calc_y_intercept(x, y, slope):\n", - " \"\"\" Calculates the y-axis intercept of a straight line. \"\"\"\n", - " x_avg = sum(x)/len(x)\n", - " y_avg = sum(y)/len(y)\n", - " return y_avg - slope*x_avg" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 7 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def linear_fit(x, y):\n", - " \"\"\" Calculates slope and y-axis intercept for a 2D least-squares fit. \"\"\"\n", - " cov_xy = calc_cov(x, y)\n", - " var_x = calc_var(x)\n", - " slope = calc_slope(cov_xy, var_x)\n", - " y_interc = calc_y_intercept(x, y, slope)\n", - " return {'slope':slope, 'y_intercept': y_interc}" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 14 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def fit_line(x, slope, y_intercept):\n", - " return y_intercept + x*slope" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 17 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "fit = linear_fit(x, y)\n", - "\n", - "ftext = 'y = a + bx = {:.3f} + {:.3f}x'\\\n", - " .format(fit['y_intercept'], \n", - " fit['slope'])\n", - "print(ftext)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "y = a + bx = 50.093 + 0.981x\n" - ] - } - ], - "prompt_number": 47 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%pylab inline\n", - "from matplotlib import pyplot as plt\n", - "\n", - "line_x = list(range(round(max(x)) + 1))\n", - "line_y = [fit_line(x_i, fit['slope'], fit['y_intercept']) for x_i in line_x]\n", - "\n", - "plt.figure(figsize=(10,10))\n", - "plt.scatter(x,y)\n", - "plt.plot(line_x, line_y, color='red', lw='2')\n", - "\n", - "plt.ylabel('y')\n", - "plt.xlabel('x')\n", - "plt.figtext(.15,.8, ftext, fontsize=11, ha='left')\n", - "\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Populating the interactive namespace from numpy and matplotlib\n" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAJeCAYAAADvDpLHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8Tnf/x/FXFlli1mgSM1aICBWjVGpTRa0aRY3Sotqi\nA+1ddNDd0pYbNVpqVWvWrL1LjWrsHXuP7OQ6vz+OX25qy3XlXEnez8fDQ865znW+n1xU3v2e73Ax\nDMNARERERJyKq9UFiIiIiMjtFNJEREREnJBCmoiIiIgTUkgTERERcUIKaSIiIiJOSCFNRERExAk5\nLKR16dKFfPnyERISknJu8+bNhIeHExYWRqVKlfjzzz9TXhs2bBjFixenVKlSLFmyxFFliYiIiKQL\nLo5aJ23NmjX4+vrSsWNH/v77bwAiIiIYMGAA9evXZ+HChXz66aesWLGCyMhI2rVrx59//smJEyeo\nU6cO+/btw9VVHX0iIiKSOTksBdWoUYOcOXPecq5AgQJcuXIFgMuXL+Pv7w/AnDlzaNu2LR4eHhQu\nXJigoCA2b97sqNJEREREnJ57WjY2fPhwqlevTv/+/bHZbGzYsAGAkydPUqVKlZTrAgICOHHiRFqW\nJiIiIuJU0vR5YteuXRkxYgTHjh3jq6++okuXLne91sXFJQ0rExEREXEuadqTtnnzZpYtWwZAy5Yt\n6datGwD+/v4cP3485bqoqKiUR6E3CwoK4uDBg2lTrIiIiEgqFCtWjAMHDjzy+9O0Jy0oKIhVq1YB\nsHz5ckqUKAFAkyZNmDZtGgkJCRw+fJj9+/cTHh5+2/sPHjyIYRj69Yi/3n//fctrSM+/9Pnp89Nn\nlz5/6fPT52fVr9R2LDmsJ61t27asWrWK8+fPExgYyNChQxkzZgy9evUiPj4eLy8vxowZA0BwcDCt\nW7cmODgYd3d3vv/+ez3uFBERkUzNYSFt6tSpdzy/adOmO54fOHAgAwcOdFQ5IiIiIumKFiLLRCIi\nIqwuIV3T55c6+vwenT671NHnlzr6/KzjsMVsHcHFxYV0VK6IiIhkYqnNLepJExEREXFCCmkiIiIi\nTkghTURERMQJKaSJiIiIOCGFNBEREREnpJAmIiIi4oQU0kRERESckEKaiIiIiBNSSBMRERFxQgpp\nIiIiIk5IIU1ERETECSmkiYiIiDghhTQRERERJ6SQJiIiIuKEFNJEREREnJBCmoiIiIgTUkgTERER\ncUIKaSIiIiJOSCFNRERExAkppImIiIg4IYU0ERERESekkCYiIiLihBTSRERERJyQQpqIiIiIE1JI\nExEREXFCCmkiIiIiTkghTURERMQJKaSJiIiIOCGFNBEREREnpJAmIiIi4oQU0kRERESckEKaiIiI\niBNSSBMRERFxQgppIiIiIk5IIU1ERETECSmkiYiIiDghhTQRERERJ6SQJiIiIuKEFNJEREREnJBC\nmoiIiIgTUkgTERERcUIKaSIiIiJOSCFNRERExAkppImIiIg4IYU0ERERESekkCYiIiLihBTSRERE\nRJyQQpqIiGQIhmHw5ZcjqFChFk8/3YSNGzdaXZJIqrgYhmFYXcSDcnFxIR2VKyIiaeiDD4YzfPgM\nYmKGA1F4e7/Npk0rKFu2rNWlSSaV2tyinjQREckQRo2aQEzMeKAe0IXY2JeYMmWa1WWJPDKFNBER\nyRDc3NyAuJRjV9c4PDzcrStIJJUU0kREJEN499038PZuD0zA1fUDvL2n0LlzJ6vLEnlkGpMmIiIZ\nxsyZvzBlymyyZ/dl0KC+lChRwuqSJBNLbW5RSBMRERFxAE0cEBEREcmAFNJEREREnJBCmoiIiIgT\nUkgTERERcUIKaenIxIkTadWqVZq3O3jwYPLly0dYWBhhYWG8+uqrKa8lJyfTq1cvgoKCKF68OD/8\n8MNd7zNv3jxKly5N8eLFadOmDbGxsSmvDRs2jJCQEEqXLs2LL75IQkICAKdOnaJSpUqEhYUREhLC\nc889x/nz5+32vW3cuJHQ0FBKlixJ/fr1OXfu3B2v27t3L7Vq1SI0NJTQ0FCWLVuW8tquXbuoXr06\nYWFhBAcHM2TIkJTXJk+eTLly5fDw8OC7776zW90iIpLxOSykdenShXz58hESEnLL+ZEjR1K6dGnK\nli3L22+/nXJ+2LBhFC9enFKlSrFkyRJHleW0ChcufN9rXFxcHF/IXdrt1KkT27ZtY9u2bYwcOTLl\ntSlTpnDw4EEOHDjAhg0bGDx4MEePHr3tHtevX6d79+7Mnz+f/fv3ky1bNj7//HMAlixZwrRp09i8\neTO7d+8mS5YsfPXVVwA89thjrFmzhm3btvH3339TpEgRhg4det+aX3zxRVatWnXPa2w2Gy+88AKj\nRo1i7969PPXUU7zzzjt3vLZz58507dqVHTt2MGvWLDp37kxcnLlo5ptvvkm7du3Ytm0bf/75JxMm\nTGDLli0AhIWFMX36dNq1a2fZn5+IiKRPDgtpnTt3ZtGiRbecW7FiBXPnzmXnzp3s2rWL/v37AxAZ\nGcn06dOJjIxk0aJF9OzZE5vN5qjS+Oyzz+jdu3fK8ZkzZ8ifP3/KD93UOHPmDLVq1eKJJ564LYje\ny4P+AL9y5QpNmzalTJky1K5dm5MnTwLw4Ycf0qJFCwBiYmIICQm57fNPjbtNIZ4xYwbdu3cHIE+e\nPDRr1oyZM2fedt3ChQupVKkSxYoVA+Dll19m+vTpAOzYsYMaNWrg5eUFQIMGDZgyZQoA7u7ueHp6\nAmav3bVr18ibN+9963VxcbnvZ7p161a8vLyoVq0aAD169GDGjBl3vHbnzp00aNAAgKCgIHLlysXv\nv/8OQEBAAJcvXwbMMOri4pJSY5kyZShdujSurq63fIaxsbGEhoYyd+5cAJYvX07p0qWJjo6+7/cm\nIiKZg8NCWo0aNciZM+ct50aNGsWAAQPw8PAAzF4SgDlz5tC2bVs8PDwoXLgwQUFBbN682VGl0a1b\nN2bNmkVMTAwAY8aMoX379ilh4GatWrVKecx3868KFSoQHx9/2/U5cuRg3rx5bNmyhW3btrFlyxYW\nL15sl7oNw2Dt2rV8/vnn/PPPP9SsWZPXXnsNgEGDBnH9+nW+/fZbevfuzTPPPJMSKm62e/fuO34/\nYWFh9wyUU6dOpVy5ctSvX5+NGzemnD927BiFChVKOS5YsCDHjx+/7f3Hjh2jYMGCKceBgYEp1z3x\nxBMsXbqUCxcukJSUxIwZM27rjStfvjx58+YlMjIyJdw/yOd1L/+uPU+ePNhstpTAdbOKFSumBMct\nW7awd+9ejh07BsDw4cOZMmUKAQEBFC1alLfeeuuW7/VOvLy8mDFjBq+++iqbN2+mW7duTJs2DR8f\nnwf63kREJONL003N9u/fz+rVqxk4cCCenp58/vnnPPHEE5w8eZIqVaqkXBcQEMCJEyccVkfOnDlp\n0qQJP/74I926dWPcuHEsX778jtfeqVfoXpKSkujfvz8bNmzAMAxOnz7N9u3bqV+//m3XNm3aNOUH\n/cmTJwkLCwPAw8PjriG1Ro0aFC9eHDDD5v8/TnZxcWHy5MmEhoZSuHBhxo0bd8f3ly5dmm3btj3U\n9/Tyyy/z7rvv4ubmxrJly2jatCl79uy5LYTfy716tZ5++ml69epFvXr18PT0pHbt2ixduvSWa7Zv\n305SUhJ9+vTh9ddfZ/To0bfd54MPPuDXX38FzAC2du1afH19AZg0aRLlypV74Hr/beLEibzxxhtM\nmDCB4OBgqlevjru7+Z9Pp06d6NKlC/369eP06dNERERQsWJFwsPD73nPkiVLMnToUKpVq8Y333xD\naGjoI9cnImnn1KlT/P7777i7u9OkSZOH+rdQ5GGkaUhLSkri0qVLbNy4kT///JPWrVtz6NChO17r\n6PE7r776Ku3bt+exxx4jODg45THcv7Vs2ZKDBw/e8bUNGzbc1vv25ZdfcvnyZTZv3kyWLFno0aPH\nXR+jzpkzJ+XrIkWKPFB4url36N89RYcOHcLNzY3Lly8TExOTElBuFhkZSfv27e9477p16/Lpp5/e\ndj5fvnwpX9epU4fAwEB27dpFjRo1KFiwIEeOHKFixYoAHD16lCJFitx2j4IFC7JixYqU42PHjhEY\nGJhy3KdPH/r06QOYj1DLlClz2z3c3d3p2LEjL7300h3rf++993jvvfcA83F7586deeqpp+54LUCh\nQoVu6bE7f/48rq6u5MiR47ZrixQpwuzZs1OOy5QpQ3BwMGA+xp84cSIA+fPnp1atWqxevfq2kHan\nv9Nbt24lX758d+x9FBHns2fPHqpUeZrExFq4uMTwzjtD2b59/S3/TorYS5qGtICAAJo3bw5ApUqV\ncHV15fz58/j7+9/yQyoqKgp/f/873mPw4MEpX0dERBAREfFItZQtW5bcuXPzxhtv8P3339/1ul9+\n+eWh7nvlyhUKFChAlixZOHHiBHPmzKFnz56PVOOdrFu3jgMHDhAUFMSECROoXbs2AJcuXeKFF15g\n+vTpLFmyhJdeeompU6fe9v7g4OCH7kk7ceJEyp/H9u3bOXLkCCVLlgTMx8Fjx46lefPmnD9/njlz\n5rB27drb7lG/fn169+6dUvvo0aN5/vnnU14/ffo0+fPn59KlS3zyySe8//77gPl3IUeOHPj6+mKz\n2Zg1a9Z9e6j+3/0ed1aoUIHY2FjWrVvHk08+yejRo2nduvUdrz137hx58uTBxcWFiRMn4unpSa1a\ntQAzsC1cuJAOHTpw7do11qxZQ9OmTW+r5d/1/Pbbb6xbty4l8EZERNzxEbWIOI/XXhvE1atvYxiv\nAxAf35chQ4bz/fdfWVyZOIOVK1eycuVK+93QcKDDhw8bZcuWTTkePXq08Z///McwDMPYu3evERgY\naBiGYfzzzz9GaGioER8fbxw6dMgoWrSoYbPZbrufvcudPHmyUbhwYbve8+jRo0Z4eLhRtmxZo0GD\nBkb79u2NIUOG3Pd9RYoUue81EydONOrVq2c0bdrUCA4ONmrXrm2cPHnSMAzDeO6554xhw4YZhmEY\nycnJRkREhPHf//43dd/MDZ06dTLKli1rhIaGGpUqVTIWLlyY8lpycrLxyiuvGMWKFTOKFStmjB07\nNuW1m/+8DcMw5syZY5QsWdIICgoyWrdubcTExKS8FhISYpQpU8YoUaKEMXLkyJTzy5YtM0JDQ41y\n5coZISEhRpcuXYzLly/ft+YXX3zRWLVq1X2vW79+vRESEmIUL17cqFevnnH27NmU18qXL2+cOnXK\nMAzDGDdunFG8eHGjRIkSRqNGjYyjR4+mXLdr1y7jqaeeMkJDQ43g4GDjgw8+SHnt559/NgICAgwf\nHx8jZ86cRkBAgLF7927j8OHDRmBgoLF///6UexQsWNA4ceLEfWsWEeuEhFQ3YIUBxo1fk4xnn21r\ndVnipFKbWxy2wXrbtm1ZtWoVFy5cIG/evAwdOpQXXniBLl26sH37drJkycIXX3yR0hP28ccfM378\neNzd3fnmm2/uOIbL3husd+vWjdKlS9OvXz+73VNERDKut956j2+/3Uxs7HQgFh+fxnzxxcv06HHn\nYRiSuaU2tzgspDmCvULayZMnqVWrFgUKFGDhwoV3nNUpIiLybwkJCXTr1pupU3/C1dWNPn1e49NP\nP9Q6iHJHCmkiIiJpzGazPdB6jJK5pTa3pOnEARERkYzA1VW7Korj6W+ZiIjITWw2G8OGfU6lSnVo\n2LAVf//9t9UlSSalx50iIiI36d9/IKNGrSAm5n1cXPbh6/shO3dufqA9lkVupjFpIiIiduTnl49r\n1zYBhQHIkuUVPv44SCsByENLbW7R404REZGbmOPNElKOXVwScHNzs64gybQU0kREJE0dPHiQ8PBa\nZM+en4oVa7Jv3z6rS7pF37598PZuCfyMq+tgvLwW3nU3EhFH0uNOERFJM3FxcRQrFsLp0y9js7XB\nxWUWefN+zaFDu/D29ra6PMDcxu2HHyYwa9YiHnssJ0OGvHPHPYlF7kdj0kREJN3YsWMHNWq049q1\nf1LO+fmFsWzZGCpVqmRhZSL2pzFpIiKSbvj5+ZGYeA64fuNMDImJZ/Dz87OyLBGnpJAmIiJppkiR\nIrRu3RwfnwjgfXx8nqZZs4aUKFHC6tJEnI4ed4qISJoyDIPp06eza9c/lC5dirZt22oFfwGbDb76\nCjp1gjx5rK7GLjQmTURERNK3uDjo3BmmTYOaNWHFCsgA+6Jq704RERFJv86dg2bNYP16yJYN3nkn\nQwQ0e1BIExEREWvs3QvPPAMHD0JgIMyfD+XKWV2V09AgABEREUl7K1dC1apmQKtYETZtUkD7F4U0\nERERSVs//gj16sGlS9C0KaxaBQUKWF2V01FIExERkbRhGPD+++YMzsREeP11mDULfHysrswpaUya\niIiIOF58PHTtClOmgKsrjBgBvXpZXZVTU0gTERERxzp/Hp57DtauBV9fmD4dGjWyuiqnp5AmIiIi\njrN/vxnIDhwAf39zBmf58lZXlS5oTJqIiIg4xpo1UKWKGdDCwswZnApoD0whTUREROxvyhSoUwcu\nXoTGjWH1arMnTR6YQpqIiIjYj2HA0KHwwguQkACvvgqzZ5tj0eShaEyaiIiI2Ed8PLz0Evz0kzmD\n8+uvzZAmj0QhTURERFLv4kVo3txcmNbHx9wsvXFjq6tK1xTSREREJHUOHDD34Ny3Dx5/3JzBGRZm\ndVXpnsakiYiIyKNbt86cwblvH4SGmjM4FdDsQiFNREREHs3UqVCrFly4YK6FtmYNBARYXVWGoZAm\nIiIiD8cw4MMPoV07cwZnr14wZw5ky2Z1ZRmKxqSJiIjIg0tIgO7dYdIkcHGBL7+E114zvxa7UkgT\nERGRB3PpkjmDc+VK8PaGn3+Gpk2trirDUkgTEZG7SkpKIiEhAW9vb6tLEasdOmSOO9u7FwoUgHnz\noGJFq6vK0DQmTURE7mjYsM/x9vbDzy8XVarU5sKFC1aXJFZZvx4qVzYDWkiIOYNTAc3hFNJEROQ2\nCxcu5MMPR5OYuI/k5Gj++iuYDh1etrqsOzp69Chz5sxh69atVpeSMU2fbs7gPH8eGjSAtWshMNDq\nqjIFhTQREbnN2rXriYl5AQgA3EhMfJP169dZXdZt5syZS3DwE3TqNJannmpOz559rS4p4zAMGDYM\n2rQxt3t6+WXzEaefn9WVZRoKaSIicpuAgMfx9t4M2G6c2Ui+fI9bWdJtbDYb7dq9SEzMAq5cmU9M\nzE5+/HEO69evt7o0uzp16hSbNm3i/PnzaddoQgJ06wYDB5qzNr/4Ar7/Htw1lD0tKaSJiMhtunTp\nQpkysfj6VsXXtxW+vr2ZNOlbq8u6xdWrV0lMTATCb5zJjqtrRY4ePWplWXb13/+Oo2jRMtSr14tC\nhUoxd+48xzd6+TI0bAjjx4OXF8yaBX37aokNC7gYhmFYXcSDcnFxIR2VKyKSriUmJrJ48WKuXr1K\njRo1CHSycUiGYeDvX5xTp/4DdAT24OVVky1bVhAcHGx1eal25MgRgoMrERu7AQgCNuPt3ZAzZ47i\n6+vrmEYPHzb34Ny9G/LnNx9vPvGEY9rKBFKbW9RvKSIid+Th4UHjxo2tLuOuXFxcWLz4N+rWbcrV\nq29hs8Xw/fffZoiABnDgwAGyZClLbGzQjTPhuLrm5MSJE5QsWdL+DW7cCE2awLlzULasuUl6oUL2\nb0cemHrSREQkXUtOTub06dPkypULLy8vq8uxm6NHj1K6dEViY9cDJYCNeHs/w9mzx/Dx8bFvYzNn\nQseOEBcHdeuax9mz27eNTCi1uUVj0kREJF1zc3PD398/QwU0gEKFCjFixGd4elbGz688Pj6NmT79\nR/sGNMOATz6B1q3NgNa9OyxYoIDmJNSTJiIi4sTOnj3L8ePHKVq0KDlz5rTfjRMToWdPGDfOnBTw\n6afQr58mCNhRanOLQpqIiEhmc+UKtGwJy5aZMzgnTzb35BS70sQBERFJd6Kjoxk9ejQnTpyhVq2n\nnHqCQoZz5Ig5gzMyEvLmNWdwhoff922S9tSTJiIiaSo2NpaKFZ/i8OHCxMVVwNv7B95/vydvvaXd\nAhxu82Z49lk4exaCg83xZ4ULW11VhqXHnSIikq7MmDGDrl1Hc/36H4ALcISsWUOIjb2Ki8ZDOc6v\nv0L79uYEgTp1zBmcOXJYXVWGptmdIiKSrly/fh3D8McMaAAFSEyMJzk52cqyMi7DgM8+M8egxcWZ\n2z39/rsCWjqgkCYikglcvHiR7t37UL36M/TvP5DY2FjLaqlVqxawCJgO7Cdr1u7UqtUId+0LaX+J\niebG6G+9ZYa14cNhzBjw8LC6MnkAetwpIpLBxcfHU65cVY4cqUxCQkM8PX+katU4/vhjnmWPFzdu\n3Ei3bm9w9uwZIiKeYty4Efj5+VlSS4Z15Yq5/tmSJZA1K/z0E7RqZXVVmYrGpImIyD2tXbuWRo36\ncO3aVsxHjIl4evqzb99Wp9uPU+zk2DFzBueuXfDYYzB3LlSpYnVVmY6W4BARkXvS/9xmMlu2mDM4\nT5+GUqXM8WdFilhdlTwCjUkTEcngwsPDKVAAsmTpBczF07MdlStXIiAgwOrSxN5mz4annjIDWq1a\nsH69Alo6ppAmIpLBZc2alQ0bltGpkztPPvlfevcuwcKFv2i5i4zEMODLL81dA2JjoUsXWLgQ7LmN\nlKQ5jUkTERFJz5KSoE8fGDXKPP7oIxgwQHtwOgGNSRMREbkhKSkJwzDwyCxLTFy9Cs8/D4sWmTM4\nJ00yjyVD0ONOERFJ92w2Gz16vIanpw9eXr60adOZhIQEq8tyrOPHoUYNM6DlyQPLlyugZTAKaSIi\nku599dVIJk/eQnLyaZKTLzB37inef/8jq8tynK1boXJl2LkTSpSAjRuhWjWrqxI7U0gTEZF0b8mS\ntcTEvArkBHyJje3L0qVrrS7LMebONWdwnjoFNWvChg1QrJjVVYkDKKSJiEi6V6hQftzd/0w5dnP7\nk8DAAg5rzzAM9u/fz44dO9LusaphwDffQLNmEBMDHTuauwnkypU27Uua0+xOERFJ986cOUOFCtW5\nerU4kIWsWbfy55+rKeKANcKSk5Np2bIjixevwM3Njzx53Fm7djH+/v52bytFUhK88QZ8+615PHQo\nvPuuZnA6udTmFof1pHXp0oV8+fIREhJy22tffPEFrq6uXLx4MeXcsGHDKF68OKVKlWLJkiWOKktE\nRDKgfPnyERm5hbFjOzJ6dCv27NnmkIAGMHbsWJYsiSI29iDXr+/m+PHmdO78qkPaAuDaNWja1Axo\nWbLA5Mnw3nsKaJmAw5bg6Ny5M6+++iodO3a85fzx48dZunQphQoVSjkXGRnJ9OnTiYyM5MSJE9Sp\nU4d9+/bh6qqnsSIi8mCyZ89OmzZtHN7Otm2RxMQ0A7wASE5+nl27pjumsagoaNwYduyA3LnNHQWq\nV3dMW+J0HJaCatSoQc47rHTct29fPv3001vOzZkzh7Zt2+Lh4UHhwoUJCgpi8+bNjipNRETkkZUr\nVwpv73lAPABubrMIDi5t/4a2bTNncO7YAcWLmxMEFNAylTTtqpozZw4BAQGUK1fulvMnT568ZQ+5\ngIAATpw4kZaliYiIPJAePbrz9NN58PYOIlu2EB5//GcmTBhp30bmzzfXQDt50vx9wwYzqEmmkmY7\nDsTExPDxxx+zdOnSlHP3Gkx3tz3lBg8enPJ1REQEERER9ipRRETkvtzd3Zk3bzp79uwhJiaGMmXK\n4Onpab8GRowwJwnYbPDCCzBunLmbgDi9lStXsnLlSrvdL81C2sGDBzly5AihoaEAREVFUbFiRTZt\n2oS/vz/Hjx9PuTYqKuqus2RuDmkiIiJWcHFxoXTpB3/EmZiYyGuvvc2UKVPJmtWToUMH8PLL3W+9\nKDnZDGcjb/TKDR4M//mPJgikI//uPBoyZEiq7pdmIS0kJIQzZ86kHBcpUoStW7eSK1cumjRpQrt2\n7ejbty8nTpxg//79hIeHp1VpIiIiDjVw4BAmTdpOTMwG4CL9+rXA378Azz77rHnB9evQtq35mNPD\nA8aPN3vRJFNz2Ji0tm3bUq1aNfbt20dgYCATJky45fWbH2cGBwfTunVrgoODadiwId9///1dH3eK\niIikN7NmLSAmZjhQGKhATExfZs363XzxxAlzB4H58yFnTli6VAFNAC1mKyIi4nAVKz7NX391B9oC\n4O7+Oq+95snnHdrCM8+YQS0oCBYsMPfitLNTp04xd+5cXFxcaNasGXnz5rV7G3K71OYWhTQREREH\nW7t2LfXrP0d8fEfc3S/i57ecPV9+RK5XXjEfdT75pLkGWp48dm/bHEJUk/j42ri4JOPltYatW9fe\nsl6pOIZCmoiISDrwzz//MHfuXLJmzcpLiYlkGzjQnMHZtq05Bs2eM0Rv8txzLzB3bllstncAcHN7\nn7ZtT/HTT2Mc0p78T2pzS5pNHBAREcnMypQpQ5lSpeDNN+Grr8yT770HQ4Y4dAbnqVPnsNn+t0Vj\ncnIIJ0/udFh7Yj/ad0lERCQtREdDixZmQPPwgEmTzI3S7RzQjh07Rnh4LTw9/ShatBzly5fA23s4\ncAY4ibf3pzz7bG27timOocedIiIijnbyJDz7LPz1lzmD89dfwQGLsdtsNkqUCOPIkdYkJ/cE/sDX\ntyctWzbn558n4+LiQq9evfnss4+0P3YaSG1u0Z+QiIgTmTnzF4oXr0hgYBkGDRpCcnKy1SVJau3c\nCVWqmAGtaFFYv94hAQ3g9OnTnDhxiuTkgUBOoCVubhVo0aIxcXHXiI29yhdfDFNASyc0Jk1ExEks\nX76cTp36EBv7I5Cbr7/uibu7G0OGvGt1afKoFi2C1q3h2jWoWhXmzIHHHnNYc35+fiQnxwCngQJA\nPElJh8mVK5fWH02HFKVFRJzEtGm/ERvbD6gDhBET8w0//TTL6rLkUY0eDY0bmwGtdWtYvtyhAQ3A\n19eXQYMG4eNTA3f3/vj41OTpp8tTtWpVh7YrjqGeNBERJ5Etmzdubqf53xPOU/j4eFtZkjyK5GR4\n6y348kuwB6b/AAAgAElEQVTzeOBA+OADSKNHjO+/P4Ann6zE1q1bKVTodVq3bq1etHRKEwdERJzE\n0aNHKV++KteuPU9ych68vEYwa9ZEGjZsaHVp8qCio80tnWbPBnd3GDMGOne2uiqxiBazFRHJQI4d\nO8aYMeO4fj2WNm1aUKVKFatLkgd1+rQ5g3PLFsiRA2bNglq1rK5KLKSQJiIiYrVdu8w9OI8dgyJF\nzD04S5e2uiqxmJbgEBERuSExMZHIyEiOHTuWdo0uWWLuvXnsmLnUxsaNCmhiFwppIiKSIRw/fpzi\nxctTuXJTSpasSIcO3bHZbI5tdOxYaNQIrl6FVq3MGZx58zq2Tck0FNJERCRD6NDhFaKinuf69f3E\nxR3mt992MnnyZMc0ZrPB229D9+7mbM4BA2DaNPDyckx7kikppImISIbwzz+7SE5uf+PIl+jopmzb\n9rf9G4qNNdc9+/RTcwbnuHHw8cdptsSGZB76GyUiIhlCUFAJXF1n3ziKw9t7EWXKlLRvI2fOwNNP\nmzM3s2eHhQuha1f7tiFyg2Z3iohIhnDw4EGqV69HTEwOkpLOU7t2VX77bQpubm72aSAy0pzBeeQI\nFC5szuAMDrbPvSVD0hIcIiIiN0RHR/P333/j6+tLmTJl7LfS/rJl0LIlXLkC4eEwdy7ky2efe0uG\npZAmIiLiSD/8AC+/DElJ0KIF/PgjeGu7Lrm/1OYW7d0pIiLpQlRUFFOmTCEhIZFWrVpSqlQpxzZo\ns8GgQTB8uHn85pvm15ogIGlEPWkiIuL0Dh8+TIUKTxId3QSbzQdPzx9ZvnwB4eHhjmkwNhY6dYKZ\nM8HNDUaNgpdeckxbkmHpcaeIiGR43br1ZsKEHNhsH9448wNPPfUbq1bNt39jZ89C06bmzgF+fvDL\nL1C3rv3bkQxPjztFRCTDu3jxKjZb2E1ninDp0hX7N7R7tzmD8/BhKFjQnMFZtqz92xF5AHqwLiIi\nTu/55xvj7T0c+AvYi7f3IJ5//ln7NrJiBVSrZga0J56ATZsU0MRS6kkTERGn9/zzrTlz5hwffdSK\n5OQkunbtyIAB/e3XwIQJ5hZPSUnw3HMwebJmcIrlNCZNREQyL5sN/vMf+Ogj87hfP/jkE3OygEgq\naUyaiIjIHRw8eJAff5yMYRi0a9fm9iU74uKgc2dzY3Q3N/j2W3M9NBEnoZ40ERHJcCIjI6lcOYLY\n2A4YhhteXhNYvXoxFSpUMC84dw6aNYP16yFbNpgxAxo0sLZoyXC0BIeIiMi/tG79Ir/8EoxhvHXj\nzHc0aLCShQtnwt695gzOgwchMBDmz4dy5SytVzKm1OYWze4UEZEM59KlaxhG4E1nArly5TqsWgVV\nq5oBrWJFcwanApo4KYU0EZFHZLPZ1LvvpF54oRne3kOALcB2vL3fZUjx/OaitJcuQZMmZmArUMDq\nUkXuSiFNROQhXb58mTp1mpIliye+vrkZNWqM1SXJv3Ts+AIffdSLAgXakz9fKxZXyUfdHydCYiK8\n8Qb8+iv4+Fhdpsg9aUyaiMhDatKkLYsX+5CQ8C1wGG/v+syfP4mnn37a6tLk3+LjoUsX+Plnc2P0\nkSOhZ0+rq5JMQmPSRETS2KpVK0hIGAx4AqWJje3EihUrrS1Kbnf+PNSpYwY0X1+YN08BTdIVhTQR\nkYeUK1deYPuNIwNPzx3ky5fXypLk3/btMycIrF0L/v7m740aWV2VyEPR404RkYe0fPlynn32eQyj\nCa6uhylSJIbNm1fg5eVldWkCsHq1ubXTxYsQFmb2oPn7W12VZEJaJ01ExAL79u1j+fLlZM+eneee\new5PT0+rSxIw99zs0sWcINC4MUydaj7qFLGAQpqIiIhhwNChMHiwedynD3z5ZbrZg9MwDCZMmMT4\n8TPJls2bIUPeJDw83OqyJJUU0kREJHOLj4du3cxeNFdX+OorM6SlIyNHfs8774wgJuZj4Cze3u+x\nYcMflNNCu+maQpqIiGReFy+a489WrzbXPZs2zXzMmc4ULVqew4e/A568cWYwr78ew1dffWplWZJK\nqc0t7nasRUREJO0cOGDuwblvHzz+uLkHZ1jYXS//+++/GTduEoZh0LVrR0JDQ9Ow2HtzcXEBbDed\nScbV1cWqcsRJaAkOERFJf9auhSpVzIAWGmruwXmPgLZ161aqVq3FiBHZGDkyO9Wq1WHz5s1pWPC9\nvfVWT7y9OwNTga/x8RlN166drC5LLKbHnSIikr5MnQovvggJCebaZ9OmQbZs93xL06btmTu3KtD7\nxplRNGq0kgULpju62gc2ZcpUJk78hWzZvHnvvb6E3SN0Svqgx50iIpI5GAZ8+CH85z/mca9e8PXX\n4H7/H2XXr8cAeW468xjXr8emHF2+fBkXFxeyZ89u35ofQvv2bWnfvq1l7Yvz0eNOERFxfgkJ0Lmz\nGdBcXMwZnCNHPlBAA+ja9Xm8vQcBK4HVeHsPoGvX1sTHx9O4cWvy5g3kscf8ad68PYmJiY78TkQe\nmHrSRETEuV26BM2bw8qV4O1t7sXZtOlD3aJduzZER0fz6af9MQyD/v3fpGPHF3jzzXdZvjyexMTz\ngI1Fi5rz0UefMnjwIId8KyIPQ2PSRETSwJ49exg27GuuXLlOx44taN78OatLSh8OHTLHne3dC/nz\nmzM4K1a02+2rVKnPpk2vAf+/r+evRERMYsWKOXZrQzIvjUkTEXFyBw4cIDz8Ka5ffw3DKMDSpX25\nePES3bp1sbo057Z+vdljdv48hISYAa1gQbs2ERRUkL/+WkliYiPAwMNjJcWLF7JrGyKPSj1pIiIO\nNnDge3zySRw222c3zqylUKGeHDmy09K6nNqMGdCxo7mbQP365rGfn92bOX36NJUq1eTKlQJAMrlz\nX+TPP1eRJ0+e+75X5H7UkyYi4uQSE5Ow2bxuOuNFUlKSZfU4NcOAYcNg0I0xYT16wLffPvAEgYeV\nP39+du/eyurVq3FxcaFmzZp4e3s7pC2Rh6WQJiLiYC+80Ibvv69DTExR4HG8vd+iZ88XrS7L+SQk\nwCuvwPjx5gzOzz6Dvn3Nrx3I19eXRo0a3f9CkTSmx50iImlg3bp1DBw4jGvXounQoTmvv977xlZA\nAsDly9CiBSxfDl5e5mbpzZtbXZVIqmiDdRERSROGYZCQkEDWrFnte+PDh809OHfvhnz5YN48qFTJ\nvm2IWCC1uUWL2YqIyH39/vvv5MiRH29vX4KCQtm3b599brxxI1SubAa0MmXMPTgV0EQA9aSJiMh9\nHD16lODgJ4iJmQ1Uw8XlOwIDv+PIkcjUPbL95Rfo0AHi4qBuXZg5EyzclknE3tSTJiIiDrVlyxbc\n3Z8EngRcMIzenDlzlnPnzj3aDQ0DPvkEWrUyA9pLL8GCBQpoIv+i2Z0iInJPBQoUIDn5HyAG8Ab2\nAQnkyJHj4W+WmAg9e8K4cebxZ59Bv34On8Epkh6pJ01EMrTo6Gj2799PTEyM1aWkW1WrVqVp05r4\n+lbCx+dFvL1rMnLkN2TJkuXhbnTlirnF07hx4OlpPu7s318BTeQuNCZNRDKs2bPn0L59Z1xdc2AY\nV5k1awr169e3uqx0yTAMli1bxrFjx6hYsSLly5d/uBscOWLO4IyMhLx5zRmc4eEOqVXEWTjtEhxd\nunRhwYIF5M2bl7///huAN998k/nz55MlSxaKFSvGhAkTyH5jDMKwYcMYP348bm5ujBgxgnr16t1e\nrEKaiDygs2fPUqRIMDExC4FKwFp8fZ8jKupAyr87kkY2b4Znn4WzZyE42Bx/Vriw1VWJOJzTThzo\n3LkzixYtuuVcvXr1+Oeff9ixYwclSpRg2LBhAERGRjJ9+nQiIyNZtGgRPXv2xGazOao0EckE9u/f\nj4dHEGZAA6iOi0s+Dh8+bGVZmc+sWVCzphnQ6tSBdesU0EQekMNCWo0aNciZM+ct5+rWrYurq9lk\n5cqViYqKAmDOnDm0bdsWDw8PChcuTFBQEJs3b3ZUaSKSCRQqVIj4+P3A/4eyvSQmniAgIMDKsu7J\nMAw2b97M3LlzOX78uNXlpI5hwOef/28GZ5cu8Pvv8CiTDUQyKcsmDowfPz5lr7STJ0/e8g9nQEAA\nJ06csKo0EckAAgIC+Oyzj/DyCid79lp4eVXnu+++Jk+ePFaXdkeGYdC5c09q1WpDhw7/pVSpCixe\nvNjqsh5NYiK8/DK8+eb/NkwfNw48PKyuzOnt2rWLHj360KVLT9atW2d1OWIxS5bg+Oijj8iSJQvt\n2rW76zXa005EUqt375dp1KgeBw8epESJEhQqVMjqku7qjz/+4JdfVhIdvRPwBVbz/POtuXTpVPr6\n9/DKFWjdGpYsgaxZ4aefzN40ua+dO3dSrVptYmJewzC8mD69ObNnT6Zu3bpWlyYWSfOQNnHiRH7/\n/Xf++OOPlHP+/v63dO1HRUXh7+9/x/cPHjw45euIiAgiIiIcVaqIZABFixalaNGiVpdxX0ePHgUq\nYwY0gBpcu3aB+Ph4PD09LazsVlFRUVy7do2goCA8/t0zduyYOYNz1y547DGYMweqVrWm0HTos8++\nJTq6P/A2ADExj/P++18opKUjK1euZOXKlXa7X5qGtEWLFvHZZ5+xatWqW/7RadKkCe3ataNv376c\nOHGC/fv3E36Xqdk3hzQRkYyiQoUKGMZ7wEGgGC4uYyhUqJTTBDTDMOjatRc//zwdD4+c5M6dlTVr\nFhEYGGhesGWLOYPz9GkoVcocf1akiLVFpzOxsfHAzWO5cxIXF29VOfII/t15NGTIkFTdz2Fj0tq2\nbUu1atXYu3cvgYGBjB8/nldffZXr169Tt25dwsLC6NmzJwDBwcG0bt2a4OBgGjZsyPfff5++uvdF\nRFIpLCyMzz8fTJYs5fHyykeBAp+zYMEMq8tKMXXqVGbM2Ex8/BGuX99PVFQb2rfvYb7422/w1FNm\nQKtVC9avV0B7BN26tcXLawiwAFiBj88bdO9+92FBkvFpMVsREScSGxvLpUuXyJcvH25ublaXk+LN\nN9/h88+zAYNunDlCzhzVufheX3PXAMOAzp1h9Gh42J0IJMWsWbMYMuRrkpKS6NWrEz179lCnRTrm\ntIvZOoJCmoiINcynIROJiVkKZMWdr5j62Be0PHdjJv6HH8LAgdriSeQmCmkiIuJwycnJNGvWjuXL\nN5HTLQ+T4v6hdmKcOYNz0iR4/nmrS5R0bPfu3Rw+fJjSpUtTJAM9KnfaHQdERCTjcHNzY+7cafz5\n63/Zm/eyGdDy5IHlyxXQJFU++ugzKlZ8mnbtvqFMmXB++mmK1SU5DfWkiYjIg9m61ZzBeeoUlCxp\n7sFZrJjVVUk6tn//fkJDqxMbux0oAPyDp+eTnD17nGzZslldXqqlNrdYspitiIikM3PnQtu2EBNj\n7sX566+QK5fVVck9bN68mUWLFpMjR3ZefPFF/Pz8rC7pNkeOHCFLljLExha4caYM7u65OXXqVIYI\naamlx50iInJ3hgHffAPNmpkBrVMnczcBBTSn9uuvvxIR0YQhQ2J4++11hIZW5erVq1aXdZvg4GAS\nEnYC226cWYyra/T/1t/L5BTSRETkzpKSoE8feP11M6x98AFMmKAlNtKBPn0GEhs7HZttGHFx0zl9\nugwTJ060uqzb+Pv78+OP/8XLqxbe3oFkz96J+fNn4uXlZXVpTkGPO0VE5HbXrkGbNubOAVmymOHs\nHvst30t0dDSDBg1ly5ZdhISUYPjwwWTPnt3OBcvNrl27DPxvO7SEhGJcvnzFuoLuoWXLFjRq1JAz\nZ87w+OOPkzVrVqtLchqaOCAiIreKioLGjWHHDsidG2bPhurVH+lWNpuNJ5+sx/bteYmLa0OWLHMo\nWTKSrVtX3773p9hNu3Zd+e23K8TFfQ0cwsurNStXzr3rloviGFqCQ0RE7GfbNqhc2QxoxYvDxo2P\nHNAADhw4wM6de4mL+wloQkLCWA4fvsyOHTvsV7PcZty4kTRrlh0/vyd4/PGXmDz5ewW0dEghTURE\nTPPnQ40acPKkuRfnhg0QFGR1VXIHcXFxdOzYg+zZ81OgQHGmTp12y+ve3t5MnfoDV66c5sSJvTRv\n3tyiSiU1FNJERARGjoSmTSE6Gl54wZzBmTt3qm8bFBREuXIl8fTsAMwlS5aXKFIkB+XLl099zZlY\nz579mDnzNFev/snp05Po1q0va9eutbossTOFNBGRzCw5GV57zZzFabPB4MHw44/mdk924OrqyrJl\nc+jRI5Ann/wvXbr4sWbNItzdNW8tNebOnU9c3BdAIFCN2NgezJ+/0OqyxM70X4mISGZ1/bo5Y3Pe\nPHMG5w8/mL1odubj48PXX39i9/tmZn5+Obhw4RBgPo728DhI7twh1hYldqeeNBGRDGrPnj08+2wb\nKleux7Bhn2Oz2f734v+PO5s3z1yYdulShwQ0cYyRIz/Gy+sFXF3fxtOzHXnzbqJbt25WlyV2piU4\nREQyoOPHj1O27BNcu/YWhlEab+8PeemlGmaP1o4d5hIbUVHmxIAFC6BECatLlof0119/sWDB7/j5\nZaNTp07kyJHD6pLkX1KbWxTSRMRyycnJbNiwgejoaCpXrqwfNnYwcuRI3nprO3FxP9w4cxwfn/Jc\nnzkZWrc2H3VWrw6//QZ58lhaq0hGpQ3WRSRdS0hIoE6dpmzbdgxX13y4u+9n7dollC5d2urS0jUX\nFxcg+aYzSXRLjDd70Gw2cyza+PF2myAgIvanMWkiYqkxY8awZYvB9es7uHp1OZcuDaBTp95Wl5Xu\ntWzZEi+vpbi6DsaVqYxwr8zXCdFmQHvvPZg8WQFNxMkppImIpfbtO0xsbC3+v2PfMOpy5Mhha4vK\nAPLnz8/WrWvp3Pooqx/rx6tJ5zA8PGDSJBg6FFxcrC5RRO5DIU1ELFW5cgV8fKYBlwADd/f/UqFC\nBavLyhCKeHoybv/fPHnuFOTIgcuSJdCxo9VlicgD0sQBEbGUYRj07t2PsWPH4u7uTdGihVm+fB55\n8+a1urT0bedOc/zZ8eNQtCj8/juULGl1VSKZimZ3ikiGcOnSJaKjo3n88cdxdVUnf6osWmTO4Lx2\nDapVg9mz4bHHrK5KJNNRSBMRkf8ZPRp69za3e2rTBiZMAE9Pq6sSyZRSm1v0v6siInYSFxfHmjVr\nWLt2LQkJCWnbuM0G/fvDK6+YAe3dd2HKFAU0kXRM66SJiNjB+fPnqVKlNmfPugPJBAR4sGHDMrJn\nz+74xmNizC2dfvsN3N1h7Fh48UXHt5sOGIbBvn37uHz5MmXLlsXHx8fqkkQemHrSRETsoH//9zh2\nLIJr17Zw7do2Dh0KZdCgoY5v+PRpiIgwA1qOHLB4sQLaDYZh0KFDd8LCnqZevZ4ULhzM7t27rS5L\n5IEppImI2EFk5EESExsALoAL8fENiYw86NhGd+2CypXhzz+hSBFYvx5q1XJsm+nIzJkzmT37L2Jj\n93P16lYuXBjA889rE3JJPxTSRCTduHDhAm3bdqV06Sq0atWJM2fOWF1SisqVQ/H0nAQkAQl4ef1E\nlSrlHdfg0qXw5JNw7BhUqQIbN4K20rrFnj17iIlpAJiPOA2jOQcP7rG2KJGHoJAmIulCUlISNWs2\nYtYsb/bs+YLZsx+jWrW6xMfHW10aAMOHD+aJJy7j5eWPp6c/1avD++8PcExjY8dCw4Zw9Sq0agXL\nl4PWlbtNmTJl8PZeAFwFwNV1KiVLlrG2KJGHoCU4RCRdiIyMJDy8MdHRBzEfKRpky1aOP/4YT6VK\nlawuDzDHQEVFReHi4oK/v/+NTc7tyGaDAQPg00/N4wED4MMPQevK3ZFhGPTo8Ro//fQzHh558fVN\nYNWqhRQvXtzq0iST0DppIpIp7N+/n9DQCGJjDwNZgCR8fEqybt2vhIaGWl2e48XGQocOMGuWOYNz\n9Gjo2tXqqtKFY8eOcfnyZUqUKIGnliSRNKR10kQkUwgKCqJ69Up4eT0HTMDLqxXlywcREhJidWmO\nd+YMPP20GdD8/GDhQqcMaGPGjCN37kB8fHLRvn034uLirC4JgIIFC1KuXDkFNEl31JMmIulGQkIC\nn3/+FVu2/ENoaEnefrtfxv/BGxkJzzwDR45AoUKwYAGUcb5xVYsXL6Z58+7ExMwBCuDl1Z327Qsx\nduwIq0sTsYwed4qIZFR//AEtWsCVKxAeDnPnQr58Vld1R3369GPkyLzA2zfORJI/fzNOndpnZVki\nltLjThGRjOiHH6BBAzOgtWgBK1Y8VECLioqiYcNWFC0aRqtWnbhw4YIDi4XHHstJlix7bzqzh1y5\ncjm0TZGMTj1pIiLOxGaDQYNg+HDz+K23YNiwh5rBGRMTQ8mSYZw61Zbk5MZ4eEyiZMk/2b59HW5u\nbg4p++LFi4SGVuXChXIkJxfA3X0qCxbMJCIiwiHtiaQHqc0t2rtTRMRZxMZCp04wcya4ucGoUfDS\nSw99m7/++ourV/1ITh4MQGJiRQ4dKsSRI0coVqyYnYs25cqVi7//3sTUqVOJjo6mUaNVBAcHO6Qt\nkcxCIU1E0qXLly+zZs0asmbNSs2aNcmaNavVJaXO2bPQtKm5c4CfH/zyC9St+0i38vT0JDn5KpAM\nuAFx2GwxDv+McuTIwSuvvOLQNkQyE4U0EbHchQsX2LZtGzlz5qRChQr3XQT20KFDVKnyNPHxJTCM\nqxQsCBs2LCNbtmxpVLGd7d5tzuA8fBgKFjRncJYt+8i3CwsLIzS0ENu2tSA2tgHe3jNo0KABAQEB\ndixaRBxNY9JExFJbt26ldu3GQEmSko7SsOFTTJ8+Add7jMGqX78Fy5aFY7O9DRhkzdqB/v2D+PDD\nwWlTtD2tWAHNm8Ply/DEEzBvHuTPn+rbxsXF8eWX37Br134qVw6ld++eDhuPJiJ3piU4RCRdCwoq\nz8GDbwNtgVh8fGowYcLbtGrV6q7vKV78CQ4c+A6ofOPMWFq1Ws+MGRPSoGI7mjABuneHpCR47jmY\nPBm8va2uSkTsREtwiEi6FhV1EGh448iL+PgIDh48eM/3VK8eTtas3wFJwFW8vSdSs2a4gyu1I5sN\n3n0XunQxA1q/fuZkAQU0EbmJQpqIWCo4OAxX13E3js6SNetcwsLC7vmeESM+ITz8HFmy5MbDowDP\nPx/KK6/0SFUd+/bt49tvv2XChAlcv349Vfe6p7g4aN8ePvrofzM4P//c/FpE5CZ63Ckiljp06BAR\nEY24eDGGxMTL9OvXl48/Hnzf9xmGwaVLl/Dw8Ej1hIE1a9bQoEFzbLbmuLmdJF++I2zbtg4/P79U\n3fc2585Bs2awfj1ky2b2ntWvb982RMRpaEyaiKR7SUlJHDt2jBw5cliySn1wcGV2734LaAFA1qzt\nGTy4HO+88/a93/gw9u41Z3AePAiBgTB/PpQrZ7/7i4jT0WK2IpLuubu7U7RoUcvav3DhPPC/JS/i\n40M4c+a8/RpYudKcwXnpElSsaM7gLFDAfvcXkQxJY9JEJNOrX78Onp7/Aa4AkXh7/5f69Wvb5+Y/\n/gj16pkBrUkTWLVKAU1EHohCmohkeqNGfUmDBu54eBQgW7YIhg9/kwYNGqTupoYB779vbvOUmAiv\nvw6//go+PvYpWkQyPI1JE5EMLzk5mUGDhvDTTzPw8vLmk08G0aJFC8c1GB9vLq/x88/mxugjRkCv\nXo5rT0ScksakiYjcx3vvfcDIkcuJiZkOnKVjx07kzp2biIgI+zd2/ry5MO3ateDrC9OnQ6NG931b\nTEwMFy9epECBAtoZQEQAPe4UkUxgypRZxMR8A4QCdYmJeZ0ZM2bbv6H9+6FqVTOg+fubvz9AQBs1\nagw5c+ajRIlKBASUIDIy0v61iUi6o5AmIhmej48PcCrl2M3tFH5+dh4btmYNVKkCBw5AWBhs2gSh\nofd92/bt2+nffzAJCduJjT3F6dMDaNiwpX1rE5F0SSFNRDK8zz57Dy+vrsCHuLn1wc9vBr16vWy/\nBiZPhtq14eJFaNwYVq82e9IewLZt23BxqQMUu3GmK1FRB4iNjbVffSKSLimkiUiG98wzz/DHH7N5\n442rDBiQk507NxEYGJj6GxsGDBkCHTqYMzj79IHZs82xaA+ocOHCwCbg2o0za/H1zYmnp2fq6xOR\ndE2zO0VEHkV8PHTrZvaiubrCV1+ZIe0hGYbBSy/1YerUeXh4lCYpaQuzZk2mvraLEkn3tC2UiIiD\n/PPPP3To0JOjRw8TFlaByZNHkz9/frhwwZzBuWaNue7ZtGnmY85U2Lp1K6dOnaJ8+fIEBATY6TsQ\nESsppImIOMClS5cICgrh0qX3MIx6uLuPIShoKf/M+RnXxo3NmZyPP27uwRkWZnW54mAbN27kjz/+\nIFeuXHTs2PHGZBSRe1NIExFxgCVLltCq1TCuXl1x44xBrSx5WOJj4Hbpkjlzc/58UK9Xhjd16jS6\ndn2D+PiOZM26h4IFo/jrrzV4e3tbXZo4udTmFk0cEJE0c+DAAX744QdmzZpFQkKC1eXcU7Zs2UhO\nPgUkAtCGcfyecNEMaI0amY86FdAyhT593iY2dg422yfExs7m+PECTJ061eqyJBNQSBORNLF8+XJC\nQ6vy2murefHFr6hWrS7x8fFWl3VXlStXpnLlEnh7NWAQdZhKd7IC9OwJc+ZAtmxWl5gmDMNg1Kgx\nPP10U1q16sTevXutLinNXbt2CQi6ceRCYmIxLl++bGVJkkk4LKR16dKFfPnyERISknLu4sWL1K1b\nlxIlSlCvXr1b/pIPGzaM4sWLU6pUKZYsWeKoskTEIl269CEmZhLR0ZO4fn01u3d78tNPP1ld1l25\nurqyaO5U/iofy4f8geHigvHll/Dtt+CeeXbU+/DD4fTv/x0rV3Zg1qxgwsOf4ujRo1aXlabq1m1E\n1qyvA6f/j707j6qqXNw4/j1MwkFwQAHHKFIRNYecyyIVK3PWLL0paXNqwy2HssGylK6WaWWjaWrl\n0Cqh/C0AACAASURBVOAcaRnmPGRpDjnPKGkKCAcEztm/P7bXmz+HUA7sAzyftViLszln76e9NB73\n3u/7Aon4+HxJmzZtrI4lJUCBlbR+/fqRkJBw3rb4+HhiY2PZuXMnbdq0IT4+HoBt27Yxc+ZMtm3b\nRkJCAo8//jgul6ugoomIBU6cOAbcePaVF1lZjTh27JiVkS7v5El8O3Sg1urVYLdj+/ZbbE8/DTab\n1ckK1bhxE3E4ZgA9MIyhZGZ2Y+bMmVbHKlRffPExd9zhpHTpelSu/AgzZnxCgwYNrI4lJUCBlbRW\nrVpRrly587bNmzePuLg4AOLi4pgzx1w7b+7cufTq1QtfX18iIiK4/vrrWbduXUFFExEL3HTTLfj6\nvor5jNdO/P0/p1WrVlbHurg9e6BlS0hMhPBwcwWBzp2tTmURg/N/VXiXuAFcQUFBzJnzOadPH+fI\nkR106tTJ6khSQvxjSZswYQKnTp1yy8GSk5MJCwsDICwsjOTkZACSkpLOmxeoatWqHDlyxC3HFBHP\n8MUXH9O06R68vALx92/MmDHDufXWW62OdaFVq8w1OHfsgHr1zDU4b7zxnz9XTA0c+Ah2ey9gLjbb\nm/j7z6Znz55WxxIpEf7xwYrk5GSaNGlCo0aN6N+/P7fffjs2N1zut9lsl92PO44hIp4jJCSEFSsS\nyMnJwcfHxzP/js+cCXFx5moCd9xhvg4OtjqVpV555QUqVCjPrFkfERJShtGjf+Laa6+1OpZIifCP\nJe31119n5MiRLF68mClTpjBw4EB69uzJAw88QGRk5D99/DxhYWEcO3aM8PBwjh49SmhoKABVqlTh\n0KFD5953+PBhqlxiceIRI0ac+z4mJoaYmJgryiAi1vL19bU6woUMA0aPhuHDzdePPgrvvFOiBghc\nis1m44knBvDEEwOsjiLi8RITE0lMTHTb/vI8me1vv/3G5MmTSUhIoHXr1qxZs4a2bdsyZsyYS35m\n//79dOzYkd9//x2AIUOGEBISwtChQ4mPjyclJYX4+Hi2bdtG7969WbduHUeOHKFt27bs3r37gn9p\nazJbEXG77GyzlE2ebA4KGDsWSuAAARFxvwJfcWD8+PFMnTqVkJAQHnzwQbp27Yqvry8ul4saNWqw\nZ8+ei36uV69eLFu2jBMnThAWFsarr75K586d6dmzJwcPHiQiIoJZs2ZRtmxZAEaNGsWnn36Kj48P\n48ePv+jiwippIuJWp05B9+7w008QEACff26uySki4gYFXtJefvll+vfvzzXXXHPBz7Zt20Z0dPRV\nH/xKqaSJiNvs3Qt33QV//AFhYTB/PjRpYnUqESlGtHaniFhu9uyvGDRoKKdPp3DnnXcxZcpESpcu\nbXWsS1uzBjp1guPHoU4dWLgQLvIPURGR/NDanSJiqbVr1xIXN5Dk5Kk4HFtZsCCHfv08+CHz2bPh\nttvMghYbCytXqqCJiEdSSRORfFmyZAlnztwP3ASEc+bMmyQkfGdxqoswDHjjDejZE7Ky4KGHzCto\nZcpYnUxE5KJU0kQkX8qVK0epUrv+tmUXwcHlLvl+S+TkwMMPw7Bh5uv//Ac+/BA8cToQEZGz9Eya\niORLeno6DRvexJEj15GdfT1+flP54osP6dKli9XRTKmp0KMH/PAD+PvD9OnmiE4RkQKmgQMiYrn0\n9HSmTZtGSkoKsbGxNG7c2OpIpv37zRGc27ZBaCjMmwfNmlmdSkRKCJU0EZGLWbcOOnaEP/+E6Gjz\n+bOICKtTiUgJotGdIiL/39dfw623mgWtbVtzBKcKmogUMSppIlJ8GAaMGQN3322O4HzgAVi0CM6u\nbCIiUpSopIlI8ZCTY67BOWSIWdbi4+HjjzWCU0SKLB+rA4iI5Ftqqjn/2eLFUKoUTJtmXk0TESnC\nVNJEpGg7eNAcwbllC1SsCHPnQosWVqcSEck33e4UkaJrwwZzSo0tWyAqylyT08KCdvToUXr3fpBm\nzdoxZMiLnDlzxrIsRY3L5WLRokVMmTKFHTt2WB1HxCNoCg4RKZrmzIHevSEzE1q3hq++gnLWrXRw\n+vRpate+keTk7uTm3kJAwPu0bWtn3rwZlmUqKpxOJ3fddTcrV+7DMOrgcn3PjBmT6NSpk9XRRPIl\nv71FtztFpGgxDHj7bXjmGfP7fv3ggw/Az8/SWMuWLSMtrSq5uaMByMy8jYSECqSlpREcHGxpNk+3\nYMECVqw4SEbGOsAXWE1cXDdOnVJJk5JNtztFpOjIzYUBA+Df/zYL2uuvw6RJlhc0MP/FDM6/bXEB\nxtntcjlJSUm4XI0wCxpAY9LSjuN0Oi/3MZFiTyVNRIqGtDRzBYH33zdHcH75JTz/PHhICYqJiaF8\n+eP4+j4JfIXd3pUuXXoQFBRkdTSP16JFC2AesAVw4e09mnr1muPt7W1xMhFr6Zk0EfF8hw5Bhw6w\neTNUqGCO4GzZ0upUFzh+/DjDh49k9+6DxMQ047nnnsVX87TlydSp03nkkQHk5GRRu3ZDFi2aTbVq\n1ayOJZIvWrtTRIq3jRvNgnb0KNSqZa7BGRlpdSopAIZhkJWVRUBAgNVRRNxCa3eKSPE1bx60amUW\ntJgYWL1aBa0Ys9lsKmgif6OSJiKexzBg/Hjo0gUcDujbF77/3tIpNkRECptKmoh4ltxceOIJeOop\ns6yNHAlTpnjECE4RkcKkedJExHOcPg333guLFpmlbPJkc8JaEZESSCVNRDzD4cPmAIFNmyAkBL79\n1nweTUSkhFJJExHr/fqrWdCSkqBGDfNK2vXXW51KRMRSeiZNRKy1cKF5xSwpCW65xRzBqYImIqKS\nJiIWeucd6NQJMjLgvvtg8WLzVqeIiKikiYgFnE548klzFKfLBSNGwNSp5nJPIiIC6Jk0ESls6enm\niM35880RnJMmmVfRRETkPLqSJiKF58gR87mz+fOhfHlYskQFLR+OHTvGoEHP0K1bXz79dIqWzRMp\nZnQlTUQKx6ZNcNddZlG7/npzwEDNmlanKrJOnTpFgwYt+euvzuTmxrB48Tj27TvIyJEvWR1NRNxE\nV9JEpOAtWgQ332wWtJtvNkdw5qGguVwunn9+BBUrXkvlyjWZOPHDQghbNHzzzTecPt2I3NxxQH8y\nMuYzduybupomUozoSpqIFKyJE2HQIHOAQO/e8OmneR4gEB//JuPHf4fDsRDIYPDgewkNrUCPHt0L\nNnMRkJOTg2GU/tuW0jiduZblERH305U0ESkYTif8+98wYIBZ0F56CaZPv6IRnDNmzMPhGA1EA01w\nOJ5jxoz5BRa5KOnQoQM+Pt9hs70H/ExAwL306tUHm81mdTQRcROVNJFiwul0kpaWlqfbXWlpaTid\nzoILk5EB3bvDuHHg6wuffQavvAJXWCDKlg0GDp577eV1gPLlg9wctmiqWrUqq1b9SOvWS6hT5zkG\nDmzGJ5+8Y3UsEXEjm1GEHmCw2Wx63kLkIj7//EsefPARcnOdVK8eyeLF3xIZGXnB+/bv30+7dl3Z\nt28n3t5efPDBe9x/f1/3hjl6FDp2hF9+gbJlzTU4Y2KualerV6+mbdtOZGX1x8srncDAb9i4cSXX\nXXedezOLiBSA/PYWlTSRIm7Lli00a9YGh+NHoA4229tERn7Grl2/XfDe6Oim7NjRA5drMPAHdntr\nVq78jgYNGrgnzObN5hqchw7BddeZIzijovK1y61btzJr1lf4+fnSt28fqlWr5p6sIiIFTCVNpISb\nPHkygwYtJSNj2tktBt7e/qSlncJut597X05ODqVKBWAY2fz3SQe7/QHGjWvGww8/nP8gCQnQsyec\nPg0tW8KcOVCxYv73KyJSROW3t+iZNJEi5vTp06xdu5Zdu3YBUKVKFWAjkHX2Hb/g7x9IQEDAeZ/z\n8fEhKCgEWHt2yxm8vH45+/l8+uAD8wra6dNwzz3w448qaCIi+aSSJlKEbN68mYiI2rRr9zj167fi\n4YefoG3bttx5Z2MCAxtSuvQ9BATcyWeffXLBKD+bzcb06Z9gt3eidOl7CAxsRJs20dx5551XH8jl\ngmefhcceM0dzDh8OX3wB/v75/C8VERHd7hQpQmrWbMSuXU8A9wNpBAbexJdfjqJDhw789NNPHD16\nlCZNmlDzMhPF7t69m7Vr1xIeHk7r1q2vfsoGh8Nc0unbb8HHBz76CPr1u7p9iYgUQ3omTaQE8fML\nJCfnKBAMgK/vv3n99UoMHjy4cIMcOwadOsH69eYIzq+/htatCzeDiIiH0zNpIiVIZGQ0NtuMs69O\n4eeXQJ06dQo3xJYt0KyZWdCuvRZWrVJBExEpACppIkXI119/RoUKowgKqou/fw369++Qv2fKrtTi\nxXDTTXDwIDRvDmvWQO3ahXd8EZESRLc7RYqYzMxMduzYQfny5alevXrhHfjjj/83QODuu81VBP7f\nCFIREfkfPZMmIgXL5YJhw2DMGPP1sGHw+uvgpQvxIiKXo2fSRMTtjh8/zi+//MLJw4fNCWrHjDFH\ncH7yCYwerYJmsVOnTtGpUy/KlatCzZo3smLFCqsjiUgB0JU0ETnPlCnTePzxJ6nsXYkvHTto4nJC\ncLA5grNtW6vjCRATcxerV1chO/sF4BcCAx/m99/Xce2111odTUT+Rrc7RcRtDh8+TM2aDYjInMIi\nBhLBAQ7YvAhZvYrSzZpZHU8wl/fy9w/E5coAfAEIDLyPd95pQz/NUyfiUXS7U0TcZs+ePcR6hbOK\n+4jgAGtpSmv7tRwoXTpPn3e5XKSkpOgfUwXIx8cHHx8/4PDZLQY22wGCg4OtjCUiBUAlTUTOqbd+\nPV9lbKUsqXxFd27jLY66TlKtWrV//OzChQsJDq5IaGg1Kle+nk2bNhVC4pLHZrMxevQo7PbWwAgC\nAjoRGemiQ4cOVkcTETfT7U4RMUdwDh8O8fEAvOnjz8iAaHKcB5g27WO6det62Y8fOnSIqKhGOBzz\ngebAdCpWfIGkpN34+PgUfP4SaPHixSQm/kyVKpXo378/AZoORcTj6Jk0EcmfzEy4/36YNQu8vWHi\nRI516sSBAweIjIykQoUK/7iLBQsWcN9975Ga+t25bXZ7FbZvX124c7mJiHiQ/PYW/RNXpCT780/o\n3NlcOSAoCL76Ctq1IxwIDw/P826qVKlCTs4WIBUoA+zE6Tydp4InIiIXp2fSREqq7dv/t7RT9erm\nGpzt2l3Vrho2bEi/fvcQGNiQoKB7sNtv4Z133sZut7s5tIhIyaHbnSIl0dKl0K0bpKZC48Ywfz5c\nwZWzS1m1ahX79u2jfv361K1b1w1BRUSKLj2TJiJXZsoUeOghyM2Frl1h+nTQFS8REbfTPGkikjcu\nF7zwAvTrZxa0f/8bZs9WQRMR8VAaOCBSEmRlmSM4Z840R3C++y48+qjVqURE5DJU0kSKEcMwmDRp\nMgsWLKVy5Yq8+OIQKvn4QJcu5sCAoCBzqo077rA6qoiI/AM9kyZSjAwf/grjx39LRsZT+Pj8TtMy\nM/k5yBfv/fuhalVYuBBuuMHqmCIiJUKRHDgwevRopk+fjpeXF/Xq1WPy5MlkZGRwzz33cODAASIi\nIpg1axZly5Y9P6xKmsglGYaB3V6WrKwtQDVuJZFvaEd5cqBRI3MEZ+XKVscUESkxilxJ279/P61b\nt2b79u2UKlWKe+65h/bt27N161YqVKjAkCFDeOONNzh16hTxZ5eoORdWJU3kkgzDoFSpQHJyDtGH\nhXzCg/iRw/4bbiBi1SoIDCyUHPPnz2fduvVERFxDXFycloUSkRKryI3uDA4OxtfXF4fDQW5uLg6H\ng8qVKzNv3jzi4uIAiIuLY86cOYUdTaRIs9ls/Kt3X173acJU4vAjh3f97PjMm1doBW348Ffo1Wsw\nr71m44knptOuXVdcLlehHFtEpLgp9JJWvnx5nnnmGapXr07lypUpW7YssbGxJCcnExYWBkBYWBjJ\nycmFHU2kaDtzhklnUnk+dx9O4J2o+ty2cR1Vr7mmUA6fnp7OmDH/ISNjGfAKDscS1q/fx/Llywvl\n+CIixU2hl7Q9e/bw9ttvs3//fpKSkkhPT2f69Onnvcdms2Gz2Qo7mpQwhmGwePFipk2bxs6dO62O\nkz8nTkDbtnjNmAGlS+O9cCGDtv9GnTp1Ci1CRkYGXl7+QOjZLT54eVUjNTW10DKIiBQnhf6wyIYN\nG2jZsiUhISEAdOvWjdWrVxMeHs6xY8cIDw/n6NGjhIaGXvTzI0aMOPd9TEwMMTExhZBaihuXy0XX\nrv9i6dItQD1crmeYPv0junbtYnW0K7dzJ9x1F+zeDVWqmCM469cv9BihoaFERkayc+fz5OYOBH4C\nfqV58+aFnkVExAqJiYkkJia6bX+FPnBg06ZN/Otf/2L9+vX4+/tz//3307RpUw4cOEBISAhDhw4l\nPj6elJQUDRyQArNo0SLuued50tPXAqWAdQQFdSA1NbloXcX9+WdzaaeTJ6FhQ3MEZ5UqlsU5evQo\nvXo9xK+/bqBKlepMm/Y+N954o2V5RESslN/eUuhX0urXr0/fvn1p3LgxXl5eNGrUiIcffpjTp0/T\ns2dPJk2adG4KDpGCkpSUhMvVELOgAdxIevpJcnNz8fX1tTJa3k2fDv37Q04OdOgAX34JpUtbGqlS\npUokJi6wNIOISHGhyWylRNq8eTMtWrTD4fgBqIOX1xtERX3L1q1rrY72zwwDXn0V/nvr/4kn4K23\nzOWeRETEYxS5KThEPMENN9zAhx++hb//TXh7B1CjxmwWLpxpdax/duYM9O1rFjQvLxg/3vxSQRMR\nKXZ0JU1KNJfLRWZmJoGFNI9Yvvz1l/n82fLlGIGB2L78Ejp2tDqViIhcgq6kieSDl5dX0Shou3fj\nat4cli/nCDaanXHS+8s5OJ1Oq5OJiEgBUUkT8SCGYfD++x/RunUX7rmnnzl/24oV0Lw5Xrt3s8lW\nhmbsZn3ucebO3cfYsW9bHVlERAqIFtUT8SCvvDKKsWNnk5HxAl5euwic34RJzixs2dn8HFSeu05/\nRjrXAeBwPMiyZXMZOtTi0CIiUiB0JU3Eg4wfP5GMjJlAd55zOfk0Mw1bdjYMGMCE1neQ6b3h7DsN\n/PyWUaNGdSvjnnPo0CGaNm1NqVKlueaaaFauXGl1JBGRIk8DB0Q8SNmylXGkLuFDxtKPKbiAxE6d\naD1nDocOH6Zp0xgyMiKALMLC0lm3LpFy5coVaKbU1FR27txJpUqVqFq16gU/NwyDWrUasXdvV5zO\nJ4FESpd+iB07fqNy5coFmk1ExJNp4IBIMfLsA31Z4tWcfkwhA196+5chcsIEsNmoVq0aO3b8yhdf\nPM3MmS+wefOaAi9oK1asoFq1mrRt+wg1atRn5Mg3LnjP8ePHOXjwIE7ni0AZoDNeXs1Yt25dgWYT\nESnudCVNxFPs3YvRvj22HTs44VuK0S1v44GJbxIdHW1JHMMwCAmpyqlTHwPtgaPY7U1ZtuxbGjdu\nfO59mZmZlClTgZycHUBVIJvSpRuwcOEH3HLLLZZkFxHxBLqSJlIcrFoFzZph27ED6tWjwp5dvJn4\nnWUFDSAtLY309DTMggZQCS+vm/njjz/Oe19AQACvvvoqdnsrfHyeITDwVlq1iubmm28u9MwiIsWJ\nrqRJsZKdnY2fn59b9/nZZ9P45JOZBAYG8Morz9KsWTO37p+ZMyEuzlxN4I47zNfBwe49xlW41JW0\nn3+ec9FF05cuXcr69eupXr06PXv2xFurIIhICZff3qKSJsXC77//zl139eTw4V2UL1+Jr7+ezq23\n3prv/b7//kc8++xYHI7RwAns9hdYuXIJDRo0yH9ow4DRo2H4cPP1o4/CO++AT95mxsnKyuK1195g\n7drN3HBDTUaMeJ6goKD85/qbFStWcNddPYBKZGcf5Pnnh/Dii5rzQ0QkL1TSpMTLzs6matUaHD/+\nKtAXWEzp0n3Yu3crFStWzNe+a9RozO7dbwL/LXwjGTDgFO+++1Z+Q5ulbPJksNlg7Fh4+mnz+zww\nDIM2bTqxZo0PmZm9KFVqAVFRe9iwYRk+eSx5eZWWlsbOnTsJDw+/6OhOERG5OD2TJiXegQMHyMz0\nBuIAG3A73t7RbN68Od/7ttlswN//grnw8spbkbqklBRo394saAEB8M038O9/57mgAezfv581azaQ\nmTkL6MmZM1PYs+cUGzduzF+2iwgODqZx48YqaCIihUwlTYq8ChUqkJ19Ajh0dksqOTm7CA8Pz/e+\nhw59HLv9AeBLYAKBge/y0EP3X/0O9+2Dli3hxx8hPBx+/hm6dLni3TidTmw2b/73V9iGzeaLy+W6\n4L0JCQkMHjyMt956i4yMjKvPLiIihUolTYq8cuXKMXLkK9jtLbHb+xEY2IS4uHuoU6dOvvf9wAP9\nmDRpFG3bfkWXLutYtiyBevXqXd3O1qyBZs1g+3aoW9d8/bepLK7EddddR506NShV6gFgCX5+TxIe\n7kWjRo3Oe9/48e/SvftjjB0bxPDhq2nc+FYyMzOvLr+H+uWXX2jSpDVVq0bTr9/jKqIiUmzomTQp\nNtatW8fmzZuJjIzktttuszrO+b76Cvr0gawsaNcOZs2CMmXytcvTp08zePCLrF+/mTp1ajBu3ChC\nQkLO/dwwDAIDy5GZuR6oARiULt2ODz/sR+/evfP33+MhDh48SJ06jUlPHwM0xN//ddq2hfnzZ1od\nTUQk371FC6xLsdG0aVOaNm1qdYzzGQaMGcO5VdAffhjefRd8ffO966CgID744O3LHNogO9uBOcEs\ngA2Xqxrp6en5PrbVsrKy8Pb2ZsmSJbhc7TCfR4SsrMl89105nE6npgARkSJPtzulSMnJyWHRokXM\nnDmTpKQkq+NcXk6OWcr+W9D+8x/44AO3FLS88PLyom3bjpQq9TCwB/gam20+bdq0KZTjF4TMzEw6\ndOhJ6dJlsNuDmDXrG7y8jvO/wR0n8Pb2xctL/2sTkaJPV9KkyDhz5gytWt3B9u3p2GzVgCdYunTh\neUsUeYzUVOjRA374Afz9Yfp06N690GPMnj2FBx98gqVL21ChQigff/wtkZGRhZ7DXZ55Zjg//ujE\n6UwFMli+PJbAwJNkZ8eRnd0Iu/0DnnvuxbOjckVEijY9kyZFxnvvvcfgwQvJzFyAeRH4c6Kj32Hr\n1jVWRzvf/v3QoQNs3QqhoTBvnjlgoIj6888/2bJlC1WqVKFWrVqWZomKasaOHeOAlme3TKJz5x9p\n1Ciaw4eTadfuVnr06GFlRBGRc/RMmpQYBw4cJjOzBf+7S38TR48OszLShdatg06dIDkZoqNh4UKI\niLA61VX74Ycf6NKlFz4+0WRn72DgwIf4z39GWpanWrXK7Ny5BsNoCRj4+a2hRo0IXnrpBcsyiYgU\nFF1JkyJj3rx59Oo1GIfjJyAMX9+niI1NZuHCWVZHM33zDdx3H2RmQtu2MHs2lC1rdaqrZhgGZcuG\nkZY2C4gB/sJuv5Eff5xB8+bNLcm0c+dOmje/jZycJthsp6lY8U82bPiZcuXKWZJHRORytOKAlBid\nOnViyJA4fHwi8fEJpkGDLUyd+r7VscwRnGPHms+gZWbCAw/AokVFuqCBuRxUZqYDs6ABhODl1Zzd\nu3dblqlmzZrs2PEbH398L1OmDGDz5jUqaCJSbOlKmhQ52dnZZGVlERwcbHUUcwTnwIHw0Ufm6/h4\nGDLkipZ48lSGYRAefi1//jkW6AEcwG5vwapV31G/fn2r44mIeDwtsC5ildRU6NkTFi82R3BOnQp3\n3211KrfasGEDt9/ehexsf3JyjvPGG6N48skBVscSESkSVNJErHDggDmCc8sWqFjRHMHZvDmGYRS7\n6R+ysrI4cOAAoaGhurUoInIF9EyaSGHbsAGaNzcLWlQUaUuW8M769YSFXYePjx9RUY3ZsWOH1Snd\nxt/fn1q1aqmgiYgUMl1JE7kS334L//qXOUCgdWt2jR5N8zu7cvJkGvAZ0B6b7VPCwt7kwIHt+Pn5\nWZ1YREQsoitpIoXBMOCtt8xVAzIzoV8/+O47+j75AidPdgUaAd0AfwzjcdLTDQ4cOFCgkb78cgbV\nq9ehYsVrGTRoMDk5OQV6PBERKVwqaVIsLFq0iOjo5lSvXpehQ18iNzfXfTvPzYUBA+CZZ8yy9vrr\nMGkS+Pmxb99eoB2wF/jvwuXJZGefoHz58u7L8P/89NNPPPjgMxw69D4nTiTw6acbGTr0pQI7noiI\nFD6VNCny1qxZQ48e/di+/QUOHZrGu+8m8txzI9yz87Q06NgR3n8fSpWCGTPg+efPTbHRqFFDvL2X\nAe2B5sBD+Pk1YdiwoYSEhLgnw0V8/fV8HI4ngFuAWjgcbzFr1twCO56IiBQ+lTQp8r7+eg6ZmQOA\nDkBDHI6JfP757Pzv+NAhaNUKEhKgQgVYuhTuuee8t0yZ8h5RUSvw95+Lj89eWrTYQULCZ7zyyvD8\nH/8yypULwsfn4N+2HCQoKKhAjykiIoVLa3dKkRcYaMfH50/+d4czmYAAe/52unGjOcXG0aNQq5a5\nBmdk5AVvCw0NZfPm1Rw+fBi73U6FChXyd9w8GjDgMT78sBkpKdnk5obj7/8h48ZNLZRji4hI4dDo\nTinykpKSqFevKamp3XE6qxAQ8DaffTaBu+/ucXU7nDcPevUChwNiYsw1OT1w+onk5GQ+/XQyGRkO\nunTpROPGja2OJCIif6PJbEWAI0eO8N57H5Cams7dd3cmJibmyndiGDBhAjz9tPl9XJy53JOm0RAR\nkaugkibiDrm5Zjl7913z9WuvnTdAQERE5Erlt7fomTSR06fh3nth0SLzqtmUKebtziImOTmZKVOm\nkJGRSdeunWnYsKHVkUREJB90JU1KtsOHzQECmzZBSAjMmQM332x1qit29OhRbrihGamp7cjNDSUg\n4BPmzv2Ctm3bWh1NRKTE0pU0kav1669mQUtKgho1zCtp118PwMaNG1m1ahVhYWF07doVHx/PWYi2\nfAAAHtpJREFU/qsyYcJ7pKR0ITd3AgAOR2Oefvplfv9dJU1EpKjSPGlSMi1YYM6BlpQEt9wCq1ef\nK2jTp3/BzTe3Z/DgrfTr9xaxsV1wOp0WB768kyfTyM295m9bIkhLS7Msj4iI5J9KmpQ877wDnTtD\nRgbcdx8sXmze6gQMw+CRRwaSmbmYrKz3ychYzoYNf7JgwQKLQ19ejx4dsdvfBlYBu7Dbn+HuuztZ\nHUtERPJBJU1KDqcTnnwSnngCXC54+WWYOtVc7ums3NxcsrJOA9Fnt/jgctXh+PHjbo2SlZVFYmIi\nP/30E1lZWfneX2xsLBMnjqJy5f6EhLSlf//GxMe/4oakIiJiFQ0ckJIhPR1694b588HXFz791LyK\ndhE33ngrmzbdhNP5MrARu70z69cnEh0dfdH3X6m//vqL5s1bk5zsB9gIDT3D2rVLC3StTxERKXz5\n7S26kibF33+fO5s/H8qXhx9+uGRBA1iwYAaNGq3By6s05cr14IsvPnZbQQMYNmwEBw604vTpdZw+\nvZaDB29hyJCX3bZ/EREpHjx7yJoUWZs3b2bevPkEBtrp27evdVeJNm0yR3AePmyuvbloEdSsedmP\nVKpUiXXrlmIYBrYCmMx2+/a95OQ8Apj7zslpxx9/vO/244iISNGmK2nidkuXLqVFizaMGJHCc8/9\nSp06Tdz+TFeeLFpkznl2+DDcdBOsWfOPBe3vCqKgAdx0UyMCAiYD2UA2/v6TadmyUYEcS0REii49\nkyZuV6dOC7ZtGwJ0BcDH51Geey6cV18dUXghJk6EQYPMAQK9e8OkSeDvX3jHv4ysrCw6dbqXn3/+\nGbBxyy2tmDdvBv4ekk9ERNxDk9mKx0lNTQEiz73OzY3kr7+SCufgTic8+yy8/bb5+qWXYMSIK16D\n0+l04u3t7f58gL+/P99//y3JyckYhkF4eHiBXbUTEZGiS7c7xe26du1AQMBg4ACwDrt9Ap0731nw\nB87IgG7dzILm62uuwfnKK1dU0NavX0+VKjXx9fWjWrUofvnllwKJarPZCA8Pp1KlSipoIiJyUbrd\nKW6XnZ3NwIHPMmvWV/j72xk16gX697+/YA+alAQdO8LGjVC2LHz7LcTEXNEu0tLSuOaaKFJSxgPd\ngK8oV+7fHDy4g9KlSxdEahERKcby21tU0qTo27zZHMF56BBcdx0sXAhRUVe8m3Xr1hEb+yhpaRvP\nbQsOrs/SpZ9y4403ujOxiIiUAJonTUq2hARzBOehQ9CihTmC8yoKGkBoaCjZ2YeAv85uOU529mFC\nQ0PdFldERCSvVNKk6PrgA/MK2unTcM89sHQpVKx41buLiIhg0KBHCQxsRkDAQ9jtzXjqqUFUq1bN\njaFFRETyRrc7pehxuWDIEHjzTfP188/DyJHg5Z5/cyQmJvLHH38QHR3NLbfc4pZ9iohIyaNn0qRk\ncTjMJZ2+/RZ8fOCjj6Bfv/Pe4nK5eOONt5g7dwmhoeX5z39eJuoqb4GKiIhcLZU0KTmOHTNHcG7Y\nAGXKwDffQOvWF7ztySeH8MknK3E4hmOzbScoaAxbt26gatWqFoQWEZGSSiVNSoYtW+Cuu+DgQYiI\nMJd8ql37om8NDCyPw7EZMEuZv/8D/Oc/DRg0aFDh5RURkRJPozul+Fu82Fx78+BBaN4c1q69ZEGD\n/6656fzblhy83PS8moiISGHRby4pVAkJCVx77Q2UL1+Nf/3rQTIyMi7/gY8+gvbtIS0N7r7bHMH5\nD1NiPPHEIOz2rsAsvLxGEBDwI927d3dLfsMw+OOPP/j999/Jzc11yz5FREQuRrc7pdBs3ryZFi3a\n4nBMBWrh7z+UDh0CmD37swvf7HLBsGEwZoz5+rnn4LXX8jSC0zAMJk78kDlzlhAeHsLIkc8TERGR\n7/xnzpzhzju7s3btJry8/KlevRw///wdISEh+d63iIgUP0XydmdKSgo9evSgdu3aREdHs3btWk6e\nPElsbCw1a9akXbt2pKSkWBFNCtD3339PTk5v4A7gWrKy3mXRovkXvtHhgJ49zYLm4wOffAKjRuV5\nig2bzcZ99/Xi7rtv58Ybozlz5oxb8r/xxpusWeOFw7GX9PSd7N7djEGDhrpl3yIiIv+fJSXtySef\npH379mzfvp3NmzcTFRVFfHw8sbGx7Ny5kzZt2hAfH29FNClAwcHB+Pgc+NuWA9jtQee/KTkZbrsN\nvv4agoPhu+/ggQeu6DinTp2iXr1mPP10AsOG7aRRo5tZvnx5vvNv3LiNzMzugC9gIzu7J5s2bcv3\nfkVERC6m0Etaamoqy5cvp3///gD4+PhQpkwZ5s2bR1xcHABxcXHMmTOnsKNJAevduzfh4bspVepe\n4GXs9i68+ebr/3vDtm3QrBmsWwfXXAOrVkHbtld8nHffnUhycgscjm84c2YiDsdEHn98WL7zN2gQ\nhb//HCAXMPD1/Zp69TT/moiIFAyfwj7gvn37qFixIv369WPTpk3ceOONvP322yQnJxMWFgZAWFgY\nycnJhR1NClhQUBC//baSSZMmceLESW6//cv/zej/44/QvTukpkLTpjBvHpz983ClkpP/Ijs7+m9b\novnrrxP5zj9s2LP8+GMXfv21BjabP5UrB/DOO9/ne78iIiIXU+glLTc3l40bN/Luu+/SpEkTnnrq\nqQtubdpstrPTKFxoxIgR576PiYkhJiamANOKuwUHB/P000+fv3HSJHj0UcjNNYva1Klgt1/1Me66\nK5bJkx/H4bgTCMfffzjt27fLX3DA39+fZcsWsXXrVnJzc6lTpw5+fn753q+IiBQPiYmJJCYmum1/\nhT6689ixY7Ro0YJ9+/YBsGLFCkaPHs3evXv56aefCA8P5+jRo9x222388ccf54fV6M7ixeWC4cPh\nvyV98GDzezfMafbeex8wfPgrZGVl0Llzd6ZMmUhAQEC+9ysiIpJXRXLFgVtuuYVPPvmEmjVrMmLE\nCBwOBwAhISEMHTqU+Ph4UlJSLnqFTSWtmMjMhLg4mD0bvL1h4kR4+GGrU4mIiLhNkSxpmzZt4sEH\nHyQ7O5vIyEgmT56M0+mkZ8+eHDx4kIiICGbNmkXZsmXPD6uSVjz8+Sd07gxr1kBQEHz1FbTL/+1I\nERERT1IkS9rVUkkrOvbs2UNCQgJ2u50ePXoQFHR2qo3t2801OPftg+rVYeFCqFvX2rAiIiIFQCVN\nPM7q1auJje2E09kFb+9kKlbcw6+/rqTsxo3QrZs5grNxY3MEZ6VKBZrF4XAQEBBwyYEoIiIiBaVI\nrjggxdtjjw0hI2MCWVkfk5Exj6SkJizr1x9uv90saF27QmJigRa0jRs3Urny9QQHlyMkpCrLli0r\nsGOJiIgUBJU0cbvjx48D9QCw4eLF7MN0nvOtOcXGM8+YgwUCAwvs+FlZWcTGduLo0ddwOrM4dWoy\nHTrczYkT+Z8rTUREpLCopIlbGYZBeHgoMJRSJPM5nXiBH3F5eZkjOMeONUdzFqB9+/aRk2MH7gVs\nQDu8vWuyZcuWAj2uiIiIOxX6ZLZSvE2f/gXbt/9JBQKZQyVuwiDD24fABfPhjjsKJUPFihXJzk4G\nDgNVgZNkZ++mUgE//yYiIuJOupImbvXNNwlUy+zLanZxEwYHCaXvtXULraABVKhQgVdfHYHd3pzA\nwD7Y7Y157LH+1KpVq9AyiIiI5JeupIlb3ZTrYBIjKU8Wv9CIjvSkVtWVhZ5jyJCnad26Fb///js1\najzCzTffXOgZRERE8kNTcIj7TJ2K8eCD2HJymO9Vlb7et5Nbah7Lly+mQYMGVqcTEREpVJonTaxn\nGDBiBLz6KgAZjzzC5Nq1yXG56Ny5M9ddd521+URERCygkibWOnMG+veHL74wF0afMAEGDLA6lYiI\niOU0ma38o/ff/4gyZcIoVao03brdR0ZGhnt2fOIEtG1rFrTSpWH+fBU0ERERN9GVtGJu8eLFdO36\nMA7HAqAK/v6PcPfd5Zg69cP87XjXLmjfHnbvhipVYMEC0HNnIiIi5+hKmlxWQsIPOBwPA3WBcmRl\nvcb33/+Qv50uXw7Nm5sFrUEDWLtWBU1ERMTNVNKKubCwCpQqtfVvW7ZSvnzI1e/w88/NW5wnT0KH\nDmZhq1Il3zlFRETkfLrdWcylpaXRoMFNJCdfi9NZBW/vr1i4cDYxMTFXtiPDgJEj4eWXzddPPAFv\nvVXgSzyJiIgUVRrdKf8oPT2dWbNmkZ6ezu23337lM++fOQMPPQTTppkjOMeNM0uaiIiIXJJKmriV\ny+XCy+tvd8FPnoSuXeHnnyEwEGbMMG9zioiIyGVp4IC4xZ9//knLlu3w9S1FcHAoM2bMNAcGtGhh\nFrTKlc3nz1TQRERECoWupAkAN998B2vXRpObOxrYym1+bVkc4MInNRXq1zen2Kha1eqYIiIiRYZu\nd4pb+PiUwuk8Bdi5ly+Zwn2UwmXOhTZjBgQFWR1RRESkSMlvb/FxYxYpwsqUCeXkyd8YzlJe40UA\ndsbGUnPuXPDxzD8mu3btYtas2Xh5edG7dy+uueYaqyOJiIi4ja6kCQBzZs3idO++9HGewQVMiKjJ\ngB2/4+vnZ3W0i/rtt99o1aodmZn/wmbLwW7/ivXrf6ZmzZpWRxMREQF0u1Pc4dQp6NYNEhPJ8fNj\n7RNP0GzUKHx9fa1Odkl33nk3CQm3AgMB8PIaxb337uXzzz+xNpiIiMhZut0p+bN3r/nc2Y4dEB6O\n74IF3HzjjVan+kcnT6YC15577XJdy4kTv1oXSERExM00BUdJtmoVNGtmFrR69cw1OItAQQO4996O\n2O0vAduBzdjtI+nVq6PVsURERNxGV9JKqlmzoG9fczWBO+6AmTMhONjqVHn21FMDOXUqhfffvxOb\nzYtnnx1IXFwfq2OJiIi4jZ5JK2kMA0aPhuHDzdePPQYTJnjsCE4REZGiSs+kSd5lZ8Ojj8LkyWCz\nwdix8PTT5vciIiLiUVTSSoqUFOjeHZYuhYAA+OIL6NLF6lR5YhgGSUlJ2Gw2KlWqhE2lUkRESgAN\nHCgJUlKgZUuzoIWHm2txXkFBS0hIoHHjNtStexPjx79bqLecMzMzadOmI9df34DIyBto164LWVlZ\nhXZ8ERERq6iklQRlysDNN0PdurBmDTRunOePrlixgm7d4vjll8fZunUkzz//IePGvVOAYc/3wgsj\nWb06gKysJLKykli50psRI0YV2vFFRESsopJWEths8N57sHIlXOHSSVOmzCAzcwjQHWiNwzGRDz6Y\nViAxL2b16l/JyooDfAE/MjP7smqV5kMTEZHiTyWtpPD1vaopNvz9/bDZ0v62JQ2/QlwqKirqOnx9\nEwADMPDz+57ata8rtOOLiIhYRVNwyGXt2LGDxo1bkZExEMMoT0DAKD7//D26du1aKMf/66+/aN68\nDcnJPoBBpUoGa9b8SLly5Qrl+CIiIldLa3dKgdu+fTvjxk3E4TjD/ff3pG3btlf0+d27d/PJJ5PJ\nzXXSp08v6tevf0Wfz8rKYu3atdhsNpo1a0apUqWu6PMiIiJWUEkTj7Z9+3aaNr0Vh6MfLpc/dvtE\nFi+ew0033WR1NBERkQKlkiYerW/fR5g+/RoM4/mzWyZz663fkJg439JcIiIiBS2/vUUDB6RApaVl\nYBiV/ralEqdPZ1iWR0REpKhQSZMC1adPN+z2V4HlwAbs9qHExXW3OpaIiIjH07JQUqC6d+9GSkoq\nI0cOwOl0MmBAPwYNetzqWCIiIh5Pz6SJiIiIFAA9kyZXbO/evaxYsYK//vrL6igiIiJyCSppJcyL\nL46kbt3mdOgwmIiI2iQmJlodSURERC5CtztLkPXr1xMT0x2HYwMQCvxA2bJ9OHkyCZvNZnU8ERGR\nYkW3OyXPdu7cibd3S8yCBtCWjIzTpKamWhlLRERELkIlrQSJjo7G6VwOHD67ZR7BweUoU6ZMnvfh\ndDqZO3cuH3/8MVu3bi2QnCIiIqIpOEqUhg0bMmLEYF56qR6+vpXx8jrJggXf5vlWp9Pp5Pbbu7J2\n7VFcrnoYxnCmTfuA7t27FXByERGRkkfPpJVAf/75J8eOHSMyMpLAwMA8f+7bb7+lb9940tNXYvb7\ndZQp04mUlGMFllVERKSoym9v0ZW0Eig0NJTQ0NB/fuP/c+zYMZzO+vzvj01DTp8+gdPpxNvb260Z\nRURESjo9kyZ51rJlS2Au8BvgxNv7VRo0uEkFTUREpACopEme1a9fn0mTJhAY2AYvL3/q1Utk/vwv\nrY4lIiJSLOmZNLmAYRi89dYEPvxwOn5+frz66jN069btvJ/n5ubi6+trYUoRERHPpmfSxO3efvtd\nXnppEg7HRCCNPn0eIigoiNjYWMD8Q6eCJiIiUrB0u1MuMGnSDByOt4GbgfY4HM8xZcosq2OJiIiU\nKCppcgF/f3/g5LnXNttJAgP9rQskIiJSAumZNLnA999/T9eufcnMfBab7TSBgR+wfv3PREVFWR1N\nRESkyMhvb1FJK+GOHTvGrl27iIiIoFq1aue2r1y5ks8+m0GpUn4MHPgwtWrVsjCliIhI0aOSJldt\n5szZ9Ov3KH5+tcjO3smbb47isccetjqWiIhIsaCSJlclNTWVSpWuJTPzJ6A+sJeAgKb88cdGqlev\nbnU8ERGRIi+/vUUDB0qow4cP4+MTilnQAK7Dz682e/futTKWiIiInGVZSXM6nTRs2JCOHTsCcPLk\nSWJjY6lZsybt2rUjJSXFqmglQvXq1XG5TgCrzm7ZQnb2dmrUqGFlLBERETnLspI2fvx4oqOjsdls\nAMTHxxMbG8vOnTtp06YN8fHxVkUrEYKCgpg9exqBgZ0ICorG378VH3/8DlWqVLE6moiIiGDRM2mH\nDx/m/vvvZ/jw4bz11lvMnz+fqKgoli1bRlhYGMeOHSMmJoY//vjj/LB6Js3t0tLS2L9/P9WqVaNc\nuXJWxxERESk2iuSyUE8//TRjxowhLS3t3Lbk5GTCwsIACAsLIzk52YpoJU5wcDA33HCD1TFERETk\n/yn0250LFiwgNDSUhg0bXrJd2my2c7dBRUREREqiQr+StmrVKubNm8eiRYvIysoiLS2NPn36nLvN\nGR4eztGjRwkNDb3o50eMGHHu+5iYGGJiYgonuIiIiMhlJCYmkpiY6Lb9WTpP2rJlyxg7dizz589n\nyJAhhISEMHToUOLj40lJSblg8ICeSRMREZGiosjPk/bf25rDhg1jyZIl1KxZk6VLlzJs2DCLk4mI\niIhYRysOiIiIiBSAIn8lTUREREQupJImIiIi4oFU0kREREQ8kEqaiIiIiAdSSRMRERHxQCppIiIi\nIh5IJU1ERETEA6mkiYiIiHgglTQRERERD6SSJiIiIuKBVNJEREREPJBKmoiIiIgHUkkTERER8UAq\naSIiIiIeSCVNRERExAOppImIiIh4IJU0EREREQ+kkiYiIiLigVTSRERERDyQSpqIiIiIB1JJExER\nEfFAKmkiIiIiHkglTURERMQDqaSJiIiIeCCVNBEREREPpJImIiIi4oFU0kREREQ8kEqaiIiIiAdS\nSRMRERHxQCppIiIiIh5IJU1ERETEA6mkiYiIiHgglTQRERERD6SSJiIiIuKBVNJEREREPJBKmoiI\niIgHUkkTERER8UAqaSIiIiIeSCVNRERExAOppImIiIh4IJU0EREREQ+kkiYiIiLigVTSRERERDyQ\nSpqIiIiIB1JJExEREfFAKmkiIiIiHkglTURERMQDqaSJiIiIeCCVNBEREREPpJImIiIi4oFU0kRE\nREQ8kEqaiIiIiAdSSRMRERHxQCppIiIiIh5IJU1ERETEA6mkiYiIiHgglTQRERERD6SSJiIiIuKB\nVNJEREREPJBKmoiIiIgHUkkTERER8UCFXtIOHTrEbbfdRp06dahbty4TJkwA4OTJk8TGxlKzZk3a\ntWtHSkpKYUcTERER8RiFXtJ8fX0ZN24cW7duZc2aNbz33nts376d+Ph4YmNj2blzJ23atCE+Pr6w\noxV7iYmJVkco0nT+8kfn7+rp3OWPzl/+6PxZp9BLWnh4OA0aNACgdOnS1K5dmyNHjjBv3jzi4uIA\niIuLY86cOYUdrdjTX7T80fnLH52/q6dzlz86f/mj82cdS59J279/P7/++ivNmjUjOTmZsLAwAMLC\nwkhOTrYymoiIiIilLCtp6enpdO/enfHjxxMUFHTez2w2GzabzaJkIiIiIh7AsEB2drbRrl07Y9y4\ncee21apVyzh69KhhGIaRlJRk1KpV64LPRUZGGoC+9KUvfelLX/rSl8d/RUZG5qsv2QzDMChEhmEQ\nFxdHSEgI48aNO7d9yJAhhISEMHToUOLj40lJSdHgARERESmxCr2krVixgltuuYUbbrjh3C3N0aNH\n07RpU3r27MnBgweJiIhg1qxZlC1btjCjiYiIiHiMQi9pIiIiIvLPisSKA4MHD6Z27drUr1+fbt26\nkZqaeu5no0ePpkaNGkRFRbF48WILU3q2hIQEoqKiqFGjBm+88YbVcTyaJlx2D6fTScOGDenYsSOg\n83clUlJS6NGjB7Vr1yY6Opq1a9fq/OXR6NGjqVOnDvXq1aN3796cOXNG5+4y+vfvT1hYGPXq1Tu3\n7XLnS79zz3ex8+fOzlIkSlq7du3YunUrmzZtombNmowePRqAbdu2MXPmTLZt20ZCQgKPP/44LpfL\n4rSex+l0MnDgQBISEti2bRtffvkl27dvtzqWx9KEy+4xfvx4oqOjzz3WoPOXd08++STt27dn+/bt\nbN68maioKJ2/PNi/fz8ff/wxGzdu5Pfff8fpdDJjxgydu8vo168fCQkJ52271PnS79wLXez8ubOz\nFImSFhsbi5eXGbVZs2YcPnwYgLlz59KrVy98fX2JiIjg+uuvZ926dVZG9Ujr1q3j+uuvJyIiAl9f\nX+69917mzp1rdSyPpQmX8+/w4cMsWrSIBx98kP8+UaHzlzepqaksX76c/v37A+Dj40OZMmV0/vIg\nODgYX19fHA4Hubm5OBwOKleurHN3Ga1ataJcuXLnbbvU+dLv3Atd7Py5s7MUiZL2d59++int27cH\nICkpiapVq577WdWqVTly5IhV0TzWkSNHqFat2rnXOk95pwmXr87TTz/NmDFjzv2PCtD5y6N9+/ZR\nsWJF+vXrR6NGjXjooYfIyMjQ+cuD8uXL88wzz1C9enUqV65M2bJliY2N1bm7Qpc6X/qde+Xy21k8\npqTFxsZSr169C77mz59/7j2vv/46fn5+9O7d+5L70SS4F9I5uTqacPnqLFiwgNDQUBo2bMilxiXp\n/F1abm4uGzdu5PHHH2fjxo0EBgZecHtO5+/i9uzZw9tvv83+/ftJSkoiPT2d6dOnn/cenbsr80/n\nS+fy0tzRWXzcHepqLVmy5LI/nzJlCosWLeLHH388t61KlSocOnTo3OvDhw9TpUqVAstYVP3/83To\n0KHz2rxcKCcnh+7du9OnTx+6dOkCmP+iPHbsGOHh4Rw9epTQ0FCLU3qmVatWMW/ePBYtWkRWVhZp\naWn06dNH5y+PqlatStWqVWnSpAkAPXr0YPTo0YSHh+v8/YMNGzbQsmVLQkJCAOjWrRurV6/WubtC\nl/q7qt+5eeeuzuIxV9IuJyEhgTFjxjB37lz8/f3Pbe/UqRMzZswgOzubffv2sWvXLpo2bWphUs/U\nuHFjdu3axf79+8nOzmbmzJl06tTJ6lgeyzAMHnjgAaKjo3nqqafObe/UqROfffYZAJ999tm58ibn\nGzVqFIcOHWLfvn3MmDGD1q1bM23aNJ2/PAoPD6datWrs3LkTgB9++IE6derQsWNHnb9/EBUVxZo1\na8jMzMQwDH744Qeio6N17q7Qpf6u6ndu3ri1s+RrvYJCcv311xvVq1c3GjRoYDRo0MB47LHHzv3s\n9ddfNyIjI41atWoZCQkJFqb0bIsWLTJq1qxpREZGGqNGjbI6jkdbvny5YbPZjPr165/7M/fdd98Z\nf/31l9GmTRujRo0aRmxsrHHq1Cmro3q8xMREo2PHjoZhGDp/V+C3334zGjdubNxwww1G165djZSU\nFJ2/PHrjjTeM6Ohoo27dukbfvn2N7OxsnbvLuPfee41KlSoZvr6+RtWqVY1PP/30sudLv3PP9//P\n36RJk9zaWTSZrYiIiIgHKhK3O0VERERKGpU0EREREQ+kkiYiIiLigVTSRERERDyQSpqIiIiIB1JJ\nExEREfFAKmkiIiIiHkglTURERMQDqaSJSIm1fv166tevz5kzZ8jIyKBu3bps27bN6lgiIgBoxQER\nKdFefPFFsrKyyMzMpFq1agwdOtTqSCIigEqaiJRwOTk5NG7cmID/a9eOTSUEwiiMXuGBbEtGVmAs\ntmUHVmJmF6YmhoqZbPZamIE9p4Ibfvwzn0+2bUvTNKUnASTx3An8uPM8c993ruvK8zyl5wD8c0kD\nftowDJmmKfu+5ziOzPNcehJAkuSv9ACAUpZlSdu2Gccx7/um67qs65q+70tPA3BJAwCokT9pAAAV\nEmkAABUSaQAAFRJpAAAVEmkAABUSaQAAFRJpAAAVEmkAABX6AuegUTPv0QXqAAAAAElFTkSuQmCC\n", - "text": [ - "" - ] - } - ], - "prompt_number": 60 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Linear regression via least-squares fit using numpy" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import numpy as np\n", - "\n", - "A = np.vstack([x, np.ones(len(x))]).T\n", - "np_slope, np_y_interc = np.linalg.lstsq(A,y)[0]" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 62 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "ftext = 'y = a + bx = {:.3f} + {:.3f}x'\\\n", - " .format(np_y_interc, np_slope)\n", - "print(ftext)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "y = a + bx = 50.093 + 0.981x\n" - ] - } - ], - "prompt_number": 57 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%pylab inline\n", - "from matplotlib import pyplot as plt\n", - "\n", - "line_x = list(range(round(max(x)) + 1))\n", - "line_y = [fit_line(x_i, np_slope, np_y_interc) for x_i in line_x]\n", - "\n", - "plt.figure(figsize=(10,10))\n", - "plt.scatter(x,y)\n", - "plt.plot(line_x, line_y, color='red', lw='2')\n", - "\n", - "plt.ylabel('y')\n", - "plt.xlabel('x')\n", - "plt.figtext(.15,.8, ftext, fontsize=11, ha='left')\n", - "\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Populating the interactive namespace from numpy and matplotlib\n" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAJeCAYAAADvDpLHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FOXexvFvGqQRilSTUEMLhBCQUAQJvaiAVOlSBAVE\nRWygR7BhwYoHEJCiIE2UKkWk9yJFDL2HKh2y6TvvH8ObA4K07GY2yf25Lq6Tmd2d55eAcJ+nuhmG\nYSAiIiIiLsXd6gJERERE5FYKaSIiIiIuSCFNRERExAUppImIiIi4IIU0ERERERekkCYiIiLigpwW\n0rp3706BAgUICwtLvbdp0yYiIyOJiIigSpUqbN68OfW1YcOGUbJkScqUKcOSJUucVZaIiIhIhuDm\nrH3SVq9ejb+/P126dOHPP/8EICoqijfffJNGjRqxcOFCPvnkE5YvX050dDQdOnRg8+bNnDhxgvr1\n67Nv3z7c3dXRJyIiIlmT01JQrVq1yJ079033ChUqxOXLlwG4dOkSgYGBAMyZM4f27dvj5eVF0aJF\nCQkJYdOmTc4qTURERMTleaZnYx999BE1a9Zk4MCB2O121q9fD8DJkyepVq1a6vuCgoI4ceJEepYm\nIiIi4lLSdTyxR48efP311xw7dowvvviC7t27/+t73dzc0rEyEREREdeSrj1pmzZtYunSpQC0bt2a\nnj17AhAYGMjx48dT3xcTE5M6FHqjkJAQDh48mD7FioiIiKRBiRIlOHDgwAN/Pl170kJCQli5ciUA\ny5Yto1SpUgA0a9aMadOmkZiYyOHDh9m/fz+RkZG3fP7gwYMYhqFfD/jrnXfesbyGjPxLPz/9/PSz\ny5i/9PPTz8+qX2ntWHJaT1r79u1ZuXIl586dIzg4mHfffZcxY8bQt29fEhIS8PHxYcyYMQCEhobS\ntm1bQkND8fT0ZOTIkRruFBERkSzNaSFt6tSpt72/cePG294fNGgQgwYNclY5IiIiIhmKNiLLQqKi\noqwuIUPTzy9t9PN7cPrZpY1+fmmjn591nLaZrTO4ubmRgcoVERGRLCytuUU9aSIiIiIuSCFNRERE\nxAUppImIiIi4IIU0ERERERekkCYiIiLighTSRERERFyQQpqIiIiIC1JIExEREXFBCmkiIiIiLkgh\nTURERMQFKaSJiIiIuCCFNBEREREXpJAmIiIi4oIU0kRERERckEKaiIiIiAtSSBMRERFxQQppIiIi\nIi5IIU1ERETEBSmkiYiIiLgghTQRERERF6SQJiIiIuKCFNJEREREXJBCmoiIiIgLUkgTERERcUEK\naSIiIiIuSCFNRERExAUppImIiIi4IIU0ERERERekkCYiIiLighTSRERERFyQQpqIiIiIC1JIExER\nEXFBCmkiIiIiLkghTURERMQFKaSJiIiIuCCFNBEREREXpJAmIiIi4oIU0kRERERckEKaiIiIiAtS\nSBMRERFxQQppIiIiIi5IIU1ERETEBSmkiYiIiLgghTQRERERF6SQJiIiIuKCFNJEREREXJBCmoiI\niIgLUkgTEZFMwTAMPv/8aypVqkudOs3YsGGD1SWJpImbYRiG1UXcKzc3NzJQuSIiko7ee+8jPvpo\nBjbbR0AMvr6vs3HjcsqXL291aZJFpTW3qCdNREQyhVGjJmCzjQcaAt2Ji3uWKVOmWV2WyANTSBMR\nkUzBw8MDiE+9dnePx8vL07qCRNJIIU1ERDKFt956GV/fjsAE3N3fw9d3Ct26dbW6LJEHpjlpIiKS\nacyc+RNTpswmZ05/Bg8eQKlSpawuSbKwtOYWhTQRERERJ9DCAREREZFMSCFNRERExAUppImIiIi4\nIIU0ERERERekkJaBTJw4kTZt2qR7u0OGDKFAgQJEREQQERHBCy+8kPpaSkoKffv2JSQkhJIlS/Ld\nd9/963PmzZtH2bJlKVmyJE8//TRxcXGprw0bNoywsDDKli3LM888Q2JiIgCnTp2iSpUqREREEBYW\nxlNPPcW5c+cc9r1t2LCB8PBwSpcuTaNGjfj7779v+769e/dSt25dwsPDCQ8PZ+nSpamv7dq1i5o1\naxIREUFoaChDhw5NfW3y5MlUqFABLy8v/vvf/zqsbhERyfycFtK6d+9OgQIFCAsLu+n+iBEjKFu2\nLOXLl+f1119PvT9s2DBKlixJmTJlWLJkibPKcllFixa963vc3NycX8i/tNu1a1e2bdvGtm3bGDFi\nROprU6ZM4eDBgxw4cID169czZMgQjh49esszrl27Rq9evZg/fz779+8nR44cDB8+HIAlS5Ywbdo0\nNm3axO7du8mWLRtffPEFAPny5WP16tVs27aNP//8k2LFivHuu+/eteZnnnmGlStX3vE9drudTp06\nMWrUKPbu3ctjjz3GG2+8cdv3duvWjR49erBjxw5mzZpFt27diI83N8189dVX6dChA9u2bWPz5s1M\nmDCBLVu2ABAREcH06dPp0KGDZb9/IiKSMTktpHXr1o1FixbddG/58uXMnTuXnTt3smvXLgYOHAhA\ndHQ006dPJzo6mkWLFtGnTx/sdruzSuPTTz+lX79+qddnzpyhYMGCqf/opsWZM2eoW7cujzzyyC1B\n9E7u9R/wy5cv07x5c8qVK0e9evU4efIkAO+//z6tWrUCwGazERYWdsvPPy3+bQnxjBkz6NWrFwB5\n8+alRYsWzJw585b3LVy4kCpVqlCiRAkAnnvuOaZPnw7Ajh07qFWrFj4+PgA0btyYKVOmAODp6Ym3\ntzdg9tpdvXqV/Pnz37VeNze3u/5Mt27dio+PDzVq1ACgd+/ezJgx47bv3blzJ40bNwYgJCSEPHny\n8OuvvwIQFBTEpUuXADOMurm5pdZYrlw5ypYti7u7+00/w7i4OMLDw5k7dy4Ay5Yto2zZssTGxt71\nexMRkazBaSGtVq1a5M6d+6Z7o0aN4s0338TLywswe0kA5syZQ/v27fHy8qJo0aKEhISwadMmZ5VG\nz549mTVrFjabDYAxY8bQsWPH1DBwozZt2qQO8934q1KlSiQkJNzy/ly5cjFv3jy2bNnCtm3b2LJl\nC4sXL3ZI3YZhsGbNGoYPH85ff/1F7dq1efHFFwEYPHgw165d45tvvqFfv348/vjjqaHiRrt3777t\n9xMREXHHQDl16lQqVKhAo0aN2LBhQ+r9Y8eOUaRIkdTrwoULc/z48Vs+f+zYMQoXLpx6HRwcnPq+\nRx55hN9++43z58+TnJzMjBkzbumNq1ixIvnz5yc6Ojo13N/Lz+tO/ll73rx5sdvtqYHrRpUrV04N\njlu2bGHv3r0cO3YMgI8++ogpU6YQFBRE8eLFee211276Xm/Hx8eHGTNm8MILL7Bp0yZ69uzJtGnT\n8PPzu6fvTUREMr90PdRs//79rFq1ikGDBuHt7c3w4cN55JFHOHnyJNWqVUt9X1BQECdOnHBaHblz\n56ZZs2Z8//339OzZk3HjxrFs2bLbvvd2vUJ3kpyczMCBA1m/fj2GYXD69Gm2b99Oo0aNbnlv8+bN\nU/+hP3nyJBEREQB4eXn9a0itVasWJUuWBMyw+f/DyW5ubkyePJnw8HCKFi3KuHHjbvv5smXLsm3b\ntvv6np577jneeustPDw8WLp0Kc2bN2fPnj23hPA7uVOvVp06dejbty8NGzbE29ubevXq8dtvv930\nnu3bt5OcnEz//v156aWXGD169C3Pee+99/j5558BM4CtWbMGf39/ACZNmkSFChXuud5/mjhxIi+/\n/DITJkwgNDSUmjVr4ulp/ufTtWtXunfvziuvvMLp06eJioqicuXKREZG3vGZpUuX5t1336VGjRp8\n9dVXhIeHP3B9IpJ+Tp06xa+//oqnpyfNmjW7r78LRe5Huoa05ORkLl68yIYNG9i8eTNt27bl0KFD\nt32vs+fvvPDCC3Ts2JF8+fIRGhqaOgz3T61bt+bgwYO3fW39+vW39L59/vnnXLp0iU2bNpEtWzZ6\n9+79r8Ooc+bMSf26WLFi9xSebuwd+mdP0aFDh/Dw8ODSpUvYbLbUgHKj6OhoOnbseNtnN2jQgE8+\n+eSW+wUKFEj9un79+gQHB7Nr1y5q1apF4cKFOXLkCJUrVwbg6NGjFCtW7JZnFC5cmOXLl6deHzt2\njODg4NTr/v37079/f8AcQi1Xrtwtz/D09KRLly48++yzt63/7bff5u233wbM4fZu3brx2GOP3fa9\nAEWKFLmpx+7cuXO4u7uTK1euW95brFgxZs+enXpdrlw5QkNDAXMYf+LEiQAULFiQunXrsmrVqltC\n2u3+TG/dupUCBQrctvdRRFzPnj17qFatDklJdXFzs/HGG++yffu6m/6eFHGUdA1pQUFBtGzZEoAq\nVarg7u7OuXPnCAwMvOkfqZiYGAIDA2/7jCFDhqR+HRUVRVRU1APVUr58eR566CFefvllRo4c+a/v\n++mnn+7ruZcvX6ZQoUJky5aNEydOMGfOHPr06fNANd7O2rVrOXDgACEhIUyYMIF69eoBcPHiRTp1\n6sT06dNZsmQJzz77LFOnTr3l86Ghoffdk3bixInU34/t27dz5MgRSpcuDZjDwWPHjqVly5acO3eO\nOXPmsGbNmlue0ahRI/r165da++jRo2nXrl3q66dPn6ZgwYJcvHiRjz/+mHfeeQcw/yzkypULf39/\n7HY7s2bNumsP1f+723BnpUqViIuLY+3atTz66KOMHj2atm3b3va9f//9N3nz5sXNzY2JEyfi7e1N\n3bp1ATOwLVy4kM6dO3P16lVWr15N8+bNb6nln/X88ssvrF27NjXwRkVF3XaIWkRcx4svDubKldcx\njJcASEgYwNChHzFy5BcWVyauYMWKFaxYscJxDzSc6PDhw0b58uVTr0ePHm385z//MQzDMPbu3WsE\nBwcbhmEYf/31lxEeHm4kJCQYhw4dMooXL27Y7fZbnufocidPnmwULVrUoc88evSoERkZaZQvX95o\n3Lix0bFjR2Po0KF3/VyxYsXu+p6JEycaDRs2NJo3b26EhoYa9erVM06ePGkYhmE89dRTxrBhwwzD\nMIyUlBQjKirK+Pbbb9P2zVzXtWtXo3z58kZ4eLhRpUoVY+HChamvpaSkGM8//7xRokQJo0SJEsbY\nsWNTX7vx99swDGPOnDlG6dKljZCQEKNt27aGzWZLfS0sLMwoV66cUapUKWPEiBGp95cuXWqEh4cb\nFSpUMMLCwozu3bsbly5dumvNzzzzjLFy5cq7vm/dunVGWFiYUbJkSaNhw4bG2bNnU1+rWLGicerU\nKcMwDGPcuHFGyZIljVKlShlNmzY1jh49mvq+Xbt2GY899pgRHh5uhIaGGu+9917qaz/++KMRFBRk\n+Pn5Gblz5zaCgoKM3bt3G4cPHzaCg4ON/fv3pz6jcOHCxokTJ+5as4hYJyyspgHLDTCu/5pkPPlk\ne6vLEheV1tzitAPW27dvz8qVKzl//jz58+fn3XffpVOnTnTv3p3t27eTLVs2Pvvss9SesA8//JDx\n48fj6enJV199dds5XI4+YL1nz56ULVuWV155xWHPFBGRzOu1197mm282ERc3HYjDz+8JPvvsOXr3\nvv00DMna0ppbnBbSnMFRIe3kyZPUrVuXQoUKsXDhwtuu6hQREfmnxMREevbsx9SpP+Du7kH//i/y\nySfvax9EuS2FNBERkXRmt9vvaT9GydrSmlvSdeGAiIhIZuDurlMVxfn0p0xEROQGdrudYcOGU6VK\nfZo0acOff/5pdUmSRWm4U0RE5AYDBw5i1Kjl2Gzv4Oa2D3//99m5c9M9nbEsciPNSRMREXGggIAC\nXL26ESgKQLZsz/PhhyHaCUDuW1pzi4Y7RUREbmDON0tMvXZzS8TDw8O6giTLUkgTEZF0dfDgQSIj\n65IzZ0EqV67Nvn37rC7pJgMG9MfXtzXwI+7uQ/DxWfivp5GIOJOGO0VEJN3Ex8dTokQYp08/h93+\nNG5us8if/0sOHdqFr6+v1eUB5jFu3303gVmzFpEvX26GDn3jtmcSi9yN5qSJiEiGsWPHDmrV6sDV\nq3+l3gsIiGDp0jFUqVLFwspEHE9z0kREJMMICAggKelv4Nr1OzaSks4QEBBgZVkiLkkhTURE0k2x\nYsVo27Ylfn5RwDv4+dWhRYsmlCpVyurSRFyOhjtFRCRdGYbB9OnT2bXrL8qWLUP79u21g7+A3Q5f\nfAFdu0LevFZX4xCakyYiIiIZW3w8dOsG06ZB7dqwfDlkgnNRdXaniIiIZFx//w0tWsC6dZAjB7zx\nRqYIaI6gkCYiIiLW2LsXHn8cDh6EoCBYsAAqVLC6KpehSQAiIiKS/lasgOrVzYBWqRJs3KiA9g8K\naSIiIpK+vv8eGjaEixeheXNYtQoeftjqqlyOQpqIiIikD8OAd94xV3AmJcFLL8GsWeDnZ3VlLklz\n0kRERMT5EhKgRw+YMgXc3eHrr6FvX6urcmkKaSIiIuJc587BU0/BmjXg7w/Tp0PTplZX5fIU0kRE\nRMR59u83A9mBAxAYCPPnQ8WKVleVIWhOmoiIiDjH6tVQrZoZ0CIizBWcCmj3TCFNREREHG/KFKhf\nHy5cgCeeMFdwBgZaXVWGopAmIiIijmMY8O670KkTJCZC//4we7Y5F03ui+akiYiIiGMkJMCzz8IP\nP5grOL/8El54weqqMiyFNBEREUm7CxegZUtYudLc92zaNHOYUx6YQpqIiIikzYED5hmc+/aZJwfM\nn28uFJA00Zw0EREReXBr1pgrOPftg/BwcwWnAppDKKSJiIjIg5k6FerVg/Pnzb3QVq+GoCCrq8o0\nFNJERETk/hgGvP8+dOhgruDs2xfmzIEcOayuLFPRnDQRERG5d4mJ0KsXTJoEbm7w+efw4ovm1+JQ\nCmkiIiJyby5cgFatYMUK8PWFH3+E5s2trirTUkgTEZF/lZycTGJiIr6+vlaXIlY7eNBcwbl3LxQq\nBPPmQeXKVleVqWlOmoiI3NawYcPx9Q0gICAP1arV4/z581aXJFZZt85cwbl3L4SFmSs4FdCcTiFN\nRERusXDhQt5/fzRJSftISYnljz9C6dz5OavLuq2jR48yZ84ctm7danUpmdP06VC3Lpw7B40bm1tu\nBAdbXVWWoJAmIiK3WLNmHTZbJyAI8CAp6VXWrVtrdVm3mDNnLqGhj9C161gee6wlffoMsLqkzMMw\n4MMP4emnzeOennvOHOIMCLC6sixDIU1ERG4RFPQwvr6bAPv1OxsoUOBhK0u6hd1up0OHZ7DZFnD5\n8nxstp18//0c1q1bZ3VpDnXq1Ck2btzIuXPn0q/RxETo0QMGDzZXbX72GYwcCZ6ayp6eFNJEROQW\n3bt3p1y5OPz9q+Pv3wZ//35MmvSN1WXd5MqVKyQlJQGR1+/kxN29MkePHrWyLIf69ttxFC9ejoYN\n+1KkSBnmzp3n/EYvXYImTWDCBPDxgVmzYMAAbbFhATfDMAyri7hXbm5uZKByRUQytKSkJBYvXsyV\nK1eoVasWwS42D8kwDAIDS3Lq1H+ALsAefHxqs2XLckJDQ60uL82OHDlCaGgV4uLWAyHAJnx9m3Dm\nzFH8/f2d0+jhw+YKzt27oUABc3izShXntJUFpDW3qN9SRERuy8vLiyeeeMLqMv6Vm5sbixf/QoMG\nzbly5TXsdhsjR36TKQIawIEDB8iWrTxxcSHX70Ti7p6bEydOULp0acc3uGEDNGsGf/8N5crBggVQ\npIjj25F7pp40ERHJ0FJSUjh9+jR58uTBx8fH6nIc5ujRo5QtW5m4uHVAKWADvr6Pc/bsMfz8/Bzb\n2E8/QefOEB8PDRvCjBmQM6dj28iC0ppbNCdNREQyNA8PDwIDAzNVQAMoUqQIX3/9Kd7eVQkIqIif\n3xNMn/69YwOaYcDHH0ObNmZAe/ZZmD9fAc1FqCdNRETEhZ09e5bjx49TvHhxcufO7bgHJyVBnz4w\nbpy5KOCTT+CVV7RAwIHSmlsU0kRERLKay5ehdWtYutRcwTl5MrRsaXVVmY4WDoiISIYTGxvL6NGj\nOXHiDHXrPubSCxQynSNHzBWc0dGQP7+5gjMy8q4fk/SnnjQREUlXcXFxVK78GIcPFyU+vhK+vt/x\nzjt9eO01nRbgdJs2mSs4z5yB0FBzBWfRolZXlWlpuFNERDKUGTNm0KPHaK5d+x1wA46QPXsYcXFX\ncNN8KOf5+Wfo1Ani4qB+fZg5E3LlsrqqTE2rO0VEJEO5du0ahhGIGdAACpGUlEBKSoqVZWVehgHD\nh5tz0OLioGdP+PVXBbQMQCFNRCQLuHDhAr169admzccZOHAQcXFxltVSt25dYBEwHdhP9uy9qFu3\nKZ46F9LxkpLMg9FfffV/222MGQNeXlZXJvdAw50iIplcQkICFSpU58iRqiQmNsHb+3uqV4/n99/n\nWTa8uGHDBnr2fJmzZ88QFfUY48Z9TUBAgCW1ZFpXrpj7ny1ZAt7e8MMPZm+apBvNSRMRkTtas2YN\nTZv25+rVrZhDjEl4eweyb99WlzuPUxzk6FF44gnYtQvy5YO5c6FaNaurynK0BYeIiNyR/s9tFrN5\nMzz5pLmCs0wZc/5ZsWJWVyUPQHPSREQyucjISAoVgmzZ+gJz8fbuQNWqVQgKCrK6NHG0X36B2rXN\ngFa3Lqxfr4CWgSmkiYhkctmzZ2f9+qV07erJo49+S79+pVi48Cdtd5GZGAZ8/jm0amWu4OzWDRYu\n1ArODE5z0kRERDKy5GTo3x9GjTKvP/wQ3nhDZ3C6AM1JExERuS45ORnDMPDKKltMXLkC7drBokWQ\nPTtMmmReS6ag4U4REcnw7HY7vXu/iLe3Hz4+/jz9dDcSExOtLsu5jh+HWrXMgJY3LyxbpoCWySik\niYhIhvfFFyOYPHkLKSmnSUk5z9y5p3jnnQ+sLst5/vgDqlaFnTuhVCnYsAFq1LC6KnEwhTQREcnw\nlixZg832ApAb8CcubgC//bbG6rKcY+5cswft1CmIijJXcJYoYXVV4gQKaSIikuEVKVIQT8/Nqdce\nHpsJDi7ktPYMw2D//v3s2LEj/YZVDQO++gpatACbDbp2hcWLIU+e9Glf0p1Wd4qISIZ35swZKlWq\nyZUrJYFsZM++lc2bV1HMCXuEpaSk0Lp1FxYvXo6HRwB583qyZs1iAgMDHd5WquRkePll+OYb8/q9\n92DwYK3gdHFpzS1O60nr3r07BQoUICws7JbXPvvsM9zd3blw4ULqvWHDhlGyZEnKlCnDkiVLnFWW\niIhkQgUKFCA6egtjx3Zh9Og27NmzzSkBDWDs2LEsWRJDXNxBrl3bzfHjLenW7QWntAXA1avQvLkZ\n0LJlgx9/hLfeUkDLApy2BUe3bt144YUX6NKly033jx8/zm+//UaRIkVS70VHRzN9+nSio6M5ceIE\n9evXZ9++fbi7azRWRETuTc6cOXn66aed3s62bdHYbC0AHwBSUtqxa9d05zQWE2OewbljBzz0EMye\nDTVrOqctcTlOS0G1atUid+7ct9wfMGAAn3zyyU335syZQ/v27fHy8qJo0aKEhISwadMmZ5UmIiLy\nwCpUKIOv7zwgAQAPj1mEhpZ1fEPbt5srOHfsgJIlzRWcCmhZSrp2Vc2ZM4egoCAqVKhw0/2TJ0/e\ndIZcUFAQJ06cSM/SRERE7knv3r2oUycvvr4h5MgRxsMP/8iECSMc28j8+WYgO3nSXMm5fj2EhDi2\nDXF56XbigM1m48MPP+S3335LvXenyXT/dqbckCFDUr+OiooiKirKUSWKiIjclaenJ/PmTWfPnj3Y\nbDbKlSuHt7e34xr45ht48UWw26FTJxg3zjxNQFzeihUrWLFihcOel24h7eDBgxw5coTw8HAAYmJi\nqFy5Mhs3biQwMJDjx4+nvjcmJuZfV8ncGNJERESs4ObmRtmy9z7EmZSUxIsvvs6UKVPJnt2bd999\nk+ee63Xzm1JSYMAA+Ppr83rIEPjPf7RAIAP5Z+fR0KFD0/S8dAtpYWFhnDlzJvW6WLFibN26lTx5\n8tCsWTM6dOjAgAEDOHHiBPv37ycyMjK9ShMREXGqQYOGMmnSdmy29cAFXnmlFYGBhXjyySfNN1y7\nBh06wLx54OUF48ebvWiSpTltTlr79u2pUaMG+/btIzg4mAkTJtz0+o3DmaGhobRt25bQ0FCaNGnC\nyJEj/3W4U0REJKOZNWsBNttHQFGgEjbbAGbN+tV88eRJeOwxM6DlyQNLlyqgCaDNbEVERJyucuU6\n/PFHL6A9AJ6eL/Hii94M79ze3GIjJsZcGLBggXkWp4OdOnWKuXPn4ubmRosWLcifP7/D25BbpTW3\nKKSJiIg42Zo1a2jU6CkSErrg6XmBgIBl7Pn8A/I8/7w51FmzJvzyC+TN6/C2zSlEtUlIqIebWwo+\nPqvZunXNTfuVinMopImIiGQAf/31F3PnziV79uw8m5REjkGDzBWcHTqYc9CctILzqac6MXdueez2\nNwDw8HiH9u1P8cMPY5zSnvxPWnNLui0cEBERycrKlStHuTJl4NVX4YsvzJv/+Y+5itOJ87BPnfob\nu/1/RzSmpIRx8uROp7UnjqNzl0RERNJDbCy0amUGNC8vmDQJhg51eEA7duwYkZF18fYOoHjxClSs\nWApf34+AM8BJfH0/4ckn6zm0TXEODXeKiIg428mT8OST8McfkDs3/PwzOGEzdrvdTqlSERw50paU\nlD7A7/j796F165b8+ONk3Nzc6Nu3H59++oHOx04Hac0t+h0SEXEhM2f+RMmSlQkOLsfgwUNJSUmx\nuiRJq507oVo1M6AVLw7r1jkloAGcPn2aEydOkZIyCMgNtMbDoxKtWj1BfPxV4uKu8NlnwxTQMgjN\nSRMRcRHLli2ja9f+xMV9DzzEl1/2wdPTg6FD37K6NHlQixZB27Zw9SrUqAGzZ0O+fE5rLiAggJQU\nG3AaKAQkkJx8mDx58mj/0QxIUVpExEVMm/YLcXGvAPWBCGy2r/jhh1lWlyUPatQocw+0q1ehXTv4\n/XenBjQAf39/Bg8ejJ9fLTw9B+LnV5s6dSpSvXp1p7YrzqGeNBERF5Ejhy8eHqf53wjnKfz8fK0s\nSR5ESgrHYuoZAAAgAElEQVS89hp8/rl5PWgQvPcepNMQ4zvvvMmjj1Zh69atFCnyEm3btlUvWgal\nhQMiIi7i6NGjVKxYnatX25GSkhcfn6+ZNWsiTZo0sbo0uVexseaRTrNng6cnjBkD3bpZXZVYRJvZ\niohkIseOHWPMmHFcuxbH00+3olq1alaXJPfq9GlzBeeWLZArF8yaBXXrWl2VWEghTURExGq7dsHj\nj8OxY1CsmHkGZ9myVlclFtMWHCIiItclJSURHR3NsWPH0q/RJUvg0UfNgFatGmzYoIAmDqGQJiIi\nmcLx48cpWbIiVas2p3TpynTu3Au73e7cRseOhaZN4coVaNMGli2D/Pmd26ZkGQppIiKSKXTu/Dwx\nMe24dm0/8fGH+eWXnUyePNk5jdnt8Prr0KuXuZrzjTdg2jTw8XFOe5IlKaSJiEim8Ndfu0hJ6Xj9\nyp/Y2OZs2/an4xuKizM3qP3kE3MF57hxMGxYum2xIVmH/kSJiEimEBJSCnf32dev4vH1XUS5cqUd\n28iZM1CnjrlyMyAAFi6EHj0c24bIdVrdKSIimcLBgwepWbMhNlsukpPPUa9edX75ZQoeHh6OaSA6\n2lzBeeQIFCliruAsV84xz5ZMSVtwiIiIXBcbG8uff/6Jv78/5cqVc9xO+7//Dq1aweXLEBkJc+dC\ngQKOebZkWgppIiIizjR+PPTuDcnJZlD7/nvw1XFdcndpzS06u1NERDKEmJgYpkyZQmJiEm3atKZM\nmTLObdBuh7feMhcFgHkepxYISDpST5qIiLi8w4cPU6nSo8TGNsNu98Pb+3uWLVtAZGSkcxqMi4Nn\nnoEZM8DDA0aONLfbELkPGu4UEZFMr2fPfkyYkAu7/f3rd77jscd+YeXK+Y5v7OxZaN7cPDkgIABm\nzoSGDR3fjmR6Gu4UEZFM78KFK9jtETfcKcbFi5cd39Du3eYKzsOHoXBhcwVn+fKOb0fkHmhgXURE\nXF67dk/g6/sR8AewF1/fwbRr96RjG1m+HGrUMAPaI4/Axo0KaGIp9aSJiIjLa9euLWfO/M0HH7Qh\nJSWZHj268OabAx3XwMSJ8Oyz5grOFi1gyhSt4BTLaU6aiIhkXXY7/Oc/8MEH5vUrr8DHH5uLBUTS\nSHPSREREbuPgwYN8//1kDMOgQ4enb92yIz4eunUzD0b38IBvvoHnnrOmWJHbUE+aiIhkOtHR0VSt\nGkVcXGcMwwMfnwmsWrWYSpUqmW/4+29zWHPdOsiRw9xqo3Fja4uWTEdbcIiIiPxD27bP8NNPoRjG\na9fv/JfGjVewcOFM2LvXXMF58CAEB8P8+VChgqX1SuaU1tyi1Z0iIpLpXLx4FcMIvuFOMJcvX4OV\nK6F6dTOgVa5sruBUQBMXpZAmIvKA7Ha7evddVKdOLfD1HQpsAbbj6/sW74YUgAYN4OJFc7PalSuh\nUCGrSxX5VwppIiL36dKlS9Sv35xs2bzx93+IUaPGWF2S/EOXLp344IO+FCrUkYIF2rC4WgHq/zAJ\nkpLgpZdg1izw87O6TJE70pw0EZH71KxZexYv9iMx8RvgML6+jZg/fxJ16tSxujT5p4QE6N4dfvzR\nPBj966+hb1+rq5IsQnPSRETS2cqVy0lMHAJ4A2WJi+vK8uUrrC1KbnX+vDm8+eOP4O8P8+YpoEmG\nopAmInKf8uTJD2y/fmXg7b2DAgXyW1mS/NP+/VCtGqxeDYGBsGYNNG1qdVUi90XDnSIi92nZsmU8\n+WQ7DKMZ7u6HKVbMxqZNy/Hx8bG6NAFYtQqeegouXICICLMHLTDQ6qokC9I+aSIiFti3bx/Lli0j\nZ86cPPXUU3h7e1tdkgBMnmzOQUtKgieegKlTzaFOEQsopImIiBgGvPsuDBliXvfvD59/nmHO4DQM\ngwkTJjF+/Exy5PBl6NBXiYyMtLosSSOFNBERydoSEqBnT7MXzd0dvvjCDGkZyIgRI3njja+x2T4E\nzuLr+zbr1/9OBW20m6EppImISNZ14YI5/2zVKnPfs2nTzGHODKZ48YocPvxf4NHrd4bw0ks2vvji\nEyvLkjRKa27xdGAtIiIi6efAAfMMzn374OGHzTM4IyL+9e1//vkn48ZNwjAMevToQnh4eDoWe2du\nbm6A/YY7Kbi7u1lVjrgIbcEhIiIZz9q15hYb+/ZBeLh5BucdAtrWrVupXr0uX3+dgxEjclKjRn02\nbdqUjgXf2Wuv9cHXtxswFfgSP7/R9OjR1eqyxGIa7hQRkYxl6lR45hlITDT3Pps2DXLkuONHmjfv\nyNy51YF+1++MomnTFSxYMN3Z1d6zKVOmMnHiT+TI4cvbbw8g4g6hUzIGDXeKiEjWYBjwwQfw9tvm\ndd++8OWX4Hn3f8quXbMBeW+4k49r1+JSry5duoSbmxs5c+Z0bM33oWPH9nTs2N6y9sX1aLhTRERc\nX2IidOtmBjQ3NzOcjRhxTwENoEePdvj6DgZWAKvw9X2THj3akpCQwBNPtCV//mDy5QukZcuOJCUl\nOfM7Ebln6kkTERHXdvEitGwJK1aAr6853Nms2X09okOHp4mNjeWTTwZiGAYDB75Kly6dePXVt1i2\nLIGkpHOAnUWLWvLBB58wZMhgp3wrIvdDc9JERNLBnj17GDbsSy5fvkaXLq1o2fIpq0vKGA4dMued\n7d0LBQuaKzgrV3bY46tVa8TGjS8C/3+u589ERU1i+fI5DmtDsi7NSRMRcXEHDhwgMvIxrl17EcMo\nxG+/DeDChYv07Nnd6tJc27p10Lw5nDsHYWFmQCtc2KFNhIQU5o8/VpCU1BQw8PJaQcmSRRzahsiD\nUk+aiIiTDRr0Nh9/HI/d/un1O2soUqQPR47stLQulzZjBnTpYp4m0KiReR0Q4PBmTp8+TZUqtbl8\nuRCQwkMPXWDz5pXkzZv3rp8VuRv1pImIuLikpGTsdp8b7viQnJxsWT0uzTBg2DAYfH1O2HPP3dcC\ngftVsGBBdu/eyqpVq3Bzc6N27dr4+vo6pS2R+6WQJiLiZJ06Pc3IkfWx2YoDD+Pr+xp9+jxjdVmu\nJzHRDGUTJpgrOIcPh5dfNr92In9/f5o2bXr3N4qkMw13ioikg7Vr1zJo0DCuXo2lc+eWvPRSv+tH\nAQlgruBs1QqWLwcfH5gyxTyTUyQD0wHrIiKSLgzDIDExkezZszv2wYcOmWdw7tljruCcNw8eecSx\nbYhYIK25RZvZiojIXf3666/kylUQX19/QkLC2bdvn2MevGGDeQbnnj1Qvrx5rYAmAqgnTURE7uLo\n0aOEhj6CzTYbqIGb238JDv4vR45Ep23I9qefoHNniI+HBg1g5kyw8FgmEUdTT5qIiDjVli1b8PR8\nFHgUcMMw+nHmzFn+/vvvB3ugYcDHH0ObNmZA69ULFixQQBP5B63uFBGROypUqBApKX8BNsAX2Ack\nkitXrvt/WFIS9OkD48aZ159+Cq+84vQVnCIZkXrSRCRTi42NZf/+/dhsNqtLybCqV69O8+a18fev\ngp/fM/j61mbEiK/Ili3b/T3o8mXziKdx48Db2xzuHDhQAU3kX2hOmohkWrNnz6Fjx264u+fCMK4w\na9YUGjVqZHVZGZJhGCxdupRjx45RuXJlKlaseH8POHLEXMEZHQ3588PcuVC1qlNqFXEVLrsFR/fu\n3VmwYAH58+fnzz//BODVV19l/vz5ZMuWjRIlSjBhwgRyXp+DMGzYMMaPH4+Hhwdff/01DRs2vLVY\nhTQRuUdnz56lWLFQbLaFQBVgDf7+TxETcyD17x1JJ5s2wZNPwtmzEBpqzj8rWtTqqkSczmUXDnTr\n1o1FixbddK9hw4b89ddf7Nixg1KlSjFs2DAAoqOjmT59OtHR0SxatIg+ffpgt9udVZqIZAH79+/H\nyysEM6AB1MTNrQCHDx+2sqys5+efoXZtM6DVqwdr1yqgidwjp4W0WrVqkTt37pvuNWjQAHd3s8mq\nVasSExMDwJw5c2jfvj1eXl4ULVqUkJAQNm3a5KzSRCQLKFKkCAkJ+4H/D2V7SUo6QVBQkJVl3ZFh\nGGzatIm5c+dy/Phxq8tJG8MwFwW0bm2u4OzRAxYuhAdZbCCSRVm2cGD8+PGpZ6WdPHnypr84g4KC\nOHHihFWliUgmEBQUxKeffoCPTyQ5c9bFx6cm//3vl+TNm9fq0m7LMAy6detD3bpP07nzt5QpU4nF\nixdbXdaDSUoyz+B87TUzrH34IYwdC15eVlfm8nbt2kXv3v3p3r0Pa9eutbocsZglW3B88MEHZMuW\njQ4dOvzre3SmnYikVb9+z9G0aUMOHjxIqVKlKFKkiNUl/avff/+dn35aQWzsTsAfWEW7dm25ePFU\nxvr78PJlaNsWliyB7Nnh++/Na7mrnTt3UqNGPWy2FzEMH6ZPb8ns2ZNp0KCB1aWJRdI9pE2cOJFf\nf/2V33//PfVeYGDgTV37MTExBAYG3vbzQ4YMSf06KiqKqKgoZ5UqIplA8eLFKV68uNVl3NXRo0eB\nqpgBDaAWV6+eJyEhAW9vbwsru1lMTAxXr14lJCQEr3/2jB07Zq7g3LUL8uWDOXOgenVrCs2APv30\nG2JjBwKvA2CzPcw773ymkJaBrFixghUrVjjseeka0hYtWsSnn37KypUrb/pLp1mzZnTo0IEBAwZw\n4sQJ9u/fT2Rk5G2fcWNIExHJLCpVqoRhvA0cBErg5jaGIkXKuExAMwyDHj368uOP0/Hyys1DD2Vn\n9epFBAcHm2/YssVcwXn6NJQpY67gzADh2JXExSUAN87lzk18fIJV5cgD+Gfn0dChQ9P0PKfNSWvf\nvj01atRg7969BAcHM378eF544QWuXbtGgwYNiIiIoE+fPgCEhobStm1bQkNDadKkCSNHjsxY3fsi\nImkUERHB8OFDyJatIj4+BShUaDgLFsywuqxUU6dOZcaMTSQkHOHatf3ExDxNx469zRd/+QUee8wM\naHXrwrp1CmgPoGfP9vj4DAUWAMvx83uZXr3+fVqQZH7azFZExIXExcVx8eJFChQogIeHh9XlpHr1\n1TcYPjwHMPj6nSPkzlWTC28PME8NMAzo1g1Gj4b7PYlAUs2aNYuhQ78kOTmZvn270qdPb3VaZGAu\nu5mtMyikiYhYwxwNmYjN9huQHU++YGq+z2j99/WV+O+/D4MG6YgnkRsopImIiNOlpKTQokUHli3b\nSG6PvEyK/4t6SfHmCs5Jk6BdO6tLlAxs9+7dHD58mLJly1KsWDGry3EYlz1xQEREMg8PDw/mzp3G\n5p+/ZW/+S2ZAy5sXli1TQJM0+eCDT6lcuQ4dOnxFuXKR/PDDFKtLchnqSRMRkXuzdau5gvPUKShd\n2lzBWaKE1VVJBrZ//37Cw2sSF7cdKAT8hbf3o5w9e5wcOXJYXV6apTW3WLKZrYiIZDBz50L79mCz\nQVQUzJoFefJYXZXcwaZNm1i0aDG5cuXkmWeeISAgwOqSbnHkyBGyZStHXFyh63fK4en5EKdOncoU\nIS2tNNwpIiL/zjDgq6+gRQszoHXtCosXK6C5uJ9//pmoqGYMHWrj9dfXEh5enStXrlhd1i1CQ0NJ\nTNwJbLt+ZzHu7rH/238vi1NIExGR20tOhv794aWXzLD23nswYYK22MgA+vcfRFzcdOz2YcTHT+f0\n6XJMnDjR6rJuERgYyPfff4uPT118fYPJmbMr8+fPxMfHx+rSXIKGO0VE5FZXr8LTT8Ovv5qhbMIE\nuMN5y3cSGxvL4MHvsmXLLsLCSvHRR0PImTOngwuWG129egn434bCiYkluHTpsnUF3UHr1q1o2rQJ\nZ86c4eGHHyZ79uxWl+QytHBARERuFhMDTzwBO3bAQw/B7NlQs+YDPcput/Poow3Zvj0/8fFPky3b\nHEqXjmbr1lW3nv0pDtOhQw9++eUy8fFfAofw8WnLihVz//XIRXEObcEhIiKOs20bVK1qBrSSJWHD\nhgcOaAAHDhxg5869xMf/ADQjMXEshw9fYseOHY6rWW4xbtwIWrTISUDAIzz88LNMnjxSAS0DUkgT\nERHT/PlQqxacPGmexbl+PYSEWF2V3EZ8fDxduvQmZ86CFCpUkqlTp930uq+vL1Onfsfly6c5cWIv\nLVu2tKhSSQuFNBERgREjoHlziI2FTp1gyRJzqDONQkJCqFChNN7enYG5ZMv2LMWK5aJixYpprzkL\n69PnFWbOPM2VK5s5fXoSPXsOYM2aNVaXJQ6mkCYikpWlpMCLL5qrOO12GDIEvv/ePO7JAdzd3Vm6\ndA69ewfz6KPf0r17AKtXL8LTU+vW0mLu3PnEx38GBAM1iIvrzfz5C60uSxxM/5WIiGRV166ZKzbn\nzTNXcH73ndmL5mB+fn58+eXHDn9uVhYQkIvz5w8B5nC0l9dBHnoozNqixOHUkyYikknt2bOHJ598\nmqpVGzJs2HDsdvv/Xvz/eWfz5pkb0/72m1MCmjjHiBEf4uPTCXf31/H27kD+/Bvp2bOn1WWJg2kL\nDhGRTOj48eOUL/8IV6++hmGUxdf3fZ59tpbZo7Vjh7nFRkyMuTBgwQIoVcrqkuU+/fHHHyxY8CsB\nATno2rUruXLlsrok+Ye05haFNBGxXEpKCuvXryc2NpaqVavqHxsHGDFiBK+9tp34+O+u3zmOn19F\nrs2cDG3bmkOdNWvCL79A3ryW1iqSWemAdRHJ0BITE6lfvznbth3D3b0Anp77WbNmCWXLlrW6tAzN\nzc0NSLnhTjI9kxLMHjS73ZyLNn68wxYIiIjjaU6aiFhqzJgxbNlicO3aDq5cWcbFi2/StWs/q8vK\n8Fq3bo2Pz2+4uw/Bnal87VmVLxNjzYD29tswebICmoiLU0gTEUvt23eYuLi6/H/HvmE04MiRw9YW\nlQkULFiQrVvX0K3tUVble4UXkv/G8PKCSZPg3XfBzc3qEkXkLhTSRMRSVatWws9vGnARMPD0/JZK\nlSpZXVamUMzbm3H7/+TRv09Brly4LVkCXbpYXZaI3CMtHBARSxmGQb9+rzB27Fg8PX0pXrwoy5bN\nI3/+/FaXlrH9+Sc8/jgcPw7Fi5srOMuUsboqkSxFqztFJFO4ePEisbGxPPzww7i7q5M/TRYvhjZt\n4OpVqFEDZs+GfPmsrkoky1FIExGR//n2W+jb1zzuqV07mDgRvL2trkokS0prbtH/XRURcZD4+HhW\nr17NmjVrSExMTN/G7XZ49VV47jkzoA0eDD/+qIAmkoFpnzQREQc4d+4c1arV4+xZTyCFoCAv1q9f\nSs6cOZ3fuM1mHun0yy/g6QljxkC3bs5vNwMwDIN9+/Zx6dIlypcvj5+fn9Ulidwz9aSJiDjAwIFv\nc+xYFFevbuHq1W0cOhTO4MHvOr/h06chKsoMaLlymfPRFNAAM6B17tyLiIg6NGzYh6JFQ9m9e7fV\nZYncM4U0EREHiI4+SFJSY8ANcCMhoQnR0Qed2+iuXVC1KmzeDMWKwbp1ULeuc9vMQGbOnMns2X8Q\nF7efK1e2cv78m7Rrp0PIJeNQSBORDOP8+fO0b9+DsmWr0aZNV86cOWN1SamqVg3H23sSkAwk4uPz\nA9WqVXReg7/9Bo8+CseOQbVqsGED6Citm+zZswebrTFgDnEaRksOHtxjbVEi90EhTUQyhOTkZGrX\nbsqsWb7s2fMZs2fno0aNBiQkJFhdGgAffTSERx65hI9PIN7egdSsCe+886ZzGhs7Fpo0gStXzK02\nli0D7St3i3LlyuHruwC4AoC7+1RKly5nbVEi90FbcIhIhhAdHU1k5BPExh7EHFI0yJGjAr//Pp4q\nVapYXR5gzoGKiYnBzc2NwMDA64ecO5DdDm++CZ98Yl6/+Sa8/z5oX7nbMgyD3r1f5IcffsTLKz/+\n/omsXLmQkiVLWl2aZBHaJ01EsoT9+/cTHh5FXNxhIBuQjJ9fadau/Znw8HCry3O+uDjo3BlmzTJX\ncI4eDT16WF1VhnDs2DEuXbpEqVKl8NaWJJKOtE+aiGQJISEh1KxZBR+fp4AJ+Pi0oWLFEMLCwqwu\nzfnOnIE6dcyAljMnLFzokgFtzJhxPPRQMH5+eejYsSfx8fFWlwRA4cKFqVChggKaZDjqSRORDCMx\nMZHhw79gy5a/CA8vzeuvv5L5/+GNjjbP4DxyBIoWNc/gDA21uqpbLF68mJYte2GzzQEK4ePTi44d\nizB27NdWlyZiGQ13iohkVr//Dq1aweXLEBkJc+dCgQJWV3Vb/fu/wogR+YHXr9+JpmDBFpw6tc/K\nskQspeFOEZHMaPx4aNzYDGitWsHy5fcV0GJiYmjSpA3Fi0fQpk1Xzp8/78RiIV++3GTLtveGO3vI\nkyePU9sUyezUkyYi4krsdnjrLRg2zLx+/XX48MP7WsFps9koXTqCU6fak5LyBF5ekyhdejPbt6/F\nw8PDKWVfuHCB8PDqnD9fgZSUQnh6TmXBgplERUU5pT2RjCCtuUVnd4qIuIq4OHjmGZgxAzw8YNQo\nePbZ+37MH3/8wZUrAaSkDAEgKakyhw4V4ciRI5QoUcKxNV+XJ08e/vxzI1OnTiU2NpamTVcS6oJz\n50QyEoU0EcmQLl26xOrVq8mePTu1a9cme/bsVpeUNmfPQvPm5skBAQHw00/QoMEDPcrb25uUlCtA\nCuABxGO325z+M8qVKxfPP/+8U9sQyUoU0kTEcufPn2fbtm3kzp2bSpUq3XUT2EOHDlGtWh0SEkph\nGFcoXBjWr19Kjhw50qliB9u921zBefgwFC5sruAsX/6BHxcREUF4eBG2bWtFXFxjfH1n0LhxY4KC\nghxYtIg4m+akiYiltm7dSr16TwClSU4+SpMmjzF9+gTc7zAHq1GjVixdGond/jpgkD17ZwYODOH9\n94ekT9GOtHw5tGwJly7BI4/AvHlQsGCaHxsfH8/nn3/Frl37qVo1nH79+jhtPpqI3J624BCRDC0k\npCIHD74OtAfi8POrxYQJr9OmTZt//UzJko9w4MB/garX74ylTZt1zJgxIR0qdqAJE6BXL0hOhqee\ngsmTwdfX6qpExEG0BYeIZGgxMQeBJtevfEhIiOLgwYN3/EzNmpFkz/5fIBm4gq/vRGrXjnRypQ70\n/ys4u3c3A9orr8DMmQpoInIThTQRsVRoaATu7uOuX50le/a5RERE3PEzX3/9MZGRf5Mt20N4eRWi\nXbtwnn++d5rq2LdvH9988w0TJkzg2rVraXrWHcXHQ8eO8MEH/1vBOXy4+bWIyA003Ckiljp06BBR\nUU25cMFGUtIlXnllAB9+OOSunzMMg4sXL+Ll5ZXmBQOrV6+mceOW2O0t8fA4SYECR9i2bS0BAQFp\neu4t/v4bWrSAdesgRw6z96xRI8e2ISIuQ3PSRCTDS05O5tixY+TKlcuSXepDQ6uye/drQCsAsmfv\nyJAhFXjjjdfv/MH7sXcvNG0Khw5BcDDMnw8VKjju+SLicrSZrYhkeJ6enhQvXtyy9s+fPwf8b8uL\nhIQwzpw557gGVqwwV3BevAiVK5srOAsVctzzRSRT0pw0EcnyGjWqj7f3f4DLQDS+vt/SqFE9xzz8\n+++hYUMzoDVvDitXKqCJyD1RSBORLG/UqM9p3NgTL69C5MgRxUcfvUrjxo3T9lDDgHfega5dISkJ\nXn4ZZs0CPz/HFC0imZ7mpIlIppeSksLgwUP54YcZ+Pj48vHHg2nVqpXzGoyPhx494McfzYPRR4yA\nPn2c156IuCTNSRMRuYu3336PESOWYbNNB87SpUtXHnroIaKiohzf2Llz5sa0a9aAvz9Mn24uGLgL\nm83GhQsXKFSokE4GEBFAw50ikgVMmTILm+0rIBxogM32EjNmzHZ8Q/v2QfXqZkALDITVq+8poI0a\nNYbcuQtQqlQVgoJKER0d7fjaRCTDUUgTkUzPz88POJV67eFxioAAB88NW7XKDGgHDkDFirBxo/m/\nd7F9+3YGDhxCYuJ24uJOcfr0mzRp0tqxtYlIhqSQJiKZ3qefvo2PTw/gfTw8+hMQMIO+fZ9zXAOT\nJ0P9+nDhAjz+uNmDFhh4Tx/dtm0bbm71gRLX7/QgJuYAcXFxjqtPRDIkhTQRyfQef/xxfv99Ni+/\nfIU338zNzp0bCQ4OTvuDDQOGDoXOnc0VnP37w5w55ly0e1S0aFFgI3D1+p01+PvnxtvbO+31iUiG\nptWdIiIPIiEBevY0e9Hc3eGLL8yQdp8Mw+DZZ/szdeo8vLzKkpy8hVmzJtNIx0WJZHg6FkpExEn+\n+usvOnfuw9Gjh4mIqMTkyaMpWLCgOaz51FPmPDQ/P5g6FZ58Mk1tbd26lVOnTlGxYkWCgoIc9B2I\niJUU0kREnODixYuEhIRx8eLbGEZDPD3HEBLyG3/N+RH3J580V3I+/LB5BmdEhNXlipNt2LCB33//\nnTx58tClS5fri1FE7kwhTUTECZYsWUKbNsO4cmX59TsGdbLl5Tc/A4+LFyE83Axo6vXK9KZOnUaP\nHi+TkNCF7Nn3ULhwDH/8sRpfX1+rSxMXl9bcooUDIpJuDhw4wHfffcesWbNITEy0upw7ypEjBykp\np4AkAJ5mHAsTL5gBrUkTcwWnAlqW0L//68TFzcFu/5i4uNkcP16IqVOnWl2WZAEKaSKSLpYtW0Z4\neHVefHEVzzzzBTVqNCAhIcHqsv5V1apVqVq1FL4+jRlMfabSi+xgHu80dy7kyGF1ienCMAxGjRpD\nnTrNadOmK3v37rW6pHR39epFIOT6lRtJSSW4dOmSlSVJFuG0kNa9e3cKFChAWFhY6r0LFy7QoEED\nSpUqRcOGDW/6Qz5s2DBKlixJmTJlWLJkibPKEhGLdO/eH5ttErGxk7h2bRW7d/8fe3ceVkXZuHH8\ne9iEg+CCAq5RpCJqLrmXRipW5q5ZWkrantryllrZYllKaZlWtpqmVi6Vu5GWYe5LluaS+76QpoBw\nQOCc+f0xvr75cwnlwBzg/lwX18sZzpm537k0bmfmeR5/pkyZYnWsS/Ly8iJh7tdsqJfB6/yEYbNh\nvIvKqpkAACAASURBVPMOvP8++BSfFfVefz2eZ5/9gMTE3nz7bTSNG7dk//79VscqULGx7ShR4ing\nGJCIj8/XtG7d2upYUgzkW0nr27cvCQkJ522Lj48nNjaWHTt20Lp1a+Lj4wHYunUr06dPZ+vWrSQk\nJPD444/jcrnyK5qIWODEiWPAjWdfeZGZ2YBjx45ZGenyTp3Ct317aqxaBXY7tlmzsD39NNhsVicr\nUGPGjMfhmAZ0xzCGkJHRlenTp1sdq0B99dWn3H67k5Il61Cx4iNMm/YZ9XKxmoRIXuVbSWvRogVl\nypQ5b9vcuXOJi4sDIC4ujtmzzbXz5syZQ8+ePfH19SUiIoLrr7+etWvX5lc0EbHATTe1xNf3Ncxn\nvHbg7/8lLVq0sDrWxe3ebS7xlJgI4eHmVBudOlmdyiIG5/+q8C52A7iCgoKYPftLTp8+zuHD2+nY\nsaPVkaSY+NeSNm7cOE6dOuWWgyUlJREWFgZAWFgYSUlJABw5cuS8eYEqV67M4cOH3XJMEfEMX331\nKY0b78bLKxB//4aMGjWUW265xepYF1q5Epo2he3boU4dcw3OG2/8988VUQMGPILd3hOYg832Nv7+\nM+nRo4fVsUSKhX99sCIpKYlGjRrRoEED+vXrx2233YbNDZf7bTbbZffjjmOIiOcICQlh+fIEsrOz\n8fHx8cy/49OnQ1ycuZrA7bebr4ODrU5lqVdffZFy5coyY8YnhISUYuTIn7n22mutjiVSLPxrSXvj\njTcYPnw4ixYtYtKkSQwYMIAePXrwwAMPEBkZ+W8fP09YWBjHjh0jPDyco0ePEhoaCkClSpU4ePDg\nufcdOnSISpdYnHjYsGHnvo+JiSEmJuaKMoiItXx9fa2OcCHDgJEjYehQ8/Wjj8J77xWrAQKXYrPZ\neOKJ/jzxRH+ro4h4vMTERBITE922v1xPZvv7778zceJEEhISaNWqFatXr6ZNmzaMGjXqkp/Zt28f\nHTp04I8//gBg8ODBhISEMGTIEOLj40lOTiY+Pp6tW7fSq1cv1q5dy+HDh2nTpg27du264F/amsxW\nRNwuK8ssZRMnmoMCRo+GYjhAQETcL99XHBg7diyTJ08mJCSEBx98kC5duuDr64vL5aJatWrs3r37\nop/r2bMnS5cu5cSJE4SFhfHaa6/RqVMnevTowYEDB4iIiGDGjBmULl0agBEjRvD555/j4+PD2LFj\nL7q4sEqaiLjVqVPQrRv8/DMEBMCXX5prcoqIuEG+l7RXXnmFfv36cc0111zws61btxIdHX3VB79S\nKmki4jZ79sCdd8Kff0JYGMybB40aWZ1KRIoQrd0pIpabOfMbBg4cwunTydxxx51MmjSekiVLWh3r\n0lavho4d4fhxqFULFiyAi/xDVEQkL7R2p4hYas2aNcTFDSApaTIOxxbmz8+mb18Pfsh85ky49Vaz\noMXGwooVKmgi4pFU0kQkTxYvXsyZM/cDNwHhnDnzNgkJ31uc6iIMA958E3r0gMxMeOgh8wpaqVJW\nJxMRuSiVNBHJkzJlylCixM5/bNlJcHCZS77fEtnZ8PDD8Nxz5uu33oKPPwZPnA5EROQsPZMmInmS\nlpZG/fo3cfjwdWRlXY+f32S++upjOnfubHU0U0oKdO8OP/4I/v4wdao5olNEJJ9p4ICIWC4tLY0p\nU6aQnJxMbGwsDRs2tDqSad8+cwTn1q0QGgpz50KTJlanEpFiQiVNRORi1q6FDh3gr78gOtp8/iwi\nwupUIlKMaHSniMj/9+23cMstZkFr08YcwamCJiKFjEqaiBQdhgGjRpnPoGVmwgMPwMKFcHZlExGR\nwkQlTUSKhuxscw3OwYPN1yNHwqefagSniBRaPlYHEBHJs5QUc/6zRYugRAmYMgXuusvqVCIieaKS\nJiKF24ED5gjOzZuhfHmYMweaNbM6lYhInul2p4gUXuvXm1NqbN4MUVHmmpwWFrSjR4/Sq9eDNGnS\nlsGDX+LMmTOWZSlsXC4XCxcuZNKkSWzfvt3qOCIeQVNwiEjhNHs29OoFGRnmWpzffgtlrFvp4PTp\n09SseSNJSd3IyWlJQMCHtGljZ+7caZZlKiycTid33nkXK1bsxTBq4XL9wLRpE+jYsaPV0UTyJK+9\nRbc7RaRwMQx491145hnz+7594aOPwM/P0lhLly4lNbUyOTkjAcjIuJWEhHKkpqYSHBxsaTZPN3/+\nfJYvP0B6+lrAF1hFXFxXTp1SSZPiTbc7RaTwyMmB/v3hP/8xC9obb8CECZYXNDD/xQzOf2xxAcbZ\n7XI5R44cweVqgFnQABqSmnocp9N5uY+JFHkqaSJSOKSmmisIfPihOYLz66/hhRfAQ0pQTEwMZcse\nx9f3SeAb7PYudO7cnaCgIKujebxmzZoBc4HNgAtv75HUqdMUb29vi5OJWEvPpImI5zt4ENq3h02b\noFw5cwRn8+ZWp7rA8ePHGTp0OLt2HSAmpgnPP/8svpqnLVcmT57KI4/0Jzs7k5o167Nw4UyqVKli\ndSyRPNHanSJStP36q3kF7ehRqFHDXIMzMtLqVJIPDMMgMzOTgIAAq6OIuIXW7hSRomvuXGjZ0ixo\nMTGwapUKWhFms9lU0ET+QSVNRDyPYcDYsdC5MzgcEBcHP/xg6RQbIiIFTSVNRDxLTg4MHAhPPWWW\nteHDYeJEjxjBKSJSkDRPmoh4jtOn4Z57YOFCs5RNnGhOWCsiUgyppImIZzh0yBzBuXEjhISYKwrc\nfLPVqURELKOSJiLW++03s6AdOQLVqplX0q6/3upUIiKW0jNpImKtBQugRQuzoLVsaY7gVEETEVFJ\nExELvfcedOwI6elw332waJF5q1NERFTSRMQCTic8+SQ88QS4XDBsGEyebC73JCIigJ5JE5GClpZm\njticN88cwTlhgnkVTUREzqMraSJScA4fNp87mzcPypaFxYtV0PLg2LFjDBz4DF279uHzzydp2TyR\nIkZX0kSkYGzcCHfeaRa16683BwxUr251qkLr1KlT1KvXnL//7kROTgyLFo1h794DDB/+stXRRMRN\ndCVNRPLfwoXmnGeHD5v/u3p1rgqay+XihReGUb78tVSsWJ3x4z8ugLCFw3fffcfp0w3IyRkD9CM9\nfR6jR7+tq2kiRYiupIlI/ho/3lzmyeWCe+81n0HL5QCB+Pi3GTv2exyOBUA6gwbdQ2hoObp375a/\nmQuB7OxsDKPkP7aUxOnMsSyPiLifrqSJSP5wOuE//4H+/c2C9sorMGXKFY3gnDZtLg7HSCAaaITD\n8TzTps3Lt8iFSfv27fHx+R6b7QPgFwIC7qFnz97YbDaro4mIm6ikiRQRTqeT1NTUXN3uSk1Nxel0\n5l+Y9HTo1g3GjAFfX/jiC3OajSssEKVLBwMHzr328tpP2bJB7s1aSFWuXJmVK3+iVavF1Kr1PAMG\nNOGzz96zOpaIuJHNKEQPMNhsNj1vIXIRX375NQ8++Ag5OU6qVo1k0aJZREZGXvC+ffv20bZtF/bu\n3YG3txcfffQB99/fx71hjh6FDh3g11+hTBmYNQtuueWqdrVq1SratOlIZmY/vLzSCAz8jg0bVnDd\ndde5N7OISD7Ia29RSRMp5DZv3kyTJq1xOH4CamGzvUtk5Bfs3Pn7Be+Njm7M9u3dcbkGAX9it7di\nxYrvqVevnnvC/PGHOYLz4EG47jpzBGdUVJ52uWXLFmbM+AY/P1/69OlNlSpV3JNVRCSfqaSJFHMT\nJ05k4MAlpKdPObvFwNvbn9TUU9jt9nPvy87OpkSJAAwji/8+6WC3P8CYMU14+OGH8x4kIQF69IDT\np6F5c5g9G8qXz/t+RUQKqbz2Fj2TJlLInD59mjVr1rBz504AKlWqBGwAMs++41f8/QMJCAg473M+\nPj4EBYUAa85uOYOX169nP59HH30E7dubBe3uu+Gnn1TQRETySCVNpBDZtGkTERE1adv2cerWbcHD\nDz9BmzZtuOOOhgQG1qdkybsJCLiDL7747IJRfjabjalTP8Nu70jJkncTGNiA1q2jueOOO64+kMsF\nzz4Ljz1mjuYcOhS++gr8/fP4/1RERHS7U6QQqV69ATt3PgHcD6QSGHgTX389gvbt2/Pzzz9z9OhR\nGjVqRPXLTBS7a9cu1qxZQ3h4OK1atbr6KRscDnNJp1mzwMcHPvkE+va9un2JiBRBeiZNpBjx8wsk\nO/soEAyAr+9/eOONCgwaNKhggxw7Bh07wrp1ULo0fPsttGpVsBlERDycnkkTKUYiI6Ox2aadfXUK\nP78EatWqVbAhNm+GJk3MgnbttbBypQqaiEg+UEkTKUS+/fYLypUbQVBQbfz9q9GvX/u8PVN2pRYt\ngptuggMHoGlTcw3OmjUL7vgiIsWIbneKFDIZGRls376dsmXLUrVq1YI78Kef/m+AwF13masI/L8R\npCIi8j96Jk1E8pfLBc8/D2+9Zb5+/nl4/XXw0oV4EZHL0TNpIuJ2x48f59dff+Xk4cPmBLVvvWWO\n4PzsMxgxQgXNYqdOnaJjx56UKVOJ6tVvZPny5VZHEpF8oCtpInKeSZOm8PjjT1LRuwJfObbT2OWE\n4GBzBGebNlbHEyAm5k5WrapEVtaLwK8EBj7MH3+s5dprr7U6moj8g253iojbHDp0iOrV6xGRMYkF\nDORa9rHf5kXIqpWUbNLE6niCubyXv38gLlc64AtAYOB9vPdea/pqnjoRj6LbnSLiNrt37ybWK5yV\n3Me17GMNjWllv5b9JUvm6vMul4vk5GT9Yyof+fj44OPjBxw6u8XAZttPcHCwlbFEJB+opInIOXXW\nreOb9C2UJoVv6MatvMNR10mqVKnyr59dsGABwcHlCQ2tQsWK17Nx48YCSFz82Gw2Ro4cgd3eChhG\nQEBHIiNdtG/f3upoIuJmut0pIuYIzqFDIT4egLd9/BkeEE22cz9TpnxK165dLvvxgwcPEhXVAIdj\nHtAUmEr58i9y5MgufHx88j9/MbRo0SISE3+hUqUK9OvXjwBNhyLicfRMmojkTUYG3H8/zJgB3t4w\nfjzHOnZk//79REZGUq5cuX/dxfz587nvvg9ISfn+3Da7vRLbtq0q2LncREQ8SF57i/6JK1Kc/fUX\ndOpkrhwQFATffANt2xIOhIeH53o3lSpVIjt7M5AClAJ24HSezlXBExGRi9MzaSLF1bZt/1vaqWpV\ncw3Otm2valf169enb9+7CQysT1DQ3djtLXnvvXex2+1uDi0iUnzodqdIcbRkCXTtCikp0LAhzJsH\nV3Dl7FJWrlzJ3r17qVu3LrVr13ZDUBGRwkvPpInIlZk0CR56CHJyoEsXmDoVdMVLRMTtNE+aiOSO\nywUvvgh9+5oF7T//gZkzVdBERDyUBg6IFAeZmeYIzunTzRGc778Pjz5qdSoREbkMlTSRIsQwDCZM\nmMj8+UuoWLE8L700mAo+PtC5szkwICjInGrj9tutjioiIv9Cz6SJFCFDh77K2LGzSE9/Ch+fP2hc\najq/BPnivW8fVK4MCxbADTdYHVNEpFgolAMHRo4cydSpU/Hy8qJOnTpMnDiR9PR07r77bvbv309E\nRAQzZsygdOnS54dVSRO5JMMwsNtLk5m5GajCLSTyHW0pSzY0aGCO4KxY0eqYIiLFRqErafv27aNV\nq1Zs27aNEiVKcPfdd9OuXTu2bNlCuXLlGDx4MG+++SanTp0i/uwSNefCqqSJXJJhGJQoEUh29kF6\ns4DPeBA/stl3ww1ErFwJgYEFkmPevHmsXbuOiIhriIuL07JQIlJsFbrRncHBwfj6+uJwOMjJycHh\ncFCxYkXmzp1LXFwcAHFxccyePbugo4kUajabjXt79eENn0ZMJg4/snnfz47P3LkFVtCGDn2Vnj0H\n8frrNp54Yipt23bB5XIVyLFFRIqaAi9pZcuW5ZlnnqFq1apUrFiR0qVLExsbS1JSEmFhYQCEhYWR\nlJRU0NFECrczZ5hwJoUXcvbiBN6LqsutG9ZS+ZprCuTwaWlpjBr1FunpS4FXcTgWs27dXpYtW1Yg\nxxcRKWoKvKTt3r2bd999l3379nHkyBHS0tKYOnXqee+x2WzYbLaCjibFjGEYLFq0iClTprBjxw6r\n4+TNiRPQpg1e06ZByZJ4L1jAwG2/U6tWrQKLkJ6ejpeXPxB6dosPXl5VSElJKbAMIiJFSYE/LLJ+\n/XqaN29OSEgIAF27dmXVqlWEh4dz7NgxwsPDOXr0KKGhoRf9/LBhw859HxMTQ0xMTAGklqLG5XLR\npcu9LFmyGaiDy/UMU6d+Qpcuna2OduV27IA774Rdu6BSJXMEZ926BR4jNDSUyMhIdux4gZycAcDP\nwG80bdq0wLOIiFghMTGRxMREt+2vwAcObNy4kXvvvZd169bh7+/P/fffT+PGjdm/fz8hISEMGTKE\n+Ph4kpOTNXBA8s3ChQu5++4XSEtbA5QA1hIU1J6UlKTCdRX3l1/MpZ1OnoT69c0RnJUqWRbn6NGj\n9Oz5EL/9tp5KlaoyZcqH3HjjjZblERGxUl57S4FfSatbty59+vShYcOGeHl50aBBAx5++GFOnz5N\njx49mDBhwrkpOETyy5EjR3C56mMWNIAbSUs7SU5ODr6+vlZGy72pU6FfP8jOhvbt4euvoWRJSyNV\nqFCBxMT5lmYQESkqNJmtFEubNm2iWbO2OBw/ArXw8nqTqKhZbNmyxupo/84w4LXX4L+3/p94At55\nx1zuSUREPEahm4JDxBPccMMNfPzxO/j734S3dwDVqs1kwYLpVsf6d2fOQJ8+ZkHz8oKxY80vFTQR\nkSJHV9KkWHO5XGRkZBBYQPOI5cnff5vPny1bhhEYiO3rr6FDB6tTiYjIJehKmkgeeHl5FY6CtmsX\nrqZNYdkyDmOjyRknvb6ejdPptDqZiIjkE5U0EQ9iGAYffvgJrVp15u67+5rzty1fDk2b4rVrFxtt\npWjCLtblHGfOnL2MHv2u1ZFFRCSfaFE9EQ/y6qsjGD16JunpL+LltZPAeY2Y4MzElpXFL0FlufP0\nF6RxHQAOx4MsXTqHIUMsDi0iIvlCV9JEPMjYseNJT58OdON5l5PPM1KxZWVB//6Ma3U7Gd7rz77T\nwM9vKdWqVbUy7jkHDx6kceNWlChRkmuuiWbFihVWRxIRKfQ0cEDEg5QuXRFHymI+ZjR9mYQLSOzY\nkVazZ3Pw0CEaN44hPT0CyCQsLI21axMpU6ZMvmZKSUlhx44dVKhQgcqVK1/wc8MwqFGjAXv2dMHp\nfBJIpGTJh9i+/XcqVqyYr9lERDyZBg6IFCHPPtCHxV5N6csk0vGll38pIseNA5uNKlWqsH37b3z1\n1dNMn/4imzatzveCtnz5cqpUqU6bNo9QrVpdhg9/84L3HD9+nAMHDuB0vgSUAjrh5dWEtWvX5ms2\nEZGiTlfSRDzFnj0Y7dph276dE74lGNn8Vh4Y/zbR0dGWxDEMg5CQypw69SnQDjiK3d6YpUtn0bBh\nw3Pvy8jIoFSpcmRnbwcqA1mULFmPBQs+omXLlpZkFxHxBLqSJlIUrFwJTZpg274d6tSh3O6dvJ34\nvWUFDSA1NZW0tFTMggZQAS+vm/nzzz/Pe19AQACvvfYadnsLfHyeITDwFlq0iObmm28u8MwiIkWJ\nrqRJkZKVlYWfn59b9/nFF1P47LPpBAYG8Oqrz9KkSRO37p/p0yEuzlxN4PbbzdfBwe49xlW41JW0\nX36ZfdFF05csWcK6deuoWrUqPXr0wFurIIhIMZfX3qKSJkXCH3/8wZ139uDQoZ2ULVuBb7+dyi23\n3JLn/X744Sc8++xoHI6RwAns9hdZsWIx9erVy3tow4CRI2HoUPP1o4/Ce++BT+5mxsnMzOT1199k\nzZpN3HBDdYYNe4GgoKC85/qH5cuXc+ed3YEKZGUd4IUXBvPSS5rzQ0QkN1TSpNjLysqicuVqHD/+\nGtAHWETJkr3Zs2cL5cuXz9O+q1VryK5dbwP/LXzD6d//FO+//05eQ5ulbOJEsNlg9Gh4+mnz+1ww\nDIPWrTuyerUPGRk9KVFiPlFRu1m/fik+uSx5uZWamsqOHTsIDw+/6OhOERG5OD2TJsXe/v37ycjw\nBuIAG3Ab3t7RbNq0Kc/7ttlswD//grnw8spdkbqk5GRo184saAEB8N138J//5LqgAezbt4/Vq9eT\nkTED6MGZM5PYvfsUGzZsyFu2iwgODqZhw4YqaCIiBUwlTQq9cuXKkZV1Ajh4dksK2dk7CQ8Pz/O+\nhwx5HLv9AeBrYByBge/z0EP3X/0O9+6F5s3hp58gPBx++QU6d77i3TidTmw2b/73V9iGzeaLy+W6\n4L0JCQkMGvQc77zzDunp6VefXURECpRKmhR6ZcqUYfjwV7Hbm2O39yUwsBFxcXdTq1atPO/7gQf6\nMmHCCNq0+YbOndeydGkCderUubqdrV4NTZrAtm1Qu7b5+h9TWVyJ6667jlq1qlGixAPAYvz8niQ8\n3IsGDRqc976xY9+nW7fHGD06iKFDV9Gw4S1kZGRcXX4P9euvv9KoUSsqV46mb9/HVURFpMjQM2lS\nZKxdu5ZNmzYRGRnJrbfeanWc833zDfTuDZmZ0LYtzJgBpUrlaZenT59m0KCXWLduE7VqVWPMmBGE\nhISc+7lhGAQGliEjYx1QDTAoWbItH3/cl169euXt/4+HOHDgALVqNSQtbRRQH3//N2jTBubNm251\nNBGRPPcWLbAuRUbjxo1p3Lix1THOZxgwahTnVkF/+GF4/33w9c3zroOCgvjoo3cvc2iDrCwH5gSz\nADZcriqkpaXl+dhWy8zMxNvbm8WLF+NytcV8HhEyMyfy/fdlcDqdmgJERAo93e6UQiU7O5uFCxcy\nffp0jhw5YnWcy8vONkvZfwvaW2/BRx+5paDlhpeXF23adKBEiYeB3cC32GzzaN26dYEcPz9kZGTQ\nvn0PSpYshd0exIwZ3+HldZz/De44gbe3L15e+k+biBR+upImhcaZM2do0eJ2tm1Lw2arAjzBkiUL\nzluiyGOkpED37vDjj+DvD1OnQrduBR5j5sxJPPjgEyxZ0ppy5UL59NNZREZGFngOd3nmmaH89JMT\npzMFSGfZslgCA0+SlRVHVlYD7PaPeP75l86OyhURKdz0TJoUGh988AGDBi0gI2M+5kXgL4mOfo8t\nW1ZbHe18+/ZB+/awZQuEhsLcueaAgULqr7/+YvPmzVSqVIkaNWpYmiUqqgnbt48Bmp/dMoFOnX6i\nQYNoDh1Kom3bW+jevbuVEUVEztEzaVJs7N9/iIyMZvzvLv1NHD36nJWRLrR2LXTsCElJEB0NCxZA\nRITVqa7ajz/+SOfOPfHxiSYrazsDBjzEW28NtyxPlSoV2bFjNYbRHDDw81tNtWoRvPzyi5ZlEhHJ\nL7qSJoXG3Llz6dlzEA7Hz0AYvr5PERubxIIFM6yOZvruO7jvPsjIgDZtYOZMKF3a6lRXzTAMSpcO\nIzV1BhAD/I3dfiM//TSNpk2bWpJpx44dNG16K9nZjbDZTlO+/F+sX/8LZcqUsSSPiMjlaMUBKTY6\nduzI4MFx+PhE4uMTTL16m5k8+UOrY5kjOEePNp9By8iABx6AhQsLdUEDczmojAwHZkEDCMHLqym7\ndu2yLFP16tXZvv13Pv30HiZN6s+mTatV0ESkyNKVNCl0srKyyMzMJDg42Ooo5gjOAQPgk0/M1/Hx\nMHjwFS3x5KkMwyA8/Fr++ms00B3Yj93ejJUrv6du3bpWxxMR8XhaYF3EKikp0KMHLFpkjuCcPBnu\nusvqVG61fv16brutM1lZ/mRnH+fNN0fw5JP9rY4lIlIoqKSJWGH/fnME5+bNUL68OYKzaVMMwyhy\n0z9kZmayf/9+QkNDdWtRROQK6Jk0kYK2fj00bWoWtKgoUhcv5r116wgLuw4fHz+iohqyfft2q1O6\njb+/PzVq1FBBExEpYLqSJnIlZs2Ce+81Bwi0asXOkSNpekcXTp5MBb4A2mGzfU5Y2Nvs378NPz8/\nqxOLiIhFdCVNpCAYBrzzjrlqQEYG9O0L339Pnydf5OTJLkADoCvgj2E8Tlqawf79+/M10tdfT6Nq\n1VqUL38tAwcOIjs7O1+PJyIiBUslTYqEhQsXEh3dlKpVazNkyMvk5OS4b+c5OdC/PzzzjFnW3ngD\nJkwAPz/27t0DtAX2AP9duDyJrKwTlC1b1n0Z/p+ff/6ZBx98hoMHP+TEiQQ+/3wDQ4a8nG/HExGR\ngqeSJoXe6tWr6d69L9u2vcjBg1N4//1Enn9+mHt2npoKHTrAhx9CiRIwbRq88MK5KTYaNKiPt/dS\noB3QFHgIP79GPPfcEEJCQtyT4SK+/XYeDscTQEugBg7HO8yYMSffjiciIgVPJU0KvW+/nU1GRn+g\nPVAfh2M8X345M+87PngQWrSAhAQoVw6WLIG77z7vLZMmfUBU1HL8/efg47OHZs22k5DwBa++OjTv\nx7+MMmWC8PE58I8tBwgKCsrXY4qISMHS2p1S6AUG2vHx+Yv/3eFMIiDAnredbthgTrFx9CjUqGGu\nwRkZecHbQkND2bRpFYcOHcJut1OuXLm8HTeX+vd/jI8/bkJychY5OeH4+3/MmDGTC+TYIiJSMDS6\nUwq9I0eOUKdOY1JSuuF0ViIg4F2++GIcd93V/ep2OHcu9OwJDgfExJhrcnrg9BNJSUl8/vlE0tMd\ndO7ckYYNG1odSURE/kGT2YoAhw8f5oMPPiIlJY277upETEzMle/EMGDcOHj6afP7uDhzuSdNoyEi\nIldBJU3EHXJyzHL2/vvm69dfP2+AgIiIyJXKa2/RM2kip0/DPffAwoXmVbNJk8zbnYVMUlISkyZN\nIj09gy5dOlG/fn2rI4mISB7oSpoUb4cOmQMENm6EkBCYPRtuvtnqVFfs6NGj3HBDE1JS2pKTE0pA\nwGfMmfMVbdq0sTqaiEixpStpIlfrt9/MgnbkCFSrZl5Ju/56ADZs2MDKlSsJCwujS5cu+Ph4hCWG\nyAAAHt1JREFU9l+VceM+IDm5Mzk54wBwOBry9NOv8McfKmkiIoWV5kmT4mn+fHMOtCNHoGVLWLXq\nXEGbOvUrbr65HYMGbaFv33eIje2M0+m0OPDlnTyZSk7ONf/YEkFqaqpleUREJO9U0qT4ee896NQJ\n0tPhvvtg0SLzVidgGAaPPDKAjIxFZGZ+SHr6Mtav/4v58+dbHPryunfvgN3+LrAS2Ind/gx33dXR\n6lgiIpIHKmlSfDid8OST8MQT4HLBK6/A5Mnmck9n5eTkkJl5Gog+u8UHl6sWx48fd2uUzMxMEhMT\n+fnnn8nMzMzz/mJjYxk/fgQVK/YjJKQN/fo1JD7+VTckFRERq2jggBQPaWnQqxfMmwe+vvD55+ZV\ntIu48cZb2LjxJpzOV4AN2O2dWLcukejo6Iu+/0r9/fffNG3aiqQkP8BGaOgZ1qxZkq9rfYqISMHL\na2/RlTQp+v773Nm8eVC2LPz44yULGsD8+dNo0GA1Xl4lKVOmO1999anbChrAc88NY//+Fpw+vZbT\np9dw4EBLBg9+xW37FxGRosGzh6xJobVp0ybmzp1HYKCdPn36WHeVaONGcwTnoUPm2psLF0L16pf9\nSIUKFVi7dgmGYWDLh8lst23bQ3b2I4C57+zstvz554duP46IiBRuupImbrdkyRKaNWvNsGHJPP/8\nb9Sq1cjtz3TlysKF5pxnhw7BTTfB6tX/WtD+KT8KGsBNNzUgIGAikAVk4e8/kebNG+TLsUREpPDS\nM2nidrVqNWPr1sFAFwB8fB7l+efDee21YQUXYvx4GDjQHCDQqxdMmAD+/gV3/MvIzMykY8d7+OWX\nXwAbLVu2YO7cafh7SD4REXEPTWYrHiclJRmIPPc6JyeSv/8+UjAHdzrh2Wfh3XfN1y+/DMOGXfEa\nnE6nE29vb/fnA/z9/fnhh1kkJSVhGAbh4eH5dtVOREQKL93uFLfr0qU9AQGDgP3AWuz2cXTqdEf+\nHzg9Hbp2NQuar6+5Buerr15RQVu3bh2VKlXH19ePKlWi+PXXX/Mlqs1mIzw8nAoVKqigiYjIRel2\np7hdVlYWAwY8y4wZ3+Dvb2fEiBfp1+/+/D3okSPQoQNs2AClS8OsWRATc0W7SE1N5ZprokhOHgt0\nBb6hTJn/cODAdkqWLJkfqUVEpAjLa29RSZPCb9MmcwTnwYNw3XWwYAFERV3xbtauXUts7KOkpm44\nty04uC5LlnzOjTfe6M7EIiJSDGieNCneEhLMEZwHD0KzZuYIzqsoaAChoaFkZR0E/j675ThZWYcI\nDQ11W1wREZHcUkmTwuujj8wraKdPw913w5IlUL78Ve8uIiKCgQMfJTCwCQEBD2G3N+GppwZSpUoV\nN4YWERHJHd3ulMLH5YLBg+Htt83XL7wAw4eDl3v+zZGYmMiff/5JdHQ0LVu2dMs+RUSk+NEzaVK8\nOBzmkk6zZoGPD3zyCfTte95bXC4Xb775DnPmLCY0tCxvvfUKUVd5C1RERORqqaRJ8XHsmDmCc/16\nKFUKvvsOWrW64G1PPjmYzz5bgcMxFJttG0FBo9iyZT2VK1e2ILSIiBRXKmlSPGzeDHfeCQcOQESE\nueRTzZoXfWtgYFkcjk2AWcr8/R/grbfqMXDgwILLKyIixZ5Gd0rRt2iRufbmgQPQtCmsWXPJggb/\nXXPT+Y8t2Xi56Xk1ERGRgqLfXFKgEhISuPbaGyhbtgr33vsg6enpl//AJ59Au3aQmgp33WWO4PyX\nKTGeeGIgdnsXYAZeXsMICPiJbt26uSW/YRj8+eef/PHHH+Tk5LhlnyIiIhej251SYDZt2kSzZm1w\nOCYDNfD3H0L79gHMnPnFhW92ueC552DUKPP188/D66/nagSnYRiMH/8xs2cvJjw8hOHDXyAiIiLP\n+c+cOcMdd3RjzZqNeHn5U7VqGX755XtCQkLyvG8RESl6CuXtzuTkZLp3707NmjWJjo5mzZo1nDx5\nktjYWKpXr07btm1JTk62Iprkox9++IHs7F7A7cC1ZGa+z8KF8y58o8MBPXqYBc3HBz77DEaMyPUU\nGzabjfvu68ldd93GjTdGc+bMGbfkf/PNt1m92guHYw9paTvYtasJAwcOccu+RURE/j9LStqTTz5J\nu3bt2LZtG5s2bSIqKor4+HhiY2PZsWMHrVu3Jj4+3opoko+Cg4Px8dn/jy37sduDzn9TUhLceit8\n+y0EB8P338MDD1zRcU6dOkWdOk14+ukEnntuBw0a3MyyZcvynH/Dhq1kZHQDfAEbWVk92Lhxa573\nKyIicjEFXtJSUlJYtmwZ/fr1A8DHx4dSpUoxd+5c4uLiAIiLi2P27NkFHU3yWa9evQgP30WJEvcA\nr2C3d+btt9/43xu2boUmTWDtWrjmGli5Etq0ueLjvP/+eJKSmuFwfMeZM+NxOMbz+OPP5Tl/vXpR\n+PvPBnIAA1/fb6lTR/OviYhI/vAp6APu3buX8uXL07dvXzZu3MiNN97Iu+++S1JSEmFhYQCEhYWR\nlJRU0NEknwUFBfH77yuYMGECJ06c5Lbbvv7fjP4//QTdukFKCjRuDHPnwtk/D1cqKelvsrKi/7El\nmr//PpHn/M899yw//dSZ336rhs3mT8WKAbz33g953q+IiMjFFHhJy8nJYcOGDbz//vs0atSIp556\n6oJbmzab7ew0ChcaNmzYue9jYmKIiYnJx7TibsHBwTz99NPnb5wwAR59FHJyzKI2eTLY7Vd9jDvv\njGXixMdxOO4AwvH3H0q7dm3zFhzw9/dn6dKFbNmyhZycHGrVqoWfn1+e9ysiIkVDYmIiiYmJbttf\ngY/uPHbsGM2aNWPv3r0ALF++nJEjR7Jnzx5+/vlnwsPDOXr0KLfeeit//vnn+WE1urNocblg6FD4\nb0kfNMj83g1zmn3wwUcMHfoqmZnpdOrUjUmTxhMQEJDn/YqIiORWoVxxoGXLlnz22WdUr16dYcOG\n4XA4AAgJCWHIkCHEx8eTnJx80StsKmlFREYGxMXBzJng7Q3jx8PDD1udSkRExG0KZUnbuHEjDz74\nIFlZWURGRjJx4kScTic9evTgwIEDREREMGPGDEqXLn1+WJW0ouGvv6BTJ1i9GoKC4JtvoG3eb0eK\niIh4kkJZ0q6WSlrhsXv3bhISErDb7XTv3p2goLNTbWzbZq7BuXcvVK0KCxZA7drWhhUREckHKmni\ncVatWkVsbEeczs54eydRvvxufvttBaU3bICuXc0RnA0bmiM4K1TI1ywOh4OAgIBLDkQRERHJL4Vy\nxQEp2h57bDDp6ePIzPyU9PS5HDnSiKV9+8Ftt5kFrUsXSEzM14K2YcMGKla8nuDgMoSEVGbp0qX5\ndiwREZH8oJImbnf8+HGgDgA2XLyUdYhOs2eZU2w884w5WCAwMN+On5mZSWxsR44efR2nM5NTpybS\nvv1dnDiR97nSRERECopKmriVYRiEh4cCQyhBEl/SkRf5CZeXlzmCc/RoczRnPtq7dy/Z2XbgHsAG\ntMXbuzqbN2/O1+OKiIi4U4FPZitF29SpX7Ft21+UI5DZVOAmDNK9fQicPw9uv71AMpQvX56srCTg\nEFAZOElW1i4q5PPzbyIiIu6kK2niVt99l0CVjD6sYic3YXCAUPpcW7vAChpAuXLleO21YdjtTQkM\n7I3d3pDHHutHjRo1CiyDiIhIXulKmrjVTTkOJjCcsmTyKw3oQA9qVF5R4DkGD36aVq1a8Mcff1Ct\n2iPcfPPNBZ5BREQkLzQFh7jP5MkYDz6ILTubeV6V6eN9Gzkl5rJs2SLq1atndToREZECpXnSxHqG\nAcOGwWuvAZD+yCNMrFmTbJeLTp06cd1111mbT0RExAIqaWKtM2egXz/46itzYfRx46B/f6tTiYiI\nWE6T2cq/+vDDTyhVKowSJUrStet9pKenu2fHJ05AmzZmQStZEubNU0ETERFxE11JK+IWLVpEly4P\n43DMByrh7/8Id91VhsmTP87bjnfuhHbtYNcuqFQJ5s8HPXcmIiJyjq6kyWUlJPyIw/EwUBsoQ2bm\n6/zww4952+myZdC0qVnQ6tWDNWtU0ERERNxMJa2ICwsrR4kSW/6xZQtly4Zc/Q6//NK8xXnyJLRv\nbxa2SpXynFNERETOp9udRVxqair16t1EUtK1OJ2V8Pb+hgULZhITE3NlOzIMGD4cXnnFfP3EE/DO\nO/m+xJOIiEhhpdGd8q/S0tKYMWMGaWlp3HbbbVc+8/6ZM/DQQzBlijmCc8wYs6SJiIjIJamkiVu5\nXC68vP5xF/zkSejSBX75BQIDYdo08zaniIiIXJYGDohb/PXXXzRv3hZf3xIEB4cybdp0c2BAs2Zm\nQatY0Xz+TAVNRESkQOhKmgBw8823s2ZNNDk5I4Et3OrXhkUBLnxSUqBuXXOKjcqVrY4pIiJSaOh2\np7iFj08JnM5TgJ17+JpJ3EcJXOZcaNOmQVCQ1RFFREQKlbz2Fh83ZpFCrFSpUE6e/J2hLOF1XgJg\nR2ws1efMAR/P/GOyc+dOZsyYiZeXF7169eSaa66xOpKIiIjb6EqaADB7xgxO9+pDb+cZXMC4iOr0\n3/4Hvn5+Vke7qN9//50WLdqSkXEvNls2dvs3rFv3C9WrV7c6moiICKDbneIOp05B166QmEi2nx9r\nnniCJiNG4Ovra3WyS7rjjrtISLgFGACAl9cI7rlnD19++Zm1wURERM7S7U7Jmz17zOfOtm+H8HB8\n58/n5htvtDrVvzp5MgW49txrl+taTpz4zbpAIiIibqYpOIqzlSuhSROzoNWpY67BWQgKGsA993TA\nbn8Z2AZswm4fTs+eHayOJSIi4ja6klZczZgBffqYqwncfjtMnw7BwVanyrWnnhrAqVPJfPjhHdhs\nXjz77ADi4npbHUtERMRt9ExacWMYMHIkDB1qvn7sMRg3zmNHcIqIiBRWeiZNci8rCx59FCZOBJsN\nRo+Gp582vxcRERGPopJWXCQnQ7dusGQJBATAV19B585Wp8oVwzA4cuQINpuNChUqYFOpFBGRYkAD\nB4qD5GRo3twsaOHh5lqcV1DQEhISaNiwNbVr38TYse8X6C3njIwMWrfuwPXX1yMy8gbatu1MZmZm\ngR1fRETEKippxUGpUnDzzVC7NqxeDQ0b5vqjy5cvp2vXOH799XG2bBnOCy98zJgx7+Vj2PO9+OJw\nVq0KIDPzCJmZR1ixwpthw0YU2PFFRESsopJWHNhs8MEHsGIFXOHSSZMmTSMjYzDQDWiFwzGejz6a\nki8xL2bVqt/IzIwDfAE/MjL6sHKl5kMTEZGiTyWtuPD1vaopNvz9/bDZUv+xJRW/AlwqKirqOnx9\nEwADMPDz+4GaNa8rsOOLiIhYRVNwyGVt376dhg1bkJ4+AMMoS0DACL788gO6dOlSIMf/+++/adq0\nNUlJPoBBhQoGq1f/RJkyZQrk+CIiIldLa3dKvtu2bRtjxozH4TjD/ff3oE2bNlf0+V27dvHZZxPJ\nyXHSu3dP6tate0Wfz8zMZM2aNdhsNpo0aUKJEiWu6PMiIiJWUEkTj7Zt2zYaN74Fh6MvLpc/dvt4\nFi2azU033WR1NBERkXylkiYerU+fR5g69RoM44WzWyZyyy3fkZg4z9JcIiIi+S2vvUUDByRfpaam\nYxgV/rGlAqdPp1uWR0REpLBQSZN81bt3V+z214BlwHrs9iHExXWzOpaIiIjH07JQkq+6detKcnIK\nw4f3x+l00r9/XwYOfNzqWCIiIh5Pz6SJiIiI5AM9kyZXbM+ePSxfvpy///7b6igiIiJyCSppxcxL\nLw2ndu2mtG8/iIiImiQmJlodSURERC5CtzuLkXXr1hET0w2HYz0QCvxI6dK9OXnyCDabzep4IiIi\nRYpud0qu7dixA2/v5pgFDaAN6emnSUlJsTKWiIiIXIRKWjESHR2N07kMOHR2y1yCg8tQqlSpXO/D\n6XQyZ84cPv30U7Zs2ZIvOUVERERTcBQr9evXZ9iwQbz8ch18fSvi5XWS+fNn5fpWp9Pp5LbburBm\nzVFcrjoYxlCmTPmIbt265nNyERGR4kfPpBVDf/31F8eOHSMyMpLAwMBcf27WrFn06RNPWtoKzH6/\nllKlOpKcfCzfsoqIiBRWee0tupJWDIWGhhIaGvrvb/x/jh07htNZl//9sanP6dMncDqdeHt7uzWj\niIhIcadn0iTXmjdvDswBfgeceHu/Rr16N6mgiYiI5AOVNMm1unXrMmHCOAIDW+Pl5U+dOonMm/e1\n1bFERESKJD2TJhcwDIN33hnHxx9Pxc/Pj9dee4auXbue9/OcnBx8fX0tTCkiIuLZ9EyauN27777P\nyy9PwOEYD6TSu/dDBAUFERsbC5h/6FTQRERE8pdud8oFJkyYhsPxLnAz0A6H43kmTZphdSwREZFi\nRSVNLuDv7w+cPPfaZjtJYKC/dYFERESKIT2TJhf44Ycf6NKlDxkZz2KznSYw8CPWrfuFqKgoq6OJ\niIgUGnntLSppxdyxY8fYuXMnERERVKlS5dz2FStW8MUX0yhRwo8BAx6mRo0aFqYUEREpfFTS5KpN\nnz6Tvn0fxc+vBllZO3j77RE89tjDVscSEREpElTS5KqkpKRQocK1ZGT8DNQF9hAQ0Jg//9xA1apV\nrY4nIiJS6OW1t2jgQDF16NAhfHxCMQsawHX4+dVkz549VsYSERGRsywraU6nk/r169OhQwcATp48\nSWxsLNWrV6dt27YkJydbFa1YqFq1Ki7XCWDl2S2bycraRrVq1ayMJSIiImdZVtLGjh1LdHQ0NpsN\ngPj4eGJjY9mxYwetW7cmPj7eqmjFQlBQEDNnTiEwsCNBQdH4+7fg00/fo1KlSlZHExERESx6Ju3Q\noUPcf//9DB06lHfeeYd58+YRFRXF0qVLCQsL49ixY8TExPDnn3+eH1bPpLldamoq+/bto0qVKpQp\nU8bqOCIiIkVGoVwW6umnn2bUqFGkpqae25aUlERYWBgAYWFhJCUlWRGt2AkODuaGG26wOoaIiIj8\nPwV+u3P+/PmEhoZSv379S7ZLm8127jaoiIiISHFU4FfSVq5cydy5c1m4cCGZmZmkpqbSu3fvc7c5\nw8PDOXr0KKGhoRf9/LBhw859HxMTQ0xMTMEEFxEREbmMxMREEhMT3bY/S+dJW7p0KaNHj2bevHkM\nHjyYkJAQhgwZQnx8PMnJyRcMHtAzaSIiIlJYFPp50v57W/O5555j8eLFVK9enSVLlvDcc89ZnExE\nRETEOlpxQERERCQfFPoraSIiIiJyIZU0EREREQ+kkiYiIiLigVTSRERERDyQSpqIiIiIB1JJExER\nEfFAKmkiIiIiHkglTURERMQDqaSJiIiIeCCVNBEREREPpJImIiIi4oFU0kREREQ8kEqaiIiIiAdS\nSRMRERHxQCppIiIiIh5IJU1ERETEA6mkiYiIiHgglTQRERERD6SSJiIiIuKBVNJEREREPJBKmoiI\niIgHUkkTERER8UAqaSIiIiIeSCVNRERExAOppImIiIh4IJU0EREREQ+kkiYiIiLigVTSRERERDyQ\nSpqIiIiIB1JJExEREfFAKmkiIiIiHkglTURERMQDqaSJiIiIeCCVNBEREREPpJImIiIi4oFU0kRE\nREQ8kEqaiIiIiAdSSRMRERHxQCppIiIiIh5IJU1ERETEA6mkiYiIiHgglTQRERERD6SSJiIiIuKB\nVNJEREREPJBKmoiIiIgHUkkTERER8UAqaSIiIiIeSCVNRERExAOppImIiIh4IJU0EREREQ+kkiYi\nIiLigVTSRERERDyQSpqIiIiIB1JJExEREfFAKmkiIiIiHkglTURERMQDqaSJiIiIeCCVNBEREREP\npJImIiIi4oFU0kREREQ8kEqaiIiIiAcq8JJ28OBBbr31VmrVqkXt2rUZN24cACdPniQ2Npbq1avT\ntm1bkpOTCzqaiIiIiMco8JLm6+vLmDFj2LJlC6tXr+aDDz5g27ZtxMfHExsby44dO2jdujXx8fEF\nHa3IS0xMtDpCoabzlzc6f1dP5y5vdP7yRufPOgVe0sLDw6lXrx4AJUuWpGbNmhw+fJi5c+cSFxcH\nQFxcHLNnzy7oaEWe/qLljc5f3uj8XT2du7zR+csbnT/rWPpM2r59+/jtt99o0qQJSUlJhIWFARAW\nFkZSUpKV0UREREQsZVlJS0tLo1u3bowdO5agoKDzfmaz2bDZbBYlExEREfEAhgWysrKMtm3bGmPG\njDm3rUaNGsbRo0cNwzCMI0eOGDVq1Ljgc5GRkQagL33pS1/60pe+9OXxX5GRkXnqSzbDMAwKkGEY\nxMXFERISwpgxY85tHzx4MCEhIQwZMoT4+HiSk5M1eEBERESKrQIvacuXL6dly5bccMMN525pjhw5\nksaNG9OjRw8OHDhAREQEM2bMoHTp0gUZTURERMRjFHhJExEREZF/VyhWHBg0aBA1a9akbt26dO3a\nlZSUlHM/GzlyJNWqVSMqKopFixZZmNKzJSQkEBUVRbVq1XjzzTetjuPRNOGyezidTurXr0+HDh0A\nnb8rkZycTPfu3alZsybR0dGsWbNG5y+XRo4cSa1atahTpw69evXizJkzOneX0a9fP8LCwqhTp865\nbZc7X/qde76LnT93dpZCUdLatm3Lli1b2LhxI9WrV2fkyJEAbN26lenTp7N161YSEhJ4/PHHcblc\nFqf1PE6nkwEDBpCQkMDWrVv5+uuv2bZtm9WxPJYmXHaPsWPHEh0dfe6xBp2/3HvyySdp164d27Zt\nY9OmTURFRen85cK+ffv49NNP2bBhA3/88QdOp5Np06bp3F1G3759SUhIOG/bpc6Xfude6GLnz52d\npVCUtNjYWLy8zKhNmjTh0KFDAMyZM4eePXvi6+tLREQE119/PWvXrrUyqkdau3Yt119/PREREfj6\n+nLPPfcwZ84cq2N5LE24nHeHDh1i4cKFPPjgg/z3iQqdv9xJSUlh2bJl9OvXDwAfHx9KlSql85cL\nwcHB+Pr64nA4yMnJweFwULFiRZ27y2jRogVlypQ5b9ulzpd+517oYufPnZ2lUJS0f/r8889p164d\nAEeOHKFy5crnfla5cmUOHz5sVTSPdfjwYapUqXLutc5T7mnC5avz9NNPM2rUqHP/oQJ0/nJp7969\nlC9fnr59+9KgQQMeeugh0tPTdf5yoWzZsjzzzDNUrVqVihUrUrp0aWJjY3XurtClzpd+5165vHYW\njylpsbGx1KlT54KvefPmnXvPG2+8gZ+fH7169brkfjQJ7oV0Tq6OJly+OvPnzyc0NJT69etzqXFJ\nOn+XlpOTw4YNG3j88cfZsGEDgYGBF9ye0/m7uN27d/Puu++yb98+jhw5QlpaGlOnTj3vPTp3V+bf\nzpfO5aW5o7P4uDvU1Vq8ePFlfz5p0iQWLlzITz/9dG5bpUqVOHjw4LnXhw4dolKlSvmWsbD6/+fp\n4MGD57V5uVB2djbdunWjd+/edO7cGTD/RXns2DHCw8M5evQooaGhFqf0TCtXrmTu3LksXLiQzMxM\nUlNT6d27t85fLlWuXJnKlSvTqFEjALp3787IkSMJDw/X+fsX69evp3nz5oSEhADQtWtXVq1apXN3\nhS71d1W/c3PPXZ3FY66kXU5CQgKjRo1izpw5+Pv7n9vesWNHpk2bRlZWFnv37mXnzp00btzYwqSe\nqWHDhuzcuZN9+/aRlZXF9OnT6dixo9WxPJZhGDzwwANER0fz1FNPndvesWNHvvjiCwC++OKLc+VN\nzjdixAgOHjzI3r17mTZtGq1atWLKlCk6f7kUHh5OlSpV2LFjBwA//vgjtWrVokOHDjp//yIqKorV\nq1eTkZGBYRj8+OOPREdH69xdoUv9XdXv3Nxxa2fJ03oFBeT66683qlatatSrV8+oV6+e8dhjj537\n2RtvvGFERkYaNWrUMBISEixM6dkWLlxoVK9e3YiMjDRGjBhhdRyPtmzZMsNmsxl169Y992fu+++/\nN/7++2+jdevWRrVq1YzY2Fjj1KlTVkf1eImJiUaHDh0MwzB0/q7A77//bjRs2NC44YYbjC5duhjJ\nyck6f7n05ptvGtHR0Ubt2rWNPn36GFlZWTp3l3HPPfcYFSpUMHx9fY3KlSsbn3/++WXPl37nnu//\nn78JEya4tbNoMlsRERERD1QobneKiIiIFDcqaSIiIiIeSCVNRERExAOppImIiIh4IJU0EREREQ+k\nkiYiIiLigVTSRERERDyQSpqIiIiIB1JJE5Fia926ddStW5f/a++OTRYGAjAMf8IP4hDZwNLKygms\ng4tYOYUbOImdG1japkmZEIMgf+cKd5DnmeArX+4Obp7njOOY7Xab5/NZehZAksSPA8CiXS6XvN/v\nTNOUpmlyPp9LTwJIItKAhft8PtntdtlsNnk8HlmtVqUnASRx3QksXN/3GccxwzBkmqbScwB+nKQB\ni3Y8HnM6nfJ6vdJ1Xa7Xa+lJAEmSv9IDAEq53W5Zr9dp2zbf7zf7/T73+z2Hw6H0NAAnaQAANfIm\nDQCgQiINAKBCIg0AoEIiDQCgQiINAKBCIg0AoEIiDQCgQiINAKBC/wh0T0KQZPhAAAAAAElFTkSu\nQmCC\n", - "text": [ - "" - ] - } - ], - "prompt_number": 63 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Benchmarking the step-by-step and numpy approach" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import random\n", - "random.seed(12345)\n", - "\n", - "x = [x_i*random.randrange(8,12)/10 for x_i in range(10000)]\n", - "y = [y_i*random.randrange(8,12)/10 for y_i in range(500,10500)]" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 71 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import numpy as np\n", - "\n", - "def time_linear_fit(x, y):\n", - " \"\"\" Calculates slope and y-axis intercept for a 2D least-squares fit. \"\"\"\n", - " \n", - " x_avg = sum(x)/len(x)\n", - " y_avg = sum(y)/len(y)\n", - " \n", - " var_x = sum([(x_i - x_avg)**2 for x_i in x])\n", - " cov_xy = sum([(x_i - x_avg)*(y_i - y_avg) for x_i,y_i in zip(x,y)])\n", - " slope = cov_xy / var_x\n", - " y_interc = y_avg - slope*x_avg\n", - " return slope, y_interc\n", - "\n", - "def time_np_fit(x, y):\n", - " A = np.vstack([x, np.ones(len(x))]).T\n", - " return np.linalg.lstsq(A,y)[0]" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 76 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import prettytable\n", - "\n", - "slope, y_interc = time_linear_fit(x, y)\n", - "np_slope, np_y_interc = time_np_fit(x, y)\n", - "\n", - "fit_table = prettytable.PrettyTable([\"\", \"slope\", \"y-intercept\"])\n", - "fit_table.add_row([\"std. lib.\", slope, y_interc])\n", - "fit_table.add_row([\"numpy\", np_slope, np_y_interc])\n", - "\n", - "print(fit_table)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "+-----------+----------------+--------------+\n", - "| | slope | y-intercept |\n", - "+-----------+----------------+--------------+\n", - "| std. lib. | 0.947546873146 | 739.24494137 |\n", - "| numpy | 0.947546873146 | 739.24494137 |\n", - "+-----------+----------------+--------------+\n" - ] - } - ], - "prompt_number": 77 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import timeit\n", - "\n", - "%timeit time_linear_fit(x, y)\n", - "%timeit time_np_fit(x, y)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "10 loops, best of 3: 51.3 ms per loop\n", - "100 loops, best of 3: 2.83 ms per loop" - ] - }, - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n" - ] - } - ], - "prompt_number": 78 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%load_ext cythonmagic\n", - "%%cython" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "ename": "SyntaxError", - "evalue": "invalid syntax (, line 2)", - "output_type": "pyerr", - "traceback": [ - "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m2\u001b[0m\n\u001b[0;31m %%cython\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" - ] - } - ], - "prompt_number": 80 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -} \ No newline at end of file diff --git a/dimensionality_reduction/.ipynb_checkpoints/dim_reduction_pca_copy-checkpoint.ipynb b/dimensionality_reduction/.ipynb_checkpoints/dim_reduction_pca_copy-checkpoint.ipynb deleted file mode 100644 index 69f7e8b..0000000 --- a/dimensionality_reduction/.ipynb_checkpoints/dim_reduction_pca_copy-checkpoint.ipynb +++ /dev/null @@ -1,871 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:bf8e668f82802d1c474b18e2e0f0877f8a551f02256fc0d60ee99a2e3314398f" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Dimensionality Reduction via Principal Component Analysis (PCA)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "- analyze data to find patterns\n", - "- find patterns to reduce dimensions with minimal loss of information" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Sections\n", - "- Introduction \n", - "- 1.1 Generating some sample data\n", - "- 1.2 Visualizing the sample data\n", - "- Using the `PCA()` function from the `matplotlib.mlab` library\n", - "- The step by step approach\n", - " - quick code overview\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#The step by step approach" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "from matplotlib import pyplot as plt\n", - "from mpl_toolkits.mplot3d import Axes3D\n", - "from matplotlib.patches import FancyArrowPatch\n", - "from mpl_toolkits.mplot3d import proj3d\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Populating the interactive namespace from numpy and matplotlib\n" - ] - } - ], - "prompt_number": 228 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "\n", - "##1.1 Generating some (3-dimensional) sample data for 2 classes" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For the following examples, we will create 40 randomly generated 3-dimensional samples that are distributed following a Gaussian distribution. \n", - "\n", - "###Why are we chosing a 3-dimensional sample?\n", - "The problem of multi-dimensional data is its visualization, which would make it quite tough to follow our example Principal Component Analysis (at least visually). We could also have chosen a 2-dimensional sample data set for the following examples, but since the goal of the PCA in an \"Diminsionality Reduction\" application is to drop at least one of the dimensions, I find it most intuitive to use an 3-dimensional dataset that we reduce to an 2-dimensional dataset by dropping 1 dimension.\n", - "\n", - "Here, We will assume that the samples stem from two different classes, where one half (i.e., 20) samples of our data set are labeled $\\omega_1$ (class 1) and the other half $\\omega_2$ (class 2). \n", - "The samples are drawn from a Gaussian distribution with the following sample means and covariances: " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$\\vec{\\mu_1} = $\n", - "$\\begin{bmatrix}0\\\\0\\\\0\\end{bmatrix}$ \n", - "$\\quad\\vec{\\mu_2} = $ \n", - "$\\begin{bmatrix}1\\\\1\\\\1\\end{bmatrix}$\n", - "\n", - "$\\vec{\\Sigma_1} = $\n", - "$\\begin{bmatrix}1\\quad 0\\quad 0\\\\0\\quad 1\\quad0\\\\0\\quad0\\quad1\\end{bmatrix}$\n", - "$\\quad\\vec{\\Sigma_2} = $\n", - "$\\begin{bmatrix}1\\quad 0\\quad 0\\\\0\\quad 1\\quad0\\\\0\\quad0\\quad1\\end{bmatrix}$ (covariance matrices)\n" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import numpy as np\n", - "\n", - "np.random.seed(103684)\n", - "\n", - "mu_vec1 = np.array([0,0,0])\n", - "cov_mat1 = np.array([[1,0,0],[0,1,0],[0,0,1]])\n", - "class1_sample = np.random.multivariate_normal(mu_vec1, cov_mat1, 20)\n", - "\n", - "mu_vec2 = np.array([1,1,1])\n", - "cov_mat2 = np.array([[1,0,0],[0,1,0],[0,0,1]])\n", - "class2_sample = np.random.multivariate_normal(mu_vec2, cov_mat2, 20)" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 18 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Using the code above, we now have generated two 20x3 matrices (class1_sample and class2_sample) where each row represents 1 sample, and every column 1 dimension of the sample, respectively." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "\n", - "##1.2 Visualizing the sample data\n", - "Just to get a rough idea how the samples of our two classes $\\omega_1$ and $\\omega_2$ are distributed, let us plot them in a 3D scatter plot." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%pylab inline\n", - "from matplotlib import pyplot as plt\n", - "from mpl_toolkits.mplot3d import Axes3D\n", - "from mpl_toolkits.mplot3d import proj3d\n", - "\n", - "fig = plt.figure(figsize=(7,7))\n", - "ax = fig.add_subplot(111, projection='3d') \n", - "ax.plot(class1_sample[:,0], class1_sample[:,1], class1_sample[:,2], 'o', markersize=8, color='blue', alpha=0.5, label='class1')\n", - "ax.plot(class2_sample[:,0], class2_sample[:,1], class2_sample[:,2], '^', markersize=8, alpha=0.5, color='red', label='class2')\n", - "\n", - "plt.title('Samples for class 1 and class 2')\n", - "ax.legend(loc='upper left')\n", - "plt.draw()\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Populating the interactive namespace from numpy and matplotlib\n" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAGUCAYAAAASxdSgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXmYFNW5/7/d0z29Tc+KLA7LgICAKEsMqAHRKALGKNcl\nIYkGE2/ciEoWozH+4nK9JjGaTa5ezJOgJlETk5tIFMUBwbghMYJGZFiEgZlRR2eGmZ7ptbr7/P4Y\n3+J0TVV1VXVVb1Of58kTme6qc6q66rzn3R2MMQYbGxsbG5sccRZ6AjY2NjY25YEtUGxsbGxsTMEW\nKDY2NjY2pmALFBsbGxsbU7AFio2NjY2NKdgCxcbGxsbGFGyBYmNjY2NjCrZAsbGxsbExBVug2NjY\n2NiYgi1QbGxsbGxMwRYoNjY2Njam4DJyUH19PY4cOWL2XIYFdXV16OnpKfQ0bGxsbEzHYaQ4pMPh\ngF1T0hj2vbOxsSlXbJOXjY2NjY0p2ALFxsbGxsYUbIFiY2NjY2MKtkCxsbGxsTGFYSNQHn74YSxc\nuLDQ07CxsbEpWwyFDSshCAKam/+FgwcjEAQn3O40Jk70Y/HiT8Htdlt+fCH505/+hF/84hd46623\nMG/ePGzZsqXQU7KxsbHJK6YJFEEQ8ItfPI/u7gXwemvEv7e392HXruexevU5qkIh1+MLTUNDA779\n7W9j9+7deOGFFwo9HRsbG5u8Y5rJq7n5X+jpyRQGAODx1KCnZwGam/9l6fE8bW1tuPDCCzFy5EiM\nGDEC1113HRwOR8Z3brjhBowfPx41NTU4+eST8fLLL4ufbd++HSeffDJqamowevRofOc73wEAxGIx\nXHrppRgxYgTq6uowb948fPTRRwCAs846CxdffDHGjBmjeZ42NjY25YRpAuXgwQg8nhrZzzyeGhw8\nGLH0eCKVSuG8887DxIkTcejQIbz//vtYsWLFkO/NmzcPb731Fo4cOYIvf/nLuOSSS5BIJAAMCptv\nfetb6Ovrw4EDB/DFL34RAPDII48gFAqhvb0dPT09WLt2LXw+n6Z52djY2JQ7pgkUQVA/ldWfE9u3\nb8cHH3yAn/70p/D5fKisrMRnPvOZIdnpX/nKV1BXVwen04lvf/vbiMfj2LNnDwCgsrIS+/btQ1dX\nF/x+P+bNmyf+vbu7G/v27YPD4cCcOXMQDAY1zascuf3223HZZZeZft6vfe1rqK+vxymnnGL6uXku\nv/xy/L//9/8sHaMY2Lp1K8aNG6f7OKt+X5vyxTSB4nanC/o50dbWhgkTJsDpVL+0e++9FzNmzEBt\nbS3q6urQ19eHrq4uAMBvfvMb7N27F9OnT8e8efPwzDPPAAAuu+wyLFmyBCtWrEBjYyNuuukmJJNJ\nTfMyk5dffhmnnXYaamtr0dDQgAULFuCNN97I+zykZkQzeOmll7Bp0ya8//772LZtm+nn53E4HJZc\ngxJXXnklpk2bhoqKCjzyyCN5G9co+bw3H3/8Mb70pS+hsbERtbW1WLBgAbZv35638W3MwTSBMnGi\nH/F4n+xnsVgvJk70W3o8MW7cOBw+fBipVErxOy+99BJ++tOf4sknn0Rvby+OHDmCmpoaUYuZPHky\nHnvsMXz88ce46aabcPHFFyMajcLlcuGHP/whdu3ahVdffRVPP/00Hn300YxzW/0ShkIhnHfeebjh\nhhtw5MgRdHR04LbbboPH47F0XDmsqEl26NAhNDU1wev16j7WiHDPZ1212bNn44EHHsDcuXPzulgb\nJZ/3ZmBgAPPnz8ebb76JI0eOYOXKlfjc5z6HcDictznY5I5pAmXx4k+hvv7lIUIhHu9DQ8MrWLz4\nU5YeT8yfPx9jxozBzTffjEgkglgshldeeSXjO/39/XC5XBgxYgQSiQTuvPNOhEIh8fPf//73+Pjj\njwEANTU1cDgccDqd2LJlC/79738jlUohGAzC7XajoqICAJBOpxGLxSAIAtLpNOLxOARB0DRnPezd\nuxcOhwNf/OIX4XA44PV6sXjxYpx44okAgPfeew+f/exnMWLECBxzzDG49NJL0dd39J42NTXh3nvv\nxUknnYRgMIgrrrgCnZ2dWLZsGWpqarB48WL09vYCAFpbW+F0OvHrX/8ajY2NOPbYY3Hfffcpzm3b\ntm047bTTUFdXh9mzZ+PFF18UP3v44Ydx3HHHobq6GpMmTcJjjz025Pjf/OY3+MY3voHXXnsNwWAQ\nd9xxBwDg17/+NaZMmYKGhgZccMEF+OCDD8RjnE4nHnjgAUyZMgXHH3+87LxIo6urq8P48eOHbAIA\n4MiRIzjvvPMwcuRI1NfX4/Of/zw6Ojqyzn///v1YtGgRamtrccwxx8j664hrr70Wn/3sZzUJy2ee\neQZz5sxBTU0Nxo8fL94L4Ojv8uijj2LChAk45phjcPfdd4ufR6NRXH755aivr8cJJ5yAf/7zn6pj\n7dq1C4sXL0ZDQwNGjx6NH/3oR7Lfu+SSSzBmzBjU1tZi0aJFePfdd8XPNmzYgBNOOAHV1dUYO3as\n+Jx0dXXhvPPOQ11dHRoaGnD66afLCqqJEydi9erVGDVqFBwOB77xjW8gkUhg7969We+VTRHBDKB0\nWCKRYM888xpbs2Yz+/nPt7A1azazZ555jSUSCU3nzfV44vDhw2z58uWsoaGBjRgxgt1www3s4Ycf\nZgsXLmSMMZZKpdjXv/51Vl1dzcaMGcPuueceNnHiRLZ582bGGGOXXnopGzlyJKuqqmIzZ85kTz31\nFGOMsccff5wdf/zxLBAIsFGjRrEbbriBpVIpxhhj69atYw6HI+N/X/va1zTfO62EQiHW0NDAVq5c\nyZ599lnW09OT8fn+/fvZpk2bWCKRYB9//DE7/fTT2erVq8XPm5qa2Kmnnso++ugj1tHRwUaOHMnm\nzJnDdu7cyWKxGPvsZz/L7rjjDsYYYwcPHmQOh4N9+ctfZpFIhP373/9mxxxzDNu0aRNjjLHbbruN\nXXrppYwxxtrb21lDQwN79tlnGWOMNTc3s4aGBtbV1cUGBgZYdXU127t3L2OMsQ8//JDt2rVL9voe\nfvhhtmDBAvHfmzdvZiNGjGA7duxg8XicXXfddez0008XP3c4HOycc85hR44cYbFYbMj5WltbWTAY\nZE888QRLJpOsu7ub7dy5kzHG2OWXX85uvfVWxhhj3d3d7P/+7/9YNBpl/f397JJLLmHLly9njDHV\n+a9YsYLdfffdjDHG4vE4e+WVV7L8gowtWLCAPfLII6rf2bp1K3vnnXcYY4y9/fbbbNSoUexvf/sb\nY+zo73LllVeyWCzG3nrrLebxeFhLSwtjjLGbbrqJnX766ezIkSOsra2NnXDCCWzcuHGy44RCITZ6\n9Gj2s5/9jMXjcdbf389ef/11xljm78vY4DM+MDDAEokEW716NZs9e7b42ejRo9nLL7/MGGOst7eX\nvfnmm4wxxm6++WZ29dVXs2QyyZLJpPidbOzYsYN5vV4WCoU0fd+mODBVoNhkx4x7t3v3bnb55Zez\nsWPHMpfLxc4//3zW2dkp+92//vWvbM6cOeK/m5qa2GOPPSb++6KLLmLXXnut+O/7779fXEhp4dqz\nZ4/4+fe+9z12xRVXMMYyF5wf//jH7LLLLssYe8mSJeyRRx5h4XCY1dbWsr/85S8sEomoXtu6desy\nBMrXv/51dtNNN4n/HhgYYG63mx06dIgxNihQtmzZoni+u+++m1144YWyn/ECRcqOHTtYXV2dOKbS\n/L/61a+yK6+8krW3t6teF48WgSLlhhtuYN/61rcYY0d/l46ODvHzefPmsT/+8Y+MMcYmTZrENm7c\nKH720EMPsbFjx8qe97HHHmNz586V/UwqUHiOHDnCHA6HuOCPHz+erV27lvX19WV874c//CG74IIL\n2P79+zVeKWN9fX1s5syZ7Mc//rHmY2yKg2FTeqWcmDZtGtatW4e2tja88847eP/997F69WoAQGdn\nJ1asWIGxY8eipqYGl112Gbq7uzOOHzVqlPjfPp8v499erxcDAwMZ3+cjhMaPH4/3339/yJwOHTqE\nJ598EnV1deL/XnnlFXz44Yfw+/344x//iP/93//Fsccei/POO0+MqMvGBx98gAkTJoj/DgQCaGho\nyDBHqUUwtbe3Y9KkSVnHiUQiuOqqq9DU1ISamhosWrQIfX19YIwhEAgozv+ee+4BYwzz5s3DzJkz\nsW7dOk3XlY3XX38dZ555JkaOHIna2lqsXbt2yO84evRo8b/9fr/4u73//vtDfjMl2traNN2fVCqF\nm2++GZMnT0ZNTQ0mTpwIh8MhBrL85S9/wYYNG9DU1IQzzjhDDKi48cYbMXnyZJxzzjk47rjj8JOf\n/ER1nGg0is9//vM47bTTcNNNN2Wdl01xYQuUEuf444/HypUr8c477wAAbrnlFlRUVOCdd95BX18f\nfve73yGdVo+QY1mcr4cPH87478bGxiHfGT9+PC677DIcOXJE/F9/fz++973vAQDOOeccPP/88/jw\nww8xbdo0fOMb39B0fcceeyxaW1vFf4fDYXR3d2fMQc3BPW7cOLz33nuKn9Ox9913H/bu3Yvt27ej\nr68PL774ItigBq86/1GjRuGhhx5CR0cH1q5di2uvvRYHDhzQdG1qfPnLX8by5cvR3t6O3t5eXH31\n1Vl/R2LMmDFDfjMlxo8fr2m+jz32GNavX4/Nmzejr68PBw8ezLg/J598Mv72t7/h448/xvLly/GF\nL3wBAFBVVYV7770X7733HtavX4+f/exnipUk4vE4li9fjvHjx2Pt2rWartWmuLAFSomxZ88e/Oxn\nPxN36G1tbXj88cdx6qmnAhiMlgkEAqiurkZHRwd++tOf5jzmXXfdhWg0il27duHhhx8WEz15Lr30\nUvz973/H888/j1QqhVgshq1bt6KjowMfffQRnnrqKYTDYbjdbgQCATGYQQ3GGC666CL89re/xRtv\nvIFoNIrvf//7OOWUU1R33Txf+cpXsGnTJjz55JNIJpPo7u7GW2+9JZ6fFsSBgQH4fD7U1NSgp6cn\nwwmuNv8nn3wS7e3tAIDa2loxgEMOQRAQi8WQTqeRSCQQi8UUhfnAwADq6upQWVmJ7du347HHHtMc\nGfaFL3wBP/rRj9Db24v29nbcf//9it8977zz8MEHH+CXv/wl4vE4+vv7ZcN1BwYG4PF4UF9fj3A4\njFtuuSXjuv7whz+gr68PFRUVCAaD4v15+umnsX//fjDGUF1djYqKCtnfXhAEXHzxxfD7/Xj44Yc1\nXadN8WELlBIjGAzi9ddfx/z581FVVYVTTz0VJ510khhVc9ttt+HNN99ETU0NPv/5z+Oiiy7KuhDx\nn8vlZixatAiTJ0/G2WefjRtvvBFnn332kO+OHTsWTz31FO6++26MHDkS48ePx3333QfGGNLpNH7+\n85+jsbERDQ0NeOmll/Dggw8qzsXhcIiL7sKFC3HLLbfgC1/4AhobG7Fv3z789re/FaPpsl3buHHj\nsGHDBtx3331oaGjAnDlz8Pbbbw+Z/+rVqxGNRjFixAicdtppWLZsmfiZ2vzfeOMNnHLKKQgGg7jg\nggvwq1/9Ck1NTbJzWbx4Mfx+P7Zt24Yrr7wSfr8fL730kux3H3jgAfzwhz9EdXU1/uu//muIEFe7\n7ttuuw0TJkzAxIkTsXTpUnz1q19V/H5VVRWam5vx97//HWPGjMHUqVOxdevWIffnq1/9KiZMmIDG\nxkbMnDkTp556asY5f//732PixImoqanBQw89hD/84Q8ABqPgFi9ejGAwiNNOOw2rVq3CokWLhszj\n1VdfxTPPPIPm5mbU1tYiGAwiGAwOidC0KW7snvJ5ppTuXWtrKyZNmoRkMpk1UdQsGGNIpVIIhUKo\nrKyE0+mEIAhwOp1gjCEcDsPr9YqLmdPphMvlEkO48zVPGxuboZhavt7GJhcYYxAEAalUCslkEpWV\nlRmfkxCpqKjIEMyJREKsw2YLGBubwmELFBtV8pXRTSYuxliG2SsajSKVSsHlcg2xvfMCBjjqE7EF\njI1NYbBNXnnGvneZkIlLEIQMm31vby8YY6KWQt9LpVJwOp2ic5e0FaVz8453YFDAuN1uUUDZAsbG\nxjwse5tyXTTNXnTtFsDFB2kTvDBhjCESiSCdTsPr9cLr9aKiogKVlZViqwC32w2HwwFBEBAOhxGJ\nRBCPx5FMJjOeG4q4IsFDfph4PI5wOIxQKIRQKIRoNCo6+W1sbIxjiUBhjGHjX/5iWCjkenwh+O53\nv4upU6eiuroa06dPx+9+97tCT6mooXpnFKnlcDhEZ3wqlVIML3U4HBkCJhAIiFpMIpEwRcBEIhEk\nEglbwNjY6MQSH8p7774LNDfjvenTMfmEE/J+fCGoqqrC008/jalTp2L79u1YunQpJk+eLOaH2AzC\nGEMymUQymczI2SBhQFqJNFtfCYfDAZfLBZfLJZ6fTGMkFJRMZNIQaTKPUfFQ+j75X1wuV0lUCbax\nKRSmayiMMex/5hksGT0a+595RreWkevxQGFaAN9+++2YOnUqgMFukAsXLsRrr72me+7lDDneSZiQ\niYu0imAwCJ/PNyQvRg8kYDweD/x+v6IGk0gkkEqlZDUYYNDX4nQ6xSrS4XAYfX196O/vRywWG6L9\n2NjYWCBQ3nv3XUz+6CM4HA5M/uijQW0jj8cXQwvgaDSKf/7zn5g5c6auuZcr5CuhLHESJslkEqFQ\nCIwx1NTUiFqGmSgJGN7UFY1GVQUMbyIjATMwMGALGBsbCaYKFNIujgsEAADHBQK6tIxcjweKowXw\n1VdfjdmzZ+Occ87RPO9yhUxcAwMDSCQSogYQi8XQ398Pr9eLQCCQN1OSnIBxu90ZAiadTiOZTNoC\nxsZGJ6YKFF67AKBby8j1eKDwLYBvvPFGvPvuu/jTn/6kec7lCjneycRFfxsYGEA8Hkd1dTU8Ho9q\n2K/VyAkYqbPe1mBsbLRhmkCRaheEVi0j1+OJQrYAvu2227Bx40Y8//zzqKqq0jTfcoS0kng8DgCi\ncKcoLqfTKRYKVEJNY7FyYSZznNvtVtRgbAFjYyOPaQJFql0QWrWMXI8nCtUC+O6778bjjz+O5uZm\n1NXVaZprOaKUW5JMJpFIJMRF2qiJK99RVlINxu/3w+12Zzjr9QqYaDSKUCiE7u5uW8DYlBWmeUFb\nd+1CRWMj2mVeeFZTg9SuXaohwLkeTzidTvz973/H9ddfj/Hjx8PhcOArX/kK5syZIy5GS5cuxdKl\nSzF16lQEAgF861vfyiiHvnHjRnznO99BJBJBU1MTnnjiCXg8HnR2duKaa65Be3s7qqqqsGLFClx2\n2WUAgFtvvRUejweTJ08Wz/ODH/wAN998c9Y5lwtK5VMGBgaQTqfh8XiG1OcqNSj6iwII0um0GKYs\nCAIYYxkhyk6nc0iYstPpFH00JGD4MjJ8Jr8dpmxTStilV/JMOd47aW4JLYJ8bglds9/v13TOgYEB\nuN1uuN3uDGd+JBKBx+PR1E/FKNFoVFzU9cILGDK7kgAiAUERboIgZEQJUh4MX5afcmxsAWNTCtjF\nIW1ygkxcfDgwY0w0A1VVVcHtdiMajRrKSSo1SINxu90AMgUMhaVLi1nKaTD0OV/nDLAFjE1xYwsU\nG8PQLhs4uhimUikMDAyIjndaHMn8pZVyWSiVBAzVDotEIkOy+PUKGPLl2QLGptDYAsVGN4wx0ZFM\nhRqBwZ7gkUgEPp9PNRx4OEMCxuFwIJFIwOv1ymowvA+GUBIwfOg6CRiXy5Xhv7GxyQe2QLHRRTqd\nFnujAxCzzsPhMJLJJILBoOkZ7+W6KJJwIA2GTGB6BQzBCxjGWMa53W63LWBsLMcWKDaa4M0twNHg\nAsqCd7lcYoi1jTF4DUQqYCivh6otaxUw8XgcsVhM1CR5H4wtYGzMxhYoNlnhW/NKc0vi8Tj8fj88\nHo/qOcyMbitFZ70R5AQM+WD0CpiKigrxN+M3BbaAsTETQwKlrq7OfvAMUmpJj0q5JfS3bBnvRlES\nQMP5ueOFBwBVAaPUMlmqwdgCxsZMDAmUnp4es+dhU2Qo9S2hLolkn7cyHwSAmGGv1HBrOKMmYHg/\nFyVSSqPAbAFjYza2yctmCGq5JfF4HIFAQFy4rJxDMplELBZDRUVFRgdF3hRkL3BHkRMwJFRIwCg1\nG6PjpQJGEIQhAobClO37byPFFig2GSjlloTDYQCDtc2cTqe4UGlFjw+FIskAoLq6WtSSSKiRszmd\nTiuWObFBhtClaDypBpNNwPBaoS1gbLJhCxQbANrKp3i93oykOyuc44IgiImRFOpK8JWAXS5XRgQU\nX0dLWubEZhAtJjKjAiadToMxBp/PJ95/W8AMP2yBYiMWcKSaUyQsIpEIBEGwJLdECplnYrEYAoHA\nkMq9cvA2froOrTkcNsoChvxW6XRas4BJp9NisAYFB/DCn54rW8CUN7ZAGcbwuSWJRAKVlZUZ5VMq\nKioyyqdYBQk04KhJLRqN6j5PLkmCNvIChr9/2QQMgCEaDAkYAOJvYwuY8sUWKMMUpdwSreVT9Jq8\nlL5PJi6PxwOfz2faAqOUJEhmPdpFk3km33WwSiGXRqoBqgkY+lx6vJKA4TUY8sHYAqb0sQXKMEQu\ntwSAuJPMl4mLosaoIrHad3NdaOg6qR+Lmv+AhI/VlNriqSZgqNxLNBpVDJLgBQzd30QiIWqPZHK1\nBUzpYguUYYRSbgnZzF0uF4LBoOUvsZyJSw3pomTGYq/moE6n04jH4xAEQdW8UwpQTS8r4AUMJby6\nXC6kUqmsUXh8Bj/NE1AXMLaJsvixBcowQSm3hBzhLpdL9KFowejCTiYuadSY3Pn1lLvPFV7ApFIp\ncZHkzTt2iLI6ahqMLWCGB7ZAGQbw7Wn58inhcFgsnxKPxy0385CzP5uJqxjIZXG0GcQqAdPf34/K\nykoxRNwWMMWDLVDKGLXyKVY4wpWgRlKMMdTW1pbki6+2OMZisYxe8nYEkzx67qGagKFgANK6eQ2G\noshsAVMYbIFSplC2uVL5FDO0BC0aDSVGUqZ2ubzk/OLo8XgycmAo5FmpE2M5YiRwQu0e8omqSgJG\nWiaGohTlwpRtAZMfbIFSZvA9SshHweeWOJ1OWUe4kTDgbPPg+8o7HI6MzoLlhtZe8naRS2XU7iEv\nYOgzW8AUH7ZAKSMot4SKKpI5S6l8ilVQ7S+HwyEmRmrJfOexqrRLvlBKsuRzYADIVgG2GUROwCST\nSdFEBihrgVoETEVFheh/sQWMOdgCpUzgc0v4nuN6yqeYsYDnW3iVAnJJlolEQnMNrVwwI4enWKD7\nl0gkMipeK2mB2QRMOp3OKHLKCxjyg9nowxYoJY6S4x0AQqGQ5ta8RuzfvADihVcpRHEVEvqdGGPw\ner26izTaDKK31I5eAUNhyhRRZv8G2bEFSgmjlFtCKr3X61Utn2IWvH/G6tpfpW4Kk0NrDa1iruKb\nr4ALJY1LqdSO1lpucgImlUohEonA6/WKx/I+mGL7DYoBW6CUKGq5JZQQmI9ERTJxmV37q9AUcq52\nDkzumCVgSNirmchsAXMUW6CUGNla87rdblRVVaG3t9fyuVB+iVW1vwq1qBfbwmALmNyREzBkZuQD\nJZQi8fT4YIazgLEFSgmhlFvC9xGh4odWagRk4gJgmYmLXkaKXLOdpEeRChhpeC1wdOedr0KXpYZa\nLTdpJB7VdMtmIrMFjC1QSgK+bwlw9GHWW2RRDa0CiI/iikajltrNGWMIhUJwOBzitQODzlLyK1gx\nZqmhlr9BhS5TqZSl4bH5iiazahw5AUPdKEnAZGs2JidgotFoRpZ/uQsYW6AUOaSB8AULgezhuWZr\nKNIQ5IqKCl1NsPTMh8+nCQQCGX+nmmORSERcBMx6QRlj2PTUU1iwZElO5yk0vICJRCIZhS7lTDt2\n/sVQyDzmdDrh8/l0R+LxJjZg+AgYW6AUMZRbEolExIdPmoGej/BcuQ6OVu3kGWMIh8NIJpNiyGYi\nkch4QR2OwcZMZofaHti9G64XXsDBpiZMOeEES66vEND9UPId2CHK8vDakJqJzAwBQ2N5vd6SFjD2\n1qQIIcc7hf/Sg5VKpRAKhZBKpVBdXa0qTIyUUpH7fjweRygUgsfjQSAQsHQ3m0ql0NfXBwDw+Xyq\n36UXvLKyEj6fD4FAQIwyI+0tEomICYTZ7gVjDK0bN+KcUaPQ1txckqYvLajdNwrsiEQiiMfjYtOs\nYqJYEjVzvY8kXPhQ8Gg0img0ioGBAfT19eHOO+8s0NUZxxYoRQbllgiCkBG6mEwmxYW9qqrKcjMF\naQrRaBTBYFAx692sBYcEl8/ny3p9cmPyL7jf7xcDFMhMRteiJGAO7N6NqV1dcDgcmNLdjYMtLaZc\nV7GjtDACyBDM5IcpNgFjJXo3ZLkKagq2IAHz/PPPm3k5ecE2eRURcq15ScAwxixvzUsPOW/iUsqy\nN7pLlO4wtZSHkZoOtLzocqG2VAdKGgnldDrRunEjlvr9AIDjfD4839yMqSeeWBS74XyilmSpFqJc\nLJqD2Ri9Jq3JqkpmxlQqVZK+LVugFAFKuSVUNZh8BnqEiRGTFzCoKUQikayJinqRO48WwWUWdA/l\nIqH2vP02mj74AKlPNCOHw4EpXV04sHs3jpsxw5L5lMoCrDUHhnwCVufAlMp9k6J2H0nAAIPv34ED\nB9DQ0JDV7FuMlJ4ILDNIAyFhwueW9Pf3w+fzibklVs+DnIRqJi6zSCQSGb6ZfC8SFAXl8XjQ+Y9/\n4PjqajEUO51Oo8njwXsbNojVCGwGoYXR4/HA7/fD7/fD5XKJz3E4HEYsFhPzpUr53lkpvKT3kX/f\n7rzzTpx00kloaWnBnXfeiX/84x+iP1WOWCyG+fPnY/bs2ZgxYwa+//3vy37v+uuvx5QpUzBr1izs\n2LHDkuuyBUqBIK0kFotlJCpSbkk8Hkd1dbVhLUGPhpJMJsV2wDU1NZo1ISOhyeSboQx7NcGVj8WI\nfCdkfnC5XOJ/T+nuxt5//1u3g384QYLZ6XTC6/XC7/ejoqJCbDQWiUQyBIyNMk6nEx6PB48//jia\nm5sxZco/+U10AAAgAElEQVQUDAwM4Dvf+Q7Gjx+PVCole5zX68WWLVuwc+dOvP3229iyZQtefvnl\njO9s2LAB+/fvx759+/DQQw/hmmuuseQabJNXAZCauPiMXOpuSE2prJ4HhSV7vV7EYjHLx+zv79dU\nRDJfGktbSwtcY8bgMDeeaHqsq0OytRUz5syxS51oRG8F4FL0E+QDp9OJiRMn4p577gEARKNR1cZs\n/k/8f7Tpqa+vz/h8/fr1WLlyJQBg/vz56O3tRWdnJ0aNGmXqvG2BkmfkijpSbkk8Hs8on0IY0QSy\nHUOaAoUgA1BVq3OFFhO32627j72VpoczLrxwyN9isZiYt0HI2b+TyeQQB3+xLZKFzGDncy/MyoHJ\npw8lXxWUaSz+uiKRiCgkgOxh9Ol0GnPnzsV7772Ha665BjMkvr+Ojg6MGzdO/PfYsWPR3t5uC5RS\nhRYhStqrqqoCcLS7IZB7+RStkLPf5XKhmvMdmC20gMxWwADKoumW1MGardFTMQmYQpJrcuBwIhqN\nZlSJyIbT6cTOnTvR19eHJUuWYOvWrTjjjDMyviOXC2M2tkDJA9K+JYTW7oZmlVGhnIxoNAq/3y/m\nG1gFX2usurpaTFosN+TMPGTStDPRlVETMHKhtWomHyvItzbEjxUOhzM0FK3U1NTgc5/7HN54440M\ngdLY2Ii2tjbx3+3t7WhsbMxpznLYWyeLoeJ8Usc7OXqrqqp0m4C0IBVCZOLinf1WIggC+vr64Ha7\nEQwGM/IVyhky8WRLcEsmkyUfBWU2SsmpwNHNFzn3yz04gjZ9Wujq6hLbVUSjUTQ3N2POnDkZ3zn/\n/PPx6KOPAgC2bduG2tpa081dgK2hWIZSbkk6nUYymdTV3TDXhZhMXG63WzRxmTGG3DF8Of1cao3x\nyXLS/y6laCGlBDfagYfD4bJw8Fuxm5fL3YjFYqKmXU7BEdL3SI/J64MPPsDKlSvFkPfLLrsMZ511\nFtauXQsAuOqqq3Duuediw4YNmDx5MgKBANatW2f6NQC2QLEEqYmLz3inku9W517QwhuLxfJq4uLD\nj23fwVBokSTtpLKyUvS/0GIpraBcqouk2dDGzOFwiGV1+OAIs+9dvpMopSYvrRrEiSeeiDfffHPI\n36+66qqMf69Zsya3CWrAFigmw0f+8DvqSCSCVCoFv9+vOzzXaL4HlYCvrq7WbH82+hLxIc9WmPDK\nFX4X7vF4bAd/FvjIq3IOjohGoyWZKW8LFJNQyi2RmpuUkpPMhO84p2TikmJUAPBakFzIs3SMcrZ7\nm4FSHkcphNkWmlLOgZGGKJN/tdSwBYoJWN2aV+sxfBSX2+3Oi7mEzDR6tCAbbajlcdhhturI3Ttp\n9B1pOEr3rpDCWI9TvpiwBUoO0A6ITFy84518CflaaGnMdDqN6upqCIKgWxvind/ZoMq9FMVlVZQa\n+Z7o5R/OKDn4eSd/IXbgpaB1koChjZ0W4ZxPsiU2lgrD+w3NAUrYEwQho96WIAgYGBiAx+OR9SVY\noaHwZjUq2WJVcyReC6L6TVbt4hgb7CnPj0sLA5X3Hs47crkoKGmJGGDwmaQ2wFYHgliNWVqDliRL\nYPDeFUL7szWUYQT1LREEAYIgwOv1ZpRPyVdrXiWzmpXj8eVaIpGIoWABLZDWJy2OSZWZpWGj+Vgw\nix05J3UkEhGrSAPF60MoNHIChipYKGl/Zj5rchqK7UMpc5RyS6ivh9PpzBoua5aGIjVxSVV0szWh\nVCqF/v7+jHItetFyDC+YgcFSLXzTMTJLeL3ejKgee8EcCl0/hYtLHfzZfAg2QGVlpfhe5LNAqG3y\nKnPkckuAwYU9FAplLZ8idz6jD2C+qxJT0y2rc1n4Ui3BYBD9/f1DvsMLPbvkiXbKxcFfqNwQNfMi\nnz9kVMBIr0tvLa9iwRYoGqBFSpq5TX22q6urdfUQ0QsvvOLxuGYTV64+FMbU2/OaGQZMfiDKY6Hx\ntaLmdM2HyaLUUPIhJJNJ3fdrOIUmE2r5Q3IVqPWaYwVByEtjPbOxBYoKSiYuakhFO2Qj0UdGXkK+\n0GK2KBSjgosWcSva88oJIN7JzwvJXAUVv2DyWdVSk0U5Z6TTPdSah6QUQTYc/VV6309eWwb0J1nK\njVeK99cWKAoo5Zbw1XqdTicikYjuc+t9UPgdj9/vt/xBo0J8ZveVlyJ18lsZqqknqzofYbDFHmqr\ndr+k/qp8LnzFft+IbAmqJMBpQyOlVK5Tii1QJGTLLeGd4EYrnupJVKQoLgC6SpoYLdcSjUaRSqVk\nTVxmjEHwGlA2J78VGfZq/pdUKiUW2itmf0I+UduBJ5NJAINJrrzGZxWl9lto8V8Bg77Kjo4ONDQ0\nFHjGxhneYTASqP6VIAgZJi5BEBAKhcQKwflKVOzv74cgCGLkmJW7FlpEKRnTyiTCRCKBUCgEj8dj\neZFMLdBvTf4b3vRD2ho1CTOzbHqhrzsXaHGkYBT6G1+iPx6PW5YPZTVW+oVIO6HnjaK5nE4n1q1b\nh+nTp+PQoUP4wQ9+gObmZlUrSFtbG84880yccMIJmDlzJn71q18N+c7WrVtRU1ODOXPmYM6cObjr\nrrssuS7A1lBEKLdE6nhXy/MwunPOdly25EgzxuChRZMSFa0Mt43FYkin05o0IKAwqj9f0ZbmII3o\n4cNth3t4Mi+QAeVGWXTPhntAhBz0vN1111245ZZbcO6558LlcuGOO+7Azp07sW/fPowZM2bIcW63\nGz//+c8xe/ZsDAwM4FOf+hQWL16M6dOnZ3xv0aJFWL9+veXXMewFCpk6+vv7xfwGIDOEVSm3xGxT\nDC/ApMmRVph9yMSVSCRQVVUlqt5WoLcPTDEtOGoRPbz/JR/mnlJAa0CEkYi74RBR5na7EQgEcOed\nd+LOO+/EwMCAYpLj6NGjMXr0aABAVVUVpk+fjvfff3+IQMnXxmxYCxQ+t4RHa2te/jx6HnKlRMVs\nAsxMpO15nU6nboGiVciRxuV0OuHxeEp+Ry/1v5RiPkc+Ucrh4Fs9FFtCaj4Fl/QdikQiGTkoWjPm\nW1tbsWPHDsyfPz/j7w6HA6+++ipmzZqFxsZG3HvvvZgxY0buE5dh2AoUWgB4Exc53gVB0FQ+xawH\nTouJS6+GovZ9Gk9vMqZepCZDKvKYC1ZoarlgZj7HcEFPxB2FKJc70rIrerPkBwYGcPHFF+OXv/zl\nEAE0d+5ctLW1we/349lnn8Xy5cuxd+9eU+YtpfBbgTxDjnd6cPle56SOV1dXW1qLi8ajxEFSaa0O\nCSYTF40nFV5mLtaMMQwMDCCRSKC6ujqjhEU5QwLG4/GIfdFJk4nFYohEIqIfyep7ka9ddq7j8A5+\nv98v+vEo34sc/KTN5INCmtb0NtcSBAEXXXQRLr30UixfvnzI58FgUBRQy5YtgyAI6OnpMW2+PMNK\nQ5HLLQEGw/Xi8ThcLpfuUia0SOp9+CiKC9Bm4spVQ7GiPa/SnOSqHw9XlPwvFDGWTCZt/wuHksbH\nh/JHo1HxnpWDxidXGFJr2RXGGK644grMmDEDq1evlv1OZ2cnRo4cCYfDge3bt4Mxhvr6elPmLmVY\nCBRpbgkfxRUOh5FMJsWKwXofzlzyPaw2ORH5bM9rZt2vctRoyP9CfjuXy2X7X1TgBYzb7Raf43wV\naSwEekxer7zyCn7/+9/jpJNOwpw5cwAAd999Nw4fPgxgsK/8n//8Zzz44INwuVzw+/144oknLJt7\n2QsUMnGlUqkMrYR20S6XCzU1NWI5eqvnEo1GkUwmRX+JVowurtFoVHPtr1wW8Gx1v2yGolbuxPa/\nKKPm4JeGdBstEZNvp7xRH8qCBQuGBBVJWbVqFVatWpXTHLVS1m+9Um4JXz6F30VbmfWeSqUQDofF\neHOrkyNpTuTDsGI8CmTgy/dnCwkuN43DTEoxGiqfKNW70urgL5V7Vqql64EyFSi8iYvPeFfrIWJ0\nN6JFoEjDkKPRqKGFVesxpH0Bgw45PS+R3nnpKd9v7671obZYFlM/k2LKDTGrpUE+Nz7S+1eqpeuB\nMhQoVOIdQIa6m62HSD4SB3OJHNPywkq1L72FK/UsCnyZmmAwaFlUnLTbYLEsXIVAa/4LOauHO/T+\na+kjL+fgL9SzFg6HbQ2lGCBh0tvbi7q6OlFIUAfAbH4EM01eamYgo8JL7Ri5yr1GKiFrgTS9VCoF\nt9ttaYh1f3+/eH4q3AgMOv8LvTMvJGr+F3JW8x1Fy8H/kqsmpOWe5bPiNCGnodTW1uZtfDMpG4HC\n20z5v1FfaC2tec1Cb6a9FtTOwQcY8JV7zUyGlI5VWVkJt9stVprVitb5xONxMMbg9/vFSCiK7iGN\nxXZcH0XO/0L5VlQBodR8CVaj5LPiKyin0+m898whC0MpUjYChRYS+sETiQQikYjmRd2o1sAfpzXS\niZzZepGbX77a8/LmNNL0yLSoFS33mL+HDodDNO/w53A4HLJ90m3H9VFoN+50OuH3+0VTjxXtkcsl\n0IIXMIwxcU2x2sFPYxF68lCKjbIRKEDmghWNRnX5LXIVKHoinYwgnZ8W4WWWX0jOnGYFlOzpdDpR\nU1ODvr6+rMcoOa7tvvKZaPG/5FINuBQy8vVCGxqlJllWPVt2lFeRQIs6MFhQLV+5EMlkUiyXoKXD\nYa4+FCva89K8pJqTWiMsMwMZstUX07qYKC2ctnnsKHp8CcOh3a8c0ueN7oEVRUHlfCi2QCkwjDGE\nQiH4fD5Eo9G8Zbwnk0ld/T34Y/XOD8hfe16rxpJeN29KM7tkP79wSsuoF6NfoVDht2rhydJ2v8Vw\nn4xg9r21Mim1lMOGS+/JUMDpdKK2tlYsLJdLxrcWUqkUQqEQGGOorKzUJUyMZu4mk0lEIhEEg0FL\n/UJkTotEIqiqqrIssIBMafF43PKCnDQ+1dQKBAJid0a6r1SEMB+FG6UwxrDpqaeKwh8hLdaodJ9K\npRujkXurVwDxz5a0KGg8Hs/o+il9vqTzCofDJStQykZDASAKEiMLqZ6HhxzhPp/PkHNd7/zIFGFm\nYUelefFFK7P5gnLRIPT0lLcKJfMY//9WmcekC9aB3bvheuEFHJg6FcdZ1KvCCGqmHloc6XOrw5ON\nahmFuLd6tL5yMnmVjYbCY0bElhy0o45Go6KWYHWvd+q/Tg+nHmFiRHAJggCXy6U7w14PxdZTHsjs\n8+1yuTKcsXzZeapWbQbJZBLPP/9PrF37Ih6//SE0tMfw/P2/GRL+bhQrTGj8faKdOL0D/E6c7lOh\nNRjGGFo3bsQ5o0ahdePGgs1HTeujZ2z79u3429/+hlQqpUlD0dJPHgCuv/56TJkyBbNmzcKOHTvM\nvrQMylKgGEVtAeZNXDU1NTk5/PWEz5LZKVthx1ygB5qSBa3sy0I9Lsw0pVmBknkslUqZYvYRBAH/\n+7//wMsvz8TBlkYc31ONaPQ41O524Ue3/y6vvT9ygbQTqmTL5w1Fo1FLBLEeDuzejaldXXA4HJja\n1YUDu3drOs5Kfxav8VGBWI/HgyNHjmDdunV46aWXsGDBAtx8881obm4WNRop1E9+165d2LZtG/7n\nf/4HuyXXt2HDBuzfvx/79u3DQw89hGuuucaSayLKSqAYTejLRjweV9xRW1GyhcxOyWQyJ9+CVsFF\nfgyfz2eZBkRVDNLpNGpqajRfk/T8VtxvLfA7zEAgIAYpUOAC2cdTqZSm+b344tvo7V0Aj6caFfs3\nYJxr0MQx0VuH6M5uvPCCtTtJq5DbiVOzrFwFsd5FnrSTSZ+Yjyb5/QXVUpQgAbNkyRI89dRTmD17\nNu69915UVlbi9ttvx9tvvy173OjRozF79mwAmf3kedavX4+VK1cCAObPn4/e3l50dnZadi1lJVAI\ns0xejA12HeRNXNIH2qi/RukYQRDQ19cHt9udYXayYiFNpVJirocVuTNEMplEKBQSd/1ax+E3CMWE\nnNmHN4+Fw+Gsu/JDh+KorKxFf9duzI52ZVzrpxID2LFtTz4vaQhmPGu0UFIfHjMEsR547YTmo0dL\nyRdSQel0OnH66afjzjvvxCuvvDKkR7wcSv3kOzo6MG7cOPHfY8eORXt7u3mTl2ALFIXjyMQFIGcT\nlxYYU2/Pazakdfl8PrFYphVCKx6Po7+/Py9hzoVCah7z+/0Z5jHSAPldeTI56Iwl7STUdXSRG+fy\nI7nrXwXbSeuNitKqOagJYjn/S67XwGsnhFYtJV8h3HJh9HrzftT6ycuNYeV1laVAyRVabMm8ofYD\nmKGhpNNpDAwMQBAERXOQWZqQNLAg13ItSnOSG6dQ5qp8IzWPkWZLFa8jkQgqKgSEut7F7GgXEtEu\n1PceRDzyMYDB32129EjBdtJiVJTF40tDbaX+F17To0x1rUi1E37MYtRS+Hnquc5s/eQbGxvR1tYm\n/ru9vR2NjY25TVaFsgobNsOHEo1GDSUqGiWf7XlJcDkcDlNMXEpzNXucUkYpAW78eA/+/eI/8ZZ3\nJFIf/wMzvfXYFWpDZd1kJJNRTGwajaqWlryHENPOfumoUXhu40ZMmj49b1qlUhg3lTqh7ySTyayZ\n6G0tLXCNGYPDMt9h1dVIqtzbUtn0MJa9n/z555+PNWvWYMWKFdi2bRtqa2sxatQoy+ZUVgKFkCsh\nkg1qwkMtgbW+RLloDla35+WPyVbaxOgYUrSMo4dSebm1QrvyM8+cjf37w2jbPwOnRjsxzuVHRWIA\nr42ei/FTuvDla6+G1+vN+/zEnX0gIO7kC5EXIyeIY7EYGGOaMtHPuPBCU+ZgNVLTmiAImgNWtPST\nP/fcc7FhwwZMnjwZgUAA69atM/8iOMpWoOix/1Lpj4qKCt12fiOLMAk7K9vzErzgyrXJV7ZxpNWI\nc6Uc/S2E2+3GVVctxKPf/SGm1fSDsQrMCKRwxPEELrvqTgCDGdO5FG00GhW1lIuKyreWogQ5+B0O\nh2wZHcYye8mXqlasp7mWln7yALBmzZpcp6WZshIoeh96svNTFV16MK3EaHteI4KLMSaWgbdCcNGc\npPdRbZxy0zhyof2993BevRfHjWsQ/1YXDqPz8GEcN2NGxqLJF23kBYxe1IQMr50Amf4GNS0lnw5s\nPuqRkn09Ho9iL3m+l4mecfIlQOWy5Ck3pRQpTTGeBS2LbzKZRF9fX8Zia3YIMA+p7BTxZPUDm0wm\nkUgkdAkTo0KLouGyjWP0mtPpdFFkXZsJYwyHm5tVo5C0OK315HSoRW/lGhVVaKT5L1TFgg+EKIX6\nY6VcGBIYhgJFurDno/QHnzxYXV1tKLJKz2JPobpUQsSq66NsbitLqJBGR/XTyDlbiKxrMzm4Zw+m\n6IxCki6aZJ7lF021nA616K1Si4pSgw9P5vNfAGjKfymkhlLKvVCAMjN5EUqLbzbTjBUaCi2Ibrc7\np/a8WqByLdR0i+/BrgW92haVgLfCeUzmnmQyKXYcdDgcYmvWSCQi9p+gZEkzFwGrd7HtLS3wjB6N\nDplIwmxRSMSWp5/G2RdcMMSnIO0pT/dOLXorl6iofGF0oVeKtFNqY1BI9PhQipGyEihqD5vSwi49\n3ujOV+5ht6I9r9JLxXeMpCg1vf3etY4/MDCAdDqN6upqTV0VpcdrHYMxBq/XC5fLBUEQxKzrRCKR\n0dbWLP9CPjl9+XJUVFQYDpKQVtDlfQrAoBChHXg0GsXBlhZM7OwEq6rCFBm/SC5RUcVsQpJDi/+F\nMaYpPDlX5HwopSxQivutMwi/07baxCV3Li3Jg3o1FLU5U/XeyspKMevdyBjZoFItRtsca7nvVKGA\nXnqlMcz2L+idZyEhf4daBV2+e6DP58OHL76IyZ8I4XEuF/Y9/TRisZhpJU+K/Z6pITUlkplY6n+x\nojyMlFLuJw+UmYZC0EKaTqcRDofF3XQ2dTbXki0Oh8Oy9rzScYBM05MZIcFq10+2Z17b4oW2Gdcp\n7RAZDofFeWUjW8/0cmr9qzVXhH6fgy0tOL67G65PFiqXy4Vpvb042NKCCVOnDtHu9Jb+yBf50IQo\nPNnpdMLn8ylG2pn1LNk+lBKAFsZQKAS3252xa9dynFH0tMzNdSwSlowpN90yQ0OhPJZEIjGkeoBZ\ni44VglGPzbzYzWM8RnJF+O8TUwIBPLdlC6bNmpVxf3INubWafM9FakrkfXsUlGLms2QLlCKCFlBa\nNGhhzweRSATJZFJXyRajAQDkD7KqXAvtmqiECmBeNWKl2mKpVEpWMJpljpGzmVNJD948VGinbDb0\n5oocbGnJ+D4hPU5Nu7My+KEYUdO45XxVvAZDn9OzpPdeRaNRNDQ0ZP9ikVJWAoUWQHKs683WNrKj\nJ7sqmdX0lmbXA2Wjx+Nx07LRleZkhdCSniNbG2CrFi458xjl7VBEFAnUYjL/SLUTQk1Lad+zBz4d\n0Vtq2p3U5ONyuYaYYYcb2Uyt2YRxuSU2lpVAAQbtw16vF729vbofdL0ChUxcDofD0uZUwNGdup5y\nLUZNXnpKqBhdUKjmV6HL2ksXUL4RGN/722zzj5HfRaqdAMCBlhZMmjZNUUs5ffnynLR0OZMPhaPT\n/aG/WZnzROPk4zmxIjxZSRhLsZ3yRQRFtBBWOfF4v0JVVZVii06zoJ08AAQCAcvMMnS/YrGYZTXG\n6N7l4i+xalfMGMPm9etx+rJlYoiy3I7TaG0tKXqPleaKdH/4IXo6OlA/YQLqx4zJS66Iw+GA2+0W\nd+SU+0QannRHTscMR7QIY2Bw3aK8oVL3oZSON1InRncY2YSQXHteKxIiCQoJ9ng8hsJ0tc6LbygW\nDAYtFVqkZVlVqNIolNtxsKUFgHzGNSURUkOofPZLP+PCC7Hgm9/EZ1atwmnXXotAfT2+8dnPIlBf\nj8+sWmVKhV09UESUw+EQe7+QRhuPxzEwMIBnn3xS3J0bKetTTpAw5tsjk2n12Wefxcknn4y9e/fi\nX//6F/r7+1XP9fWvfx2jRo3CiSeeKPv51q1bUVNTgzlz5mDOnDm46667rLikIZSdQMklByPbMUrt\nea2Adn6RSESx/bBZCIIg5rEA+oSx1vucSqXEl8TqCstG4HM7Djc3y16TXO4L35kxn/Wi+FIpxVIa\nRXp/Otva4HnpJby3ezei0SgikUhGwyw15OqOFbvJSw+8MK6srMSSJUvw4IMPgjGGxx57DGPGjMHC\nhQvxwgsvyB7/ta99Dc8995zqGIsWLcKOHTuwY8cO3HrrrVZcxhDKTqAQZgoUMtMotec1W3hJtSBS\nmc1OVJS7LqfTafpiSAKLbPlaX1azr1cNfoGe0t0tailqSDsz5qtfOgm/SVzosFyCYyEXYMYYDm3c\niKWjR+ODLVvg8/nE5yuZTGYt2JivrpHFgsvlwqc//WkEAgH85S9/wUcffYRbb70VY8eOlf3+woUL\nUVdXp3rOQmh4ZStQAHNuKC3uau15zYS0IJfLlbMWpLYgU7iuleYnqcAq1p7y0gX6OJ8PbZs26a5k\nINcvPZ1OIxaL6dqdZ0NayLGYtBRCqkEdbGkR/VJaCjZmqwRgJfmMWpNLbAwEAvD7/ViyZAmmTp1q\n6LwOhwOvvvoqZs2ahXPPPRfvvvuuWVNWpWwFilEfCnBUENHOOtviboaGQvkzAwMD4gMldw1mvFy8\nvyRX85OaVicVWLloHFa+4HIL9JQcF2gy//D2cn53To5+vdqLVPgRxVRmXosGRQKYzGO8AN69cyea\nPvgAqVQKx330Ed7bvbsorisfmOWUnzt3Ltra2vDWW2/huuuuk+03bwVlJ1By8aHQcRQyOjAwINrK\nrcx6p8WXytsrherqXVTl5sU7+eXqmplhZjJTYFmN0gJ9nIkLNNnL+d05bU7IuR+NRjU590uhzLwR\nDYr3v3T+4x84/pO8pIleL/b9/e+IRCIAYLr5sNBINZRUKqU5MVqNYDAoCqZly5ZBEAT09PTkfN5s\nlFXYMI/RhZEWd8aYpYshCS5yVqtVQZbOzwhqJVTMpFjyS7Qil9sBaO9WaARKlnS73XC5XLLVbpWy\nrYutzLyc30Zv8iUP/R7OT36PiooKnBAKoePAARw7caKmfvJmXFMh86LMGLuzsxMjR46Ew+HA9u3b\nwRhDfX29CTNUp2wFCqB/8aVy706nU1dVYqPCi3byWsvbG9VQ+LpfZpVQkY5BJjsze9fnwykvt0DT\nc1BRV5eXBVpPYctF//EfRSmkaU65CGglYXSc34/nNm3CmP/8T/j9fjFh0Kp6WvmEF156nvUvfelL\nePHFF9HV1YVx48bhjjvuEO/FVVddhT//+c948MEH4XK54Pf78cQTT1gyfyllK1D0vHSUVxCNRuF0\nOi0N0aXxEonEkCgurcfqhUKCtZRQMbKIk1anpac8fT/XhECzBI1c7kYikQBjLG914HjUsq1LobBl\nLhqUmjCa0tWFQ3v3YuanPpWRMEibGbXabMUogJXQ+m48/vjjqp+vWrUKq1atMmtamik7gaLXhyJd\nDCkjXe+YWhPbqN4YYywji1brOHqgdrlWFsmkfBmXy5XVZGfkxabzJxIJ0QxUTjb0bPCLp5bCloVe\nPHNJrlQTRulgEOFPBAoPmYjUarPpNY/lM9y63Cg7gUJoWeTlujhamfVO/gWv1wun0ynay/WgVUhS\nK2BAf5FMrddPUUqVlZWW9JQnTc7lcsHn84kLBZnXaKEdDhVwiWyFLflaUel02jJfmRWoCSO+tpoa\nShpeMZvHpDltpUzpPG0mo9Se1wq7vZx/wUg+gpa5kQbkcDhQXV2N3t5e3WNkg78eyr0w+0Xgd+CB\nQACCIIgtc8PhsLiglmL7X7OQWzz5WlFkDqLvWbFYFXv2Oq/hAdCk4RXKKZ9IJIquHJFeyk6gZDN5\n8bt3s6KdsmW9Z2uEZRa8BkR+ILNfEKmJkMI59Z5DbT4k7Cl3RS5EVlohmK/qWmxmoHxBkWMkbMnn\nYkVhy1JFKQCC1/Do72ZFXCkhfQ+oI2opU3YChZBb5LW0580l3FgKb1KT5rIYNa3JmfH4oIJc+6So\nzaIEjBcAACAASURBVCtb/xKt51dCGtpMu+1saFkkpBVwyx1aDEmrkzr3yYdXTKaffMNvTKjoJ78x\nAfJrHotGo7ZAKVakC6PW9rxGF3opSiY1s8kWYWWWCU8pv8Ss88uFNlP4rh7kFglpyfBcOuqVKkrO\n/eGu1fHQPQIwJDzZinsk1VBsgVICWGHiksIvqvx4aiG0Zjj/zdAYssFrP2bll0jhkzuzVSXQi9QM\npJbjMZzMQHq0OqtNP1oohF9D6z0y69mxTV5FCL9zTqfTCIVCcDqdmhP6ctlxazGpmYVWjUsvUuGo\nJ79EK0qao9frNeX8SmiNABpuKJl+kslk1q6VhcwqtwKld1/NPGY0P0h670q9uRZQhgKFSCaTSKfT\n4kJlZdY7L7y0LvC5jKOn42EuWfxatB+95+ezgrNl1iud2ywzm1yCHAkXPr8mH9qLIAjYsmUnWluj\nEIQKuN0pNDX5cOaZsw1rhUbvkdp9kfZJL8dcCiB7tKMVJkTygZYyZSdQaCHgk/qsHo+cnMFgUPPL\nbzQjnZzUVkaMkb+BjxYzE6s0n1wgsw4FNFAOh9wOVKkfuFEEQcADD2xFd/cCeL014t87Ovqwe/dW\nXHvtGYaFSq7zlN4XqeOagkQorNuqZ7LYNSEj5jE7yqsEIAdsMBjM2kZTDiNZ74SVMeTJZFIM0Q0G\ng5ZoXLypQ49w1AMJEyv9PmagNUPdaGIl/5ts2bITPT2ZwgQAPJ4a9PQswJYtO3HOOZ825bpyRZrX\nQfdDS2HLUsAMwZXNPEYRdjQeUQ5O+bKLFaysrBR7ohtRx7UuwMlkUuyVUlVVZWSqALSZJeLxOPr7\n++HxeCxNUCOtwePx6BImejLr6WWyIrPeSmj3KW0Opbf8PA9df2trFB5Pjex3PJ4atLZmzxAvJA6H\nQ+z7Qhqt1V0rSwkSwtQyglpH0yalq6sL3/3ud7F//35N2nq2fvIAcP3112PKlCmYNWsWduzYYebl\nqFJ2AoXgbfVmQiau/v7+Ib1SjPgSso0ViUQQjUYRDAbF3Y4etAhIvn+J3qx3rd+l5mFOp7Mkytqr\nQTtQvrc8mceM9JYXBPVFJNvnhYYPhJHrWknvTC5dK4vd5KUH2pyQpldRUYFRo0ahubkZ3/3ud7Fo\n0SL893//N9555x3Z47P1k9+wYQP279+Pffv24aGHHsI111xj1aUMoexMXjxGssTVFmAl27/RB11t\nftISKkbzMrIhza4nldwspGHUeotvlsKuVk99LTkfg9utnryZ7fNixWqzoRXkU3AxxuB0OlFXV4cb\nb7wRTqcTN954I6qrq9Hc3IyXXnoJM2fOHHLcwoUL0draqnje9evXY+XKlQCA+fPno7e3F52dnRg1\napRVlyJSdgLFDPun3CKWLerJiPBSgjLspSXntWgbgiBg8+Y3cfBgFILgRDodxeTJVViyZF6GGcvM\n/BK1sjNSoaiHYlhg9CIXmiyXWEnRUwDQ1ORDR0efrNkrHu9FU5O1gSX5QknwDud6bDzRaBQjRozA\nWWedhWXLlhk+T0dHB8aNGyf+e+zYsWhvb7cFSq6YFV6aj5wPIPcSKoIg4P77N6G7e6Ho4E0kEujs\n7MfevZtw3XVniy+zUpSVnqAEuWsglIQiXWcxo/ceZDuXXGIlmYEqKirwmc/MwK5dL6K393R4PLXi\nsfF4H+rrX8GZZ55hylyKCTXBS859XsDki0JoKISZeSjSdyxf11SWAoXXFnLxOUhrS6ll2ecqvLSE\n0mYbY/PmN9HTs1AmWqgWPT0LsXnzm1i8+GTLs+tJAMuVnSlFrcMs+EU0mUyKG4ZkMomvfe0U/OMf\n/0Jbm4B02g2Ph32Sh2I8ZDgfi6NZY2SraOBwDPY8SaVSRWMeMxuzBEpjYyPa2trEf7e3t6OxsTHn\n82qhLAUKkYtAydVco2css0qoHDw4NFqIxvB4arB//wDmzw9Zml+Sj771ZmmehYYEDPkYzjvvM+Iu\nnRZOej7KdRGVQ057Id9eORW2tKqW1/nnn481a9ZgxYoV2LZtG2pra/Ni7gLKXKAYhTGGvr4+XQuv\n0UWOyltoGSvbGIKg/GIlk0mEw8ms/hIjme/pdBqMMbETpZkCuBwEhxbUEgitTqwsdkg7oftjZdfK\nQkaTkT8zG9n6yZ977rnYsGEDJk+ejEAggHXr1lk9dZGyFih6F0fyYTDGUFVVpcuHYWQs2tGbVXTR\n7ZYvbU/+gGCw0rJkRcrJ0VLcUet9ovMkEglEo1FxwRgOQqYUI6SshPc36ImqI0FdjEifY62Z8tn6\nyQPAmjVrDM8rF8pSoBjxodAOmxbfXHqKaB2LMQafz6d7kVfaRU2cmBktRC/b4HcjmDTJ/CxccqKS\nv0RLDSSt0C49Go2Kiwe1HSatqNgXDbOQLqLS8iflYAIygpx5TGthy2LACpNXISlLgULoyXqnRliB\nQAC9vb2m5q/w8KXa9b782eZz1llz8e67m9DTsxBudxCJRAIOhwPJZD9GjtyGs84627TrIG2Oer6b\nXSmYt5dXV1cjmUyK1x+NRkVT23DscSItf6JUmJAPTbaKYks45O8NXb+0sKVawc9CXg9jrCjq2uVC\nWQsULZjZCCvbyyst1U5aih7U8l3cbje++c2z8Nxz27F/fwgOhw8VFUlMmODBueeePUQTkuasuN1p\njBvnxmmnTc96nZFIBMlkEl6vV1NXRT1QkALtPqVCl/6ercfJcNVeyATEhyaXen6H0TJKSn6pYsh9\nkXuPS/1ZLUuBoiURkM/glkYkGc2wVyJf0U+MMSQSCSxadCI+97kqVFRUIBqNgjEmK0ykOSsAcPhw\nD95+ewtuvPFzsqY4afQb1WnSO08l+Mx9mr8aWkwew017oWtNpVIZxQlLvXijGUnLapodCSCKrsvn\nvcmHNpkPylKgENmy3tUab+WSv8LDVySWjpVrnox0nP7+fvGaeKEql6SnlLPi9dait3cwZ2Xp0vkZ\nn5Fp0OPxiBFpRqLClCBtkZI6jbYA5k0ew1l7IUd2KXVmzCdy94YqJ1NFbCu7edoaSgkiXeyktavk\nfkCzflS1bHEz0XJNUuRyVojKyhocPJipGUgXezPhNTi1pE692NpLJvz90NuZUYly2FUDmfeGkizl\nunmaFbYtd9/K4fkra4HC/0BkT9bS6dAMzUHLAmxGJn+2Ui1KD6lazgr/udXmOiP5K0ZzfpS0F+lu\nvVzMD9nI1YHNn8dq8mWCIq1OzjyWTCZND9um48rleStLgSL1oaTTaYTDYTDGNHc6NLrQq/lmzIR3\njGfreih3LXI5K9LP+ftmRbIimR615q+YidpunUxt8Xh8WGkvdmKlMk6n01LnfiKRsDRVIV+UpUAh\nyH8QCoV0mZ2MviyMMfT394sO62wPltGdNtl4pf4SPUhzVnji8SOYMMGDUCgEt9ututgb9aGQmY4i\n3goNvyOlQAOHwzFsfQ1aEyvT6XTJRo7JoUUTUnPuaw18kI5D1oxSp2wFCiXBJZNJy7PeAYgOPVog\ntS44RgRKJBLR7C9RuhY+Z4UXKolEH2prX8LJJy8QqyubDdnsrTA9mgG/W1fyNQwn3wugnFhJ/6Mc\nCqvCb4st34VHKfBBj+kwEonA5yv9NgVlKVAYG6zcm0wmRZOGHvQsZOTHiMfjYotYPePoIRaLIZVK\nwev15vzwud1uXHfd2ZI8lBSOPbYCp5zyGdTV1ZlepoVs9Ol0OquZTu7YQi0oWn0vw1F74X0O0sTK\n4SRwCaVAEKnpUHpPzCxdX0jKUqCQ2hkIBBCJRCwbhwRXKpWCz+fTnY+hJyud/CW8qp3rGG63WwwN\n5q8lnU5rFiZar4HCp9PpNDweT8lmBGuJlNKiveRDQOZLu6OoKLXaWqWSWGn276JkOqQ2yJFIBOvW\nrUN1dbXmTeJzzz2H1atXI5VK4T//8z9x0003ZXy+detWXHDBBZg0aRIA4KKLLsKtt95q2jWpUZYC\nxev1wul0ivWe9KJlkZSWnCfzmtlIEwmNZNdng7+Wqqoqsb+8mefny82U045Vj/ZSiMU03/dabocu\nbZw13MyFPGQeI/9cZWUl+vr68MQTT6ClpQWHDx/GkiVLsHTpUkydOnXI8alUCt/85jexadMmNDY2\n4tOf/jTOP/98TJ+eWd1i0aJFWL9+fb4uS6QsBQqQWzheNoFiVgfHbOPI5ZeY/QJKxzBbWNH5qbSN\nlRpjodGjvWi5z4IgYMuWnWhtjUIQKuB2pzDYdGu2JVWjrUBOezFiLixmH4pRaDNyyy23YN68eXjt\ntdfw6U9/Ghs3bsRbb72F3/zmN0OO2b59OyZPnoympiYAwIoVK/DUU08NESiFCkMuS4HChw2biVou\ni9kO5FgspphfojeqSun7SmOYcX4+R8ZoeX46N785KKVFRU17AQbvP30u1V4EQcADD2xFd/eCjGoG\nHR192L17K6691ngnx0JhRWKl2eQz34UfJxqNoqGhAZdccgkuueQSxePk+sW//vrrGd9xOBx49dVX\nMWvWLDQ2NuLee+/FjBkzzL8IGcpSoBC5JMBJj9OSy2JGGRU+j0XOcW3Gw55tDLPOr5Qjk+tvUojo\nr1wXGuliSvk3ShWTt2zZiZ6eBTLtnGvQ07MAW7bsxDnnfDqnazKDXO6LnsTKckdr2LCWez137ly0\ntbXB7/fj2WefxfLly7F3714zppmV4vaQmUSuC30ymUQoFILT6UQwGJQVJmYs9FSPK51Oo6amxpQX\nSXot/BhWCJNs5y8lDYNgjGHTU0+ZKsRoMfV6vfD7/aJJk8ype/eG4HJVyY7p8dSgtVW9aGap4XA4\nxORBn88nas1kFQAGE03JmW0VhdKCtTbXkvaLb2trw9ixYzO+EwwGxXMtW7YMgiCgp6fH3AkrUNYC\nxYwHIx6Po7+/X3zIzUrwkx4jCAL6+vrgdrtRVVVl6jgECUaXy4WqqipVJ7HWMfj5SM9fisJDjgO7\nd8P1wgs4sHu3Jecn7aWyshJ+vx+BQACMVWbs2Cn6jhAE8zYCxVj2gwSux+MRF8eKiopPWlmHEYlE\nxEKOxTj/bEgFVywW06ShnHzyydi3bx9aW1uRSCTwxz/+Eeeff37Gdzo7O8V7sn37djDGUF9fb+4F\nKFCWJi/+h5La4bUeTyYuq0uoAOr+klyh66edb7a+L0aFgNbz53JuWmTyuYAwxtC6cSOWjhqF5zZu\nxKTp0y0XlA6HAx4PE5853v+STCY/iRRKmJKlTtrX2RdcUPQbAN65b0XHykIKJq15KC6XC2vWrMGS\nJUuQSqVwxRVXYPr06Vi7di2AwZ7yf/7zn/Hggw+KJY2eeOIJq6d/dH55G6lAGNnR087Q5XJZXrCQ\nEp60mp/0jsPXF7OquCPlsGg9v17tJxwOw+PxZDhxCavDTw/s3o2pXV1wBAKY2tWFA7t347g8ODib\nmo6WxpGG4kajPRg3rlI170XrPRa1r6lT83JdRpBuCNVKn5iRWFkop7zW0ivLli3DsmXLMv521VVX\nif+9atUqrFq1ypyJ6qRsTV58pJeeBVgQBLHFbDazkHQ8PeOQBgTANH+JFBIkwGAvFq3CRG/CJTB4\nDVrOr6ckjXTu5HNwu91imClpL9FoFIIgyPZ+MQppJ5M+2TlO8vvRunFjXnayZ545G/X1LyMe78v4\nezzehxEjXsOSJfNkfS9UGZrug9r9pus7Z9Qow9dVDJF3VPbE6/UiEAiIGrKVz4bZ2JnyJYTWxZHC\nXL1eLwRBsOxF4fukUBFCrZA5Lht8siIA05Pq+IZeZp+fb0oGQOw+SND94mttUfKcmaXFee2Exs2X\nluJ2u3HttWco5KEcDRlWCsOlHh5qFZMLpX1ZSS6Jlfk2pfLvjC1QSgQtiwlfdqS6ulr0ORgh246N\n75PidrvFCBYz4Sv5VlZWGr4WJfjOjR6PB729vaadm8+q9/l8ms6tVPojF/u66DuRvOST/P68+VLc\nbreu0GDeFJROpxGJRETtRS6JkL++fF5XPtGTWFlIbUuPyauYKVuBwjvj1XYe0hIqDofDcOtZNeRy\nP8zO4ldLJtTzsqiNQWYEPqxTL0rHSEvaG70//A5Vqex6Nu3l4J49GdoJf/5S2M3LaXF8EuHBlhZM\n6uwE+yQar5ivy6yFXktiJWk0VidWSq/JLl9fIqgtjvwCxpdQyTUhUvogSutxSXfJZrwwUi3LimTF\nWCyGeDye4XzXm8Wu9B3S3OSy6qW/hVazH6Bcdj0ej4MxNmTXTrS3tMA/ZgwOy8yXVVcj2dJiysKb\nr12xVHv58MUXcY7fnxE5NsHjwfPPPadLSykGH4pRpImVVNBSb8dKM7BNXiWMWgkVwNwMe7W+8kYe\nUKUsfvJnyDXc0hs6LR1DKqzM9JcwptxP3uwXWCk6iNdeaHFZeMEFlvenYIxh8/r1eQ/ZPdjSguO7\nu+HidsTp9GCHzokffohdb76JKTNnDqsCjpRY6XA44PP5MjYfVnSslMtDsQVKCSC3OFIZda3tgI2i\np6+80QeU92foaeylFRJWvEnQLOi3YMzcFsNakWov1KuFHNpUa8uqRfVgS0tBQnbbWlrgUtC+0vX1\nEA4exNQTTyyaismF0IL4zYdax8pcAz8IqZO+VClbgSJnvuIdvlZko9NxVtbK4uemRWDlQjKZRH9/\nf9bukHqFIjlHSVBpyarPpUKAVrY+8wzOvuACOJ1OCIIg/n8sFjN9USWn/zKLEibVfo8zLrxQ0zm0\n9HspJ9TumZrp1Ejgh3SsUjYd8pStQCH0ZorzGPmR+egaq/rKk8BKJBKakgn1jkGRQfF43HRhRf6P\nvr4+zW2M8wGf4Ddh6lQ4HA7xuskcZGYL4NY9ezC1u7voQ3alfgZplBQw6It0u91lscPWgtmJlaVY\nOkaJsn8CGBvsLU+Z4lqESS4LXDgc1lQrKxdox6gnWVErtPsi57vZmg/lBAQCgSE+pUKhluBHfo6K\nigrFQo56E+cYY2jfvBmTPvHR5DNhMhcoSoqvOQYc9YOFw2HE43Ekk0lTryVf98WolmAksVIu+78Y\n3oVcKWsNJZ1OI5FIgDHlkvNK6DXjUKE6WnT0jqOFVCol1rQKBoOmhAHz8D6NQCBgamY9HyXmcrk0\nCyorTF3SxlX9XQdw2r53wKZNxNSuLhxsacG4yZMBDC1NIhd6SsUbtdrWD+zejSldXXDU1IjXWMxa\nihJ0bbSAWtmtslQWW62JlfQZHyVZDpSthkKVb40+0HoWYdqF6O33zp8jG4lEAqFQSAxvNvsFS6VS\nYol+M6JYeOgeJRIJyyOnskGNq15+eSa6us5Gb+8Z6H/jCCo6x+Of/2xFk9eLQ88/L/rCtJQmeXHD\nBng8nozdaTweRzgcRiwWy9idiuVcJNpZqWgpSshpL263W+z3YpX2UuxQYiWv3RKRSAT3338/fvWr\nX2nO6Xruuecwbdo0TJkyBT/5yU9kv3P99ddjypQpmDVrFnbs2GHatWihbDWUdDotagrxeNyyMfj8\nkkgkovtl0WJf5UOcnU6n7uvJJhyl+Th82ZNcoXtEIc1GkkbNRNq4qr9rNz4V7YLLHUA0Oh6trZ2Y\nMqoarXv2wOPxZC1NItVgsiVVHtq7F5M//hgOiYZmpZZSiFbC2XwvhY4ck8NqxzgJXQr2CAQCmDZt\nGv7617/ijTfeQFNTE5YuXYqlS5figk+CQ3i09JPfsGED9u/fj3379uH111/HNddcg23btll2TVLK\nVqB4PB4xUckI2RZhtfwSs8bh8z/IZJdOp03d4VHpfKNtetUw6x5JycUM1toahcczKEwYY6jYvwHj\nXNRvw4PeXgGzm3x4prkZLpcLy1RKk4jlWRQiteQig9r37EHFiBF4DxAdtmQaMzNhkrCylbDW30BL\nhrpakEO5REBJcTgcWLx4MebMmYPe3l7cc889eO655/DXv/4Vy5cvH/J9Lf3k169fj5UrVwIA5s+f\nj97eXnR2dmLUqFF5uaayFShmZb3LoRSua6a9X64kjJmohTYbiQqTft/K/ii5wDemIu3E4eYT/AYX\n91H79iFSUQHH+PEA5DUIPcUVace++ItfBICM4qCpVCojK9usygnAUI2MMLOVsN65Fqv2UijnP2XJ\nT58+PUM4SNHST17uO+3t7bZAMYtcFnnpcdnyS4yMJXcMmaDkwmrNGIOv5isNbRYEAc3Nb6CjI4l0\nuhJudxoTJ/pw1llzNe1kGVOuJ8Z/x+jcjUIvsdt9tGpxpOtd7Koag104en8Dfh/6qquxt7sbx6sU\nhgSQc3FFt9udsWOXZmXnmlTpcDgyNDIpxdBKWE57ISc2aS/kM8yHplIITUhrYUg9eV5GjjMDW6Co\nHMeTrR6XWVjZvRHITO70+/0Z1ykIAu6/fxM6O0+B11srBhh0dPTh3Xc34brrzlYVKiRwKaRZLvHN\n6MNNpj4jxzN2tCsh37hq9PSLM74Xj/di1md2YfQYL8Z2dGBaTeZCzGspAEwrbc/v2PlF1Yykymyt\ngs1sJWwG5MTmqwNT8mA4HC5K34telDSUbGjpJy/9Tnt7OxobG02YtTZK8xfJA7wg0tqLPRftgfwl\n1L0xmzAxsssXBAGhUEiMl5cuzps3v4menoVDdrSD5pGF2Lz5TcXzU+Z7Op02vToAmc8ikYgosOie\naYHvCa/WuKq+/hWceeZstLW04NDo0dhSUzPkf4fGjMHh3bszGm8RZkRqkU+F/E65RkvxGpmRzwsJ\nr7243W4xlN2qyLFC+WrINJwNLf3kzz//fDz66KMAgG3btqG2tjZv5i6gjDWUXH0owFHzjZ7yJkbG\nYoyhv79fk/ZjdIcuCAIEQVB1vh88OGgeoVpWPB5PDQ4elDePkDCkkFGzXkraofKF86jWFlUkyGYa\nknOcZ2tcteg//gOCICiGOL/37ruofPNNU0rbZ1vEtPgb+Iq4UniNTEo83oumJuNh3PkO/5XTXorB\n96IX6W8ejUZN6yd/7rnnYsOGDZg8eTICgQDWrVtn2XXIzjGvoxWAXAQKPahae6UbXexjsRg8Ho/m\nSCg99mSyzzPGsmoOgqD+Esp9Tkl9lIdhFiSkAIi1vlKpVEZSmNfrFSP5lBZXJcd5Lo5oteKKeiK1\nKAtfa7VhNX+DNKmSnvkzz5yN3bu3oqdnQYZQOaqRnaH9whXmZDVyz7oW30uu5XHyhZn95AFgzZo1\nps1NL2UvUAg96izVbQKGOq3V0Cu8EokEEomE6M8wG9757vV6s5qh3G710iHSz8nfQyYJLWi5R3zh\nSAqpTSaTYuMj+i3JNKS0uDqdThx87jnV0F8jaC2umI0DOVYbltux850qiauvPh0vvvi2aivhYifb\n72WG9pIvk5d0HK0mr1Kg7AWK3geEcifI1GCF6ky1jxKJREZjL61oWZT5HJB0Oq1pjIkTB80jTufQ\nhzse78XEib4h86eETrOgoAHyIYRCITGsloRJKpUSF08SHHILyt5//xsTOzsh+Hzi96YUSYkTxhgO\nqeSw6EVa8oMECwnZBQtOwBln5KdZVKEpNe0lEomgpkY+Eq/UKF5DY44YCbWNx+Po7++H3+9HZWWl\nJQs91cviI6HMtkUnEgn09/fD5/PB7/fD6XRqGuOss+aivv4lJBJ9Gd8fNI+8jLPOmis7f7OgoAGa\nN0HF9XiBQr8P7UITiYQoaEh7eX/LFkyrrhYr4abTaYxzubDv6afFXXyhyoC07tkzWM9LEjlmJg6H\nQ3Ts08Iai8UQ+f/tfXt8FOX1/rO3XDY3CIVw/QoIFVCEICVeAIEY7iGhaAkXRaSAIiB+tBbr/a4/\nkVbFUq1VaGlRCXIRQoSCoKAQL0i9gKg1NIBcIgnZZLP3+f0Rz/DuZGZ3ZndmNtmd5/Px0wKbnbOb\nmfd533Oe8xynk7eESQQbFDH7E5Mp2NyTTjKxOKGQC0Y8IO5PKED4hZ7tL6F6icvlku0eK/c61Kxo\ntVqjKl5LXUdo06I0nWGz2bBo0XXYtm0/fvihESZTCtOHch3MZjOvdosmfrHYhR37tKuk6XnUmwNc\n2F1SrYA9tQBNu3N+wWZkvdQ82Ke2Ft8fPoyLevcOej+9dqsc1+Q2PEjlVJwQrDBFOCyKUojspEql\np5dYpYiiQajTCz0/et8PTqcz5h53aiGuCYUtXkst9FL9JWp2vQPBflmsQZyajXtSM+WVXMNms6Gg\nYDACgUBQoZCk09E2WwofUGH6zGKxNDtpkNrObDYjNTWVr5M4nU5+oWRPIX6/v6lw3qEDKn++HrtQ\ncpmZ8P33v+g7YIBorl3t370QvNtw27b8d6Kn2zDVnoALog21mypbC9hUKSkVOY7TVDkm1oeipqAl\nlohrQgkHtb2mxBYiOZ3jkUCs851IUY3PwUKryZCUPiMFGqWwiEyov8XpdMJsNvNqL9pp08mFdtq0\nOJDFCdVS6D8CkYvUblVMlqxW3YFkzKNCdOHruYhr2VTZGkGnND1rL3Jlw60BCUEoYgt9uEVSjV1q\nqFNDNNdhb2S5pBhpfwydHuRKp+VCOAKY/o4K8EQutGsUEy+YTKYglRdrOMhxXNDphVJjdA2gKQVJ\npyC2sE/5dTIYdbvd4Dgu4p076/Z7puo4Bn7+OSqzU9GrVxf+ntD7lCIGIlnh6SXW439j1XAoRzkW\nqgdIChwXPD/eOKG0EoilvOQukpEu9PQztGCSbbvaDwQdy+UYMEYiLiCrCyLDcM2WSr4rjuP42S6U\n/qMcNi3sXq8XjY2NSElJkXUqYnfaKSkpfAMkvQ9Jm9kmQbompXwA8Ck2oWqK6g5iO3daiMUgdPs9\nU1mKTyxXYt8ZJzIaKzF0aO8Lw5g0cBuOBuGaKum7ov8fzwhVe2EHZ0VyepFrvdIaENeEwoJufClT\nRDVAC6vP54PD4ZA1Mz3Sk5DH44HP51P95ABcWDxtNpvqZEj9PTR7hV3YaWH2eDx8d3ykn81sNiM5\nOZm/BhWhaeIlnVzECvvs/7InGLk7d/b7Err98v5hHg/cnBOuPl9F7farB8QWVLoHKSWpdnpQ8xK2\n6AAAIABJREFUbyg5Cal5elHS2NjSkRCEQumTxsZG2fWSSBd6jmuyUdHK3JFd+OSSopLP4vP54HK5\nYDabRf2+ogEpuQAELfTAhZNBY2MjfD4f0tLSVEursA8/e3pxuVx89z2RCy0KtGgK+11osZRrhxLa\n7bdNzN1+IwURTCAQ4L9TtqmSJVjj9BK84TCK8q0cNFueHdEaDpGkcWixVHJqUHIdSqOZTCakpKSo\n/qBSCk1JMySgXJZNzYps8Z1ew3FN8+y1WoRCpbLo95eUlMSrxljCoP+onkKnl1B2KA0N/qC6kBCR\nuv2G203rWXcQ+06FkyojkSUT9Pgsaqr6wp1e6DUcx8Fms8Hlchmy4dYCp9PJe01pNeiJTaUB0KRg\nyabRfD6fogdMzoJP/SsZGRm8ZXgk8Hq92LnzM/zwQyO8XjNsNj86djRh+PD+aPuzTJY+Dy3KgUAA\n58+fxwcffImTJwPw+Syw2QLo3j0Fo0blamoPQhMVKb2VkpICv9/PkxudXIgshD0vUoV9WkxSUkyo\nr7+Q6qPXEiJx++W4C3b8LTG1JDapUihLZutPLQlqxyN2eqF76/nnn8c///lPtGvXDjt27MCIESOC\nWgqkcO7cOUydOhXHjh1D9+7d8dZbb6FNmzbNXte9e3deDGSz2VBRUaHqZxNDXJ9FqaNbq653oGlB\nqaurg8ViQUZGhuIY5VyHOvjT0tKQ+rONiFo7KlKiUR9INPUYmqfywQeXoro6H7W1I3DixDDs3385\nVq2q4G3GbTYbnE4n6uvr4XQ6ce7cOfz1r/tQUTEIP/10Hc6fH4nq6nzs23cpVqzYJep+rBboZOn3\n+5GRkcGnRNPT0/mTktvtRl1dHZ+Oo8J/UlISv3nw+/28CIBkyiaTCRdfnAafr54nJiJQAGhoOIsu\nXayKG2hZO/6WDlbmzd6/VM9yOp28y0GidO2Tku7OO+/Eq6++CrfbjUcffRQdOnRAYWEhTp06FfI9\nnn76aRQUFODo0aPIz8/H008/LXmt3bt34+DBg7qQCRDnhJKWloaMjIyI0idyFnqPx8NbhVC9QWmq\nLNTraTfT2NjIL3ZqglJo1AfCSlgj+Qw0TyUlJYs/5TTJgtujpmYoduz4BIFAAKmpqfzn8Xq9+OCD\nL3Hu3NWwWtOCFpbk5DaoqRmKXbsOqvq52c9PjsbCehHtLJOTk5Geno7Mny1cyO3A4XDA4/EESZep\nIE3pHq/Xi+HD+6NNm/fhdp/n39NqtcLjOY927T7C8OH9Fc32oD6W0Tk5Uc9eiRaRpKKEs17ELGGE\n34FeKS+9TkusinDQoEFIT0/Hvn37UFlZiRkzZqBdu3Yhf56dGz9r1ixs3Lgx5LX0RFynvFgJqNJd\nIEHsRhOmiNRWWdE12KY/lhTVIC2hCaMaDxPNU6Hdus1m40nKZsv82c7lgpLL7XYjLS0NZ86YkZ7e\ngU+NeL1eJm2SicpKV9SxCUFkQqcNOSKNSHpeAGD+/GHYvftzHDvmht9vRVJSAJdeasL48fmKVUJK\n5ti3dMhtqox30BqTnZ2NkpKSsK8/ffo0PzQrJycHp0+fFn2dyWTCddddB4vFgvnz52Pu3Lmqxi2G\nuCYUWiSibR5kwTYrZmVlNTv9qLXYq+H5JQWygQnVvxLJzsbrNfPy3KSkJP67uVBvaLrdyJiQlFxe\n7wXlFF2b0kZerxcOhweNjY08QUX7fZDUNdK6mtKel6SkJIwdm9fsc5FVjLCwL1XUNpvNUc+xb6kI\n1VQJgLfZ0cpjKxYnlFAoKCgQTX098cQTQX8O1QO1b98+dOrUCWfPnkVBQQH69OmDYcOGRR64DMQ1\nobCIZIFkGyOBCwu9xWKR7M+IVG5MYD2/pKztoyEtoQmj1OuVosm5t5EXQNA16bpNi3CTdJt8wohw\nhHNW2EJmk+qraQEhw072NKA0Vlr0U1NTVSv2K+l5YS1dWDNLVjUmVdQ+cugQuv/4I/w/j6E2m82t\n/pQiBfreLBYLfD4fb2oZbZd6S4Owa56wY8cOyZ/JycnBqVOn0LFjR/z444/o0KGD6Os6deoEAGjf\nvj0mT56MiooKzQml9f4mFECNnQdZqyclJanan0Hvw3FNnl/19fVIS0uTlYZRAjpZ0cx6tZVTPp8P\n3bolgeMaRcnE5TqHjh2bXiuUBXfvngK3u1b0fT2eWvTs2fR9pKenIz09HVarlf991NfXw+12853u\noeDxeHjfJK2UY6TyojoRnTBdLhcfr8lk4k1CqfZCxMEW9un96JRz+v33ccnPGxlaXP8vKQnfl5XJ\n+vxqQ89dPX0Hdrudny1Pajyn08nfAy29sC+Mj9wglGDSpElYvXo1AGD16tUoLi5u9hqn0wmHwwGg\naYDX9u3b0b9//wijlo+4JpRoUl7sz7lcLn6hD1dviPRaVHzPzMwMW3yP5BqURpEzw0TJ+7Ny0IkT\nr0F29l64XDVBC2JjYw3S0t5Dfv4g0e9v1KhctG27txmpuN21aNt2H0aNyuX/joq6aWlpyMzM5Heu\nDQ0NcDgcvBJLWNR1uVx8zUaLmpcY6KSVkpLC9xmQ0qu+vh719fXweDxBkyfp31ly8fv9+P7rr/HL\n6uqgjnRSmfWqrsbhzz/nC/tsj088gkg7JSUlqLesqe+ngU+pKqmb6kmOwIW1KRLblaVLl2LHjh34\n5S9/iV27dmHp0qUAgJMnT2LChAkAgFOnTmHYsGEYOHAg8vLyMHHiRIwePVrdDyECE9fSKT0KUK6a\n0g9Kp6LV1tbyduoZGRmyCoSk+pK7Aw4EAqitrYXVakX6z6mMcKAObzndtVR8DwQCaNu2rayHhn5G\nTNvOgnpjaBFMS0uDy+XCrl0HUVnpgs9ngcXiRceOJowe/auQ8Xq9Xv7nmvpXlPWhUH2Cft9+v5+v\nuRDB0LAxvUE1G9aXjD2RsHJqtgOfLdbv2bABth9/DHJKZj+7t1MnDC8u5j87EQpLUmrD4/GA4zjN\n+ruACydruQOo2PoTNZTKaaokMYDWDYaBQCDIauXYsWN44oknsHbtWk2vqxcSpoaiFFQ8NZvNyMrK\nUq1rnAUt3EDzNJAa16B6THJyMm/vrhaoqz4tLa1pQft5J221WjFmzBBeySXXk8tms2HMmCERxyPW\nrU1qIQA/F/+9untNSdVs2MI+gKAivHDOi81mQ8HUqXxKR8yKn+4d+vxkgaJWt3qsoPTkIKepsiXN\neokn63ogQQhFaYqInSuvtJahdLFPTU3lb3Y1wdrzW61WRZ3v4XpjhJJp6p8gqTDQdIoiu5tYST/J\nkys5OZlfsIWFci0XFiWESmTIFva9Xm+zOS9iZpa06LLkQv/LGnC25IVVC7CkzU6qpI0GS7KxGv8b\nT07DQJwTSiQ1FNYSnozd1IZQaUXzNuQi3IIvtOePtAdH7L2dTmfQPHmyHrHZbHzRm753u90eEzKh\nOSrJycm8SwLtWsXMIdnFWo2UGAksIiVU+j7ZXXaonhf6zHSqZq1h6P3C9XtEOtejNZFRqEmV9FlY\nxZ0eoLUmXhDXhEKQQyhiC3EkhBJusSeTRDnFcaWQaoaMVsoMNJ8KCVxYxMxmM79QU+e52WxGQ0MD\nv1iR2aLWD2q4OSpiqTHWHJLtIYnUyJC6veXWxEJBac8Lm36kNB/HBZtZCvs9WDPLlmZDrxVpCUmW\n7F+0nlQppvKKF6dhIEEIhSB1c2q5EBOkZtdHch2x1wsnIEbzEArfX9hoSdcTTlek3D+lCdnCMxEN\nu/ipvVBEMkeFVVgJe0iUxksbBo7jov4dhIo3VM8LkQidztjUGABRK36hM66YDX1LNHJUCyRyYFOO\ncufdRHo9gpHyaoUIdQOE6kqPhFDEfkYLmxMWVPOhCYhS7x/Jbo+UXNQ3QQ8bNWRRmkCoYgKkd9ds\n4Zk9DbBQovqKNsXExis2N0VOvKRGMpvNmrgbyImXCNVkMvHyYTZe4fAw6l2h74vt2AfC29DHK9j7\nVoktTiQwCKUVQYwc2L9jC+NKm4tCXZMlFDljeqM5obBqK6n+lUgXN7awz+526XtklVzhpNJKUk1+\nvx8vvfQebzRJOHGiFl9/vQsLF47ir0WpSr/fr0qKSUm8RDAAmp3O9AYt+tS0SfHSLpuNl10oabEE\nEHTiDNWxT4V9ep2WtRS9uhqkPgN7H4jNu1GaIhQrymdnZ6v+eWKFuCYUFuwiTDtaORYkkd7QrBoq\n1DUiBS2kbrdbM4NKp9PJvzc9SOwiEo2SK1SqaefOz3D27JVITc0IegBZ9+ExY4bwKSYAmqWY5MRL\nNQq9GiaFEEv1CeOl1COl5FhJsrDnBRCf88LWHMhNmgQQWlqhtKRUm9opQvq9xQvinlCEpECpCTld\n45GmvOgh06IznUDWG0rHAMvZQVH9gN5bbLoieXKpVXhmUzenTnFITm7DN/yxu+WmsbkuXgBgsVg0\nSSPKiZdOaGyndrjUmNpwu928A4DUfaa054WIhT2VCAv7RBy0eLbkwr5WEDvFhptUKXwGKbsQL4h7\nQiHQQh/O3FEIpQs9qWysVqvsaygBq6RS+/1Z4QD7d0IyoQKw2jPnAfo92YKch4W29g0NTXUdKk7H\nYsGi1JfQFyxUakzNxZVO2V6vVzGpR9PzAlxIjdGzEWrXTkTU0gv7tHGJBnKaKoWIt8bG+K2siYDm\npctdCCMpYFNRVEkKRu4Jxefzoa6ujl9slcQX7hrs5EmKXUgmRDgWi0XTwjPrPky7a2pQbHpomyY4\n0iIYbiiV2ghlMin0GiMhA+s1RlLeSEHpRhoBEM1CSGRgt9uRkZHBW480NjbC4XAE9eqwUyrZ+ovQ\nzJLIym63IzU1lbe/aWho4KX51JAp57O2VBIKBbpvhZMq6QTz3XffYdmyZXA6nYrsXtatW4dLL70U\nFosFn332meTrysvL0adPH/Tu3RvPPPOMGh9JFuKeUFjFS3JysqL0iJJUlMfj4ZVcWjRG0funpqaq\nnuIh514y2yPQYgJcUJJppVRjIeU+3GT9Xo1f/jITmZmZzRY/6vHRilzYupgck0laVMh5WDhSmEYv\nKzUx1EKEwMabkpKCjIwMpKen8zJkckr2er0wmUzwer18oZpO/6yZJX0m2rHThEZKqTU2NvIuwXpv\nCMSgNXHRRoM9rVZVVeHtt9/G5MmTcdttt+Gdd97hsw9S6N+/PzZs2IDhw4dLvsbv92PhwoUoLy/H\n119/jbVr1+KwTuOi4z7lRQ6sbA5ZLuQQitCKhIqVal5H2FlPaQg1riGl5LLb7fyJixYHKvJqjVGj\ncvH117tQUzMUyclt+JgaG39CTs7HKCjIl5QkezyeZnWBSBZdoWzZavWjc2czhg69FG3atFH8nmy+\nnbUBEVNhSaXGWBGCFulGIcR6Xlh/NHqe6L4RS41JFfa1luO2VFAKsGfPnnj++efhcDgwb948HDp0\nCH/84x9hs9kwduxYyZ/v06dP2GtUVFSgV69e6N69OwCgpKQEmzZtQt++fdX6GJKIe0KhYyepW9QE\nW+Cn6Y2R7JClFntaQFirE7VARMiqxFglFz3YQBPpkB8WpdyiWazDwWazYeHCUdi16yB++KERTqcf\nFosXeXltkJ+fL6qYEy5+5OLL1gXk1jG8Xi9WrNjFy5bp/Y4dq8X33x/AwoX5quTbQ6mwhA2VbJ+L\n3iIE4AIhulwuJCUlwWazNSvsy+l5YWXJcuS4sT65aA2Xy4WBAweioKAAd999tyrveeLECXTr1o3/\nc9euXXHgwAFV3jsc4p5QaDeoVpMige1MFxbH1XgI2AJ5RkaG6AIW6TFdqHSjlIWYkous++n6wiIu\nKVnULjrbbDaMHv0rOJ1OeDweHDhwFMeOufHyywfCWtubTM3nv4darIXYtesgamqGBpFJkwihPWpq\nhvGyZbUgtnMXLtbk5BwLMgGC/dFI1UYnFDk9L+zphe5boZmlWGGfRgC7XC5NzSz1qtWI9aEIVV5S\n43+ffPJJFBYWhr1GLGtOcU8o9OWqSSihOtMj+WVSwZtAnfVULBW+Z6TXoAdV6MkVSsklFBcIH3yl\ni7Vc0Khcv9+PVasO4Ny54WGbHKU+dzjJrFDiW1np4lNtNACLPg/JlrWCMDVGLgRUt6BeB7280QBx\nMmERac8LW9gXpsZYmxPyi9PaZysWcLlczb7TUON/5aBLly6oqqri/1xVVYWuXbtG9Z5yEfeEojaE\nNQchIiEuFnK79+X2lbAgyTEV1unvhEquhoYGWV3fYjtr1qqEFmqls9/JF8xms2Hv3q9QUxPcMQ80\nb3KUCzl1DLf7wjwVMf8mr1efRYy+BzaVpxWBS0HKVkcK0fa80ImEvnO6x4UuwWr7bMXqhEJEGul7\niWHw4MH49ttvUVlZic6dO+PNN9/UbYBXwhBKtCcUSgGxbsRqx0YPnVad9SRRFHpyEZnQ4iG1Ew33\nGeRYq4SruwgXsGPH3EhOFp8cGe1pQWpnzXGN/MlELFZW1qwV6HtgLW0iOW2pHYNSqNXzQqeURC/s\nb9iwAYsXL0Z1dTUmTJiA3NxcbNu2DSdPnsTcuXOxdetWWK1WrFixAmPGjIHf78ecOXN0KcgDCUYo\nSueC0ELPceJuxKF+RglYKw+5xXcl1yHZdEpKiiSZSE0WjBRiViViCwm7qxSLIdxpQK3TAi1UHMeh\nW7dknDnTAKs16+e43aiq+g/q6lzwej3o3fsk3n1X/nhipZD7u5A6bVEvlNh3rDQGJc7N4SCWLpWa\n82IymXiSoBoSa2YpTI2RHUy4TvVYgz2hRKLWnDx5MiZPntzs7zt37oytW7fyfx43bhzGjRsXXbAR\nIO4JJZoaCtD0Sxc2/IW7npLr0MmE4zheKaYW2FMVWyCltAJ1O8ux74gGchYSAHyjHruAhTsNqHla\nIE+scePycOzY+6ipGQqrNQ2ffvoBnM6h4LgkJCdXIiNjBN5/34mvvtqJRYvEVWfRxqB0IZc6bbHf\nMd0DclRuapOJEFKyb7o2nUqIVNm6i5RqTE6nuhTBxrKBsiUQnVqIe0KJBnTTJiUlKXaRlXODkhUM\n7bSUkEk44qLCeiAQQGZmJl/gphMJ/byaw6Dkxs0uJE39JY38d82a7JnNZnTvnoITJ2pF015udw26\nd4/eJZpIlQjNYrHwsuWysi/BcdcgK6sGbdpY0aNHbwBAIGDFmTNDsGXLPowdm6fKOGG1iF1JHUP4\nOydC03t0Myv7JicCq9XKS9vZmNnCvhwzS7Hxv7Eq7IvVUOIJCUMoSk8O9PABUEQmcl9Hc0ZSUlJ4\nfb9aICWX2WxGRkYG//c0gZIeSr2ceqVACzkAPk5h3eWaa/rhq68+QG3tsCBScbtr0bbtPowaNSrq\nGIhUWRsTm82GMWOGoLLShQ4dLmv2c02LUQecOtW0QERyEhB+D5H4csmBsI4h1qNDBo/RzpSJFkRo\n1KUvJvZgv2MpM0ug+eklVGEfAD/lUq9ngepC8YS4JxSlKS82TZSZmYnz58+rHpNQKRapXYjYzwiH\neQFNNy6bl6aHSGtPrlAgWbDZbA7q+hbWXRobG9GtmxXfffd3VFdbYTZbkZNjwejRvTF6dGjJcDgQ\nqXKc9ITFUDWapv4dG1+biqRbnwjN7/dH7cslB3J6dNgCuJ4QOx1JiT2kHAZCFfbZnhe2sE9pMbZm\no4WZpfB5pVHV8YS4JxQW4RZtseJ7JPJcqZ8R606n1yuF+OLXJDmmYV5s8Z0eEHZCJQC+OVOOAkst\nyJEm09/97W8f4aefhqJTpzHIySFFTy2++mofRo708g+9kgmPgPwJi0pqOFJWJVJCBNq8BAIBXaxU\nhKDFmho37XY736muhn2NEshN9ynpeSEhDpELkRFbb6HvAADsdrsuhX16D7GmxtaOhCEUufUMqzV4\nFHC0cmOCsDudfUCjEQwQxPy+pJRcrEuu1MKnVeNcuCY5FtSxnpralOqihzspqQPOn78WO3Z8ghEj\nBoDjOPz1r/tw/vwI/rWAdPOjkl6bSGs4coQIlPePBZkAaEZo9P2GS42pnRYiMlGa7ouk54Ut6tPz\nwV4zmsK+Uih1Gm4NSChCkVq0tRgFzCKUTUukYKWHbIqO8s5SSi6hckds4dOqcU6pNJk61sU+u93e\nDqdONc2EKSv7CDU118BqTQ3qH0lKymrW/KiE0IDmRpUEJTUcoRCB+juAC6k/vU4ChHCnI7HUmJAQ\nldaKxEA2/GrUjuT2vAjNLFkHZanCvlD+HklhX5i1iLd58kACEEq4k4ZwZy/289GcUOTYvkdzQmFT\ndE05/eaeXHKVXGJNY2p0vgORyWHl9KCYTCYcP+5DWlr7ZosEAJjNafjvfxv4v1fS9Q0EG1U2T6cp\nr+GQdTvNd2n6HN5mKRYtrVVYQYac05GUxDcaZ2ehsk5tIpXb8wI0bTLYeqNUYZ9IluInM0uqBSqd\nUhlvw7WABCAUgnDRpofK6/WGbCaMZrH3eDxoaGjgaxpqg6SV6enpAMQ9uSJVcokVQ9k+AbmLiJgk\nVy7k1i+IeOhzs8XZphNAAHV1dQDAO+UqASm+ooXU6SgaI0ulYGtHkRpNKq0VicUgpqzTCmKESIo2\nthNfuJmi/+hkIcfMMtRseeEJJd7G/wIJRCgEWmhYg0QtbmiPxwOPxyPLRkUpadEDbLPZ+BtSypNL\nrZnroRYRqV21WI5eCeTWL8SIhyWXlJQLCrJAIMA3quopRCAyCXU6Ejshqmmtwirr1HItlnMSYFNj\neqvaxED3KN2XdD/TcCv2JC6350XObHnhc26kvFoh2JQXcKH4LuXkK/bzShZ7NlWkdIaJHDUZnXro\nhgfQrPjO7oRpop6akKq7CB9Il8vVTBasBHLrF1LE03RCq0a/fma+r4H+XumuOhpE4onFLlLCxrxI\nZtUrESJEinCpMXa+Sax6nwBxebLNZguKWW7Pi9DMMlTHPrUHuFwuHDhwAA6HQzGhrFu3Dg8//DCO\nHDmCjz/+GIMGDRJ9Xffu3fn1x2azoaKiIrovTSbinlCEoF+i3BSUEkKhhkIA/CxtudeQA7be4/F4\nQiq51PLkCgexRYQWEAD8PPFIUjZy6xdixNNEJj8hM/N9jB8/Juh3EWpX7fF4sG/f1zh+3Ae/34qk\nJA6h5MfhoJaNiZg3Gu2q6Xcg1a1PZGKz2ZCcnKzbQs6eaul0RM8Sbeq0InEphHICEDtpKO158fl8\nQeTCPh9kwe/xePDkk0/iyy+/RI8ePZCeno4JEybIspinEcDz588P+TqTyYTdu3cjOzs7wm8qMpi4\nSAoErQxutxsul4vXfSupZ9CNH+5n2IZCv98fVHSVg3PnzqFt27aSOWeq92RkZMBisfAS5OTkZH6h\nklJy6Qn2dETd1/RftCmbUGD7UDweEzjOhYsuSsa4cVfKLsB7vV68+OJOVFdfDZstg2/w8/kcaNfu\nQ8W+XXrYmLAnYioSC3fUSlRtWsVIGwzakROJ065dLdVYKETz+2BP4j6fTzRmtueFXVaph8Xr9fIm\nrQDw5z//Gf/73/9QV1eHbdu24c4778R9990nK56RI0fiueeekzyh9OjRA5988gnatWun6HNGi7g/\noVARkh1tqwRyTihC2XFDQ0PEyjDhwySl5LJarfyuj62bxNI2Q2x2hpjlRyQpm3Cgwnk0dYJduw6i\ntnYY0tIunHKadp4ZOH16CLZu/RDjxl3J76pDQWvDTYLUrppORgCCFE16Q0gm9PsIlxpjTy9qIFpy\nl+p5EVO6SfW8UDbhwkbFh5EjR+L666/nU/FqwWQy4brrroPFYsH8+fMxd+5c1d47FOKeUIALFiN1\ndXWqNCmyCCc7juY6bP+KUMlFn4l2oHTkZvO+sUglSJ2OhH0NSlI2chFtnUDY98Iu1jZbB5w8GeCv\nIRWzEpm2FqDUGC1Y9H2r+T3LhRSZiMUcSjUWbcxanBTD9bxQzKx6z+PxwGKx8OTy008/8acVi8WC\nrKymIXLRjgAGgH379qFTp044e/YsCgoK0KdPHwwbNkyVzx4KcU8oJpMJqamp/O5frQxfKNmxGtcR\njhkGwiu56DWR2pZHApIFKzEVZGsY7A41mpiVNiyKIZxvVyBg40+hYjFbrVY+hRMrBRNw4aQodETQ\nqjlRDJHKk+X2j8jthdIj7RguZiIRci0PBAI4c+YMtmzZItoYG+0IYADo1KkTAKB9+/aYPHkyKioq\nDEJRC+wCr8YJRZiGUmPhYK9DSi4yjxQrvtMCSrUaerho5xRKsRJJY6IYSBbs9/sj3o2zp4BwKhup\n91c6plYKcvtepGJ2uVz8okc1I71JRUoEoEVzohTU6HUJFbNwCqhUaiwWVvzCmOneNJlMqK2txc03\n34xhw4bh3XffxSuvvIIRI0ZEfC2ptYxGVWRkZKChoQHbt2/HQw89FPF1lCC+vJPDIJIbW0gofr8f\ndXV1vDW82MMXzQnF5XKhoaEBGRkZkmRCEl1yuQ2XSkhPT0dGRgZsNhu8Xi/q6urQ0NDAN2FFAjqh\ncRynampHKmaHw4H6+np++iSBmgBTU1OjIhOgSX7sdteK/ls43y6vt8mokmKmE2Z9fT3fd6G1/oWc\npOWIMuh7TktLQ2ZmJi8mqa+vh8Ph4NN2SmNWu/8pVMzJycn8xsrhcKCxsZGPOVZzXViwrggZGRnI\nzs7G3LlzsXfvXlRVVeGWW27B4sWL8dlnn8l+zw0bNqBbt27Yv38/JkyYwE9lPHnyJCZMmAAAOHXq\nFIYNG4aBAwciLy8PEydOxOjRozX5jEIkhMrL6/Xykl45ii0WbBMWW3wPJb9kf0Yuzp8/z3fssrMg\nWE8uQB0lF5vzJffVSHoatFg0wsVMcbMnNeGUx0jh9XqxYoVU38veZiaTQOi6DasMIisYOiGqXcNQ\nawGVo2aSgh69LqFipnuDNkmU/oxFv4uYVPv8+fMoKSnBfffdh4KCAnz55ZfYsmULLrvsMtm1kZaO\nhCIUWgSVGECSbYjNZguaYRIKSgmF4zjU1tbypx6qj0h5ctntdtV2XcJFL1wRVCrVpicQiPXXAAAg\nAElEQVQCgQBvKkj9AGrVA5TY4Cvp7xDKe1mrj2hTkFoqytiFmtSFYinIWPW6CEEtAnR6ob4QtVVj\noUApcfa7cDgcmDZtGu6++26MHz9e8xhihYQgFNLnR0ooJL9MT0+XtRNmp++FA6UZOI7j0zZSnlwc\nx8Fut2uWl2cXPbH+gEjMFbWIkexc6LuQu+ipiWhFAKy8l+otLc1gUex6FC97srVYLHxqJ5YDo8SI\nVXga11rpRvUjWmdMJhMaGhpQUlKCxYsXo6ioSNXrtTQkFKFQcUzuDAKO4+BwOOD3+5GVlSX7gSXV\nEzt+VyouGgPs9Xr5ZkChkktt/yW5YMmF6ha0aMRiBypHhipcqLXw7FJLBEAQW/RamsGi2PVJCkvp\nvKSkJFWNLJVAzkyVUKdENTYfYmTidDoxffp0zJ8/H1OmTInq/VsDEkLlRVBqo+JwOIL8eZRcJxyE\nSi7SplMNI5SSSy+wc7ipK59ECbGY8iiHWMUsStT07NLC2kZMdspKkoWOw+wpLVaeWHSP+nw+JCcn\n80IEtYwslUDugK5wTaBsakxps60YmTQ2NuLGG2/EnDlzEoJMgAQ5oVBKRG5tg+0BsVqtcDqdfNOR\nHNANmpmZ2ezfaGfpcrn4McC0QLhcriDTR5fLFfP0ktguONqivlKoUewVKzYrtYaPZKZLtBBL59EJ\nNlaTHikuKfdkqVNiJAt1OEQ67VEIMdGH3NSYGJm43W7ceOONmDZtGmbMmBFxXK0NBqEIIDw5UDe3\nGoRCKRvqomaVXHTDUm8AnVZofkcsUhpUtwm1cCkt6iuFGg2LYjGH8r8Si5nNzwcCAUXz69UCpW25\nn00J9S42s3GEs+InRLNQhwPbUKvm8xHq/hCeuMR6bjweD2bNmoXJkydj1qxZMSP9WCChCCVUsVzs\n5EA/63A40KZN85kcUhAjIZItm0ymkAOxKEbq7hfm1bU6BbCItG4TrqivNGa1axVSCFUgp90mFb79\nfj9WrNiFc+eGISXlwu83lLRYDQgXLgCaLdShEIkVP0FNpZtWZCIGqRMXiRFY+bzX68Utt9yCsWPH\n4re//W1CkQmQYITi8XjgdrubFcvpYaXuUqEc8vz582jbtq3s61HKjEiIlFxWq5V3W1Wi5NL6FMCC\ndsFqyD+FRX0leXW1bN+VQpjOI6SmpsJqtWL79o+xb9+lEkO/anHNNV+pMt2RBRE8m1IRxqyHe280\nZCKGUKmxUCcuPclECPb+IDFCfX09vv76a1x99dW4/fbbce2112LBggUJRyZAghTl6RcrVpRnTw7k\n5iv82UjsWgik5CIPKNqlSSm5xNRLUhYUansy0YKhVnpJOA9DrAAqls7Ty6lXDGzh3ul08rtoko5/\n+20dbLZMUWfo5OQ2qKx0qRqPnP4OqftDzQK52mQCRCagoP6jWHml0Xft8XhgtVqRnJyMb7/9Fo8+\n+iiOHj2Kiy++GBMmTEB1dTXat2+ve3yxRkIQihTYGSZqSnKJhKLx5Ar13qyPFJvOo5NFJCkErQdz\nyV08aLcaC6deAitPJhXVhYXawhf12el8F2pg6sXMkomS/g6he2+0YwP0OC2KKd2EppD09y3l3qDN\nX25uLi677DJMmjQJXbt2xaZNm7B48WKUlpaioKAgJnHGCglFKOxpg2xUwk1vpAdObEcqBSqaOp3O\nICUXkQk9DGrUCEKNiZW7M9V7MJeUTJYdIcye4PSElLEhEbndboHTeWFzQLETsVgsvjBXkAe1xAgm\nU/DYALHvOlTqNBapR7ETF/l0AQi6t/UkFjEyCQQCWLJkCfr06YOlS5fCZDJhzpw5cLlcRsor3sFa\nmCiZYUI/J+cGIQkwAN6JmFVy0QOghQRVeAoQ7kyFKSZWFhyrXR8t1G63mz916WWxLoQceTI7v55+\nb5TGbGz8CTk54OtlkQoolKiolEAqNeZyuUQL5LGqYwnh8XgQCAR4WyK1e4vkgH2uWTK56667cNFF\nF/FkQoilY0AskRBuw+wvmnygMjMzVU/tUDMkW3OhoztbfHe5XHyNQMsUQlJSEux2e5AzK+smSxLm\nWM7uYAdW0feRkpKCjIwMXlrtdrt5h2RaXNQGfTeUXpJamEaNykXbtnuDXImbFjkHOnSowMSJV/O1\nsoaGBtTX1we54IYDKQTVcE8OBSLylJQUpKen8981uVE7HA6+ZhJLMhHWTIhA7HY7MjIyeDVkY2Mj\nHzMJE9QCvT8JZohMli5divbt2+OBBx6IisiqqqowcuRIXHrppbjsssvwwgsvNHvN7t27kZWVhdzc\nXOTm5uLxxx+P5iNphoRQedEiXl9fD5/PhzZt2ihaQGtra/lZ7lKgegzd7DU1NcjMvFC8FXY4a+nJ\nFQp0WqIHhE0/6TnhEVDWsKilpYrSE4FcA0mlMmqt61hyQQaL5N+mp2SdEIlPmRaeblJk8uCDD8Jm\ns+Gpp56K+v47deoUTp06hYEDB6K+vh5XXHEFNm7ciL59+/Kv2b17N5YvX47NmzdHdS2tkRApL1rs\nrVYr39mtBOGUXsKZ8rRQu91u/iFklVyx7HAmciXVEKXG9E4xKa0RyCnqR7LgRaJestlssqTBQgFF\nKPWV3+9vEekltvOcGm+p7kKydqUOA0oRqemlWD0xGjECuwGkZ5bjODz22GPgOE4VMgGAjh07omPH\njgCaRCB9+/bFyZMngwiF4mnpSAhCocajpKQkuN1uRQX2cKDFQajkIsNHt9vN11HCpVO0htQirrZi\nLByiFSOEKuor6dHRu0YQSn0FNJkrxrKQK2ZjwtZdADS7R9T27IqUTIQQbkDExAihSFGKTJ566ik0\nNDTghRde0CTDUFlZiYMHDyIvLy/o700mEz788EMMGDAAXbp0wbJly9CvXz/Vrx8tEiLlBTQ9LABQ\nU1OjyDkYAOrq6prtYNlaCNnaiym5aGdnsVgQCASCfK/07LFQmk4R6x5XY+HQchFXkmKKhS+XGCi9\nxJ5g9Op6ZxFJf0ekjYlSUItMwl1DaKsivLfp2SabJiKTZcuW4eTJk1i5cqUmsdXX12PEiBG4//77\nUVxcHPRvDofjZ5WhHdu2bcMdd9yBo0ePqh5DtEgYQvF4POA4LiJCcTgcSE5O5nfTYp31gUCAzzfT\nAiBctMQ63vXITUe7eLK7aa/XG3H9Qu+GRalO/UAgwHdax2o8LCC+iOvV9U5QaxEX8+xSor5iFYd6\nikTESJHioTg4jsMLL7yA7777Dq+88oom94zX68XEiRMxbtw4LFmyJOzre/TogU8//RTZ2dmqxxIN\nEiLlxSKSzncWws56oCkNIObJJVy0hLJNsdy0mrtS4WIR6YMg7GVQWr9g49BTnizs1KeYA4EALBZL\nMym3Xgi1iIvdI1qlmNRcxNn7gI1bTm0uVmQCBKfGqN+FZv889thj/LyiM2fOYPXq1ZqQCcdxmDNn\nDvr16ydJJqdPn0aHDh1gMplQUVEBjuNaHJkACXhCOX/+vGK5LslJrVZrUGc9IO7JpVTJpVQNJAd6\nKMrkeIy1BGUbxUppjNTU1KC0h54qJjYOpd+Hmkq3aOJQilCebiaTSbc4QkHYkwUA//nPf/CXv/wF\n27dvh9vtxrhx41BYWIjf/OY3qsa5d+9eDB8+HJdffjl/7z355JP43//+BwCYP38+XnrpJaxcuZL3\nA1y+fDmuvPJK1WJQCwlJKHa7XZEskwp5Ho9HlieXyWSSnCgoB8IHkBYNueQi1tGrNaRIkdKAsVa2\nSVnxC0kRCN89Hk0cwkJvNO+ldMqjFnFEEjebPqVr2+123WXrbEzCEyPHcXj99dfxwQcfYM2aNThz\n5gy2bNmCAwcO4G9/+1tCdsHLQcIQitfrRSAQEC2wh0NdXR18Ph8yMjKClEVsjwm59MrpqVACdict\npziuxjAqNUBKLgBBUlO1FWPhQPUuOSSvxUmRfW+tSJ4lxXDDw2JJJsKYKb3Eph/1FiMAzWtZHMdh\nzZo12L59O9auXRuzAXetEQlHKMICeyjQTe92u5GUlIS0tLSQnlxqDoGSiocWO+HcDrPZHCQLjqUE\nVeiQK9xNqy01DRVHKNt3OT8fqf0+CyITk8mkqgmpFIQNfiy5uFyuoCa9WEBKRSU2K0XrnigxMnnj\njTewefNmvPXWW5o+z/GIhCMUqoeEu1FYJRedZqjYKKbk0ru7mV2kyZwwEAggOTk5pj5C4RoW1VKM\nhYMc23el7xdJ/YLuI6XDytSCMG6TycTPgI+VU4OQTMQgdjJX2xBSTGVXWlqKN998E+vXr4/6Oaqq\nqsJNN92EM2fOwGQyYd68eVi8eHGz1y1evBjbtm2D3W7HqlWrkJubG9V1Y4mEUXnRjStH5UXEYzab\nkZmZyT8ALJlIKbn0AltIZq0yPB4PvF6v7lYZgLyGxWgVY3KgxdjgSDr1W0L60Ww2w2az8eRNY63V\n/L7lQi6ZUNxsE6ja94mYym7jxo3417/+hQ0bNqiyKbPZbPjjH/8YZKlSUFAQ1AFfVlaG7777Dt9+\n+y0OHDiA2267Dfv374/62rFCwhCKXAhnpBDYgq3ZbOYdWmM9m4FITcwqQ2nneDSIpGFRrY53FnqM\nDQ4VNwA+ZpfLJXvOjVZgT0iU5hJ2j2slWxfGEWntRur7jtQKRmzi45YtW/D6669j48aNQc99NJBj\nqbJ582bMmjULAJCXl4fa2lqcPn0aOTk5qsSgNxKOUEKdUIQzUiivSx2qpKsnZVcsUhgEocxRzCpD\nbLqjFouGGg2L4eKWk0/XYqpgJHF7PB7eToVSTnrY7wsRKt3Gxs3WL6Ss7KONQy0hgFjcYnZBUnUu\nMXuZd999Fy+//DI2btyItLS0iGMLBSlLlRMnTqBbt278n7t27Yrjx48bhNJaIEUodEPSjBRh8Z0a\n4Gj0J+1Atd7ZiYFVDNFEQTGYTM2nOwoXjWh7XbRoWBSLO5zHWEuY3cHGQrbvUmaQWp9qiUzkCBLY\n7xsIFiPQMKtI6xdaqsrYuEONmabnVYxMdu7cieeffx6bNm1CRkaGarGxqK+vx/XXX4/nn3+e73Fh\nIVyPWrMkOWEIRSidZP9/Y2MjPB4PMjMzg9JG4ZRc7GKn1iIdDqxrsdITktiiEakRpHCh0HKBDDeV\n0mQy8aQWSysVsXQb26kvtthpURyPtnYjZWJJRqdyXXv1liiHqnNRPNRDBgB79uzBs88+i02bNiEr\nK0uTmLxeL6ZMmYKZM2c28+cCgC5duqCqqor/8/Hjx9GlSxdNYtEDCUMoBCGx1NfXg+M4froi68kl\nnK4olkoRLnbCRVpNclE6fz4UhLYkSkYHsyckvXsZxKwyqL7V2Nio2SIdDuHSbVrZ7wuhtrpNKKKQ\nW+eKdb+LmGjFZrPhk08+wYwZMzB06FAcPnwYO3bsQNu2bTWJQY6lyqRJk7BixQqUlJRg//79aNOm\nTatNdwEJJBtm0yZerxd2u5138KS8qZiNSqRKLqmGxEhz0noUm4HmvS7CnXQ0JyS142T9n0ymC6Nh\n9bZTiSbdJtWUGEkKVW0yCRe3VBMopYNj3TwJXNgMss/vpk2bsHLlSnAch0OHDmHkyJFYunQprrrq\nKlWvLcdSBQAWLlyI8vJypKWl4fXXX8egQYNUjUNPJByh0A0m7NmQ8uQiiWM0O95oreCVWs+rBTF7\nD1o4Yk0moXa/cjzG1IKaNvjRdOoTmdDpVW8Im0Bj3e8CiJPJxx9/jHvvvRcbNmxATk4OampqUFZW\nhssuuwwDBgyISZzxhIQhFLrhnU4nf5OxSi4hmci161AKpY19elu+S4FmndNcF717GAhKLUy0tFMR\nW7DUhNxOfS36biIBS/TU78Le45HOSYkEtAljfzefffYZfve73+Htt99Gp06ddIkj0ZBQhOJwONDY\n2Aiz2YysrCxRTy49m9GEJwBqQqO0WKwsvYUQ1gfUTNMogRpd51K2JEpTkbGY7SLWqW82m9HY2Kh5\nKjQciEyEti50j7NmkFr3RYmRyaFDh7BkyRK8/fbbrbro3dKRMITicrl4p+HGxkZkZmbGzJNLDEJy\nIZKL9UTBcCkdsROA0kYzOdCC6CNJRbJS6VgRPd0rHo+HT0UmJSXpflpk4xEjE7HXaT08TIxMvvrq\nK9x+++1Yt24dLrrooqivccstt2Dr1q3o0KEDvvjii2b/vnv3bhQVFaFnz54AgClTpuD++++P+rqt\nAQlDKNRwRicVyr0L+xj0rlOIxUnpNovFwu/qYpFeimQXzi4Yasmo1S42e71e7Np1EJWVLni9Zths\nAVx0UTKGDbuMlyCLpSKFQoBYnhrZNBfdJ3qeFglKU5As1DLfJIiJIw4fPozbbrsNb775Jnr06KH4\nPcXwwQcfID09HTfddJMkoSxfvhybN29W5XqtCQkjG2aP4PQQ0M1L6q9Y1ynIAp9dOPWY7ChENA2L\noWTUkSjd1K4PeL1erFixC+fODUNKyoXegxMnanH48F4sXDgKqamporJemswZqplUD4hJlEN1vGvV\nFxUNmQChpetK6y5iZHL06FHceuutWLt2rWpkAgDDhg1DZWVlyNckyD69GRKGUOhh4zgO6enp8Pv9\nfDoHQEz9lgDpdJuURYZWVipqNiyG63UJ132thVR6166DqKkZGkQmAJCc3AY1NUOxa9dBjBkzJMg7\nim1cpdqWns4ILEL1u0h1vGs1PljN+S5y+nSkhoeRJRJLJt9//z3mzp2LNWvWoFevXlHFphQmkwkf\nfvghBgwYgC5dumDZsmXo16+frjHECrE7s+uMd955B5MmTcKrr76KM2fOoKGhAXfddRccDgc/Era+\nvh719fX83HG9QKeP1NTUkLtwWjBSUlKQkZHBp+0aGxvhcDjgdDr53HQkoEWC4zjVUzq0YKSlpSEz\nMxNJSUm8EafYd85+J2oWmysrXUhObiP6b8nJbVBZ6Wr29x6PB2azWZPvXAmITOROHCVCT09PR2Zm\nJu86LPWdy4XaZCIEEYjdbkdGRgZv1kjfOTWzEvHQd0JkUllZiVtuuQWrV6/GJZdcompscjBo0CBU\nVVXh0KFDWLRokWiHfLwiYU4okyZNwtVXX40NGzZgzpw5OHLkCIYMGQKfzwebzSa6M2JtJrRKhVGd\nIpLiO+t3FW2Xvp4Ni2xNSGw3ajab4fP5FI9qlgOvNzRJsv8upSpT4jGmXtzReZUJO94j7dTXmkzE\n4mbNN4XfOdCUXfB6vbBaraiqqsLNN9+M1157LWanAtYTbNy4cViwYAHOnTuH7OzsmMSjJxKGUEwm\nE9q3b48rrrgCjzzyCBYsWIAuXbrg97//PRwOB8aMGYOioiJcdNFFknbqbHopWgjVQtG+pzC9pKR2\noWeHtRBCcnG5XPB4PHxqiYq1aqWXbLbQO3L6dznTHsN5jKmVXlLb+FL4ncut0elNJmKg79xisfCN\nnF6vF4MGDUKPHj3w008/4bnnnkP//v11j41w+vRpdOjQASaTCRUVFeA4LiHIBEgglRfQ9EAUFhZi\nzpw5mDx5Mv/358+fxzvvvIP169ejuroao0ePRlFRES6++GK+0VHYeR2N6oqtU9jtds3H4IaSxrak\npjiWYE0mUzOJqRr1onffrcC+fZeKpr3c7hpcc83XKCgYHJVEWWnzaiho3TzJgq3RCcfwWiwW3pI/\nluODAfE60g8//IB77rkHFosF+/fvR+fOnTFv3jwsWLBA9etPmzYNe/bsQXV1NXJycvDII4/wfnLz\n58/HSy+9hJUrV8JqtcJut2P58uW48sorVY+jJSKhCAUA398hBYfDga1bt2L9+vU4efIk8vPzUVxc\njEsuuSQkucjdRWvZhR8OQp8u8uZSu04RSVzh5Ljsdx5N/wKpvGpqhgaRittdi7Zt92LBghHweDyq\nndbE7Gvkbkb0JBMxtEQ7FdoAsWRy5swZlJSU4E9/+hOuvPJK+P1+fPTRR6ipqUFhYWFM4kxUJByh\nKEFDQwO2bduG9evXo7KyEiNGjMDkyZPRr18/mM1myaY+qV10SxgJSyAHVovFAr/fr6mdeihE4kor\nXOiU1i7E+lC6d0/BtddeDo/Ho9lpTYnHWEux3GHTXFTUFzMN1QNiZFJdXY2SkhI8++yzuOaaa3SJ\nw4A0DEKRicbGRmzfvh3r16/HN998g+HDh2Py5Mm4/PLLZZELkUmsU0tA88VKzAJGazECoE5OPlrj\nTQItVnpZmITyGCNJe0shE5MpeDppNKeuSCFGJufOncPUqVPx5JNP4tprr1X9mgaUwyCUCODxeLBz\n506Ulpbiiy++wDXXXIPi4mJcccUV/CLG7kRJmklkEkuX3nC2IWrXi6SghaosnPW+FGIxOlgIVr3E\nkosWijE5kOubpoevmxjZ19bWYurUqXj44YeRn58f9TXC2akAwOLFi7Ft2zbY7XasWrUKubm5UV83\n3mAQSpTwer3Ys2cP1q1bh4MHD2LIkCEoLi5GXl4eLBYL3nrrLVx99dXIzs7mXY21nuoohkiEAFrZ\nwOuR+pMy3hR2XrcEMqF4ieypLyraU1c0sURiwhmqqB/pvS5GJufPn0dJSQn+8Ic/YMyYMYrfUwzh\n7FTKysqwYsUKlJWV4cCBA7jjjjuwf/9+Va4dTzAIRUX4fD7s3bsXpaWl2L9/P7Kzs3HkyBFs2rSJ\nb7Bi0xx6kYsaqSWl9SIpxEJVJuZ4yzo6p6WlxdSAM9TJUU3FmNxYonV0JkgNmZNLjGJk4nA4UFJS\ngrvvvhsTJkyIODYxVFZWorCwUJRQbr31VowcORJTp04FAPTp0wd79uxp1dMVtUDC9KHoAavVihEj\nRuCaa67BvHnzsH//fhQXF2P+/Pm4/PLLUVxcjGHDhkn2iyhtRpQDtVJLrK0H6y/GWsCEcxjWu07B\nxk7fLcXudrv5/D9JPmNhpRJO4aZWQ6LcWNQiE0B6Nj3r1SVFjGL3SkNDA6ZPn4477rhDdTIJhxMn\nTqBbt278n7t27Yrjx48bhCKAQSga4K677kJ1dTU++eQTpKWlIRAI4OOPP0ZpaSkee+wx9O3bF0VF\nRRgxYkQzcvF4PBEbKQqhZcOikFwo/y9s6qNrtpTUEvW30CROIhQlxKgWiEz8fr8sw0mphsRw893l\nxqImmYjFLpcYKRaWTJxOJ2bMmIHbbrstZlYmwmROLFWaLRUGoWiABx98EG3atOHTKGazGXl5ecjL\ny0MgEMChQ4ewbt06PPPMM7j44otRVFSE/Px83stLqus6li69oRDKYZhiJtVSLFNLgLgcVwkxqoVI\n5NIshJYkQtNQJbFrTSZisYfq1GfTqUCTwvLGG2/EnDlzcP3112samxS6dOmCqqoq/s/Hjx83BnWJ\nwCAUDfCLX/xC8t/MZjNyc3ORm5sLjuPw5ZdfYt26dfjTn/6Erl27ori4GKNHj4bdbud3c1S3kGvp\nEcvTgNAChqxUAPBmhLFQLsmx5Ffbej9ULLTwR0ImQoilI+V6jBGZhLKY0RIsMdImyGq1IhAIYNSo\nUfi///s/VFdXY8aMGXz9IhaYNGkSVqxYgZKSEuzfvx9t2rQx0l0iMIryLQQcx+HIkSMoLS3Fu+++\niw4dOqCoqAhjx47lzeaEslgxC/hwExb1BHsaMJvNYWPXCtEOxlKr14Vi0dMPK1TsJpMppmQijJO8\nuehE/d///hcPPfQQjh49imPHjmHEiBG44YYbcOONN6p+/XB2KgCwcOFClJeXIy0tDa+//joGDRqk\nehytHQahtEBwHIfvvvsO69evR1lZGdq2bYvCwkKMHz8ebdq04V9DCwWpf0wmE3w+H9LT02PeEBeq\n30Usdq2US9GmlsTeL1LVVazNFYWxA02nstTU1JjeL2Jk4vV6ccstt2DMmDGYO3cuzp8/j23btuGH\nH37AH/7wh5jFaiA0DEJp4eA4DpWVlVi/fj22bt0Ku92OwsJCTJw4EW3btuVJ5MyZM0hLSwOAmNmo\nULxK+l3k9otEGouWC7gShwGprvNYgOM41NfX88owvbrdxcAKR1JSUgA0pWznzp2L4cOHY8GCBUbx\nuxXBIJRWBI7jcPz4cbz99tvYvHkzrFYrxo8fjw8++ACBQAB///vf+QVCbxsVii+aBVyqXySSRU7v\n00Ao01Cz2azbrBk5cQrTXFo1sIaDGJn4/X7ceuutGDJkCBYvXmyQSSuDQSitFBzH4b///S8KCwvh\n9/vRvXt3jBs3DpMmTUJOTk5Y2321yUVtpVA0rs56q5bErs9a7wcCAZjNZqSkpOjqjiCEHIeCUB5j\navdHCSXtfr8fCxcuxGWXXYa7775blWuVl5djyZIl8Pv9+O1vf4vf//73Qf++e/duFBUVoWfPngCA\nKVOm4P7774/6uomKhCCUBx54AJs3b4bJZEK7du2watWqoCal1ojq6mqMGzcOAwYMwMqVK1FbW4sN\nGzZg48aNcLlcGD9+PCZNmoQuXbpoMtOFhZxhVNFAuECH6tLXOhYloLHSpMDScoGWE0skdjfs9x6J\ns7MYKOXGxhIIBLBkyRL07NkT9957r2oeYJdccgn+/e9/o0uXLvjVr36FtWvXom/fvvxrdu/ejeXL\nl2Pz5s1RX89AghCKw+HglVIvvvgiDh06hFdffTXGUUUHp9OJNWvWYO7cuc0evnPnzmHTpk14++23\nUVdXh7Fjx/LTKNUmF72nPYaygDGZTLxMNpYmnID09yJmva81uajlnaaG2k0s5RYIBHD33XejU6dO\nePDBB1X7Hj766CM88sgjKC8vBwA8/fTTAIClS5fyr9m9ezeee+45vPPOO6pcM9GREH0o7Izn+vr6\nkH0irQV2ux3z5s0T/bfs7GzMnj0bs2fP5qdR3nfffc2mUQrndIcbAStELHy5pHouSAhA/xZLhCJZ\nsVHNQncENU0g1SR8s9kc1O2uxEoFkCaTe++9F+3atVOVTABxu5QDBw4EvcZkMuHDDz/EgAED0KVL\nFyxbtixms+jjAQlBKABw33334R//+AfsdntCuYRmZWVh5syZmDlzJj+N8rHHHoCqErEAABZkSURB\nVMOJEydw3XXX8dMorVZr0CLHWpGIkQsRkN6+XEIQebjdbn7B1NIbLRzECs1SEPO6YhtYo+3T0fL0\nqNRjTIpMHnzwQaSmpuKxxx7TxO4lHAYNGoSqqirY7XZs27YNxcXFOHr0qKpxJBLiJuVVUFCAU6dO\nNfv7J598MmgM6NNPP41vvvkGr7/+up7htTg0NDSgvLwcpaWl+OGHHzBy5MigaZRA87G7rF1GY2Nj\nzH25KEYxw0kpp1stu/TVOrGpIaXWOxVJkFKM0ecgxR3HcXj00UfhdruxfPlyTeTt+/fvx8MPP8yn\nvJ566imYzeZmhXkWPXr0wKeffors7GzV40kExA2hyMX//vc/jB8/Hl9++WWsQ2kxEJtGWVxcjAED\nBkgODLNarUhKSoqpakmuxYyane5S0Cr9F4mUOlZkIgSRC6VSTSYTli1bhry8PBw8eBDnz5/Hiy++\nqFmvlM/nwyWXXIKdO3eic+fOGDJkSLOi/OnTp9GhQweYTCZUVFTgN7/5DSorKzWJJxGQECmvb7/9\nFr179wYAbNq0yZi0JkBqaiqKiopQVFTET6N87bXXmk2jXL16NVJTUzFt2jQEAgFdTBSlQKkhOaek\naHP/4aClLb+Y9X4oh2ElKTc94HK5YLVakZqaCq/Xi6ysLDz55JM4fPgwioqKsG7dOowfPz6ozqkW\nrFYrVqxYgTFjxsDv92POnDno27cvXn75ZQBNliqlpaVYuXIlrFYr7HY73njjDdXjSCQkxAnl+uuv\nxzfffAOLxYKLL74YK1euRIcOHWIdVosHTaN86623sHPnTng8HjzzzDMoLCzkUy+xUC0RmUTrVyaV\nWlJCLrGa8SLVL+Lz+WCz2ZCamqpbLFLxCZ0BOI7DCy+8gKNHj+Lxxx/H1q1bsXHjRgQCAT4tZaB1\nIyEIRQ/87ne/w5YtW5CUlISLL74Yr7/+OrKysmIdVtQgSeeOHTvw8MMP47333sOBAwcwePBgFBUV\n4eqrr+YXdSG5aFG3IPNL1n5eDQjJRU4TaEuZ8QJcIFlCLE6NBCkyWblyJQ4dOoRVq1YFfafU+Gmg\n9cMgFJWwY8cO5Ofnw2w28zp30r23ZuzYsQOPPPII3nnnHbRt2xZA0678o48+QmlpKfbt24cBAwbw\n0yhpYZWqW0RDLmKzTLSAnD6dlkQmwjSX2Kkx2mZEuRCzvOE4Dq+++ioOHDiAv//97zF3wTagHQxC\n0QAbNmzA+vXrsWbNmliHogqIEMTATqPcs2cP+vbti+LiYn4aJSBuu6+0KO5yuSTdi7UESy4+nw8c\nx8FiscDn88Fut7c4MhH7d60FCQQpMlm1ahX27NmDf/7zn6p9X+EsVQBg8eLF2LZtG+x2O1atWmXU\nTnWAQSgaoLCwENOmTcP06dNjHYquYKdR7tq1Cz179kRxcTE/jRKQN9OFRTgrfD3BcRyfcqOdvtwm\nUC0gZvseCtFY78t5b+pdYsnkn//8J8rLy/HGG2+oVmOSY6lSVlaGFStWoKysDAcOHMAdd9yRUP1n\nsYJx9lQAOb0uTzzxBJKSkhKOTAB50ygLCgqQlpbWrCHO5XI1W+BoMBbNf491np2mINIoYzq5uFwu\nXkqtV91CKZkAoZsRo3GlFiMTAHjjjTewZcsWrFu3TlXBQkVFBXr16oXu3bsDAEpKSrBp06YgQtm8\neTNmzZoFAMjLy0NtbS1Onz5tTFnUGAahKMCOHTtC/vuqVatQVlaGnTt36hRRy4XJZEL//v3Rv39/\nPPLII/w0ypdeegk5OTlB0yipWVK4wNHhOT09PeY25mJiANbmRTgyWEu1WyRkIoTUXHeSI8v1dpMi\nk9LSUrz99ttYv3696rY8cixVxF5z/Phxg1A0hkEoKqG8vBzPPvss9uzZ0yL0/y0JJpMJffv2xQMP\nPID777+fn0Z5ww03NJtGabPZ4HQ6ce7cOWRmZgIAXyNQY+hWJJCjLBPz6NJiHj05GKvZQMnOdWd7\nXcJ5u0lNw9y4cSP+9a9/YcOGDZo8C3K/Q2E2P9abkkSAQSgqYdGiRfB4PCgoKAAAXHXVVfjzn/8c\n46haHkwmE3r37o2lS5fi97//PT+NcsaMGbDb7RgzZgzWrVuH3NxcPPXUUwAguXvWg1wikSkLyYVO\nXsIm0Ehm26tNJkKw5ML2urDebkTslOpjyWTLli14/fXXsXHjRs16Ybp06YKqqir+z1VVVejatWvI\n1xw/fhxdunTRJB4DF2AU5Q20CHAch6+++gqFhYXIyspCTk4OCgsLUVhYiF/84heaz3QRg9oyZaEg\nQUlRXA8yCQfhbBQin0AggPT0dLz77rt48cUXsWnTJk063wlyLFXYovz+/fuxZMkSoyivA4wTSivD\nunXr8PDDD+PIkSP4+OOPMWjQoFiHpArOnj2LG2+8EUVFRXjuuedw9uxZvP3225g3bx78fj8mTJiA\noqIi5OTkNEvNKM37y4Hb7YbH40F6erpqYgCporiYIIFFLMYEiMFiscBsNiMQCIDjOCQlJeHTTz/F\n5MmTMWTIEJw8eRLl5eWakgkgz1Jl/PjxKCsrQ69evZCWlpbwZrB6wTihtDIcOXIEZrMZ8+fPx3PP\nPRc3hFJTU4O1a9fitttua5anr66uljWNUs5Ex3CIhUw5VJc+gBZBJhQnq7qj77WsrAx//vOfkZqa\nig8++ABXXXUV7rrrLowePTqm8RrQHwahtFKMHDkyrghFLuRMo5Sa6ChnFn2se16EaT3y6EpJSdEk\nrackLpfLBZ/PF6S627t3Lx599FFs2rQJ7dq1Q319PcrLy9GxY0cMHTo0JrEaiB0MQmmlSFRCYUHT\nKNevX4+zZ8/y0yh79erFL3hSM13EFEu0YLaEnhe/34/6+nq+f4OdLaJ3I6UU0X700Ud44IEHsGnT\nJrRv316XWAy0bBiE0gIhp4HSIJRg0DTK9evX89Moi4qK0KdPn2bk4vP5ghoRLRYL3G53s1ROrCDm\nYBzNyStaiNnefPzxx1i6dCk2btyoem/HuXPnMHXqVBw7dgzdu3fHW2+9hTZt2jR7Xffu3ZGZmcnX\nnyoqKlSNw4ByGITSSmEQijTkTKMUGiiaTCakpKToYqAYCnLt8MXSYlo0UoqRycGDB3HXXXdhw4YN\n6NSpk2rXItxzzz34xS9+gXvuuQfPPPMMampqRI1WjemKLQ+GZ3QrhrEXEEdaWhqmTJmCtWvX4r33\n3sOVV16JFStWID8/Hw899BAOHjwIoKlf5JVXXoHf70dSUhI8Hg/q6urgdDr5hVpPKJmtQrPZMzIy\neFmz2+2Gw+FQLX4xMvnPf/6DO++8E6WlpZqQCRBsmzJr1ixs3LhR8rXGM9CyYJxQWhk2bNiAxYsX\no7q6GllZWcjNzcW2bdtiHVarAE2jLC0txaFDh2CxWJCcnIzS0lKkp6cD0GemixjUGtSllnU9yaZZ\nMvnqq69w++23Y926dbjooosijjEc2rZti5qaGgBNhJGdnc3/mUXPnj2RlZUFi8WC+fPnY+7cuZrF\nZEAeDEIxwEOOJXg8wOVyYcqUKaitrcVll12Gzz77DHl5eSguLkZeXl6QP5faM13EoNXUx0jjFyOT\nw4cP49Zbb8Wbb76Jnj17Rh2bVJ3wiSeewKxZs4IIJDs7G+fOnWv22h9//BGdOnXC2bNnUVBQgBdf\nfBHDhg2LOjYDkcMgFAMA5FmCxwtmzpwJr9eLNWvWwGazwefzYe/evSgtLcWBAwdwxRVXoLi4OGga\npRozXcSg1whhuWMDyB2Abeg8evQo5s6di3/961/o3bu3ZjES+vTpg927d6Njx4748ccfMXLkSBw5\nciTkzzzyyCNIT0/HXXfdpXl8BqRh1FAMAAi2BLfZbLwleDzi8ccfDxr2ZLVaMWLECKxYsQL79+/H\nzJkzUV5ejvz8fCxatAg7d+6Ez+dDUlIS0tLSkJmZCZvNBq/XC4fDgYaGBrjdbgQCAUVx6DmPnrr0\nKf6kpCT4/X44HA7U19fD7XbD5XI1I5Pvv/8ec+fOxZo1a3QhEwCYNGkSVq9eDQBYvXo1iouLm73G\n6XTC4XAAaBJhbN++Hf3799clPgPSMKxXDACQZwkeL6A5GmKwWCwYOnQohg4dGjSN8rHHHms2jVKp\nhQoLPclECKF1Pc158fv9MJvNeP/999G5c2ckJSXhlltuwerVq3HJJZfoFt/SpUvxm9/8Bn/72994\n2TAAnDx5EnPnzsXWrVtx6tQp/PrXvwbQ5O01Y8YMozO/BcAgFAMADGtvMZjNZuTl5SEvLy9oGuUz\nzzzTbBqlcKZLKHIhMmkJ8+hZd4G0tDQAwIcffohXXnkFAHD99dfz3l163SPZ2dn497//3ezvO3fu\njK1btwJoKsh//vnnusRjQD4MQjEAQJ4leCIj3DTKoqIijB49GmlpaZIDw4hYGhsbWwSZAOL2/Dff\nfDN27NiB+fPn44svvsCECROQkpKCiooKZGVlxThiAy0ZRlHeAAB5luAGmoPjOH4aZXl5ebNplPQa\nv98Pt9vNmz8mJSXpNtNFCmJkcurUKUybNg0vvfQSBg8ezMf/xRdf4PLLL49ZrAZaBwxCMcBj27Zt\nvGx4zpw5uPfee2MdUqsCx3H8NMqysjK0adMGkyZNwvjx4/HNN9/g5ZdfxsqVK2GxWHSb6SIFGprF\nksmZM2dQUlKCP/7xj7jqqqt0icNAfMEgFAMGNADHcfw0yrVr1+K7777D7bffjttuuw3Z2dkxGRhG\nECOT6upqlJSU4P/9v/+nukuw3Bk+idIHFc8wZMMGdMctt9yCnJycuJZ5mkwm9OjRA0OHDkVVVRX+\n9Kc/IScnBzfffDN+/etf47XXXsPZs2dhsViQmpqKjIwMpKamguM4XhLb2NgIn8+nqr2IGJmcO3cO\n06dPx5NPPqmJ5Xz//v2xYcMGDB8+XPI1fr8fCxcuRHl5Ob7++musXbsWhw8fVj0WA9rCKMob0B2z\nZ8/GokWLcNNNN8U6FE3h9/sxf/58rFq1CuPHjwcALF68GKdPnw6aRjlx4sSgaZRSs9yjdRam97Pb\n7TyZ1NbWYtq0aXj44YcxYsQItT56EPr06RP2NWwfFAC+D8qo4bUuGIRiQHcMGzYMlZWVsQ5Dc1gs\nFlRUVARNWjSZTOjYsSMWLFiA2267jZ9GuXDhQrhcLowbNw6TJk1C165dkZKSEjTqOBpyYcmEuv/r\n6uowffp03Hfffbjuuus0+Q7kIpH6oOIZBqEYMKAhQo3tNZlMaN++PebNm4d58+bx0yjvvvvuZtMo\nheTicrmCZrqEsq33+XzNyKS+vh7Tp0/H3XffjbFjx0b9OeXM8AkFow8qPmAQigEDLQTZ2dmYPXs2\nZs+ezU+jvO+++5pNo0xJSQFwwVnY7XajsbFRlFx8Ph+cTmcQmTQ0NGD69OlYtGgRJk6cqErsO3bs\niOrnjT6o+IBBKAYMtEBkZWVh5syZmDlzJj+N8vHHH8eJEyeQn5+P4uJi9OnTB8nJyUhOTg4iF6fT\nySvF3G430tLSeDJxOp2YMWMG5s+fj8mTJ+v+uaQEBoMHD8a3336LyspKdO7cGW+++SbWrl2rc3QG\nooWh8jJgoIUjIyMDJSUlWLduHXbs2IGBAwdi2bJlyM/Px2OPPYYvv/wSQFN6LT09nW+odLvdAJrm\nmLzxxhs4e/YsbrzxRsyePRs33HCDbvFv2LAB3bp1w/79+zFhwgSMGzcOQJM314QJEwA0GXSuWLEC\nY8aMQb9+/TB16lSjIN8KYfShGNAd06ZNw549e/DTTz+hQ4cOePTRRzF79uxYh9Xq0NjYiO3bt2P9\n+vX45ptvMHz4cBQXF8PtduOee+7Bu+++i+TkZBw4cABPPPEEDhw4gL59+2LJkiUoLCw0bFQMqA6D\nUAwYiAPQNMq//OUv2LVrF2bMmIGSkhIMHjwYPp8PN998M/Lz85GZmYn169dj9+7dePnllzFt2rRY\nh24gjmAQioG4RVVVFW666SacOXMGJpMJ8+bNw+LFi2Mdlmb4/PPPMXbsWLz00kvIysrCunXr8Omn\nn6K+vh533nkn5s2bxxfr6+rq4Pf70bZt2xhHbSCeYBCKgbjFqVOncOrUKQwcOBD19fW44oorsHHj\nxrjNzd9www0oKSnBlClT+L/z+XwoLy/HhAkTDGmuAc1hEIqBhEFxcTEWLVqE/Pz8WIeiCfScWSLX\nn6t79+7IzMzkZ8NUVFToEp+B2MCQDRtICFRWVuLgwYPIy8uLdSiaQc8TCPlzzZ8/P+TrTCYTdu/e\njezsbJ0iMxBLGIRiIO5RX1+P66+/Hs8//zzS09NjHU5cQI4/F8FIgiQOjD4UA3ENr9eLKVOmYObM\nmSguLo51OAkHk8mE6667DoMHD8Zf//rXWIdjQGMYJxQDcQuO4zBnzhz069cPS5YsiXU4rQ7R+nMB\nwL59+9CpUyecPXsWBQUF6NOnD4YNG6Z2qAZaCAxCMRC32LdvH9asWYPLL78cubm5AICnnnpKFTPE\nREC0/lwA0KlTJwBA+/btMXnyZFRUVBiEEscwCMVA3GLo0KEIBAK6XMvlcuHaa6+F2+2Gx+NBUVER\nnnrqKV2uHWtI1UicTif8fj8yMjLQ0NCA7du346GHHtI5OgN6wqihGDCgAlJSUvDee+/h888/x3/+\n8x+899572Lt3b6zD0gxy/LlOnTqFYcOGYeDAgcjLy8PEiRMxevToWIZtQGMYfSgGDKgMp9OJa6+9\nFqtXr0a/fv1iHY4BA7rBOKEYMKASAoEABg4ciJycHIwcOdIgEwMJB4NQDBhQCWazGZ9//jmOHz+O\n999/H7t37451SAYM6AqDUAwYUBlZWVmYMGECPvnkk1iHYsCArjAIxYABFVBdXY3a2loATXNKduzY\nwUuVWwN+97vfoW/fvhgwYAB+/etf4/z586KvKy8vR58+fdC7d28888wzOkdpoKXDIBQDBlTAjz/+\niFGjRvGKpsLCwlZlQjl69Gh89dVXOHToEH75y1+KSp79fj8WLlyI8vJyfP3111i7di0OHz4cg2gN\ntFQYfSgGDKiA/v3747PPPot1GBGjoKCA//95eXlYv359s9dUVFSgV69e6N69OwCgpKQEmzZtittx\nAAaUwzihGDDQSuH3+5GbmyvbBkUuXnvtNYwfP77Z3584cQLdunXj/9y1a1ecOHFC1WsbaN0wTigG\nDLRSPP/88+jXrx8cDoes18vx5nriiSeQlJSE6dOnN3udMaDLQDgYhGLAQCvE8ePHUVZWhvvuuw/L\nly+X9TPhvLlWrVqFsrIy7Ny5U/Tfu3TpgqqqKv7PVVVV6Nq1q/ygDcQ9jJSXAQOtEHfeeSeeffZZ\nmM3qPMLl5eV49tlnsWnTJqSkpIi+ZvDgwfj2229RWVkJj8eDN998E5MmTVLl+gbiAwahGDDQyrBl\nyxZ06NABubm5qg2vWrRoEerr61FQUIDc3FwsWLAAQLA3l9VqxYoVKzBmzBj069cPU6dONQryBoJg\neHkZMNDK8Ic//AH/+Mc/YLVa4XK5UFdXhylTpuDvf/97rEMzkOAwCMWAgVaMPXv2YNmyZXjnnXdi\nHYoBA0bKy4CB1g5DfWWgpcA4oRgwYMCAAVVgnFAMGDBgwIAqMAjFgAEDBgyoAoNQDBgwYMCAKjAI\nxYABAwYMqAKDUAwYMGDAgCowCMWAAQMGDKiC/w822Fk0iHTlUQAAAABJRU5ErkJggg==\n", - "text": [ - "" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from matplotlib.mlab import PCA\n", - " \n", - "results = PCA(samples) \n", - "\n", - "#this will return an array of the data projected into PCA space\n", - "print(results.Y) \n", - "\n", - "plt.plot(results.Y[20:40,0], results.Y[20:40,1], 'o', markersize=7, color='blue', alpha=0.5, label='class1')\n", - "plt.plot(results.Y[0:20,0], results.Y[0:20,1], '^', markersize=7, color='red', alpha=0.5, label='class2')\n", - "\n", - "plt.xlabel('x_values')\n", - "plt.ylabel('y_values')\n", - "plt.xlim([-4,6])\n", - "plt.ylim([-4,6])\n", - "plt.legend()\n", - "plt.title('Transformed samples with class labels')\n", - "\n", - "plt.draw()\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Dropping the class labels" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "samples = np.concatenate((class1_sample, class2_sample), axis=0)\n", - "fig = plt.figure(figsize=(15,15))\n", - "ax = fig.add_subplot(111, projection='3d')\n", - "ax.plot(samples[:,0], samples[:,1], samples[:,2], 'o', markersize=10, color='green', alpha=0.5)\n", - "\n", - "ax.set_xlabel('x_values')\n", - "ax.set_ylabel('y_values')\n", - "ax.set_zlabel('z_values')\n", - "\n", - "plt.title('All samples')\n", - "\n", - "plt.draw()\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAANTCAYAAABLuEecAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X3MJWV5P/DveT/POed5zgIriy67GFggLAK7moamgrgC\nTYsNBbVKqUqradEoav9oGpOqsTX4R22MhtSXxIrUEKNtWolitAGpLxRwlaWNL+yigV3AQBe7+zxn\nzpk58/b7Y3/3MM88c+bMzJm5554530/S/H6yz+6ZOWeeM/c113VfV811XRdERERERESUSL3oAyAi\nIiIiIiojBlNEREREREQpMJgiIiIiIiJKgcEUERERERFRCgymiIiIiIiIUmAwRURERERElAKDKSIi\nIiIiohQYTBEREREREaXAYIqIiIiIiCgFBlNEREREREQpMJgiIiIiIiJKgcEUERERERFRCgymiIiI\niIiIUmAwRURERERElAKDKSIiIiIiohQYTBEREREREaXAYIqIiIiIiCgFBlNEREREREQpMJgiIiIi\nIiJKgcEUERERERFRCgymiIiIiIiIUmAwRURERERElAKDKSIiIiIiohQYTBEREREREaXAYIqIiIiI\niCgFBlNEREREREQpMJgiIiIiIiJKgcEUERERERFRCgymiIiIiIiIUmAwRURERERElAKDKSIiIiIi\nohQYTBEREREREaXAYIqIiIiIiCgFBlNEREREREQpMJgiIiIiIiJKgcEUERERERFRCgymiIiIiIiI\nUmAwRURERERElAKDKSIiIiIiohQYTBEREREREaXAYIqIiIiIiCgFBlNEREREREQpMJgiIiIiIiJK\ngcEUERERERFRCgymiIiIiIiIUmAwRURERERElAKDKSIiIiIiohQYTBEREREREaXAYIqIiIiIiCgF\nBlNEREREREQpMJgiIiIiIiJKgcEUERERERFRCgymiIiIiIiIUmAwRURERERElAKDKSIiIiIiohQY\nTBEREREREaXAYIqIiIiIiCgFBlNEREREREQpMJgiIqJU/vRP/xQf+tCHAAAPPPAAdu3aVfARRXvt\na1+LL3zhC0UfBhERVQiDKSIiivTa174Wp59+OqbT6ab/XqvVUKvVCjqq5Mp2vEREpD4GU0REBXEc\nB6PRCOvr69B1HZZlwXXdog9rkyeffBKPPPIIzjzzTNxzzz1b/ly14yUiIpKJwRQRkWSu68KyLBiG\nAdd14TgOdF3HaDTCyZMnsbGxoUxwddddd+Gaa67B2972NnzpS19K/e/85V/+JXbs2IHhcIhLL70U\nP/3pTwEA3/zmN7F//34Mh0Ps3r0bH/3oR72/8+STT6Jer+POO+/E7t27ccYZZ+Czn/0sfvSjH+HS\nSy/Faaedhttuu837+TvvvBOvfvWrcdttt2Hbtm246KKLcP/99888pn/6p3/C3r17cfrpp+P3fu/3\ncPTo0bnHS0RE5MdgiohIItd1MZ1OYZqmV3ZWr9fRaDTQaDRQr9c3BVfHjx8vNHN111134S1veQve\n/OY349vf/jaef/75xP/Gt7/9bXz/+9/HkSNHcPLkSXzta1/DGWecAQAYDAb48pe/jJMnT+Kb3/wm\nPvOZz+DrX//6pr//yCOP4IknnsBXvvIVvP/978ftt9+O+++/Hz/96U/x1a9+Fd/73vc2/eyePXvw\nwgsv4KMf/Sje8IY34MSJE1uO6etf/zo+/vGP49/+7d9w/PhxXHnllfjjP/7jucdLRETkx2CKiEgS\ny7Kg6zocx5m5fycYXFmWVVjm6gc/+AGeeeYZXH/99Tj//POxd+9e3H333Yn/nXa7jY2NDfz85z+H\n4zi48MILcdZZZwEArrrqKlx88cUAgEsuuQQ33XQT/vM//3PT3//Qhz6EdruNa6+9Fqurq7j55pux\nfft2vOxlL8OVV16JRx991PvZM888E+9///vRaDTw5je/GRdeeCG+8Y1vbDmmz372s/jgBz+ICy+8\nEPV6HR/84Adx6NAhHD16NPJ4iYiI/BhMERHlzHVdmKaJjY0NTCYT1Ot1L5CK0xAhLHM1mUxyD66+\n9KUv4Xd/93exuroKAPijP/qjVKV+Bw4cwHvf+1685z3vwY4dO3DrrbdiY2MDAPDwww/jwIEDOPPM\nM7Ft2zZ87nOfwwsvvLDp7+/YscP7/6+srGz535qmef97586dm/7uOeecg1//+tdbjumpp57C+9//\nfpx22mk47bTTvMzTs88+G3m8REREfgymiIhy5DgOptMpLMvKpJOcyFw1m81cg6vJZIKvfvWruP/+\n+/HSl74UL33pS/EP//APeOyxx/Df//3fm44njttuuw0HDx7Ez372Mxw+fBh///d/DwC4+eabccMN\nN+Dpp5/GiRMn8K53vQuO46Q6ZgB45plnNv3vp556Ci972cu2/Nzu3bvx+c9/Hv/3f//n/Z+mafjt\n3/7tyOMlIiLyYzBFRJQDf5OJqLK+ReUVXP37v/87ms0mfv7zn+Oxxx7DY489hp///Oe48sorcddd\nd3nnGOffO3jwIB5++GGYpoler4dut4tGowEAGI1GOO2009But/HII4/g7rvvTvw++Y/h+eefx6c/\n/WmYpomvfe1r+MUvfoHrrrtuy99517vehdtvvx0/+9nPAMDbGzXveImIiPwYTBERZUwEUqLJhL+s\nL+2/F1ec4Go0Gs0Nru666y684x3vwNlnn40zzzwTZ555Jnbs2IH3vve9uPvuu2Hb9pYAcdY5rq+v\n4y/+4i9w+umn4+Uvfzm2b9+Ov/qrvwIA/OM//iM+/OEPY21tDX/3d3+Ht7zlLVvOJ845C5dffjmO\nHDmCl7zkJfjQhz6Ef/3Xf8Vpp5225e/ccMMN+Ou//mvcdNNNGA6HuOSSS/Dtb3977vESERH51dyi\n++4SEVWIKOtzXXdLsKHrOmzbRr/f935W0zS4rrtpT5SfpmlYWVnZ8t/TEtkkkS0DgGaz6f1fo9Eo\n7WDbO++8E1/4whfw/e9/v+hDISKiJdEs+gCIiKrAdV3Ytr0pGxXFsiyMRiMveBElgbVazQus8igt\n87dj9x+3ZVnezzSbTbRaLTSbzYWzakRERFXGYIqIaEFidlScvVGu62IymUDXdfT7fdTrdViWhXq9\n7mWMRHBjGAYAYDqd5pY1Ch6vP7gS2bWyBFd57UsjIiKahWV+REQLiCrrCxJBVKPRQL/f9+ZIiWAq\nyHVdaJqGVqvlBVn+NukySvJEWaC4VYjMWRmCKyIiorwxM0VElIJoMiFans8r6zNNE7quo1arYXV1\nNXZjhVqthlartSVzJf69vIOrqMyV+HP/nisGV0REtEwYTBERJZSmrG86naLT6Wxq/JCUfz+V+LdV\nCK5E50Lx5wyuiIhoWTCYIiKKyd9kApi/R8e2bYxGI9TrdaytrcE0zYUG0gapHlyZpolms4l2u83g\nioiIKonBFBFRDMGyvnkBgWEYGI/HWFlZQafTkRJAhAVXtm3Dtm0vkyYzuBINNERgJf6cmSsiIqoK\nBlNERHM4juNlleKU9WmaBsuysLq6imbzxa/ZWq22ZUhunEAibZ8gf+Ai/p0igit/i3fXdUODq1ar\n5c3ZYnBFRERlwWCKiGiGYFlf3NlRzWYTw+Ewk6Agy8AiSXCVV9YoTnAlOgUyuCIiItUxmCIiCiEW\n+bZtx8pGGYaByWSCXq+HTqcj8UjTiwquDMOA4zibslaygqvpdOoNMGZwRUREKmMwRUQUkGR2lOM4\n0DQNjuNgbW1tU2BQNqoHV8Cp7KAIrprNJgf1EhFRoRhMERH9f2lmR4mhuoPBoHKLetWDK3/mSuy5\nYnBFREQyMZgiIkLy2VG6rkPXdfT7fbTb7USvU1ZJgyvXdTM/X39wJf7t6XSK6XQK4FTmyt/QgsEV\nERHlicEUES09y7KwsbHhLcLnlfWNRiMAwHA4nJu98qvaoj4YXDmOA8dxvDlT/gA1j8yV+LeSBFdJ\nPi8iIqJ5GEwR0dLyl/XZtj23Nfh0OoWmaeh2u+h2u5ULjhZVr9e94AUAxuMxGo2G11redd1cywIZ\nXBERkWwMpohoKSWdHTUej2GaJgaDAVqtlsQjLS9RkufPXImyQH9wJTr1ZV2Sx+CKiIjyxmCKiJZK\n0tlRtm1jNBqhXq9jbW2tkMV2mfdZ+YnMlQhG/cGVCG6CA4QZXBERkcoYTBHR0kgyOwoADMPAeDzG\nysoKOp1OJgv7pIFRlUsJVQyu/N0CTdNEt9vdMueKiIhIYDBFREth3uyoWq3mBTqu60LTNFiWhdXV\nVa9MbVFVDoyy4A+uRGATFVxlHdj4rwsR2ImBzGFzrhhcERERgykiqrSks6Msy8JoNEKr1cJwOMw9\nAGKAFU4ENkUHV/5/UxwDgysiIhIYTBFRZSWdHWWaJiaTCXq9HjqdjsQjpXmigivLsrwhvrIyV0B4\ncNVoNLz9Vs1mk8EyEVHFMZgiokryd4ybF0iJ2UgAsLa25u2hIXWFBVeiNK/I4MpxHOi67v03BldE\nRNXGYIqIKiVpWZ9pml63PrHozfv4KHv+wAlAZHDlb8We9THEDa7yOgYiIpKLwRQRVUbS2VGTyQSG\nYWAwGMA0Te6PqpCo4Mo0Tei6jnq9vqVbYNbHwOCKiKjaGEwRUemlmR2laRoAYDgcol6ve3+Xqilp\ncJVHUMPgioioehhMEVGpJZ0dNZ1OoWkaut0uut0uF6tLal5wZds2gFOzxpi5IiKiWRhMEVFpzZsd\n5ee6LsbjMUzTnDk7SsX9TP75V5SfYHBl2zYmkwlqtVrhZYHiOAAGV0REqmEwRUSlk7TJhG3bGI1G\naDQaWFtbC/15WUELA6NyEIFNu90GsDlzJdrtywquxPXK4IqISD0MpoioVJLOjjIMw5sd1W63C11s\ncqFbXv7MVbvd3jJAmMEVEdFyYjBFRKWRdHbUeDyGbdvKz47igrd8arUams2mVy6qYnBlWRY6nQ6D\nKyKiHDGYIiLlJS3rsywLo9EIrVYLa2trsReQLMGjtOIEV8EBwnkHV7quo9FoeL83ANBsNr15agyu\niIgWx2CKiJSWtMmEruvQdR39ft/b7xIHF5WUpajgyjAMKcEVcGpMgD9zJYYYCyK4ajabuR0DEVGV\nMZgiIiWJhd94PIZhGFhdXZ1b1jcajQBA+bI+Wj5FBFfiAYT/GILdAkVwJX6WwRURUTIMpohIOcGy\nvnkZKTE7qtPpYGVlRdkFINuck6BC5ioquBJ/7m9oweCKiGgrBlNEpJRgWR8wey+T67qYTCaYTqcY\nDAZotVoLvXZRgU4wg0DLpyzBlThGBldERKcwmCIiJYiFm2mamzbRz1qsidlR9Xp95uyoJFRtmc5s\n1nIKBldixpW/o2URwZVlWTBNc8sxMrgiomXFYIqICpdkdhQAGIaB8XiMlZUVdDqdUi/gynzscTAQ\nzIZoJCGyr3GCq6wxuCIi2orBFBEVKk63PrEgd10XmqbBsiysrq56T+1JTVxI52decCWYpolmsxnr\nIUVSYcGVaZpbgivRip3BFRFVEVciRFSIuLOjxOJLzI5qNpsYDoe5LAzzzqL494BxUUlZCguuxuOx\nN8QXwJYBwnn8Dvm7aDK4IqJlwGCKiKRzHAemacYq63NdF47jYGNjA71eD51OR+KREpWTeDghfl+C\nQ4QBNYIr0SmQwRURlRWDKSKSxt9kAthaJhQknqq7rovhcMjZUUQpiN8zkblyXXducJXXnqtgcDWd\nTmEYhneMDK6IqGwYTBGRFGGzo6KYpglN07z9HgykiLJRhuDK/+edTie3fV9ERItiMEVEuUta1qfr\nOnRdR7/fR6PR8Obc5K2IznNiIctFImUpybUcFlyJhhaWZXmZI9nBlWVZXsMZf+ZK7LlicEVEKmAw\nRUS5mTU7ahbHcTAajQAAw+EQ9Xodtm3LOFRpizLR6KJWq3nnKxaLjUbDK3EKdkkjSiPNde0PnAAU\nGlyJphXid2A6nXqZs3q9vqmhBYMrIioCgykiykXS2VHT6RSapqHb7aLb7Xo/X9WhtaZpYjQaodPp\noN1ubwo8dV1HvV5Ho9Go5LlTucQJrsT16m9okfUxANh0DEB0cJVHgEdEFMRgiogyF2d2lOC6Lsbj\nMUzTxGAw8Fo7V5UoYzQMA/1+H61WC9Pp1FuMip/xL1bFe5TnYpUorqjgKvgwgMEVEVUdgykiykzc\n2VGCbdsYjUao1+tYW1srfLGTdxbIcRwAp7JSoowx7DWDi1XHcdBqtWBZlpftEwtFdj2jouUVXCXd\n9wUwuCIi+RhMEVEmkpb1GYaB8XiMlZUVdDqdmT8vq8wv72BElPUBwGAwSLSQC1usis5rhmHAcZwt\n+1cYXFFRsgyu0l7HDK6ISBYGU0S0MMuyYs+Ocl3X69C1urqKZrPaX0Ou62IymcAwDAwGA2iatvC/\nKTbli/eOwRWpTNWyQPEAyB9cBedcERHNU+1VDBHlKunsKMuyMBqN0Gq1MBwOK7/AD+tOmIdgcCUW\nqv4BycGFatXfe1JXVKbVX8YqstJ5jA4I/g6I1zEMw5tzxeCKiOJgMEVEqYiFetwmE4ZhYDKZoNfr\nodPpJH49GbOYsiwnFGV9we6EMtTrdW8hCGwOrmQNZC07dlGUZ1amVcym0zRNSuaKwRURpcFgiogS\nEQsdTdNgmiZWV1cjf14shhzHwdra2qahnHHInP+UhWBZnwrdCf3BlVgk+ssCZcwMKiNm74ohgiuh\n2+2GZq7ybMASJ7hqNBrefqtms8nrhWhJMZgiothc14VpmrBtO1apmH+W0mAwqPxiQ1ZZ3yLE5+YP\nrmTPDCKKw5/1LnqPYFhw5TgOdF33/psIrsIGbxNRdTGYIqJYwmZHzSqFUjE7k7dZQ4fDJG35LFqq\n50GF5gCUPRllsUVhcEVEKmEwRUSR0syOEh3rssrOiMBNxT1TInCcTqexAkfVF1RRwZW/xEqUNrFT\nIBVN9eDKMAy0222vDTuDK6JqYTBFRDMlnR2VJDujmjTHKgLHWq2mxNDhPPiDq3a7zTbspDzVgivx\nAIKZK6JqYjBFRKFENmpWtz5/mZ/ruhiPx15DiqrPjgLKHTguIslCVWzaJyrSvNEBruvmFlyJ659l\ngUTVVf0VDxElkqasbzQaodFo5JadidqfJVvSsr6qmxVcWZblLVht2960QOQikYoUNTogr+Aq7GFU\nWHA1mUw2DRhmcEWkPgZTRORxHMeb7RJndpRt21hfX0ev10O73S71zT5OwCYCx3q9vlDgqEpgmAd/\ncCWaV9RqNc64osRkNdGYF1yJn8nzgYC/yybA4IqoTBhMEdGmIZkA5i5wRXmK67oYDoeJZ0eVUVZl\nfWF/r8qLolqthlarFTrjisEVqSjp0GsGV0TLjcEU0ZJLOjvKsiyvrE90dctbkWV+y7gfLEv+z40z\nrqiMyhJciYwwgysiubgqIFpiYbOjZnFdF7quQ9d19Pt9NBoNbGxsSDxa+bIq61tW8xZznHFFZeQP\nruZlW/PaIxgWXInfG39w1Wq1+LtDlDMGU0RLKGmTCcdxMBqNAABra2toNBqwbVvGoUonAktR1rey\nsoJOp1PYQkSl5ht5Y3CVnWW5ZooWlm31B1eWZQEAdF3PtZR1VnAlXh/ApjlXHGFAlB0GU0RLJu3s\nqE6ng5WVlcregMV5ySjr40I3nrDgyp8B4IyraHwv5AsGV7ZtYzKZoF6ve6Ws/us67+BK8AdX4oER\ngyuibDCYIloi/ta/ccr6JpMJDMMIbQEuM2Mi87U2NjZyLesLe89ldS0rOxWGsZI8Vfi9EN+z7XYb\nAEL3CRYdXIk/9++54u8OUXwMpoiWQNrZUfV6HcPhcCn2ChmGAQDodDqFlvVRfFHBleg2KRaozWaT\nM65IumBAGFXK6g+uRBOJvEpZw4Iry7K8jq4MrojiYzBFVHFJZkcBp4KK8Xhc+F4hWfxlfQCW4pyr\nyr8A7HQ6m7quTSYTAGzDTmpRZZ/gvOAKONV4o9PpMLgiCmAwRVRRwdlRccr6NE2DZVmx9gpVocxP\nZOAajQaGwyFOnDhRidIiOiVpS2sGV1Q0VYMry7IwmUzgOI7358xcEZ3CYIqogtLOjmo2mxgOh0tx\nU1QlA+dvfLEM73uRwlpai/LXYHkVkQpUCq4AbDoO0zS3lAWKVuwMrmiZMJgiqpiks6MMw8BkMkGv\n10On00n8emULApJm4LIWlmVbpvbnqohqDCAeRACngm62Yae0sv5+LCq4mrX3y//nDK5oWTGYIqoI\nUdZ38uRJrKyszH267jgONE2D4zje7KgkZN4Yswo2LMuCpmleWd+sznq0fIKLVH+2ijOuiuG6Lksv\n55gVXFmW5Y0PkJW5mhdciTbsDK6oahhMEVWAf3aUf0jjLKZpQtM0tFotDAaDyt/UxPszHo/R6/XQ\nbrdDz1nF94FZq2KEZa4444pUF2c2W1HB1XQ69R5QMLiiKmEwRVRyYWV9sxbfrutC13Xouo5+v+8t\nFNMSr6XyTVCU9dm2XUhZH1VD2WZcMQAnIPq6DQZXUY0kFv2ejwquAHh7GcWxcowBlQlXFUQllXR2\nlOM4GI1GAFDK2VFpFof+xhpra2u8OVNmyhBc8XovnmoPm1S5buNmrsSeKwZXpDIGU0QlFDU7Kiwz\nNZ1OoWkaut0uut1u6W5KSY93kcYaeT/RZ9leNQUXqf427GLfSLC0qmy/h1Q9cYMrIa/g0B9cie/H\n6XTqjTCo1+ubGlrw94dUwmCKqETSzI4SA2kHg4E3bycrKgYG/rK+pI01eHOmrHDG1eJUy+osg1nB\nlSgJFA188sxchbVhB6KDK/7+UJEYTBGVRLCsb9YNTAQ4YiBtvV7H2traUtxsRFlfq9ViWR8pJWzG\nlW3bm7oGin0r7BRIqhDBleM4cF0X7XZbelkggytSHYMpohKIKusLI7r1yRhIKyMzNS8DlsW8LCJZ\nxO+wP7gqYhAr5a9q2bWoskBd1+G6LoMrWjoMpogU5i/ri9NkQmSvAEjpXKfCImHReVlBqpUtUvUV\nNYiVKK5Z34v+4KrT6WzZK1hUcCUaWjC4IhkYTBEpyj87Kk42SpS41Wo1dLvdpWgB7i/ry2JelqwF\nKgM2ihJ3ECtn9JBMca6xqL2CweAqrxbowX8zGFyZpol2u412u73pd4goreqvtohKKGx21CzBEjeR\nxZKliDI//zlnMS9LpqSfjYpNPkiuqEGss/atEKkgKriaTCYA8u9yGfw3J5MJWq0WDMMInXPF3yFK\nisEUkULSzI4KlrhZliVt8V3E0/Csy/pUwICJkojTzrper3v/vayZqyr8TlRtz9Sikna5zKsFuv93\nQmSu/MGVyJwxuKI4GEwRKSJpWZ9pmhiNRuh0OpmUuJVB1mV9YaqwgKPlEjbjyjRNWJYFXdcBlHfG\nVVmOs+pc180loJjV5VLmCIGwskDHcbYEV2K/lShPJBIYTBEpwLKsRLOjJpMJDMOYOTtKZmZK1muZ\npgnDMHIt6+MNkqpALFAbjQa63S5nXFEphHW5zDq4EverqO/6WcGVeDAhjsFfFsh7x3JjMEVUoLiz\nowTbtqFpGgBgOByG3kiq9qUu9o9VqaxvmbJfZT3Xsh53GBWe/hMlJSO4SnIcAoMrCmIwRVSQpLOj\nptMpNE1Dt9tFt9tdii9rMS9L3EyrEEhxfxQVKWrGlRggzDbs2cmrPE42FfZ+xbl2/c1awoKrLL57\nGVxREIMpIsn8s6MAxJodNR6PYZpmrNlRMhfreb2W67rQdR26rqPf73ttoatI7H0LLgKqcPNl4Kg+\nzriisoq6dmcFV+LvZX0cDK6WG4MpIolc14VpmrBtO/bsKE3T0Gg0sLa2VoknnPOIbn2u63plfWIT\ncN5kLv79AWO32/VuwP45QuLJKgOSYizjgidqgRq8NpvNZq6dAlXIhlB5xA2uRHl9XkENg6vlw2CK\nSJJFZke12+3YX7a1Wg2O42R12HNludAXZX3tdhsrKyuVvcG4rovRaATXdTEcDmHbNhzHQbPZRLvd\nDt0XMJlMNpWuVPW9qTLTNHH02FEcOnIIx7Xj2N7fjn3n78PuXbtDG8mowL9ADV6bs2Zc8dqsnjIG\ntmHBlRh8LTPrOiu4mkwm3n9ncFVuDKaIciayUZZleRvBoziOg/F4DNu2lW+4kNUXfrCsr0xDeJMS\nLXe73a4XMNq2veln/K2u2+02NE1Dq9Xyuj66ruvddMvW6npZ3f2Nu3H4xGEYfQO9M3porDbwvPU8\nDj52EJ0HO7hg2wW4+Q9uLvow54oz44rB1YvKGIRUldhvVavVsLKyUlhJq3/vF8DgqgoYTBHlSMyO\nOnnyJHq93tzAyD9HaW1tLfUXaJnKwhzHwWg0AhDdoVBm+V1e/66YW9JsNtHr9RL9/eAcIXZjKw/T\nNHH4xGG0z22jjRcfFDSaDazuWAUAHP7VYZimqWyGapZZwZU/8BclgQz8qWj+73dV9gvGCa7E7xiD\nKzUxmCLKiWh5HufJZJaZGdlfsosEH/7BwyqU9eX1+mIfmOM43v6oRYS1uhbXG7uxqefosaMw+sam\nQCrI6Bs4euwozjv3PIlHlr2wAcIM/MuvShm2WeeRZL+g7OBKBHgMrtTEYIooY8HZUXHK+kRmRvWy\nvqBFMmcieJw1eLgq/NnGwWAAwzC2lPUtQtx4RQAe9XQ174YBFO7QkUPonRGdieyd0cOhI4dKH0wF\nccYVlVXUfkEVgiux96vT6aDZbHrjQxhcycdgiihDs2ZHzSpTE7OjsszMqN6OOk5ZX5Dq5xQm2ESk\n0+nM/Nksb3xhT1e5p6VYx7XjaKxGPyRpNBs4rh3P7DVVzCQknXGl4jkkVbbvrapb5JqK2i9YRHBV\nq9W83xnxOySI4IoP0ORgMEWUgTSzoyaTCQzDKHVmJmmQo1pZX5gsFj+u60LTtNhNRPJ8H6IWALqu\nc0+LBNv72/G89TwazdnXgW3Z2N7fLvGoijdvzwqwuYtlWZ+4l/GYg6oQ2GYtTnCV54Mrf2fgYLdA\nEVzdfffd6Pf7uOWWWzJ7XdqKwRTRguLMjvIHHbZtYzQaoV6vx87MJKFiFqcswWMWNzrbtrGxsYFm\nsxnaRCStmdsKAAAgAElEQVTs85H5efkXAJ1Oh3taJNh3/j4cfOyg12wizPiFMfZdtk/iUaknGFyN\nRiO0220v488BwqQyVTpd+tcho9EIp512WuavQZsxmCJaQJLZUQBgGAbG4zFWVlbQ6XSWYiGQpqwv\nSMUAMYz4fOeV9alk1p4WNrPIzu5du9F5MPp66Ggd7N61W9IRlYfImgLyn/xT9cjMsOUdXMU5F1Fm\nTvliMEWUQtImEwC8kqrV1VXvyzXP45Nh3oBgsSes2+2i2+1WdqHjui7G4zFM05Ty+eYlak8LMwPp\ntVotXLDtAhz+lW/OVLMB27IxfmGMjnZqzpSqGVtVqPLkP4kyPASapwrnoIIirt/JZIJ+v5/F4VOE\nct7xiQokZkcFm0zMIuatiLK+vG/uRS8egPKU9YVJunAQZZuNRmOhz3fWU0bx34rYsxDVzIKZgWRu\n/oObYZomjh47ikNHDuG4dhzb+9ux77J92L1rd6l+R2SI83sYdz+gyG4VtR+wKr8TVTgPlfZ+LRpc\nxTkXTdOYmZKAwRRRAuIJfZyyPn83N/GFqcqXeJaCix7btqFpGmq1Wi57wvKUtJxQZN6WpWwzyc2/\n2WzyiXZAq9XCeeeeV7n253lK8jsVtR9wMpkA4H5AUlfUjDb/AGx/t8t5iijz03UdV111FQzDwHQ6\nxR/+4R/i4x//+Jafe9/73odvfetb6PV6uPPOO7F//36px5klBlNEMaSZHSWGtK6trcEwDElHKnd/\nUXChk1dZn2p7phYp61PtXBYRdfOfTCbeQwdRGsjFK8nk3w8IcIBwWlX5viqbqOvX/1B3Op3OrAwo\nosyv2+3iu9/9Lnq9HizLwhVXXIEf/OAHuOKKK7yfuffee/HEE0/gyJEjePjhh/Hud78bDz30kNTj\nzBKDKaI5Zs2OmsU0TWia5g1pFX+nyjckUdY3nU5LV9aXlL8b49raGhdgPsFmFtPpdFMzCxF8cb8V\nFSGs2Yp4SCauz+CYgEVV5Xu/Kr+rruuW9js7GFxNp1NYluWtUQDg+eefx3e+8x1cddVVuOCCCzAe\njwvZMyWyYeIecPrpp2/683vuucdr13755ZfjxIkTeO6557Bjxw7px5qFcl5RRBKIG60oX4pT1jeZ\nTDAajdDr9dDv9wurz5fdgGJ9fd2bqVT2QCrqvZtOp1hfX0e73cZgMCjtTVkG8fvSaDSwsrKCfr/v\nZSvFA4fxeAzDMGBZVmUWnarg+xlNZEzb7fam67Ner2d+fVYlECH1NBoNdLtd9Pt9rKysYDqd4sc/\n/jHe8IY34IILLsCxY8fw1a9+FUeOHJH6neA4Dvbt24cdO3bgwIED2Lt376Y/f+aZZ7Br1y7vf599\n9tl4+umnpR1f1rgSIAohZkeZpunddKNuiI7jYGNjA6ZpYjgcot1ub/rzqmamxFPdvIMLWe/frM9Y\nlPVpmobBYKDswGGVicDKv3gV7eNFeajIbtq2XcnfF9l4jcY36/pk8F8tKjWgyFq9XseFF16Iz3/+\n8/jpT3+K73znO2i32/jRj36EAwcOYNeuXXjrW9+KL3zhC/jVr36V6zVcr9dx6NAhPP300/je976H\nBx54YMvPBF+/zJ8Ly/yIApLOjlqW9t9+IrgQtdorKytFH1JuspiTRVtFdQpUtc01LY84nSzr9bpX\nEljl67PKAUiZRX0utVoN5557Lur1Ov75n/8ZtVoNv/zlL/Hd734X9913H/7mb/4GvV4Pv/jFL3Kt\nJhkOh3j961+PgwcP4rWvfa3333fu3Iljx455//vpp5/Gzp07czuOvDGYIvr/xM3Sn42a9/OiCcG8\nfUKyS+/yfC3/nqF+vw9d13N7raKZponRaIROp5NpNqpKT+SyMq+TFcBmActEtQV8mjbWREXzPxTe\ns2cP9uzZgz//8z+H67p46qmncgmkjh8/jmaziW3btmEymeA//uM/8JGPfGTTz1x//fW44447cNNN\nN+Ghhx7Ctm3bSrtfCmAwRQQg+eyoZW1CEGwFblmWlNeVXSbpui50XYeu65k31FBpgaiyuJ3YsmwW\nQBRX3OAKgJfF4jVaPNWC9EXMa6YRdc+s1Wp4+ctfnsNRAb/+9a9xyy23wHEcOI6Dt73tbbj66qvx\nuc99DgBw66234rrrrsO9996LPXv2oN/v44tf/GIuxyILgylaeklmRwGAYRgYj8eJZgsV0a48y5vG\nIq3Ay0Q01BiNRnBdV5myPnH9VGURkEawE5sIrkzThK7rXvt1dgqkIkRlVkX2Pnh9luUaXfbvnjIr\n4jq75JJL8JOf/GTLf7/11ls3/e877rhD1iHlrporIqIYks6Ocl0XmqbBsqxKBxRBUVm4qjXWEIvz\nbrfLJhMKC9vPIhavy7afhdQkrjnDMNDv9znjShHLFhhW6f6ssuVYDRIF+G9ocZ7cWJaF0WiEVquF\n4XCY6stY5pdaVpmMNFm4POV1I3RdF4ZhQNd1NJtN6RPjq0xWF0axKG2322xmQcoJm3EVnMEmrs9m\ns8nrk+aadz9kICUPgylaKuIGpus6NE2bGxj59870ej2vlXNSZbsxJinrK7JleRYcx4GmaXAcBysr\nK1L2gS3LTa6o637WfhbLstjMoiSqkEGYdQ7iAV5Y2aoIrlQqW63CZ7GMTNNMvWahZBhM0dIIlvUB\n0Ys9/yJ7bW3NKyla5PXLQJT1NRqNucFm2W+w/ozjYDCAaZq5B1Nlf8/KKGo/S7DkilkBki2qbJV7\nArNVpcBw3rlomsYqC0kYTNFSSDo7yt8SezAYLPzlK/vLO+1eJtXK+vIiyvomk8lCGUcqp1nNLPxZ\nAfE7VKXFF5XDrODKsqxNewJF8M+yVQoj7uWUPwZTVGmzZkfNCjZc18VkMoFhGJm3xFY5M5W2W18R\n87MWXTSIRiK2bWeScaRym7VwNU0Ttm1D07RSLlzntU2m8ih6wHVVHiiofA9OY97nIh4WUv4YTFFl\nRc2OCgsCxMIJQOYtsVXOTCUp6ys727axsbGBZrOJtbW10HOt2g2XkhELV5GV6na7bGZBqeQVhKQZ\nIMxr9EXL8l6Mx2P0+/2iD2MpMJiiSkpa1ieG0Xa7XXS73dw6xqlGlPX1ej202+1K32T85zqrrE/W\n+at4LVC4ec0sXNf1WrCXbX4QVUPUnkBeo9XFPVPqYDBFlZJ0dpTjOJhMJrkPoy3ixhW1YM9qZlYR\nZX5JqTZwOM21ULV5XmVlmiaOHjuKQ0cO4bh2HNv723Hpnkux86U7AYDzgzJUldKyIvj3BALRDVfi\nXKNV+Syqch5xscxPHgZTVBlRZX1B4s/W19e9kq8qLXqizl10sGs2m0tR1leGEkZVj4tedPc37sbh\nE4dh9A30zuihsdrA89bzOPjfB9H5rw4u2HYB/vj1f7zpgY5qLa5pOc2accUBwuUV5+Eay/zkYTBF\npedvMgHMH8IrOrkBQKfTya2sz0+FzEKeHexUfOInSjeTdiYs+nMi9ZimicMnDqN9bhtttL3/3mg2\nsLpjFQBw+FeHYVkWWq0W2u1TP8MW18tNxe/FNDOuqqKK3+1sQKEGBlNUasGyvnk3LsdxMB6PYds2\nAEhv/y3r5hoM3vLqYCfzvYsbkC5S1qfawofUcPTYURh9Y1MgFWT0DRw9dhTnnXue99+iurCJLDob\nBVCR4sy4Ak5lrizLKv0DgDIfu1+ctYSmacxMScJgikpLtC+OU9YHbB7Qura2hpMnT0rd71OU4HlX\n5WYSRpT11ev1ypVuUnEOHTmE3hnRT3h7Z/Rw6MihTcFUUFQXNl3X4bqu14KdjQKoCGHBlQiogjOu\nmF1Vm67rOPPMM4s+jKXAYIpKJ1jWF2fzrK7r0HUd/X7fK8GpslqtBsdxoOu6lMG0KpSzyOjImAUV\nSj5pPv9ndFw7jsZqdDa30WzguHY80Wv4g6tOp7NwowCirImAvtFoeGWBZc2uqnCfykqccxHdayl/\nDKaoVFzX9YZpxi3rG41GALClvE32ojarobNx+PeF5T2YVnaZZNh/y2vQMi03cW1v72/H89bzaDRn\n/x7Zlo3t/e0Lvd6sRgFiL4sIvpYhI1CFhW8VzgHYfB6ccVUebEAhD4MpKo20s6M6nQ5WVlaWZkCr\nmH/TbDaxurpamRtZ2Hn4g+UsBi0za0Rh9p2/DwcfO+g1mwgzfmGMfZfty+w1oxoFxGlmUZWFPKkt\nzhw2lq5mL859ig0o5GEwRcpLOjsqbqZC9hd63gt1f7e+ZrMpbQhvUQGIaZoYjUbKl/VR+e3etRud\nB6PLZDtaB7t37c7tGJI2s+BDASpC1ADhoktXq/aAIU6ZHzNTcjCYIqUlmR0FbG5AMC9TUaUshOM4\n0DQNjuNgbW3N2zBcNaL0SeyBW5ayvipdq2XUarVwwbYLcPhXvjlTzQZsy8b4hTE62qk5UzKvxTjl\nVuK7s9lsMiNAqS3y3cMZV8Xhnil5GEyRskSZADB/dhQAGIaB8XiceK6QLHktiP3d+gaDgfdeVW3x\nLc5pNBrBdd1MyvqKUMXPZhnc/Ac3wzRNHD12FIeOHMJx7Ti297dj32X7sHvX7sKD+mBwNR6P0Wg0\n4DgOJpMJAC5aZatSJiSL84gz4yrPfYFV+jzinMtkMmFmShIGU6ScpLOjxAwly7ISzRUq+6LWX9ZX\nZJdCWe+jmBEWtQduUWW/JihfrVYL5517XmT7c1WIssBms7klI7BszSxITXFmXLENe3rMTMnDYIqU\nknZ2VLPZxHA4VPqLNsuFerCsL9itr0pBgQgabdtGt9ut5M3BcZzY1zxRUos2syhClbIIFA+Dq/iY\nmVILgylSQprZUSIrk3aGUlkDDtM0oWnaprK+ouX1PvqDxlarlWuL96JYloWNjQ0A8DpfiYwCgyvK\nw6xFq2VZpZsdRPkrKrBN2nRl3nW6bAG6GLBM+WMwRYUTTSbW19djtfKel5VR1aLBW9Lhw7ICxbxu\nTsG9YJqm5fI6QbLet+ADAcGyLNi2vWmfi+M4pQz8qRyiFq2cHZTesi3e88YZVy+Ke21V9fxVw2CK\nCuXvOGVZ1tyfzzIrU6bMVNIAssxfoFlkHdOS1UoeAEajkfd51mo1mKaJWq2GVqs1c2iraZoscaHc\nRbW3FtUDbGZBRYsKrnRd35LpF50tlwEDebmW46oi5QSbTMwLDpJmZVSUNngTAWS73VamrC8oq6BU\nNBOxbXtL0Fim4DeKbdsATp2PCKRE5sn/2fr3uViWhWaziXq9vmX/gGgioOpT2Cp8ZsvO394amD07\nyD+YlaqjLAtzf3DV6XQ2XaeTycR7QAWg9AOEXdeNtR2irOdXNgymSLqks6Mcx8FoNAKATNthq744\nXySAlHluWX1Z27aNjY0NNJtNL8iomul06pUr9nq9LcFTlCSlWKrstyr69ZdZngup4OwgNgkgFQUf\nAkwmE9RqNc64oswxmCKpxA1X3OiDi8ngAkAsPrvdLrrdbuY3ZZnBVJIAR5T1lXmeUhJiRpjssr5Z\nsl6Iuq6LyWSC6XSK1dVVrK+vJw6kgtdOVCkW5wqRLFEd2MRDszQZ1Co8VY+TPSC5xHemyFKJChkx\nLqAsGdZ5vx9V+P0pEwZTJEWwrC/sBuNfMLqui/F4DNM0MRgMchmIqeoXjWmaGI1GC81Tkp2ZSvta\n/s85zoywvM8pj2tCZFZFWV9ei6tgtiC434rZApLBH1y12+2lbhJQBeI7t2qfkXiYKyo+qpZhnU6n\nSjyYXBYMpih3SWdH2baN0WiEer2e6+JTdpnfvNerwr6wJMTn3Gg0Ys0IK9ONTBCBcTCzGpaFzVLU\nXCG2viaZZjUJsCyLzSxIqqjv3LLNuJp3/9A0rZIzGVXFYIpyk3R2VK1Wg2EYMAwDKysr6HQ6S7PA\ny2tfmKpE+WZVP2d/YJxXZjWJuNkCf3lL1T4TUkNUeap/HwtL5KhIcWZcqdwAaDweY2VlpejDWBoM\npigXruvCNE3Yth1rYSaeAok9JTLal6qSmcqirC/ua+UhyWslLesrozLMQYu7oPU3syDKQ1QzC3FN\nqpINSKoK+1aqcA5ZUG3G1bzPZTKZoN/v5/b6tFn1VjJUOBEUhTWZCCOGswKnOpxVcYEdRjQlMAxD\niexF3hYt35QVIC5SghccNFyWRUjYfiv/xmyVyluouvzZAPG73mw2Q0utxKgAXosUV5aBoWrBVRDL\n/ORajlUrSRGnyUTw50UpVK/X856Iy1JEZspxHAD5l/XJPrd5r5V3V0YVqNaRMK2ojdncb0Wy+Aeu\nxhkHwGuRihSV7Q/bG7hoKfW8e664F5EcDKYoE2lmRwVLoWQHU0WZ1ZSgrOa1ZxUtwauafUtbuqjy\njDO/pPutuM+F8jKvmYXrut51yL1/2ahSmZ/Mc4k76HqRxiss81MHgylaWNTsqDD+PUL+UihV9jDl\nyTRNKYGFCgOJ/dm3LLoy+jN7qvCXLsbpSCiUeXESd7+VmOVClJcke/+KCPR5/ZMwb3SF/6HVvGs1\nznU1mUyYmZKIwRSllqasL2qPkAoBQF4cx4Gu65Udwhv83MqcfYt7HcosXVT5d2NeAwHgVAkk91vJ\nVaWMQlwq7v1bts+A5osaXZHkWmVrdHVUa0VH0ogmEyKQijM7amNjA5ZlYTgcKlHuJWuBOp1OcfLk\nycqWQfk/exEwj0YjDAaDzLoTqkSco6ZplT3HtMTT1Xa77bW9F9e7CD5F2adt28oGiFR+YrEqrsV+\nv++NYTBNE5qmYTwewzAMWJbFa3GGqrwvKg8fDn5vZnGtFrFn6tixYzhw4AAuvvhivOIVr8CnP/3p\nLT/zwAMPYDgcYv/+/di/fz8+9rGPST3GvDAzRYkEZ0fFCaTiPsGvWplfcL+Q67owDCO31/MrIpMh\n9sHllX1TITuT9zlWjfh+EA05/PutRKbWv8eF7ycJWWfW4swNYjOLcHwf5Jo1QNiyLO9aBU5l/Gd1\ntdR1HS996UulHner1cInP/lJ7Nu3D6PRCK961atw7bXX4qKLLtr0c1dddRXuueceqceWNwZTFFuw\nrC/O7KikG/OLXixnxbZtaJqGWq3m7RcS7eKrplarwbIsrK+ve0/WqnjzFW3PszrHKl4L8/j3uHQ6\nncj9ViwJpDxFtbYWgT4HWVdHmb9vg8GVbduYTCYA4DUBqtVq+PznP49Xv/rV2L9/PzRNkz6096yz\nzsJZZ50FABgMBrjooovw7LPPbgmmyvxZzMJgimJJMztK0zQ0Go3YzQeqkpmalYmTeSOW9V6K4cym\naWIwGHjttMss+N6JjKLojpTFOXJRdkrUfiv/TCHut6K8xQ30k2RRl3Hfmsqq9FnU6/VNGf/19XU8\n88wzuO222/DMM8/g4osvxgsvvIBzzjkHr3jFK6Rn/Z988kk8+uijuPzyyzf991qthgcffBCXXXYZ\ndu7ciU984hPYu3ev1GPLA4MpiuQv64vbZEIsPHu9HtrtdqIOZ6p1a0vCn4mb1a2vSk9kRMmbbdto\nt9tSAinZ75/rut45ihb+lA+WYZFK4nRfC7ZhryIGhOqr1WoYDof4xCc+AQB47rnn8OEPfxjPPvss\n3vjGN+LEiRM4cOAAXve61+F1r3sdzj///Fw/09FohDe96U341Kc+hcFgsOnPXvnKV+LYsWPo9Xr4\n1re+hRtuuAGHDx/O7VhkYYE6zSRmR4lAKu7sKMMwsLa25m2gVF0WC3TbtrG+vu7NzQoLpIp4L/IK\nPkRZX71eR7fbzeU1gmS/f+IzBcBAqgBisdrpdNDr9dDv99FqtbzOmOPxGLquwzTNUj+EIfX5O6+J\nBgGi6oDNLMqhSkHhvHPZsWMHut0u/vZv/xZHjhzBj3/8Y7z+9a/Hf/3Xf+Hqq6/Grl278NRTT+Vy\nbKZp4o1vfCPe+ta34oYbbtjy56urq15jjN///d+HaZr4zW9+k8uxyMTMFIUSAzlFEBWnrG80GqHV\namFtbS3Vl1YRZX5ZEGV9onuZCl/YeR1DMPPY6XSkNdWQSZSZqfSZLruomULLlCmg4sXNoor/zv1W\nJJu/m9/u3btxyy234JZbboHrunjiiSdw9tlnZ/6aruvine98J/bu3YsPfOADoT/z3HPP4cwzz0St\nVsMjjzwC13Vx+umnZ34ssjGYok1Ek4nxeAzLsrakaMN+Xtd16Lq+8H6SIrq1iddMc6NL2mBDhW50\ni4gqeSvzefmJfTu6rsdumrLIa1F6cfdbzep2RWorUyYhqpnFdDrdNGet2WyWKrgq0+ewLOJ8JmKP\nb1CtVsP555+fy3H98Ic/xJe//GVceuml2L9/PwDg9ttvx9GjRwEAt956K/7lX/4Fn/nMZ9BsNtHr\n9fCVr3wll2ORjcEUeRzH8Upm4nx5Oo6D0WgEYPnKoGzbxmg0Qr1ej91gQ7ZFAsUgkXlsNptbMo+y\nbrR5B6P+67nX6+UaSCV9z8oeiOctKlMgul1xvxXJIoIr4NR3if96FF3YkjazoMUsW1A4Ho9Dg6k8\nXXHFFXNLrt/znvfgPe95j6QjkofBFM2cHRW1eBOlbZ1OJ7NW2EVmppJIW9ZX1gWxYRheyYDoHlQ1\nYt9Du92G67pc3JTcrEyBZVne91zVF7PLtnhU2axmFv4SVY4EoLjiZqZkt0ZfZgymltys2VGzFv5i\nEK1hGDM71lVVmrlZRVo0eIt7vmUNEoHwtufr6+ulPR8Kx/1WJNus7xBxny3LSICqBOVVOY+4+FBQ\nLrVXg5SrYFlfsHQreDPwl7YNh8PMf1FVzkyJc08yNyvta6nAf77D4VCJm1DW79+sPWAqnCvlK85+\nKyDbUllaTvOunbASVcdxYFkWRwJQqDjfSWXal1cFDKaWUNLZUcCLpV55djcrKtiY95pZn7usxVna\n91PF7oRZs20bGxsbC3WfpHhUf4Awa7/VdDqFbdve8PEyNg+g8uH+P1qU6t+5VcRgasmI2VFh2Sg/\nsRAXT+8tyypFaVtSUTehrMv6VL/hpT3fMmXcADX2gJXtPVsmouTPcRy4rot2uw3Lstg8QDJmBE+J\nKlGVsf+vKuViy3Y9Ldv5Fq1aK2OK5DgOptOp90sW9YtWq9XgOA5OnjyJZrMppdRLpTI/Fcvc8lSm\n7oRpqb7nrYrXWBXOqVarodVqbWkeYFkWDMNQan8LVZ+/RBXYHFxNp1MAYDOLiqtKgFslaq0mKBfB\nJhPzfgnFpnwAXqnXMsmzpFHmHoy4wYco6+t2u+h2u5W8+Yq257VabW6wyKwRzRK3eYBYyLIEa3nJ\n+p6PO29t2YP9ZcrUMNiSj8FUxcUt6xMcx4Gmad6sAJmBVNGZqaqXNAaJzozT6XShzoyqBx+maWI0\nGlU6WKRiJNnfwv1WlLdZzSxE1spxnMTB/jIFIWUx7zPRdX3pHoIXrdqrxSXnn6kS5yYuZu20Wi30\n+32cOHGikC/SIl7Tsixvo3meZX0yA4+o1woOXC7LU6wk753rutB1Hbqul76Nvyi7JbVF7W/hfiuS\nzR9ciRl6bGZRfWJPMMnDYKqCZs2Oivp5segUs3aKUNSXuGmahTckkCmPTI2MADHJcfozrHm08V9U\nWKDLJ8DVEzasVXw3c78VybbMw6yrVPo2717BYEo+BlMVEzU7atbPiwxFcNFZxIwVma8pFjau626a\nM5SnIkvi8srUqLYAtCwLo9EIrVYLg8Eg8fGpXrZI5SS+j8XDqrASrKyyBOL6Ve13M4myP1wow/FH\nZVJFMwsRhIj/I/VNJhMGU5IxmKoI/+woALG+9OY1HqjyolIsuMXiRkYgJZv/8xOZGtd1lczUZEWF\ntudEccQtwfJ3ZVN9cU7lFtbMQtd1b21R5kxqGYLbuOadi6ZpDKYkYzBVAa7rwjRN2LYdu6xPtIhW\nbS9J3gGc6FQontzYtp3ba4UpIkAVe+Ha7TZWVlYyv6HIOqeo11G97TnRPHGyBMFmFkR5EcF+rVZD\np9NBvV6f2Smw2Wxyv5VCWOYnH1ccJZdkdhSQbJ5Q0d31sia69dm27ZX1TSaTymbfgFPZR8uyCt0L\nl7cqzQSr0tNTWgz3W5EK/GuLuJ0r2cwiX/PuE5PJBP1+X+IREYOpkko6OwpIPj+pSmV+/n00a2tr\n3rnL7pIm6z11HAeWZQGAtP1gRRClqlnOBJPxGQVfQyxWqvL7Rtmatd/KsqzQ/VZcxBav6g9GZjWz\nsG0buq7DdV2lylSr/nn4MTMlH4OpEko6O6pM85OyXlAGy/qWYR+Nfz9Yq9XKPZAS11/eNyv/6wCn\nnr4ZhqFcqSpR3qKyBGIhC5wq8S1jVzY+VCgff3DV6XQiy1TLeE2qIs7vBoMp+dRdVVMokY2KW9bn\nz8gkLYEqe5mfvz32rOyM7HPMu4wxuB+sik/ixOcKbO1ASbSMggtZMdcquJD1ZwnKoCzHWWVp71eq\nlalWLTM1rzX6tm3bJB4NMZgqiaRlff422GkzMmUuO1q0PXbZhO0HG4/Hpf38omxsbOTWTKNIUZ9V\nmX8XST5xf+h2u5tasAcbB7AskOJY9PqIGgvAazKZOEHhZDLBzp07JR0RAQymSsH/dDHu7Kh5GRlV\nLbpo9Gdn4jRdqEJmSgSOzWZzy34wWeeW93ww8bkC8Fr556WIwMUwDGia5mUYuKCgrISVBEbtt2Lj\ngGxULROSpagyVV6TixN740keBlMKE18wk8kEk8kEw+Fw7t8xTROj0QidTmfhjEzZnoaXOYhMaxnm\nKvmzbgAq05VQlL6Ilu4rKyveQlc8rQ0uOIgWFWe/lT+gZxnt8pL5MC7vZhZVCW7jZqbYzU8uBlOK\n8s+Oqtfrc7/UXNfNfEN+mfZMpS3rK2tmKs5cJdmdCvN4H/1tz9fW1nDixInMX6MI4jpYX19HvV7H\ncDiEaZreQhbYvKAQ+yT9ARYXuTRLkoVj3MYBZdtvRdmR/ZmzmcViGEzJx2BKQWlmR1VlQ37SYMO/\nN6zKs5T8VJyrlMcxzGp7LiP4zfs1xF6BlZUVdLvd0PfPv6BoNBqYTqdoNBreXBeWBFIego0DuLeF\nikBbEvsAACAASURBVBbWzEI8ZIrzXbhsWX1N09jNTzIGU4oRT178TSaiAgyx4BT7SLK8sale5pdF\nWV/ZMlNJ5iqp/vnNIrKs0+l0S9ZNxsItz9cQwb9pml4TjSTH1Wq1Ihe5YkHBPQaUhaL2tlShJKss\n52CaJo4eO4pDRw7huHYc2/vbse/8fdi9a7eSY1TEA+YkAb//75Zd3DI/BlNyqfebQluyUWGL4jhl\nXlkch8wyMfGacQIA0zShaRra7fbCe8PKEHDI+LwXkVXg5jiONyNrbW2t1FnWIP/er06ns9C5RS1y\nDcOA4zjc90KZm7W3xbIsmKYJgOVXZXL3N+7G4ROHYfQN9M7oobHawPPW8zj42EF0Huxgz3APbnzd\njUUfZqQ4DVbEdSi2TVQhqIoymUwwGAyKPoylotaKjCJ/0cUTCcuyoGmat49kmW5YWZf1FVELnjRA\nFWV99Xq90p+3aJ6SR5a1aMG9X5PJJNMgPrjIDdtjwJJAylrUdcdSVLWZponDJw6jfW4bbbx4H200\nG1jdsQoAOPzLw16QXBZhwZUoBxQPmsSfN5vNVM0sihQnM8WhvfIxmCoB/14R/1DWdrud65dAUQ0o\nZgUboqzPdd3MuvWpXgq3SBmn6ucmJAmQy3JOfmGlmXmfR5x9LywJpKzF3W/VbDZ53RXs6LGjMPrG\npkAqaNqf4tgzx0o9AFYEV7VaDb1eb1PAP5lMAFQvm6rrOlujS8ZgqkRkt/1WqZufv6yvzMNa476n\n/n1DWXVnzFPaa8V1XYxGI6Xa2WfZcXHW3q+kr7vIMcUpCfR3a6vCYoKKF/e6q+osIdUf+hw6cgi9\nM6KzF70zevifX/0PLrn4EklHlb9ZzSz82VSVu1fG3YvH73G5GEwpJuyXxLIs78/8Q1mXQd7d+lTM\ndIh9QwAWKutT8dz80razL4NgFlWlG1uckkCVFxNUTkn2W5Wt9GoWlc/huHYcjdXoh1eNZgO/0X4j\n6YjyMysASdPMQuXPlIrDYEph/kCiVqtJ30dSdGbKH1SUveW7X9R7WuZ9Q0mulbTDhlUPEIEXg8Sy\nZFHzLglU/fOiYswK6i3L8gZ0G4bBRWxOtve343nreTSaswMq27Jxev90iUdVrLjNLIoskZ6XmRLZ\nNpKLwZSCarWat2EdOJWdEP9/2cdRxC+lGFg8Go3Q6XRyXZD696MV2XbbHziXcehy3PdO9a6Ei0oS\nJKp4w8u6JJALYIrLH9T75wdxn18+9p2/DwcfO+g1mwijHddw2d7LJB5VPtLe38tcqqrKcSyLaq1k\nKmI6nW4JJMrwRD4rIiNVhr1CaQQ/R39JWJUycEFl6UqY5nctaZBYlhsdSwLLqSwzjmYR9zxR1h21\niFW1I5vqn8HuXbvReTD6gU9H62DXzl2Sjkh9YaWqIpMqazSA67p8iKUgBlOKERmKYCBRdMmdDI7j\nYDKZwHEcbNu2TdpiW5xnEZmpqjTWAOSVL6r2UKHKs7GCknZrI8pC1CJW5Y5sKn+ft1otXLDtAhz+\nlW/OVLMB27IxfmGMjtbB+cPzK/lAMyu12ouD1IHZD5v8QX/eHMdR+rqrKgZTihELsrAFY5WDKbHY\nFos0VW6GeRA1zXk21gDUKPPLunxRtZtEmfe4LSpuCYwIulTMHlA5+Rex/o5sojyQTQPiufkPboZp\nmjh67CgOHTmE49pxbO9vx77L9mH3rt0A4O1fKzNZD0tnPWzK8rqcdy66rqPb7S5yGpQCgykFhS2C\ni7gZyFiMi/bRhmFgMBigXq9jY2Mj19cMkh10qNgOPA9VLl/0z3zLKxgum7CSwLDsAUsCaZ4ki9+o\njmyqNA1QWavVwnnnnofzzj1vy5+VbWCvSmY1s8j7uhyPx+j3+wv/O5QMg6mSqOKeqbBufY7jVDoD\nZ9s2HMeR0g68iCBR8Lc97/V6pVq8zHvfXNeFpmmwbbvSwfCixELBNM1NwzI5wJXy5F/EttvtuU1U\n8sqYVu1+XWYq7F+Le13Oa2Yx71xEAySSqzqPiiuuqD1TQD43hel0ipMnT6LVamF1dbVSWYswotxt\nPB6jVquh3+8X/uWeF8MwsLGxgZWVlczPs+iHCrZtY319HQAWCqSSnkfR570osZAQewP92TzDMKBp\nmjfguIgHKlRdImPa6XTQ6/XQ6/XQbDa9jOl4PIau6zBNE47jZP7aZaZCEFJVweuy3++j1WrBcRzo\nug5N01Jdl+PxGCsrKzke+VbHjh3DgQMHcPHFF+MVr3gFPv3pT4f+3Pve9z6cf/75uOyyy/Doo49K\nPca8MTNVIkUsMLJuziDK+qbTaegemio22vBnMvr9PsbjcW6v5Sf7vRTli5ZlVTJjM51OoWkaVlZW\n0Ol0uMhYQJKGArI2btNyCO5rEdce91tRkeJ2Tp33sGkymUjPTLVaLXzyk5/Evn37MBqN8KpXvQrX\nXnstLrroIu9n7r33XjzxxBM4cuQIHn74Ybz73e/GQw89JPU488RgSkGzJnWX/WmtbdvQNC1W17Oq\nPBHzl7uJxiJl/xzDiMxbq9XCcDisxGcn5DEDjDYLaygQtsCVWRJYxd9T2iysBXtwX4uqc4QovjKu\nJ2Y1swCwqUxaPLQUQZimadL3TJ111lk466yzAACDwQAXXXQRnn322U3B1D333INbbrkFAHD55Zfj\nxIkTeO6557Bjxw6px5oXBlMlUavVMi9BiPu6WSwqxFP9eV3PqtRoI2yAa1FDkPN8X6fTKabTKVqt\nVu7lizIeKvhfQ2YTjbLd7PMya4ErAqsyzBiicspyv1UVgvEqnEMV+K9L0zS9bn1iD+p1112Her2O\n17zmNTjrrLPmDozP05NPPolHH30Ul19++ab//swzz2DXrhdnlp199tl4+umnGUyRXEVlphZ93Xll\nfVGvWdYFUtQAVxXalWfF/9m22+3KPbWV3USjSu9dlsK6YskqCeRnUgxVvv/jll7NuvZUOIdFVeEc\nqjRuRZyL+F4EgG9+85t48MEH8d3vfhdf+tKXvFK6q6++GldffTX27dsn5fxHoxHe9KY34VOf+hQG\ng0HosftV4doSGEwpqCoXmG3bGI1GqNfrSg8zzTLAEefcaDQiy91UWSyk5e/EuLa2BsMwKvUU03Ec\nbGxsbMoqZinsmqvS+5enuCWBy7znpezfL6pKst+Kv8+UtVnXVK/XwzXXXINrrrkGd999N0ajEc49\n91zcd999+JM/+RP87//+Lw4cOICrr74aN954Yy7ZINM08cY3vhFvfetbccMNN2z58507d+LYsWPe\n/3766aexc+fOzI+jKAymSqJsmam4ZX1ZvmbR4jQokL3AySPLJzI2ojObzHOS0SxE13W4rou1tbVN\nWUVST1RJIPe8UJ7mXXtiFh3nW1HW5rVGf8lLXoIbb7wRN954I4BTJXb33Xcf7rvvPuzbty/zYMp1\nXbzzne/E3r178YEPfCD0Z66//nrccccduOmmm/DQQw9h27ZtlSnxAxhMlUZZgqmoEjdVZVHKWLZz\nTmPeoNoyBsB+/mybKO+hcgkrCbRtG5ZleQNIg8EVURaC156maWg2m5se0IjAqizXXlXK45YpUzuZ\nTLa0Rt+5cyfe/va34+1vf3sur/nDH/4QX/7yl3HppZdi//79AIDbb78dR48eBQDceuutuO6663Dv\nvfdiz5496Pf7+OIXv5jLsRSFq4WSKEO2JquyviLONe3rpTlnmXvCsnov5w2qLfuNyp9ta7fbXlAl\n2zLd9GXw73lhSSDJJrpPdjqdmfut/M0siKLEuT+Mx2Pp3fyuuOKKWA3S7rjjDglHUwwGUwpS6Us1\n7mI8yxk8soOptMe6SCljmfj3ga2trRV+nllfG7qub8q2ifazKinDwxTVJS0JZGBLWZrV6to0zS2t\nrhlcZWuZfpfFvYzkYjBVEqqW+VWhxC1NKWPSDoWLvF6R/EGyaMcaRtY5Zfk64totashwWa6BqppX\nEhjsmlWFcqeyqPriN+zaU3GvX9U/h7KJm5kKlvlR/sq38l1SKi7A8+rWp+K5CsEudqovsNK+l/6A\nsaxBcpTgteu/QcmaZUVqCbbBFvtcWBJIeZsV2Nu2DV3XAXCvH8XDzFQxqrVCqjDVMlNiIG0WZX1F\nizsQ2TRNjEajhcv6VA4WgRcDxlqtpmTAuOh7l9XnSNVWq9VQr9e94a2iLEulzAGpa5Gsjj+wn7Xf\nyt/MgtdetKpk2OJmpsJmPFG+GEwpKOqXRfaXQnDhL6OsT7VgQ3Rj0nU9VVlfkZK+l2kDDZllfmmV\n+XOkYvkzByK4YpdAkiXufivR8CKrNUJVgpBlMplM0Ov1ij6MpcNgqiRU+EKLO5B2UUU0oJj1ev6y\nvuFwmMkiSbVgEah+oOG6LkajERzHKWR/FFVLsCRQLG5ZEkh5iyoJNAyDWdMQVQkKVe3mRwymSkVm\nS23/azqOU6myvrhM04SmaYUMp83SvMDNcRxomrZwoKFagCjYto2NjQ20Wi0MBoO5n6OsYFfV94uS\nm5U5KKoksCqLx7KS/TDQH9gza7rcdF1Hp9Mp+jCWDoMpBc26CRaV0TBNU2q3vqIzU/4sTdhw2qxf\nL0/zFlRivlLcQCPt62Ql6XsXtxuhbGHvFxe/1TCrJJDNBOKrSjBYxDnMypqKzJX48zhZ06p8DlUR\n5/MQez1JLgZTNJNt25hMJqjVarmW9QUVWQaXVZamDES2sdfrVe5JVtW7EZaFiiWtss1qJsCSQJKh\nqP1WqhDfP1U7r1mW/fu2KFxhKCpsESJzYSIW2mKIaZW/iMT7mlWWJu7ryRD2Wnk0EVFp0ZxV+3oV\nn8qqeEyUjGolgbQ8kuy3ajabynyn0ynzPg9+XsVhMFUiMhasrutC0zRYloXV1VXvCb9McVuVZ0Xc\nUDY2NnIp61OJf76SzGxjVub9DoiAeJF9biq+JyoeEy1uXkmg67qbSrJYvkNZCttvZVmWV5UCnCqV\n5vWnjjhlfrxfyMdgqkTyDqbEQrTZbHoLbbGBtarE/ijXdTEcDqWU9UV9jqZp4qljT+HRxx/F8dFx\nbB9sx/4L9+OcXeek6rDnfy2xf6iq85XKVrbIp4gUFDVfKOl+FypOWTPItVoNrVbLy5pqmoZ6vV7q\nktSyfhZULgymCK7rwjAMbz6BfyFaRPmWrNcUwaO4KRS9P+qf7/lnPP6bxzEdTNE7o4fGoIHnrOfw\no5/8CO3vtXHh6Rfibde/LfG/K7KLebY9L7LMT8bss6zx5k5xzNvvwpJAyou4llqt1pbB1f79ViK4\n5/WXP9d1I7ODjuMwe1gQ9VcdS0rWninx9Mm27dCGC1UNpvxZjGaziY2NjVxfzy/s/EzTxOO/eRyd\n8zro4MVgttFsYHXHKrADePyXj8M0zUTBkAiURVlfFb5o/e+d2B9Vq9UW2h9FpLqo/S7BksCyZz3n\nLRopf2HrjyT7rVQpN1umzNR4PFaqa+0yYTBVIlkHGf6GC2tra0vxhROWxXAcp/DFx1PHnsJ0MN0U\nSAVN+1M8dewp7Dl3T6x/U8wZaTQaWF1drcTn6z8H0zQxGo1yKVssYqYbURJRJYGWZQE49dCoTCVZ\npJ6oUS2zWrCL/VYcAZCtefekyWTCgb0FYTBVMlks+qPK+oKqlJkSzRcajUahzRfCzu/Rxx9F74xe\n5N/rbe/h0ccfnRtM+T9fcbPL+1xlXidin5u4cVSlYYjjOHAcR5knulQu/pLA6XTqdWFlSZZ8y/gg\nJliS6h8eXNb9VmUjZiqSfAymFJXXUE/HcTAej2eW9YW9ZtFZmyz4h7d2Op1N76UK53h8dByNQfRn\n0Wg2cHx0PPJngmWb0+m08HPLkqjbNwyjUnPARJZNEKUyXHRQWvV63XvQMKskyx9cEfktct8QD4Si\nRgDICu6rFNjGyUz1etEPZSkfDKZKZNFF/yJlfTK/kLIMbpI0J5B5jsHz2z7Yjues59Bozg4ObMvG\n9sH22X/uy7wVUbaZd9Bm2zbG4zEAlL4sVVzj/iziysqK9x6GbfIGqrUwIHmiSrKm0ykAsEsgbZHV\ndRA1AiAsuGd2Ph2W+RWHwVSJpJ2/lKSsL+w1ZcsqmPLPVIpqTiD7HMNeb/+F+/Gjn/zoVLOJGcbH\nx9j/qv2hfzYr8yZrZlfe76E4v06ng+l0WomyxWAWsVarYTqdeuUw4mfEogM4tcGYc4doUfO6BBZd\nEsiHBtUWJ7gPNrNIq0rX0rxz0TSNmamCMJgqmaQLPMdxoGkaHMdJXRZVxs34qs9UCn6O5+w6B+3v\ntYEds/9OW2vjnF3nbPl3JpMJptNpadqCJyH2R4m27lWZfeYPcEUgFRb0+hcdlmWh0+l4ARb3IVAW\n4nZpY0lgfGW7XxYtbL+VZVncb5WQ6FBM8lVr5VUhWeyZ8pf1iYVoGSySFfAHF0lmKskMGMNeo9Vq\n4cLTL8Tjv3wc0/4Uve09NJoN2JaN8fEx2tqpOVP+8xFtwQEo0xY8y/dQPAgQA5Xr9Tps2y79HjD/\n/qh+v5/o/ZqVURD7EFRsTUzlEjdrwD191VZUQCi+t/z7/WZ9zy1bMxXumVIXg6kSiRtk+Mv6suh2\nJrtBQ9rXW2TmkOxzDHutt13/NpimiaeOPYVHH38Ux0fHsX2wHftftR/n7DpnUyBlmiY0TUO73cbK\nykpk+1oZ55X1zcz/IKDX61XiZhkstx2Pxwud16x9CJZlbWlNLKOjI1WT6iWBVG1J91sF7/vLlCUc\nj8fcM1UQBlMlEmdhnEVZX5rXLVqeM4eyFnVsrVYLe87dM7P9edaBsor8A5WT7O/LUtbXfHB/VL1e\nh6Zpmf37wOaMQlSpTLPZ5KKXUmFJIBUtaea0KuLcj8bjMV7ykpdIOBoKYjBVMlG/UCJbkUdZXxHB\nVJwnSsE9NXHL+oJUyEzF+Tv+BXmcG4XM81q0VDJO58UyBPZBYV0W8z6HsFIZLnopaywJDFeFbEhZ\nzmFe5lR8F1qWVYlrcF6ZH+dMFYPBlKKS7JnyBxR5ZCtU6HYXxr9nSOypKYM076dt29jY2EjV1r4M\nFinRVJkqGVO2xiYZ4pQExsmOlmUhT2oJy5zqug7XdUu/3yrO78RkMsFgMJB0ROTHYKpEwp5o51HW\nF+d18zYvyxF3z1DS15MlyWstUvZWhkyO2B+V1WepAtXLMeM2sijbgoPUEbckkA1TKC+1Ws37/gru\ntxJBVpVGTbA1enEYTJVIcGHsDyjy7NZXZDAVlHcWToa4n1OSgcMqSHqdpAk4ZDbUWKSjZNJyzCJF\nbfDWdR0AtgRXpDYVH6BEZUf9DVPEnj8qVlWyg67ret9Z/muw0+lUriyV3fyKo/bqbIlFlT9UIaBI\nI88snGoZnKqWvQllCzjichwHGxsb3qDoqC6LQLIFi8xAMmzBwUYW5aL65zJrtpBpmt49TlyHZbvO\nqhKIVF3cslQVyp/jlvmxm18xGEyViPhF2tjYACBvn5AKmamyzswKM+/9zHKfjYrli2ENGapAlf1R\nWQtbcIjAKliqVbWgn+QINkwRjZRE9polgZRW3MA2rCxVfNeVpfyZrdGLw2CqRCzLAnBqo7jMvSVF\nZm1k7T1RITOVVWfCosS5HrMKOFR68pvlNarKOc0StuCwLCu0VKvs2UaVrrFlE/c64wy1/Cz79T9r\nz5/IngJyy5/jfB5ibzXJx2CqBPyLbACVeuo9S61Wg+M40HW9cqVgUY1EXNfNNOOoQpAIZNvCXoa4\n71tVyxXjqtVqaLVakWUywKlspIpPcucp2/FWRXDhGLzOZs1QU6Eci6qpDB1RWeZXHAZTihK/iMH2\n3ydPnizkWIpYkIvmGjJKwYoMOvwljL1er7QLgaimIaPRCI7jlKqF/Txx90cti1nZBMMwKtk5i4oR\nNkNtVjlWUSWBKjzAolPyyrBlNQYgrjjnMZ1Ol2YPvWoYTClMlER1Oh2vrK+o/UuO40h7PcMwYFkW\nOp2O1KcssofbAou1PU/6WkXwz8cq+143vyzKFee1/y87kU0wDAO9Xm9TmQyzCZQVVUsCy349V/m7\nKWtJxgDkud/K37mQ5GIwpSjRFjtYElX04jhPomTKsqxN6XQZirhpjEYjWJZVirbnaUynU2/uRZaB\nYpFBiOrzo1QWd7YVGwzQIlgSSH5F3CuCJYFZ7LdicKu26q3gKqJWq2E4HIb+96I76+XB3+FtOBxC\n07RcXy9I5vsqsnxif1RVviDFe+i6LiaTCabTaWkDxbDrQTzgsCxrKfdHZWnWbCvLskIbWVTld4Tk\nSlISqGqHNiq/qP1WhmF4f75IgM9gq1jMByosataU7OPI8zUNw8D6+rpX1ldUOaMM0+kU6+vrAOCd\na56KaI2+sbHhBRxlDKTCOI6D9fX1XGacCct8IxSLiW63i16vh5WVFdTrdW8w+Xg8hmEYsG27kt8L\nJIcI4judDnq9Hvr9PlqtltfsaDweQ9d1mKa5UGl7Fa5RLs7zIzL03W4X/X7fKxWP+r5L0uJdlne8\n4x3YsWMHLrnkktA/f+CBBzAcDrF//37s378fH/vYx6Qdm2zVWOkskSp9uYkn/aZpbslgyA4C8t4X\nJrI1hmFgMBh4TUWqxHEcjMfjTXv88iD72lBpflQVFmnzhGUTwvYfiCe53COwVdkXwrKO358xEFn1\nrPb1lfn9rxLVfxfi7rdyXdf7f1V50P5nf/ZnuO222/D2t7995s9cddVVuOeeeyQeVTEYTCksbNFY\nlTI/UdYnOqFVeUEU7MhYxLnmfUMRT9HEE9+q0HU91/1RSX6vVF4Q5ElGiUwV8X1IRgTxYQOqWRJI\nsoTttxLXoGmasCxrU/Al9tTbti299PzKK6/Ek08+Gfkzy/AAEGAwVTpVCKZEY4KoJ/1FZKbyeD3R\n9rzdbm/K1sg6v7xv9v7sYqvVqkxZHwCvnTfL+tQSt5EFF7y0CNWGtspWhUVwFc5BNFQRs/qazaZ3\nHX7kIx/BAw88gKuuugq/8zu/g8FgUPThblKr1fDggw/isssuw86dO/GJT3wCe/fuLfqwclGdlQ8p\nz9+YYN7gVtnt2LO2DF3f/HOWRNMQWTevPF/HcRyYpumdFxfj6prVyMK2bW/IeRFtsal6ZmVIw0oC\nRVBfdlX5fanCeYi25/6HSbfffjt+8pOf4P7778dnP/tZHDx4EK95zWtw7bXX4pprrsFv/dZvFfqA\n85WvfCWOHTuGXq+Hb33rW/+PvXcPkqM67/6/c+257i7SSAuSdhd0WQls0G6A8L5vjO3YYBAvVvCv\n3je2ZSvYxrZwQaiyU3FcuZOyY+P4ElxUUU4lcWwcsBPHvzK2wca4CvgVCkgykohJvCsks1oBuoyE\n2J3umenr74/NaXpnu3u6Z/pyTs/5VKViScOcPt1nTj/PeZ7n++CWW27B7OxsbNcTJsk6SkkYNERs\nghqTGN6apmFoaMjVkYqDIO8rkXhvt9sYGhqydaSifI5hjKUoCl5//XXk83mzf1QS+reQeaXTaeTz\ned7skzGIwUvEbIrFIjKZDFRV5UIWnEAhBm2xWES5XIYgCEilUmaEVFEUyLLM1xonNLLZLH7zN38T\nn/nMZ3D//ffjPe95D/74j/8Yr7/+Om6//XbUajXccsstuO+++7qm44VBtVo10/537NgBRVFw7ty5\nyK8jCnhkijFYdKZ6KeCPY55BjGeVeB8aGkrEiZgVa8StW3SRNaz1UYqixPLskrZe4sYuJZBEEriQ\nBZ2w6Hh0RkglSTIjVIOQEkgrtItP+KHb76LZbGJ4eBg33ngjbrzxRgDAqVOn8POf/xyPP/44SqUS\nPvKRj0RxqSanTp3C2rVrkUqlsG/fPhiGgVWrVkV6DVHBnSnGYCn9zTAMtFottFot6g3vIDZcUgtW\nLBbNU0q38ViLTJGIG4kudqaxsCpnb637IvNSVTWSubB4v1jFrgZGVVWz3grAMiELTrywbASTteYl\nJbBf0RRFUXB8/jgOHTmEulhHrVzD1JYpjI+N9/XOTZIjkhTcnockSSvEn0ZHR7Fr1y7s2rUrlOt5\n//vfjyeffBL1eh1jY2O4++67zcODPXv24Hvf+x7uv/9+ZLNZlEolfOc73wnlOmiAO1OcrvRiJPer\nYMeSAEUSmtR2g6aIW5Brg6xT0iQ7ynlxQyVeSGF3p5CFoihmvZW1ToE/L06v2EVIW60Wjhw9gudf\nfB7npHNYM7QG05PTuHj8Ys81tg/+6EHMnp9Fu9xGaXUJmWoGp9XTOHD4AIS9AiZHJrHr5nAMaQ5d\n2DlTYfPQQw+5/vsdd9yBO+64I6KriZfkWX0JgpaaKYLXkyrSeK5Twc4PrEQ5rMa4H4l3liJTfiJu\nLKGqKhYXF6noH8WJF7uoVbPZBIAVQhY8TYvTDbd3ZSqVwncf/e4yJyi1KoW6Usf+g/sh/H8Ctoxs\nwQdu/oDrWlMUBbPnZ5HfmEcebzhfmWwG1dEqAGD22KyptDqIJCm61m0ucThTnDfgzhRjxFUz5QVr\nWh9rCna93FeamrmGgR/1RYAdBxgIv38Uh21Iv6FMJoNcLhdqmhZnsHBygvJCHqvWr4JhGDh69Cha\nrdayddi51o7PH0e73F72HZ20y20cnz+OTRs3+b7OJDkigwB5n3HigTtTjBGXwUrGddpcdV2HKIrQ\ndT2Qvjw0G+ZBOI1Rz6+XNE0idU5bU+V+UzI766OCHiMsaLymQcFJyKKztxWRX4/bCOWGML10c4JS\nqRTUqorTZ05j4yUbHfuoHZw9iNJq90hEaXUJh44c6smZSgJJ+h3wyBTdcGeKYmjaBNwMOdKYNpfL\nmTLZrOHVUDUMA41GIzCnMQr8Pg/r8yyVSr7+e5qN/Tjro5yg+X5x7HFr5kpSA60qgTSsMw49HDpy\nyJcT5NRH7dXzr0IraDBUw6zp61xrmWwGdbEe5nQ4EeDlPSFJEkZHRyO4Go4d3JliDJpOp8NsTEvT\nPAlBOo00zg8A2u22ecIlCIKv/5Zmo5E8O0EQqEnJpOEaOP1jbeZqGIapEkiELNLp9DL5df7c15hs\n3wAAIABJREFU3UlCNMFtDnWxjkzV/RDOyQmyrrV1F6zDa6nXkE6noes6dF030wLJ/9dUDbVyLfA5\ncOLB7Xk0m00emYoRenJ3OJ6IO82P4KUxbZDjhU238drtNhYXF80GjSy9ZLzcS/I8m80mqtWqb0cq\nSvyuDfLsSqVSz4IoHI4XiBFLxHfIIRM5eBJFEa1WC4qiMNPighMstXINmqq5fsaLEzS1ZQrNc03T\nWc/n88uk2GVZxsLJBVx28WUD2zh4kBxCSZJ4zVSM8MgUY9DgTFkjNHHLZAdN5+ZrrbEJWvaclpdb\nr4qEdtAyJ8B7fZQdLPVz49CLNZIAvNFvSNM0LmQxoExtmcKBwwdMxT07pLMSprZPuX7P+Ng4hL3L\nD71ICipBb+kYWz+GVqsFwzCW9VGjqQ6W444Xp5DXTMULd6YohrYXKzld7TUNzA9xRKY6Ib2V0ul0\n4CIMUfczcrqXQSoS0rReg3QQOZygsBOysBMX4CmBycXOCepEEAWMj427fiaXy2FyZBKzxyx9prIZ\naKoG6awEQRSwbdU2VCoVACsdeeLo2zny5H3B+vobpMgUT/OLF+5MMUactTatVgu6rkfamDbqzZCM\nF4XseZxRnDDr3aLA7d6RyGk/fc44nLCxCllYxQVIvRWAFSqBHDZwe295cYImRyY99YbadfMuKIqC\n4/PHcejIIdTFOmrlGqa2T2F8bHzZdzg58na1fXyt0YUXO4hLo8cLd6YYJUong5xmpdPpyFTQ4tjM\niaPabDbRarU89Vbqd6w4IPVRmqYFqkgY1Zzc1gaJnLLgINIqQsKJBychi87eVtlsNtFRq0GIJvhx\ngrqRy+WwaeMmX/LnToqUJGpFUpwVReEpgYwgiiJ3pmKEO1OMQeRPo3rhEOM0nU5DEIRY0tOiHFMU\nRQDA8PBw6C+QqAxpq9FOUhczmUyi6t36qY+yg0ZHh8Zr4oQD2efJgYCdsWuVX+fGLnv04gSFRWdt\nn6qqaLVaZgoqAMeUQJpJimPuNTLF0/zigztTFBPnJtApvNBut2O7lihQVRWGsdSvIwq1vjierSzL\nEEURxWIxcsc4THh9FCfpuAlZ2Bm7HE4/kMhnoVDomhKY5CgpSzSbTbM+jhM93JlikLBPqO2EF2RZ\njvxUPKqTeGv0LcoeRFHeT1mWoWlaIlIX7ZQleX0U3STlhJgWutW/AG9Et7ixGy1JEW8geEkJpDVK\nSg5IWcfL/inLcmjvdk53uDNFOXYGaphGK4le2AkvJM2ZIrVDqqpiaGgIjUYjtLE6iepFq+s6FEWB\nYRiRpC5GCUv1UV6QZRmSJC0zTJJgkCVhDjRjZ+xKkgTDMEzHqlMlkMNxw8149xIlTdoexgr8XscH\nd6YYJWgngwgvyLJsG71IWr2GtXaIiGpEPcewx9I0DYuLi0ilUsjlcpEYUVHcP8MwTAcxSAENK1Gs\nBTKG9bdHVN3s0ml4dIfjBWu9VSaTMY3dTiEL1upfOHTiRyWQR0l7I0m2V1LhzhSDBL0Zeak5iaOJ\naVgGLQ21Q2GPSeZYKpWg63rsKntBQSJtABJRH2UYBhqNBgzDQLVahaZpy/6tM52GGCM8wsDxip2x\nq6rqit5WRH49bmOXHxqwC20pgUlaS27zSNI8WYU7U5QTdpqf135KSYhM0RZ9C2Ms6xxJP7Bmsxn4\nOHFA6qPIyTrrzgR5Vvl83lRhsjpTnek0rVbLlMseJKlsTnDYGbuqqkLTNHOf4Cla/ZEEwzaodxNP\nCYyOJKw7luHOFIMEYfSTfPqw+yn1Q5DODYm+AXRENMLY9JzmGFVUMUxn1FofpWka8469oihQFMV0\npLzcOyImQFIBSYSB9iJwDr2QFGCeosXpJIxn7SUlMMgDoqQ4GEmZR5LhzhSj9GNMWo1ur6IEcUSm\nghrTq+Iby9G3pKradUr0Z7NZtFqt0J3DsNaCYRhot9toNpvIZrPI5XI9PavOCIP1xJfXxXB6wUuK\nllV+nTvsnH7wmhJIUwoqraiqakb/OPHA7z6D9LOhKIoCURR9G90sOhpWw9WL4luUcwxyrFar5TpH\nFp8dkLz+UUQ9UtM0DA0NmWl7nZ/plhtvh9OJr11dDOv3MSpY/M0EiVuKFnfYOUHjtt4GPQW1m8Q7\nqY/mxAd3pijHbsPoxTi2pvWxIiXdjxPQabgmsZGlNWpDwxyDdNqSFmnTdR2Li4tm77Zeo1Fe7q/1\nxJekBBI1N2KUWCMMrN9bTjR4ddgHPSUwCSlZNMyhc72R+j4/KYE0zCMKms0md6ZihjtTDOLXaNV1\nHaIoQtf1no1ulqIbVtlzP4YrS5Epa2NlIu0e1lhRk7T+UcQxFAQh0qbQBOuJr12dAjeCnfF7LxRF\nwfH54zh05BDqYh21cg1TW6YwPjZOZV1qr7g57ERtszNFyyuDYgBzvGOV+wcGLyWw22+i2WyiWCxG\neEWcTrgzxShejWNiyOVyOVQqlZ43GFZqpqyS4IIghHRl8eJVgZE17Oqj7IiyB1S/0OYYutUpWBu8\nDmIqTb88+KMHMXt+Fu1yG6XVJWSqGZxWT+PA4QMQ9gqYHJnErpt3RXItcezVVoedRBG48iQnDDpT\nAp1UKVk6ROwH8o7hxAd3phjEy4vIb70QjfgxaO0kwcMcr1/6TdWkUYGxn/uXxPqoXtdjlCfzVqOE\nRBg6U2mSquYWZBRJURTMnp9FfmMeebyx12ayGVRHqwCA2WOzUBQlst9tXM/KaxSBK0/SC2vRwU5V\nSrKPAUuOBuv1fd2eB6+Zih/uTFFOLzVTYdQL0ZwqljRD3I5+ninNzw5IZn2UKIowDKPrerQ+F2KE\nxvWsuhnBhmGsSAlkFS9RpPe88z2ev+/4/HG0y+1ljlQn7XIbx+ePY9PGTUFMgRm89Bqy1vCxDmuO\nSNKw7mOyLKNUKpnOFa2NqvuF10zFD3emGMTN4LKm9fVa6O53zLDw0h8pyJS3qPoxkbG83k9SH5XN\nZgN9pmHhx5joJQ2OZudQ0zQsLi4il8uZ/aOcoP05OhnBrKduhRFFOnTkEEqr3Y2Z0uoSDh05NHDO\nVCfdeg0R41bTNKbWFYcuyDuCHPp0pjZbBXl6re+Lim7vVJ7mFz/cmWIUO2OSGKZh1gvRcupGe8qb\nV7rdT1IDViwWUSgUehojKufDb5G5l/qouOD1eiuxM4JZbBrsNYo0//I8tm7Z6uk762Idmap7VCWT\nzaAu1n1da9Kxq+Frt9sraviSEA1lCVre82Hgtb6PpZRAYvdx4oMuC4azAqc0PyskBUxV1dAM0zg2\nFCeDNgh1Qj/jhUG3+xlEDRitWJtGJyEtMymOvR/8NA2mLYroNYr0/IvPe3amauUaTqunkck670Wa\nqqFWrvm61kEjlUqZ0ShBEByjoSwZuhx6sUttJodENEn+e4lMcWcqXpJjoQ0QVqPfKgPeTSI7qHGj\nLI7vNMSCUiekGT81N16IQ1jD6bkEUR9FU5qftZZteHiYecewV9x6EAFLjaXJaXDc98hrFOmseNbz\nd05tmcKBwwfMNEE7pLMSprZPef5OWohT7t0pGkpz7UuSozos0ctzcFI7tZP8pylS2mw2ccEFF8R9\nGQMNd6YYhBiTJK2vWCxCEITEb+BhpzFGbaTbOR5JE2OwEkUaapT02s/Mip/1FmVNXz909iAi9X66\nrlPRNNhrFGl1ebXn7xwfG4ew131NC6KA8bFxz99JAzTJvdsZunZy2FzWv38Mw6DGUYgTu5TAqCOl\nXt4RvM9U/HBnikHICV2z2Yw0BSwuZyOq+pq4Ix5JczYILKYsdlsLQQifxL3eooIYJOl0moqmwV6j\nSFdsu8Lzd+ZyOUyOTGL2mMXxyGagqRqksxIEccnxYCkFlEa5dyudctid6yrJsv6c7gQdISSRTy+R\n0jDWXDdpdC5A4Z0zZ86gXq/j0ksvxfnz57F//34MDQ3hmmuu6fk76bdqBpzOH5CmaRBFEUD09SZx\nOFO6rmNhYQHpdDr0NMaoicpZjLN/Vlj1UXE6Ia1Wi+n+bXHiNY0mzOiC1yjS2PoxX9+76+Zd9ilx\n26NJiQsaluTendaVtbeVNRrKoy6cfqEpJZBLo3tD0zRkMhn8+Mc/xmOPPYYHH3wQ3/zmN/H5z38e\n27dvx/vf/3586EMfgq7rvp8Xd6YYgqiFFQoFNJvNxL8QVFWFruumkl3YjlQckQJSH5XEHllhpSzG\n5VBbnd4ghU8GGSdlrTCjC2FGkXK5HDZt3BS7cxHEPsay3Ltbb6uw07OSUDOVhDlEjddWEn7XnJdn\nQQ73ON5YWFjApk2bcPbsWczMzGD//v3Yv38/HnvsMXzoQx/qaf/kzhQDWNOkKpUKstksms1m5Bte\nVM6GVR0tlUolOhc4qB5ZbsThJCYtZdHaGDppEVJacGsaHLRMtpcoEqnDYZV+12hccu9hvNfcBFJo\nFbLg9EfcDqHXNRfEQRFX8/MGuce1Wg2zs7P48pe/jGw2i7GxMTz00EMYGRnp+bu5M0U5uq5jcXGR\nishFFEa5VcmuUqmYKY1REKWzSFJPisVi4pzFZrMZqkx/FFjXQpiiIINQM9Ur1pNeN5nsXpsG0xJF\nopWkyr13CqQ4NXHlQhacoHBbc91SAr04hbxprzfIfb3lllvw6quv4oUXXsAf/MEfAFh6H1x++eUA\nejuIYtPSGSDS6TQEQUA+n1/2gKOWKY+CTqOVpP0kCauUNnlhRzl2mOtF13XT4A3T8Y8y0hZmI94k\n/XajIClNg2mhm+R5kuXerXhJNe3HaWeRJNgWNM/BT0qgF6JO8/vIRz6CH//4x1i7di3+4z/+w/Yz\nd911Fx599FGUSiX80z/9E6anpyO7PjcMw0CpVMLtt9+O06dPY3R0FIZh4JOf/KT5mV7eH9yZohzS\nvNDu76N2NMIak0Rq7Ir641APDItOKe3FxcXQxrISxQuFOMIkLZN1Y5asA0mSmI6w0ULQvys/TYN5\ndGElXiTP/+8N/zeRcu9uuKWaenXak3YAyAmfbimBwNLBnlNKYNQCFB/+8Ifx+7//+/i93/s9239/\n5JFH8OKLL+LIkSN49tln8YlPfALPPPNMZNfnBHGwn3/+eTzwwAO499578Q//8A/YvXs37r77bvz2\nb/823vrWt/bkiHMLgQHsjPykOFPWSE2Si/pJhMPaEywp0tjW+qh2u8284UrWJJB8xcwoiGI9+KmJ\nYd3R7xevkucAEif37hc3IQvSkNquZxrreyAnPjpTAhVFgaIoZi05ALz66qt4+umn8c53vhMbNmyI\nvD3Btddei5deesnx3x9++GHceuutAIBrrrkG58+fx6lTpzA6OhrRFdqjaRqy2Sy+/OUv43d+53fM\nPnUA8OKLL+KSSy7hzhSHPbo1PSV/jipcH5azSMQ0KpVKbIZHGGmhdv2j2u12YN/vRJgOB1mTxHii\nyShKoqMVBnb1CZ3NXeNsGhw3fiTPkyb33i9OTru1ZxppeEtzmlk3krDPsHz/OyHlHqR2tNls4mc/\n+xn+/M//HGvWrMHw8DB+8pOf4G1vexsVtVMvv/wyxsbeaC2xYcMGnDhxInZniqyHVquFjRs34qmn\nnsLatWsBLB0KDw8P9/zd3JliFNYjU3aRGloIahO2imkMDw+vOBFn2Th26h/F8pxII14ixR+FY8gJ\nn27NXaNuGhw3fiXPoxbqIM4I7Tj1GZJl2XTeo+ozFAZJ/x2wSjqdxuWXX45vf/vbUFUVBw8exKc+\n9Sl88YtfxHvf+15cffXVeNe73oXrr78e09PTsa07u2yquCHX8Fu/9Vt47rnnsHfvXlx++eV47LHH\n0G63MT4+vuxzfuDOFAMkKc3PLprhZcyoIlNBQWqIcrkcSqVS7BtJkOslTHW7OLDW7EUZPWTZ8WQV\nP02Dk/ps4pI8TzokJZCkEpH/HZT6JMcfSYlMuc0jm83iqquuQrlcxhNPPIHFxUU8+eST+NnPfoYP\nfvCDqNfr+PjHP47Pfe5zkV7z+vXrMT8/b/75xIkTWL9+faTXYEc6nYau67jrrrvw1a9+FcViEV/7\n2tdQKpVw7733miIZ3JkaIOIyxPoZ0yma4UbU8wzCefPaY4lFY5qG/lFB3rdBqdnj2OOm5Kbr+jLR\ngaQYwEmVPKcFElnzoj7J6/g4QVKtVnHzzTfj5ptvBgDMz8/j5MmTkV/Hzp07cd999+F973sfnnnm\nGYyMjMSe4kdIp9OYm5vDRz/6Udx+++3QdR3lchmtVqsv2487UxzP9GNIKIoCURQTE82wwzAMSJIE\nRVESpwDnNaLIkoNIeri51ewl5XST051OJTdJkswamM6mwaS5K410+/0NiuQ5TdhFRDvr+GjqbcX3\nPXrw8iyc/n1sbGxZ7VJQvP/978eTTz6Jer2OsbEx3H333WZkf8+ePbjpppvwyCOPYPPmzSiXy/jG\nN74R+DX0ArmX3/rWt/Dyyy9DEASk02lzr//sZz+LVatW9fTdybH2BgxW0vzcZM/DGrMfeh2PRN38\nNleOam793Edr7VfcjaODQlVVLC4uolAooFAocMOBswJiAIfVNDhsnK5nfGx84CTPaaNbHV86nV4m\nv07b2mIBVmrv+kVRlMgPbh966KGun7nvvvsiuBJ/kN/R1VdfjcnJSbPlwaOPPmpKz/cKd6YYwG4j\nZcGZCiqFivZIR681RCy8IGmr/bLS6+kpSVXsxbnnDC5JaRqcy+WoljwftKiIUx2fpmlm6pFVfTLs\ntUX7+3bQ6OYUkqbyHG8YhoEbb7xx2d99+MMfxlvf+lazp1cvcGeKUWhPp9I0DYuLi8jlcrYpVF6J\n+qXq5772G3Uj3xEFvawXorjopz4qinXZ65rwK34SNrT/hjnOsN40mBXJc9tr3ELXNXbSrzNoreOz\nRkSjXlu0rVm/DIpT3mw2USwW474MZkilUnj00UdRLBZRLpdRLBYhyzLq9XpfdeDcmeJ4xqvxF6RI\nAa0GZxBRN5rnRpPTEQQsiJ94gbbr4SzBYtPgqCXP/fLgjx7E7HlL9KyawWn1NA4cPgBh71L0bNfN\nu+K+zNDxs7ZI3R8nOXRzCslhLqc75F5+7WtfQ6vVgizLUBQFZ86cwV/+5V/2FeFj30oaUFKpVF8h\nyV5xM+aSIMDgxYDu1mzYD7RFpoKoj6LN4LdGSWlLVfQDq9c9aPCmwf2jKApmz88ivzG/rLlwJpsx\nhTNmj81CURRqI1RhYLe2SB0fjUIWnPDhaX7eIb+HRx99NPDvZs/aHUBoqplyolcBBi9j0mSck8au\nQQgX0PaiC6I+Kqo5eVXa6yVVkcMJEt402D/HTxxHu9xe5kh10i63cXz+OLWRtShwk/YnQhZ+RVKS\nkh6XlHl0g2QBcdxRFAV/8zd/g5GREZTLZZRKJfP/CoUChoaG8KY3vann7+fOFKPQJEARpIPhdcyw\ncBqPyCO3Wq1AG7vS4igmzemwPi+WoqSD8PIfZPw0DR7kyMLzLz6P0mp3A7G0uoRDRw5R50zFZcR3\nSvtbhSxYE0nhvAFP8wsGWZbx/PPPI5VKYWFhAc1mE4qiQJZlNBoNjIyM4Omnn+7598uGhcGhgk5H\nIywHI07snCnDMNBoNKDreqCNXaN84bo5iUHWR9EQSbTWsw0PD/dsNEQxl7jvFSdevEQWBk0i2zAM\n1MU6MsPu+2wmm0FdrEd0VexhXVvAcpEUWZYBJDvdlEemOFbK5TK+853vdP0cb9qbYGhJ87Nira3p\nx2DtRtzztNbbVCqVRG3OLPePcloXQdazhQ3N18aJHrfIAktNg4NgTWUN6modmayzQ6WpGmrlWoRX\nxTZehSySvK5YpJtTyJ0p76iqCsMwMDc3h2effRYLCwvmmr/kkktw3XXX9fzd3JlilDjT/GjuPdQv\n1vtKUt+KxSIKhUKoY4VN51hJfIYk3bRYLEIQhETMiTO4OElks9I0uB+u2HwFfvEfvzDFJuyQzkqY\n2j4V4VUlBychC1LLR7JOBsFxZx3uTHmD9Gs7ceIE/vqv/xovvPACfv3rX+Mtb3kLfvrTn+KDH/wg\nrrvuOui63tPBMnemGCauiM3i4mJktTVxOI1ElTBJ0uBWwqyPiktlstVqodlsJibdNExY7N3D8d40\nOAny2OMbxiE84743CaKA8bHxiK7IOyyml1kd92w2azpSLDvuLD4HO7zUTK1evTrCK2ITch9nZmYg\nSRJ+/OMf47bbbsP3v/99/PznP8e//du/9fX9ybISB4ioNwniYACI1MGIwzgnL4+wU9+ijkzpup4Y\nJ5HcO6scf5D1bNYxokLTNDPtMizDhffu8Q7N9WxuTYNVVQWwtI+xmrqVy+UwOTKJ2WOWtZrNQFM1\nSGclCOLSWuXOf/AYhmE67d0cdy5kES5e9iBJknjTXh8oioJisYhXX30VkiSh3W7jlVdewYkTJwD0\nvu+za00NEHHXTFnrUAAkdvMkL4tsNotqtcqcAeKGYRhQFCUSJzEqiHOYSqUwPDzM5PMiv2GSokjq\nZXRdNw2XoJTdeO+e5GKNWpF+VqlUiuqmwd3YdfMu+yjqdh5FjRI7BUrSN41WIQuaD0J6gav59Q/Z\n9yYmJnDDDTdgw4YNmJ6exjve8Q4MDQ3hxhtv7Ov7uTPFKFE5U9a6IUEQzAK+qIhqnu12G5IkIZ/P\nR5bGENXcyEsvnU6H7iRGNSei2CcIAorFIhUvcL+QayZrr1wuI51OQ1VV01C01slommZ+vpeo1fF5\n3ruHJsJKt7QKWbDYNNia1pTL5bBp4ya+HimiW980mhQoaVvbYUDeHRxvbNiwAatWrcIFF1yAL37x\nizhw4ABGRkawefNmAOg5u4U7U4wTVl4wkcxut9uJrkPpTBOTZTlRp1rEGbaLbiiKgrn5ORycOYh6\no45apYbprdOYGJug+nmT0/ZCocB04S0xRJrNppmiSFK0CHYRBwArolZeisQPHTnEbO+euAjLGIsy\n3ZI3DY4W1mt1/Fy/U980OwVKnhLoHy/PggtQeIMIS+zbtw8PPvggbrrpJmzbtg2XXXZZIPePO1OM\nEuZmres6Go0GAKyQPaeliW4Q6LqOxcVFpNNpM00syhqtMOfW2T+KKDQRHnj4Acycm4FckZeMuUoG\np9RT2P/cfuSfymPrqq3YvXN3z2OHgXVOmUwmdIcviufjp7UAWZ9ENMSvultdrCNT5b174ibOdEve\nNJgTJl4VKMOOirLu0Pqh2WxyZ8oD5B07NTWFo0eP4u///u9hGAZ27NiBt7/97bjsssv62m/5MQED\nOG0KYRh7qqpiYWHBrBvqNPKS4kwpioLXX38d+Xw+kf2jGo0GVFXF0NCQGbWw1ufMnJuBsElAdbRq\n9nIhxpywScDMuRnTuPJDmC9H65xYfl6apmFhYQGpVMqMPPUCiVgVi0WUy2Wz3qrdbkMURbRarWVO\ndK1cg6Zq7tcWUu+eJEV7+4WkW7pB0i3Dhhi/JMpbLBaRTqehKApEUTQFazRN48+Q45vOPYocBJGM\nCXI4pus6X182eHEKec2UdwzDwOrVq/Hxj38cjz76KL7yla/gueeew/T0NO69914AMNPp/cIjU4xg\n51QE6WgYhoF2u23+MIlhljSs87RLX4yz91MQWJsMO/WPmpufg1yRIcBZelguy5ibn8PmjZsDvb5e\nIAIo2Wx22ZxYfPlae2Fls1mIohjI91pPhAH7qNVlE5fhwH8d4L17YobWdEveNJgDhBfVcYuKkvRl\nHhX1D6+Z8k4qlcLp06cxMzODkydP4ujRo1hcXMS1116LK6+80vxML3BninGCMChJMb+maV3lpVmO\nTHmZZxx9rYLCrX+UdV4HZw52N+ZqJRycOejbmQr6/lmdD2vjZBZftJ29sOxO+4OaV2dPIk3TMLZh\nDOl/T0O+QDb/vTMqFkbvHhafVZiwkm45yE2De4X8nvm96I51fZE2FyTdtF8hi6Sk+fGaqeAgNVNP\nPPEE/u7v/g7FYhHvfOc7cf/992N0dNT8XK+ZItyZYpggNgur7LmX9ClWnQ2/84yCoO5lZ31Ut/5R\n9UYdmYoHY64RnzHXLYIYBUE+n7B6YXmBGC2VSgVvWvMm/Gr+V5BKEooXFJFKp6BrOlqvtVBoFrD1\ngq1Ui48kgVq5htPqaTO91o5+0i3D2p+7NQ22KgT2IzSQFEOY4x23qGjQ6ytpaJrGdM/IqCBrZsuW\nLfj2t7+NCy+80Pw3XdfNNXj06FGMjY35zs7iT4Bh+jX2OmXPaXyBBWHQ+pkna86irutmo1ev/aNq\nlRpOqae6G3OV4GtnvOAnUko7pH4tlUpR0d/LrnfPquIqvPnNb8a6i9Yhk8mYCm88lSscprZM4cDh\ncNMtw35ubk2DoxQa4AQPDe8/p7Rlr+srKQ65l2dBnACON6anpwEsOaEk4klakmSzWfzZn/0ZvvSl\nL2HdunW+vpc7U4wQZM2U30hGEGP2Sj/j0S7vbq396WUz9FIfZR2L3MfprdPY/9x+d2OuLmH6ymnf\n19Tv+iAKi90iiCw4vX6eT5S49e6xS+WipWdMUhgfG4ew17leEQgn3TJM7KJWpL8daRpsXUccuqHt\nd+5lfSU1auX2LEh6JMc7mqaZh0FWyH2WZbknzQDuTA0Y/Z6Us2DEAssjNl6lpwF25udWH9WNibEJ\n5J/KA6POn8mLeUyMTfR5lf5QVRWLi4soFAooFArUvdD90M/zcSKKtWlXa2WXasOjVr2Ty+UwOTKJ\n2WOWPlPZDDRVg3RWgiAu9Zmi7fDHK9aoVWfTYFmWAdDdNLgfkhIRoRm79dUp759Op02FwEF4HoMw\nxyAwDMMx04Xcw1ar1dPey50phvFrXJFifpaM1V4MSFVV0Wg0qIsI2EHm5/UaDcNAq9VCu932FVW0\n3sdcLoetq7Zi5ugM5LKMUs1izNUl5MWlPlNRGnPtdttUJaJFSbKXteen1ot2x92LQiCPWvWGXbpl\nrVzD1PYpjI+NM+tI2ZFKeWsazB10Ti/Y7VPEaRdFkWmhlEFxBqMilUrhF7/4BcbHx7FA3LJzAAAg\nAElEQVRmzRrz78khbjqd5s7UIOLVGCMGeKvV6ttYjcsA9LqpEKO814gAzQYu6bXkpz7Kid07d0NR\nFMzNz+HgzEHUG3XUKjVMXzmNibGJno05v/evV3EGGp8TmQvphcVyrZcdTlErLpvdG27plknFizw2\nALN+ga+j6DEMg+lUOeI8ATBVKK1CKUlLOeW/EW8QNb+77roLb3rTm/CHf/iH2LJlCwDgzjvvxF/9\n1V9hYmLCXB9+4c4UI9j9YLwYlMQA13U9EAMvlUpB1/W+vsPveF6wGuV+68DixKtTEET9Tec4uVwO\nmzdujq2XFEk5BUCFOEM/dKbPJv0F50U2mxgstDm9HHrolMfWdR3NZpNHPzl9QQ5f3YRSWEg57XaI\nLMtyoqLYUUBsxc9//vPYs2cPrrnmGszOzpr38ac//WlP38uu9cLpiqqqeP3115FOp5k+Ke/mcBDR\nAuIw9uNI0RjxkGUZCwsLKBQKKJfLPW34Ub0k/DiHCwsLyGazqFarTDtSqqqac6lUKtS9kKOARKyK\nxaIZ/SYRcZJ2oygKdb8tDj0QVS0AtutIkiS0Wi2q1xFPy6Ibsk8VCgWUSiWz3EFRFIiiaApz2fUA\npBFSl8vpDvldiqKIb3/727j22mvxmc98Br/4xS/QbrdRLBb7+n42ju85trgZrv2mu/UyZhyQOjBB\nEFAsFgN5kdGiVmhNz2Qp2taNoMQZwn5OXtZ6GEITrNMZtZIkyZSe5dEGjld40+B4GBSH0Cnl1C51\nOa6UwG4pl81mkztTHiFresOGDRBFER/+8IexZcsW3HnnnZifn+fO1KDglObXmXIXdrpbHM6U3ZjW\nQv8gRQtoeYlY66P8qBE6QYMTHKRzGPdzCmIu1mdC6tee+9VzOPn6SayprMHUlmSIEXSmcvFaK04v\neFWaTEotDKd3enEIvTrvNKUEkgNzjne++tWvolwuwzAMvOUtb8EPf/hD/OM//iMKhUJf38udKYbp\nNJA1TUOj0TDT+pLyQumcZxRNXaM6nbNzcmjtT+QFJ6fN+syCcA7jJOi5PPDwA5g5NwO5IqO4qggU\ngTPaGRw4fADC3iWZ7F037wro6uPFT60Vjzb0RtyHJlHQb1NXDqcbdr2tVFVd0duKHAKFsca62SHc\nmfLP5OQkgDcOZGu1Gj796U/3/b3cmUoIUcmexx3hIA5jt6auvRL3S5ekjRWLxb5PSqzE+dzCfmZR\n4rWpsFcURcHMuRkImwQIEMwT90w2YzZVnj02C0VREpPmaYUrBIbDoN0rL4ZvFApuSXBkk5DmF7Qi\noV1KIOmdRlQorWssqvtH2olw4id5b+cBgqT5NZtNtFqtrn1tghozrjQ/4jAWi0UIghC6wxhlZMqa\nNhbFcwwbcv/CemZRrMPOMUj/MkEQAjuwmH95HnJFhgDneqt2uY3j88dNCe0kGDt28KgVJ4i17Wb4\nRqHgxtdl8unsnUbWGOmdFtRe1e33wGum6IE7U4zg9IPSNA0AmE+dcoPURymKkghHo5Og66PsiFLN\nj9BqtTw1r2UBEjEMuqnwL4/9EqXV7i/D0uoSDh05NFD9iAAeteIEg1PT4CjTtTjJhawZ8l6Isp6P\nq/nRA3emGEVVVYiiCACoVqvUSV8HBXn5helodBL1HCVJQj6fD70+Kso5hV3TFhVE0EWW5cAFXVKp\nFOpiHZlR9/uTyWZQF+uBjcsiPGrFCQJr1IrIrnc2DY4jXasbiqLg+PxxHDpyCHWxjlq5FppATRIi\n33HOIch6Ph6ZYgfuTDEIkT0vFAqQZTnSTSNKR4MIMaRSKRQKhcRF3kjvnXw+H1nec9gvGaIuaRhG\nqPVRUTSPJqmlpBFvGOuvVq7hJfUlZLLODpWmaqiVa4GPzTI8asUJgk6lyX7TtcJ4Nz74owcxe34W\n7XIbpdUlZKoZnFZPJ1KgJonY1fPZRUZ7OQjiNVP0kCzrNOGQdLBWq4WhoSHzZC1KonKmSKPaYrEY\nuUEU9hwNw0Cz2YQoisjlcpEIC0Rx/0jzWgDMqRB2Qk4RAYSqjPnmjW+GdFZy/Yx0VsLUlqlQxmcV\nRVFw9NhR/NtP/w1/9//+HX7w8x/gxMsnkM/nUSwWkclkzOg9iSyy0oiTEw+kaTBZQ702DQ5y31MU\nBbPnZ5HfmEd1tGoeuhCBmvzGPGbPLwnUcN6A1ugaiYySTJRyuYxcLgdd123XmJfIVNTO1E9+8hNs\n27YNW7ZswT333LPi35944gkMDw9jenoa09PT+OxnPxvp9cUFj0wxgq7rWFhYWKYiRtLfkgRxNKxp\nVaqqJmaexCHWdR3Dw8NmagnrkGhpuVyGKIpUvsi8oqoqFhcXI6mhGFs/hvzzeWDU+TOCKGB8bDy0\na2ANryf1PGrFHjQZwTQ0DT4+fxztcht5ONdpdgrU9AtNzyDpOEVGyRoDlg6WndaYJEl9N5v1g6Zp\nuPPOO/H4449j/fr1uPrqq7Fz505ceumlyz73tre9DQ8//HBk10UDPDLFCCTVrVwumz+ouJT1gHDS\nGYjstKqqGBoaWhaxiXKeYd1XTdOwsLCwog9YVHMLY16kpqjZbKJarSKfz8eitBcU7XYbi4uL5olh\n2EZFLpfD1gu2on20jcWTi9DUJUEZTdWweGoR8jEZkyOTzAt4BIXfk3pirAiCgHK5zKNWnJ4hqVrW\nqBWwtGeIoohWqxX4Ojp05JBngRoO23RGRq21UGSNNZtN/PM//zN+/etfA4Ap8BQV+/btw+bNm3Hx\nxRcjl8vhfe97H37wgx+s+Nwg7qU8MsUI6XQagmAvnxz1SVIY0uFEdppsJNbvjuOULOjNwNo/yioR\nzvIJoFWFkPUm0XYRURLJCJsPvPsD0DQNc/NzeO5Xz+Hk6yexprIGU9vDKTBnmX5P6v3UWnE4TjiJ\nDCiKAl3XIUlSIE2D62IdmSoXqPFLEqJr5PqJ3UfW1eOPP44//dM/xcjICCYnJ7FmzRpcc801kThV\nL7/8MsbGxsw/b9iwAc8+++yK6967dy+2b9+O9evX40tf+hIuu+yy0K8tbvgbgxHsNgbWNwuCNUXM\nTnY66ghckPfVS/8oFk9xiDhILpdjvj7KySmMKsIGLEWoNm/cjI0Xb4Qsy0w7pmHi56S+W9pTtzQu\nAGaEiysEctwgTjoRGMjlcoE0Da6Vazitno5MoIbFd9GgkE6nUalU8I1vfAOapuH555/HPffcg+9+\n97u4++67cfXVV+OGG27ADTfcgCuuuCK2Fiu/8Ru/gfn5eZRKJTz66KO45ZZbMDs7G/i10AZ/YzNO\nnE10+8UwDDN0TQQ1aCDI+TUaDciyjOHhYVtHikVhDUVRsLCwsCLtNOhxuhHEGNbUy2q1SoUT47Ym\n4vi900RdrLsalkDvJ/WdaVzkXvsRH6CBJJzKswwRGRAEwRQZyGaz0DTNFB5qt9ueaoGntkzFIlDD\n+vpJwm/AbQ6ZTAbT09MYHh7Ggw8+iFdeeQWf/OQnMT8/j9/93d/FunXrcOuttwaueLt+/XrMz8+b\nf56fn8eGDRuWfaZarZopijt27ICiKDh37lyg10EjPDLFEHaGFKvOlKZpaDQaSKfTGB4e7mpAhi2D\nHTRkflbBECdoN84IXqJsURHEi1JRFDQajRWpl5zgCWqNR3VSb23EmclkeF8rTs/00zR4fGwcwl77\n9H4CF6gZXEjNVLVaxbvf/W68+93vBgD8+te/xv79+wM/HLzqqqtw5MgRvPTSS1i3bh2++93v4qGH\nHlr2mVOnTmHt2rVIpVLYt28fDMPAqlWrAr0OGuHOFCdyiBFbKBRQKBS6GiJxpPn1M55TfZTTWFHR\nz7xIFDEJjXgBoNVqmS8iXpMULkGu8aktUzhw+ACqo1XHz0hnJUxtD/aknve1igbWIwrd9le/TYNz\nuRwmRyYxe8yiXpnNQFM1SGclCKLABWoSipffgiiKtk17L7nkElxyySWBX1M2m8V9992HG264AZqm\n4bbbbsOll16Kr3/96wCAPXv24Hvf+x7uv/9+ZLNZlEolfOc73wn8OmiEO1OMw1JkiqbIRhgkdX5E\nZdFLlA2gOxWNqA8qitLVKWQpXXFQoOGk3otkNo9aDS5+nreXpsH/513/B7qu48QrJ3D4yGHUxTpq\n5VooAjWsO7PAG/sp6/PwQrPZtHWmwmTHjh3YsWPHsr/bs2eP+b/vuOMO3HHHHZFeEw1wZ4pxWHGm\n+olssBCZss5veHjYc3g9yrn1MhbpueQ1ihgVvcxF13U0Gg0A4Tbi9QMt95MVaDyp51ErThBYU0sB\nLFtLmqbhotGLsGHdBr6WBgQvjq1hGMxniSQF7kwxhJMBSfvJtp/6IRZJ6vy6qSy6QduaZEl9MAmn\nw2Gy6+ZdUBQFx+eP49CRQ6Ge1PvFLmplbcLJo1Ycr9DQNJhDP/y50wF3phgnjh+Sn6iAn/qhIMYL\ngijnR2NKnJ9UODto29ytQhOFQiHuy+kKbfePRnK5HDZt3NRV/jxuSBNOADxqxekLpwhou92Gruum\nk+5Xft1KEg5ykjAHoPs8SFoohw64M8U4tKb52TVBDXO8oPEyP9bqo7zcRxpT4YAlh2hufg4HZw6i\n3qhjVWkVJjdM4s2Xvdnx3huGgXa73bPQRFy/LQ4dBP3sedQq+RiGEcme6dQ0mDhXJGrVb9NgDv3w\nZ0sH3JliCKfGvbSdTui6DlEUVzRBZQUvecpBKduF8fw6HY9apYbprdNYNbLK7KZuh6qqaDQayOfz\nKBaLPW/SQc/pgYcfwMy5GcgVealGppLBq/Kr2PvCXlQPVrF11Vbs3rl72X9DomuqqlKvPkjb75fz\nBmEaKjxqtZKkRBWipjNqRRz1fpsGs0hS1pCXeSRhnkmBO1MJgKbIVFAGudfxwsBtPNrro+wcj1Pq\nKex/bj9Sr6WwbfU2fPj/+fCK/46kK5ZKJVeHK2oURcHMuRkImwQIeOO6MtkMqmurEAQBM0dnoCiK\nGXki0bVUKtXXM1IUBcd+fQxHXjmyzCmdGJsILBKZhLRQTv/wqBUnKKzy6wBMhUDS2wrAspRA61pK\niiMyCPD3AF1wZ4pxaKqZIoIFtBnkQRFGk9cgjWNXx2O0CvkCGbMvzS5zPEi6Yrvd7jsdMwzm5ucg\nV+Rl8wGW3ze5LGNufg6bN24OzJl/4OEH8F/1/4JUkDBy0cgypzT/VN42GsbhBEU/UStuEHOs+Gka\nzA10euj2O5Zl2bcwFCc86LKcOL6h4aTaKlgQhkEed2SKlfooJ8eDkEql0C63TcfDMAw0Gg3ouh5o\nOmaQz+vgzEGUVrv30SjVSjg4cxDjG8YDia5ZndK0kkYmu3TCS5xSjGJFNCwoSERiENJxON7wG7Xi\nxAftjmy3psHk+skeRPNcnKD9GQQFUdrl0AF3phjCqWZK1/XIr4OM2ZlSFcbLPE6HMcj6KDsidzxW\nLzkel0xcQnW6IqHeqCNTcb/nmWwGr7z2CkRRDMTZJU5pDs7fY42GBQXp6ZVKpbj0MceRblEr0q9o\nUIxKTu90Ng2WZRmapi1rGszTS+Ohm5iJJEkoFosRXhHHDe5MJYC4aqZI2ltUDV2jMg7I/Givj+rE\nq+Nx6uwpLCwsBJquGBa1Sg2n1FNmdMiOptTEuDAemLPrJxoWlDNlrVkjkAiEVfqYy+FyrNhFrch6\nEUWRG8Mcz6RSKaTTaRiGgUKhwKwoyqAcIpCSCg4dcGeKceLYNKyORi8NXf0Sxxx1XY/E4QgyMuXF\n8VBkBZVcJdR0xSDnNL11Gvuf27+UXtcBkT6Xzkr4X9f8r8CihsQpdYv4ZrIZ1Bv1QMZrtVpmimwm\nk4EsyyuKyK0NO/mJMccJEs0k0SvWjOFBMYRZgDcNphvuTNEFT7BmnKhT4KypAENDQ5EVQEY1TzI/\nXddRqVQiibgFxfTWaUhnJcd/13UdjTMN/M8r/ie1dV+dTIxNIN9YucaIo5NOp1GRK7h4/OLAxqxV\natBUzV3VUdVQq9T6GscqYTw8POxaa0hkj9PpNAqFglnv0Gq1IEkSWq0WVFXlUSuOCTGGBUFAuVxG\nsVhEOp2GqqoQRRGSJJl7OV83wcC6M+h2/WQPKhaLyw5R2+02RFE0D4WiLjtIKt3WEq+ZogvuTDFE\n3H2mNE3DwsICACw7NU8KpD5KURTzxRE2QT4/J8eDRHAMw0CxVcTGizcGMp4bQc0pl8th66qtaB9t\nY/HkIjT1v0/amy00TjegH9exddXWQJ9VN6cUAKS6hOmt0z2Poes6FhcXAQClUslXraGTkawoCkRR\nNJtl67rOjWSOCYlWWY3hTodcURS+Zjhdse5BpVIJpVIJmUwGmqZBkiRIkoR2ux3LAQ/rDq1XeGSK\nLniaXwKIYrMiNR3EcCNpI1ERttNorY+qVCpoNBqhjRUWxPGYOToDuSyjVCshlU6hKTXRPt+GIAqY\nHJ4M3UkM+lnt3rkbiqLgpeMvYf8L+3Hy/ElsW7UNmy/bjO2Xbw98PhNjE8g/lQfWOn8mL+YxMTbR\n0/drmobFxUXTmO33xW8nSEDUuQDnnjKcwYX3teIECW8aHDzd3g3NZpM7UxTBnSnGiUL0oVMWPGnp\nRJ39o6JMUyDPL6jTNOJ4zM3PYd8L+/Dqa69i8oJJXH3N1RhdM8rsiyybzeKi0Yvwv2v/G9VqFalU\nCq+99loojiFxSn917FdoZBvIrc8hk81AUzVIdQl5Md9zNIysNSLfTiK9XunmqHaqc7n1lGF1LXCC\np5++VpzkEMR7qJ+mwUEwSJEpnuZHD9yZYoio0/yIIpRhGBgeHjaNrzikysMY06l/FA29u/ohm81i\n3YXrcNOqm1CpVMxanFarBU3TQh8/aLl+khJnVVUM+/ns3rkb7XYbv/zPX+LYyWOoN+qoVWqYvnIa\nE2MTPTlSrVYLzWYzsrVm11OGGDU8apVc+l1PPGrVO4NiyPvBT9NgIuvP6b6WRFFEtbpSmIkTD9yZ\nYpywjDFVVdFoNJDL5VAqlWLf4IKep1v/qLiaBAdxj60OcFh9v6KE9F5ykt8P03jJ5XLYePFGXDl9\nZV/fY21qHUavMq94MWp4Kk4yCPI3EWXUijsjyaZb02AAy/YhvhacabVauPDCC+O+DM5/w50pzgra\n7bZZ3CgIwop/Zz1yw1r/KK+QWhwnB5i150bWoZ38PivPjFbnttOoIY6Vpmlc9pjjCI9aJZtujWKD\npjMtmUTP+2kaHPUcwsKLmh9v2ksP3JliHGIgB3GiZxiGqQRWrVYdpZpZTvPrrI9yu2dRNwnuB6tA\nSKFQCOjKeqPf+Xhdh7TTzbmlCacCcmvDYF4zw+mE11pxgoKk+PH15A2SMs6hAzatlAHFqWYqCHRd\nR6PRQCqV8nyCzlJKBpEH76xZsYOVOQHOdV92sBCZMgwDjUbDcyQnzDXYz/2yOu1xO7d+cWsYzKMP\nHCd41IqtdyLt9No0OAnPwMt7h0uj0wV3phJAvzU3pD6K9CDp9j1xbFT9GLZu9VHdxqM5MtXLvGiG\npF9ms1lPkRxaX5gkPbGbcwuw4eB2Rq3sTot5jQOnEy9RK75u6ILmvchpH+qMntM8B790S/PjzhQ9\ncGeKMYI0vqzRGru6FC/XEdVLsNd5J7U+yk7hzgtRvGh6eVZ+0i/DhkjLH5w5iLnTc5hYO4Hprd1V\n/KzpiUlwbu1wij6QGgcnZa4kGTgc/3RbNyRqxddJ/LDwjrSuJwDLaj51XUe73YamacwqlXqxrYjd\nxqED7kwlgF6M1yCiGrS/+IiB7qQE50aUEQO/Y/U6L1pfKG5CE1HzwMMPYObcDOSKjNLqEuSLZDRy\nDex/bj/yTy31l9q9c/eK/85vemJS8NIwmNR0cjgEp6iVqqrm3/GoFccr1qiVKIpm9CrJSqW8zxRd\ncGcqAfg1xoOI1kT9gvMzRz/1UaxBk+Phhpdn1W8kJ2iHV1EUzJybgbBJgID/VrFUgEw2g+poFRgF\nZo7OQFGUZWvKGiWsVCqh/jZoTgt0ahhs/f9JM2g4/dO5bsja6EfRLQ5o/V0OGnE3DQ4CL5EpnuZH\nF9yZSgB+DKx+ojW9jhkUXg30IOqIaItMBdGrKKo5eVlTNEqGz83PQa7IbzhSNshlGXPzc9i8cTOA\n7n2wBhWrQUPWXDqdZsqg4cQD6YcGsFlrReM1eSUp4g3WOSS1aXCr1eLOFEVwZ4ox+hEr8Kr65uc7\no8LLvIOuj6LlpLEXpUWaoVUy/ODMQZRWu7+cSrUSDs4cxOaNm005+n6ihDRHmoLEzqBRVTXRaTic\n/vFaa0V71IpDB6w0DfZ6cMz3SnrgzlQC6GaQkXoOXdcDK4yPI81P13XHfw8q4mYdL0qcnp9fpUU3\nooxMOY0TpGR40POpN+rIVNx/G5lsBmcaZ9BsNtFut0Ppg5V0g9BJep03DA6GJBtZXCGQEyRhNA0O\n8trcSEIUMUlwZyoBuBmV1ihAkPUctJyoh1UfFXWanx0k8lEqlSAIzqlnrNBqtRyfk1VBr96oo1ap\neVLQC5JapYZT6ilksm84VJ2qlZqqoZqrmnVeSTVao4Q3DOYQ/BiItEWtkmDcDvIcSIofC02DabC9\nOMvhzhRj2P2AnQx/YoyH0Tg0amfKbrwk9Vmyzo2kZIYV+YiabvVenQp6mUoGp9RTXRX0gmZ66zT2\nP7d/SWzCYR7nXzmPK664IlEy+zTBGwZzeoVHrThB0mvT4CDw4hCyVN81CLBtpXFssaqkJcEYB1Y6\nU2H3j4orMhWmxHYcaX7Weq/h4eEVz8lWQQ/dFfTCmM/E2ATyT+WB0ZX/pus6ZFlGoVnApVsv5S+x\niOANgzm9QFvUihMNYb7fvDYNjqruk0en6IJ9K5tja7wCCDUNKc40v6Dro2iAbM7EQQxbYjsKSIqp\nW71XLwp6YZHL5bB11VbMHJ2BXJZRqi2JUSiygtdPvo5yu4w3rX1T4JL0/KXojV4bBtOAoig4Pn8c\nh44cQl2so1auYWrLFMbHxhPVuoFWeNTKG0lI8wPCrzt1axpsjVr1qlba7Tkk5TklCe5MJQDi2AQp\nVuB1zKggAhRudTdBjxdlZErTNCwsLKBYLEIQhFCeXZRzMgwDCwsLXeu9/Crohc3unbuX1W8dP3Mc\nq8ur8T+u/h/YtHFT4GvO7jnzF6U3vDQMpkF6/cEfPYjZ87Nol9tLaazVDE6rp3Hg8AEIewVMjkxi\n1827Yru+QSOsqBX/3Q4uTnWfYamVttvtwEs3OP3BnSnGcKqZUhQF7Xab+mauvUI2qHa7zXx9lBXi\nBKuqimq1yvwpNREEMQzD03y8KujVG3XH8YIml8th0yWbcNHoRWbdGi3PhRbhF9pwahgct/S6oiiY\nPT+L/MY88nhjXzbTWAHMHpu1TWPlRAOPWiUHGhzaIJoGd5sHb9hLH1yKinEMw4Asy9A0DdVqNTJH\nKkqjTtd1SJIEAJE5UlHMjwgzaJqGfD4fmTEV1ryIIAh5YXiZT61Sg6Zqrp/RVA21Sm3F34f10tR1\nHYuLi9B1HalUiiv2MQYxZvL5PEqlEsrlMrLZLDRNQ7PZhCRJaLfbUFU19N/48fnjaJfbrp9pl9s4\nPn881OtghbiNYeKUC4KAcrmMYrGIdDoNRVEgiiIkSTLft0k71EjafGiB9NgrFAoolUpmaQIRCCP1\n7bque34GRFgsSn7yk59g27Zt2LJlC+655x7bz9x1113YsmULtm/fjoMHD0Z6fXHDI1MMQ+qjDMNY\nlr8bBd36PgUFqY8SBAHtdjv2U6egsAozCIIQmTBEWHQ2Fj5//ryn/66bgh4ASHUJ01dOB3WprnQ2\nFH799dcjGZcTHnE2DD505FD3NNbVJRw6cgibNm4KdOxe4LVdy/ETtUoKSXnH0ojXpsFE0MKJZrMZ\naWRK0zTceeedePzxx7F+/XpcffXV2LlzJy699FLzM4888ghefPFFHDlyBM8++yw+8YlP4Jlnnons\nGuOGO1OMYhVhSKfTZjQgKVj7R5XLZWQymUjnGGZkqrO2rd1uQ9PcozM00zkfP7gp6BHyYh4TYxN9\nXmV37BoKRxWhtPs7btQEj5+GwUE897pYR6bqIY1VtE9jjRJe2+WONZWUGMLWWiuzF52mcYXAmGBt\n33RqGkxSAjVNW6YQSOYmSRLK5XJk17lv3z5s3rwZF198MQDgfe97H37wgx8sc6Yefvhh3HrrrQCA\na665BufPn8epU6cwOuryck8Q3JliECLCQOqjZFmOPEQfppFp1z/KTwg8CMKKvLXbbXMjjKO2rbMJ\nbb/YNRb285zsFPQy2Qw0VYNUl5AXl/pM2Z2KB7kGoxI26aRzDkSFjqfcRINbw2Bg6fdKjJ1efjO1\ncg2n1dPLGkF3oqkaauWVaay90svvm9d2+cOuwassy1BVldlaK9YckaRhXVOappl7DomE/smf/AlE\nUcR1112HkZGRSCNTL7/8MsbGxsw/b9iwAc8++2zXz5w4cYI7Uxw6kWV5hQhDHBtgWAYfqVdJp9OJ\naozq1vuLReOZNBZutVqOvcy8vpw7FfTqjTpqlRqmr5zGxNhEqMab9bkkSdiE45/OqFWj0UA6ne6r\nYfDUlikcOHzAPY31rISp7VOBzaMXSG2X1ZHqhNR20ZCOSBtk7ei6jkKhsCJqxftaRUOSHMJO1cm7\n7roLjz32GP71X/8V//7v/44LLrgA5XIZN954I6666qpQ311+FC17+e+SAHemGCOfz69wMlg0xu1w\n6x8VhxR7UOPpug5RFENpxOuXIOZljRwODw+vmE8vG2gul8PmjZsjkT8nhNkgmZMMcrkc0ul0zypv\n42PjEPY6twYAAEEUMD42Hvi1+4G12i6asYtacYVAjh/snMKNGzfi9ttvx+23347vf//72Lt3L0RR\nxMc+9jG88soruP7663HjjTfiXe96Fy666KJAr2f9+vWYn583/zw/P48NGza4fubEiRNYv359oNdB\nM9x6YAy7U604nKkgxyRRjkajYSooOb1gWHMaSf+odDqNarVqa7Cz5Azruo6Fhd9QdvIAACAASURB\nVAUA4TaF9kI/983Lc+l3DA77kH2om8qbkyJXLpfD5Mgk5GMyFk8tmsqVmqph8dQi5GMyJkcmY0+d\nq4t111REIJraLpYjC077hHXtlEolahUCWb73g4Ysy7jiiivwxS9+Ec8//zwOHTqE6667Dj/60Y9w\n2WWX4fDhw4GOd9VVV+HIkSN46aWXIMsyvvvd72Lnzp3LPrNz505861vfAgA888wzGBkZGZgUP4BH\nphIBy84UkQdXVdU1zSrqTT6I+ZF6IqugQdz0My8iNCEIworIodM4NL6cVVXF4uJiqA2S/cCdNfbw\n0zB418277FXyttOjkhdHbVeQ0KJC2G0v4VGrcKH1neOXbvMQRRHDw8Pmnzds2IDbbrsNt912G1RV\nDfyQM5vN4r777sMNN9wATdNw22234dJLL8XXv/51AMCePXtw00034ZFHHsHmzZtRLpfxjW98I9Br\noB3uTHFiw299FM0GuhVrPZEXQQMWoh9xC2cEBW3z8LuWWVgrg4bXhsGXXHwJtSlyrNR22cGyCmE3\nhUBea8Wxo9VqYd26dbb/FlaLnB07dmDHjh3L/m7Pnj3L/nzfffeFMjYLcGcqAbAYmXKrj6KBXudn\np0TIMm7CGXHj5xnRPA9OcrDrI2OVOrb+O02RB1ZquzpJkgph3FGrJBzSsHDY6oVuz0KSpEjV/Djd\n4RYFY7htFFFuJP04U53S7lGMGQUk0pbJZHwpEUY5L78OSK8CDdZxbJX6toav1EfodHB7nQeH45c4\nGwb7gdR2zR6zRHhIi4KzEgRRoKK2qxOaVAiD3ifiiFolwRFJCm7PIuo+U5zucGcqAZAfHe2nMl7r\no5yg1ekA6I+0+UXTNDQaDWQyGVQqlZ7n88DDD2Dm3AzkirxkoFUyOKWewv7n9iP/1FIPqd07dwd8\n9W/Qq4PL4QSNn4bBcaR0sVDb1QltKoRhPbO4o1ac6PBidzSbTR6ZogzuTDGInaFPu0BDUvtHAf3X\n4dDmJAbhGKZSKciyjJlzMxA2CRDwRgqRmYIzCswcnekrBcdtLn4EMzjhwqN7K3FrGKzrumkY99ow\nuBdyuRw2bdwUW22X3wPBulhHphq/CmHU8Fore2g/UPYDj0yxBXemEkJc6UheNq+goja0OR0k0qYo\nSiLqo4BgBRrm5ucgV+RljlQnclnG3PxcT/2l3J4RUVIslUoQBPdakDjhaYQcwDlq1UvD4CQZlN1g\nXYUwCIKKWg3SumEdHpmiD95nKiHE0dTWC177R3kdkxZnikTadF3v25GiYV7EMWw2mxgaGgpE6e7w\nkcPdU3BqJRycOdj3WAQiNCGKIqrVat+OVBzOjqZp0HU90jHDhBto/iERq2KxaB5sEJVQSZLQarWg\nqurAO+JTW6YgnZVcPyOdlTC1JXwVQlqeBSt9rcIgCQ6hlznwyBR98MgUg7gZxHFch90PP4lRGwJJ\nH8vn8307iDTQj9CEE6lUCmcWzyAz5CEFp9F7Co51zfdbkxc3xBFst9swDCP2GhoOHVhTugRBMNMB\nSUoXiWhFmQ5IC7SpENJ2//1ErZLmWCUZruZHH9yZSghxbOJOTp2u62g0GkilUhgeHg7s2miI4ISR\nPhZnqhcRmshmsyiVSoGuo1qlhrpa756CU+ktBcd6rdY1x2JNntWhLZVKMAzDrIOw1tAk4eSV0x/d\nGgaTvxsEB5xVFcK4cKu10jTNrHUdtFormvCyx7daLe5MUQZ3phICLbUXSVO1I5AUm3a7zXSfok7J\n8kajgWKxiEKhEPhYU1um8Nx/POfeCLQuYfrK6b7G0TQNi4uLzEYKDcPAwsKCqZyoqip0XTcjUwDM\naATpWdRsNpdFI1ibMycY7BoGkxRAYhTTIL3uhV7fXyyqENJAZ9SKHNqQdx3AnkLgoBw2Dco8WYJN\ni5CzAhoa9/baP6rX8cLEKjcPIPA0ODui3CDJs6pUKqEYG6lUCmMbxpD/9zww6vy5vJjHxNhEz+Po\nuo6FhYXQhCbCXnO6rkNRFBQKBVdHkEQjUqkUVFVFLpdbFo0gBg8rRg8neIiIRSqVgiAISKfTTDQM\n7qSX64pbhTAJpFIppNNpCIJgqxBoXTs8ahUeXu0Afv/pgjtTDELLj4gYmlHVR8UlBiCKYihpcISo\nnyepyQm7riiXy2Hrqq2YOToDuSyjVLOk4NQl5MWlPlO9OnPkRV+tVpk8fbYaKX5SNuyiEcRgpqkR\nLCdeWGkYnBRInSOrWI14p1orsucCdEatBiFiMwhzZBHuTCWEuNL8SMpR0PVRtLC4uIhisQhBEEKd\nm5uYR1CQKAiAUCNsVnbv3A1FUTA3P4eDMwdRb9RRq9QwfeU0JsYmenKCrM47MRZ7wfa6tvZ+XX4g\nkcFCoQBVVXv+Hmu0wXqaTEsjWA4d0N4wmEM3nQc4PGoVHjwyxSbcmUoIcThTRH0sqvqoqOZoGAba\n7TYAUN+nyCukroi8FMN2pKzPKpfLYfPGzT31kurEKtRQLBZ7dkQeePgBzJybgVyRl4rWKxmcUk9h\n/3P7kX9qKWK2e+fuvq+3E/KbkWUZQ0ND5mlvUHRGI3rpN8NJPjQ2DOawAatRqyRBQ308ZzncmUoI\nUTtT7XYbmqZBEAQUi8XIxg0bq7w2cTyiIMznZ1UgJAXGLNKpPKgoSk9zURQFM+dmIGwSljUUzmQz\nS2IZo8DM0RnTMAjqftlJ0GuatuIzxDAhBm+vjq8fSW2W05M4/RFkw2AOu/SapkhT1CoJKXDd5sB6\nOmlS4c4Ug7h1MA+bzhSrKHv5pFKpUJuZdsprv/7668w6HsAbETar0AQRLAiboJ1Dq/JgvymXc/Nz\nkCvyMkeqE7ksY25+DusuXNfzOFZIk2ei2Ge9fnKfrJLW2Wx2WSoWsBRN6OeedpPU5iIWyaBfg7Iz\nasWjm95IgiHfLzxqFT6tVisU9V1Of3BnKiFEsSl1OhtRGeaEMKM3pBGvIAhmymKUG33Qc3NqYBu2\nQxoG7Xbb7PgehErkwZmDKK12F3wo1Uo4OHMwEGfKbm0RrKqRJN2vM0pADBLiXJE/E/WtXuAiFhwv\n+G0Y3M+eyZ2R5BF11CoJa6jbHEiWCYcuuDOVEMJO8yMGobWXDy29rfrFyVhndX6sN7AlWOuLnHp7\n9fJ86o06MhX3iGomm0G9Uff93Z14afJMDAw7Y5Q4MplMBq1WC7qum0ITxAEiTlU/jpVVxIKneXGc\n4NHN5BK2I8KjVsEgSVKiSiuSAnemGMRukwnT8HeLDETpbIQRvelmrEdJEHOzc3qtROUg9juOXX2R\n3Ri9UKvUcEo9hUzW2aHSVA21Sq2veXTr5UVOaokiZjabRS6XWzFX0kRTVVWUy+UVtS1WowSAaYj0\n6lzxNC+OF3h0k9MPNNVasQTp5cmhC+5McRzp1j8qLgXBINB1HaIodjXWo24S3A9eoiAs4FZfFATT\nW6ex/7n9S2ITDkh1CdNXTvf0/V76rhHjEwCq1SpUVTUjQUSRjwhDNJtNGIaBcrm8bJ1ao1Gd6YDA\nkmPdr2PFRSw4XvAq0Z/kqFUSUsziIoioFXlXs/4MuglMSJLE0/wohDtTCSFow78zVczJ2Yiy/iao\nTZLIhOdyudAa8fZCr8+PRC5arVbXCBstc3XCrb7Ijl7u2cTYBPJP5YFR58/kxTwmxiZ8y5Z7iagR\nQ4G8NIkRQYxQa+qUrutIpVJd74U1HRB4I2ql67r5v8m/9+P08DQvjhd4w2D2oCmlnUetnOE1U3TC\nnamEEKQz1S1VLIwxvRDEeH6iNyxEpgzDgCiK0DQNw8PDngwTWtP8yLPxKjTR6z3L5XLYumorZo7O\nQC7LKNVKyGQz0FQNUl1CXlzqM5XL5Xw5UySiRqTbnU5PiSNlVyNFjIhUKgVZlpHP55FOp6EoCprN\nJjKZjBm1clPS7IxaWZ0qqzpg0CIWVoOZXCNNRhonepyk1zujVtypih8anRKvUasolYXDpFuEs9ls\ncmeKQrgzxSBh1kwFrZxGC9bojVMNS9z4fX7WdDjWhSZarRba7XZktWu7d+6GoiiYm5/DwZmDqDfq\nqFVqmL5yGhNjE+b68Bp9VVUVi4uLrg2srYp9boajqqqQJAmFQsH8DQqCsOx0lqQDkjort0iQXTqg\nNVoVtIgFGYcYPOT7yWcG7SSZsxynhsGyLJt7QZANgxVFwfH54zh05BDqYh21cg1TW6YwPjZO5XuA\n445b1AqAeeiU1L2G10zRCXemOAC81Xl0wkpkyhq98Tq3fsbrBb8bvt90OOs4Uc3JyzidzybK0+lc\nLofNGzdj88bNfX2Pl4gaSbnrJh8tyzJarRZKpdIKp9IudYqkvWiaZjpWbvVL1nTAXC63QsQiqKiV\n1WBut9umE8dFLDhWrE54Nps1HamglCQf/NGDmD0/i3a5jdLqEjLVDE6rp3Hg8AEIewVMjkxi1827\nApkLr5mKHmvUKpvNQpIkM6OAVYVALo3OJtyZSgj9GMle6qOCHrMXehlP0zQ0Gg0mojde5+Y3HS4O\nvNznfiXc45au91KrRpyebo4UabCsKMoyxT4n7CJBxIAgJ7NWdUA/USuriAVpItxvOmA6nYYgCMvE\nCbiIBaeTzgODfpQkFUXB7PlZ5Dfmkccb+2QmmzHFZ2aPzZoN6Acd1p1BUoOa9ForSZJwwQUXxH0Z\nnA64M5UQejUsvdZHsYiiKGg0Gq6pV27QFpkKQso9bgeEQERAWF13Tk2ROz9DIj9uL27yXHVdX6HY\n5xUiDGEVsVAUBZIkwTAMM2LlljrlRcQiiHTAzvoHkgooSZJZP0McK9bWRRR0S1tj3SgmWNO5ujnh\ndgcVx+ePo11uL3OkOmmX2zg+fxybNm4KezqciAlCITAOuv1+W60WT/OjEO5MMYjbD83Pi7Tf+iia\nI1Okx0+/0Zso52cdy66eZ3L9JNavW49Vq1ZRf4Lv9qxYknC3m4eXiJqdYp8duq6bTkS5XA7khe4k\nDEF+7+Tf7HpaWemMWhHHikQLDMMIRHrdTvWNpAYSQyeo+hnW8ZK2tvPtO+O+zMBxM4ydlCQPHTmE\n0mr3dKjS6hIOHTnEnakBICkKgSQrhUMX3JlKCH5++L3URzmNGUeUw81hDGpuQHyRqQcefgAz52Yg\nV2SUVpeQLqdxXDqOvS/sRfm5Mrau2ordO3dHcl1B062RrR/iWH8kbbQfxT7rd5Ecf0EQQnl5W9MB\niYiFoii2Pa2IEUoc+cNHDuNM4wzWVNZg+5btmBibMHtN2fW0Is5XGCIWQdTPsI6ftDUW8XMQaHdg\n0Nkw+NTCKaQr7msxk82gLtaDuHzmI4KDdP00R624mh+bcGeKUewMSfJ3bj/EXuujaKDbhhb03Lwq\nuQUFMXRnzs1A2CRAwJLh2m63kRfyKG1Y2kBnjs70nOcfpwPcLS2OdohiX7FYdHR++lHsiwJiQNj1\ntDIMA9/72fdwdPEo1KqKcq2MTGUp8rH/0H7kn85jcmQSH3z3BwHYpwNaRSysz7iXNdep+tZZPzNo\nPa28pq3NvzyPkZGRCK8sXqxOuDUdcFVxFV5tvopsLutY96epGmrlWkxXzqEFlqJW3JmiE+5MJYhu\nhnLQ9VFxGOZODiPrtV9kXnPzc5ArMgQIZt0Lkb4myGUZc/NzfavQhYl1bVid3Gq1ypQDT4hKsc8t\nKhR0kbzVgCgUCmi32zi6cBTZi7NI62lougZDXUpTdCvYd+tpRf6ORA+C6GmVz+dtIxFJbwLrNW3t\nl8d+icvfdHlEV0UfJNp69WVX4/DhwyisLSyLcpL1mkqlIJ2VMLV9Ku5Ljh0a6mj7JajIWpxRKy/P\ngZRmcOiCO1MJws25CaN/FC1iBmHV4EQ9P8MwcHDmIEqrS1AUBZqmmU1brZRqJRycOdiTMxX1nIjQ\nRC6Xc0yL64co5qKqKlRVDV2x79s//DZmz88uNRJeXXKNCoXB/Mvz0IY1lPKlZXMiBkQ6nUar2MJL\nx1/Clk1bbL+j07Ei/YMymYwZWQpCxMIuEtHZBDZpIhZ1sY5M1T2iG2TaGuuMj41D2CssWy8k6kDW\ndvp8GqNrR7uKxAwKgz5/O+KIWrl9hyRJPDJFIdyZYhSvRrG1hiishqhR5lpb5x2Euh0tkPt3pnEG\nWn6p3sYplSyTzaDeoN9g0nUdCwsLKBaLKBQKgX9/2GuOOD+6rmNkZMTW+A9KsY/Uwwgbl9I7CVHK\nOB8+ctiMfDgZoPnhPJ55/hmsu3Bd155WJCWvWCw69rTiIhbeqZVrOK2eRibr7FDxtLU3yOVymByZ\nxOwxi2BHNgNd09E820S+kce21duW9ULrda3QcKjICZ+wo1ZebCnetJdO2LU+OSvodLDCro+K0zAx\nDAONRgOGYYRW+xVHZKqcLkPXdBSKzs6HpmqoVXozmKKaE4kUVKtVJnu4kN+OYRiODkOQin1z83OQ\ny/IyR6oTuRRueueZxhlkKisNdWJAEAGIxvkGcrmca08ru1TGbj2tVFUNxLHyImLhJKdNM1NbpnDg\n8AHTubZDOivhzVveHOFV0c2um3fZS8lvf0NKnhCE4AlL6ylpxCGg4SSE4lW+vxeIgBOHLrgzlSCs\nhnJUNUReRC+CHs+Lohpr6LoOWZZx1WVX4YUXXnB1pqS6hOkrpyO8Ou+QCEy73UYmk4nEkQp6/VlT\nE7PZLGRZth0zSMU+a1TIiVKthMNHDofmTK2prPEU+Vg7tNa1pxXZE+xqwgheelqRf+/noMROxMJN\nTptA9lGa9haStuaGIAoYWz8W0RUFS1jvkVwuh00bN3WVP+8meEJjT6KgYF3JjwY6D3Ls9ptua8hr\nZIr2liKDCHemEgQxYsKoj6IFwzAgiqKrolpQRBXFabVaaLVayGazmNw8ifyzeWDU+fN5MY+JsYm+\nxgzj5WmNFpbLZfMFEhZhPHvS6JmkJsqyvGINkJz5bhEUP4p9TlEhK5lsBmcaZ7xPxifbt2zH/kP7\n3SMfdQnbp7ebf7aezOq6jmazaaY8iqLYc08rqzIgcaycFNm84kVOm2Zj2SltTVM1SGclCOJSnykW\nI8G00Sl40q1hMCd+aHMIw4xaxSWyc+7cObz3ve/F3NwcLr74YvzLv/yLrXLoxRdfbKr25nI57Nu3\nL4arjRbuTDGK06kGyf2OqoYoKofDOrewanCcxg3zu0k9W6lUMuthtq7aipmjM0tCBDWLwVSXkBfz\n2Lpqa88GU1gvGxItzGQyqFQqpgHMEnaHEJ33y69iH6kX6obXqNCayhqPs/HPxNgE8k+7O315yd6R\nJ2uZKDaSfaFbTys7iGNFHLTOdMCoRCzIWDQJE3RLW8tmsxBFkZrrTQJudTLWiAP5N37vOZ14jVql\n0+muNkec6+sLX/gCrr/+enz605/GPffcgy984Qv4whe+sOJzqVQKTzzxBFatWhXDVcYDd6YSAim6\nDqs+yokonCkSjdI0zTTEoiDMTYvU5ADA0NCQ2ZsIAHbv3G1KZB+cOYh6o45apYbpK6dDkcjuF9J/\nqVAooFAoMGdMGIaBVquFdrsdmGKfLMu2in1O9BIVChpr5EMu2TjyUt428qHruhmFsj5/YoA69bSy\nRq3cHCtgZTqgNQ2LfC5IEQuS3kVjipdb2hoXQggfu4gD2b9FUWRSpp87gdHiFLVSVdVMlbeLWsX9\n+3744Yfx5JNPAgBuvfVWvP3tb7d1poD4rzVquDOVAEh9FMn3ZmUD90KniAZxQKIgLEfRTi68c6xc\nLofNGzeHUh8TZJ2bU0ppVBHLfudiddSdDiF6UeyrVCq+fof9RIWC5IPv/qB9r6tp+15XmqZBFEUI\nguCax281HgqFgim5bhWxsKoDdotaAStFLMg6CMKxIs5buVw2jWW79Jwk7bUc/5C1kkqloKoqSqXS\nQMj00wgRAmINa9QqnU5DlmXkcjnz4Onpp5/GD3/4Q7zrXe/C2972tlgd31OnTmF0dKkGYXR0FKdO\nnbL9XCqVwnXXXYdMJoM9e/bgYx/7WJSXGQvcmWIcqzFrjW5ERZhGM3ESBUEwT7yjVtgLms6aHFbx\nEs2hnU5H3U2NT1EU16gEUexLpVKOin1u9BoVCgOvjjxxhLymMlpJp9OmA0ZS7FRVNVPUSMSqWzog\nsBQ1sqYAWmuu+k0HJOO4pXg5iVhwBo/OCGenTD+LUStOdBCH0Bq12rp1K375y1/i/vvvx8c//nHU\najV85StfwY4dO7Bt27bA95zrr78eJ0+eXPH3n/vc55b92S1D4+mnn8ZFF12EM2fO4Prrr8e2bdtw\n7bXXBnqdtMGeBcQxkSRpWY8lkv4SJWE5N3FHPIIei6R/EVnTTuOTpXl5iebQDokOuqldknuUzWZN\nw5lET6yF50SxrzPNzS9+o0JxYid93itWA9QatWq1WmZqb7eeVuTvrVGrsHpaeRWxYPF3EScsp5rZ\nXXtnnYyd9DotUSuW7z0hCXPoJJVKYWJiAp/61KfwqU99Cq+99hpuueUWzMzM4G//9m+RTqexY8cO\n7NixA+94xzsCkUz/2c9+5vhvo6OjOHnyJC688EK8+uqrWLt2re3nLrroIgDAmjVr8J73vAf79u3j\nzhSHTprNJlRVXWbMplIp84SWVZLUiJdAivPJ84qq5isMdF3H4uIiMpmMazQn6jQ/P3iJDloV+0ql\nkmk4K4piOvrECJJlGYVCIRC52jDTO4OAHAooiuKrJswrdgYoSbFz6mllh5eeVuQzQYlYBNGniJNc\nOqXXrVEr4uhzhcDBpptDmMvlUKvV8PWvfx2GYeA///M/8eijj+Lee+/FBz7wAXz1q1/FRz/60dCu\nb+fOnfjmN7+JP/qjP8I3v/lN3HLLLSs+I0mS2WNSFEU89thj+Iu/+IvQrokW2LdUBxSSWmP94cWR\nAhfkmKSQ3a0RL0sRHMB7KhkL6YtR9S4LE+II2UUHCXaKfXZGfqvVMntQKYoCwzC6GvksY60JK5fL\nkUReSIqdU08ru0ih3XcA/z977x5tR13e/7/3/Zx99j4nCQkBQwiGOwhJQEWhKrgKIoQkCpZwEaMY\nKBTjBdpCi1XUgrUiS7SAS1lSv6jQREIgELGiUMFyEUjUiiTKLyGQBUkkl73Pvs3M3r8/sp7J50zm\nPp+Z+czM57VWl01yOHOfed6f53nej/lMK9bEgv7d73FleU6RxBtuslZSiEuMtFotVKt75hHmcjkc\ne+yxOPbYY3HNNdeg0Wig2+2Guv1rr70Wf/M3f4M777xTt0YHgC1btmDp0qV46KGH8Prrr+PDH/4w\ngD0xw0UXXYQzzjgj1P0SASmmEorVCzapYsrMlCHM7XnBb/mAqOLDzzns9XoYHx9HtVpN5MBANxlP\nL459vV4PqqrqRhN+gvwkQaWdfnvCeGDlosZmCv3OtGIHBVOvFa99rVQq0sRCYkvcQjwNJXJZOAZW\nTBmp1+uo163dYHkwZcoU/PznP9/n79/ylrfgoYceAgDMnj0ba9euDXU/RESKqRSR1BeJqIF6kPPp\n9ZhEzUyxvV5eyi6jPB6n7YTh2Kdp2gTHPqcg36nnR2SsrM/jhF3ZJxOLIDOtgL3lgP1+f0LGUZpY\nSJzg+a5jhbibgcHyfskO7XbbUkxJ4kWKqRSRtDI/coTrdDq2ZVfG7YncF8Yek6g9X26vWRJ6vZwC\nCSqzzOfzlmWWFNySk5KdkKLsTK1WM/05Y5BPwooCZ7c9P6LAWp+Xy2Vh9zeX4zfTirICFLSEMdPK\nTHyTiQUJq7RkNbNCGNeKxJIU4s6kJTNl916xy0xJ4kW8SE/imySJKTZbMDY2JuyKPR2fm5e0MQPi\nRXyIlply2+vlRJwfOLeOfSSk7FZ5/WZnePT8xEUQ6/M4YcWKl5lWdgOXzUws2CwmDxML2k6Q3pkk\nB5RJ3veoCMtNUqRvj8QaqnaRiIcUUwlFpI+O1xexpmloNpuOjnBmiCY6CF7iIwqczqEbEeJmG3FC\njn12ZZasY59d4KGqKlqtluNgWifc9PyIUg7I0/o8btzMtCoWi1AUZZ/yTfZ3AOYmFnQdSRgFLQdM\nk4mFoih4ZfMrWLthLbaPb8fUkamYe/hcHDzz4EQJdBExuknSve13YHAS7qe047Sg0G63MTIyEuEe\nSdyS7K+kZAJxZaa8QEHu0NCQr/6LqI/RzfZ4Gk3EvTqbtKHCZtfHybHPrdEEEF52xq4csNPp6BmJ\nqMsB7bIzaYB6qYwzrVqtFoA9JVOqqjoKWjMTCxI+YZQDOvXO8BLfPMXPj1b/COt3rkd3pIvqflUU\n6gVsVbfiN+t+g8qvKzhi0hG4cP6FXPZb4jwwmC0HjHuxJgzi/nZGgSzzExcpplKE6GV+nU5HX1lh\nB/GKjNPxkdFE0GMS4SNA18dt/5oTXkokecA69lmVWXp17Ot2u5GIChHKAVnrc7PsTNogoaOqKkql\nEiqVin7e/cy0KhaLluWAQU0snHpn2KyY328AT/GjKArW71yP8uwyytj7XiwUC6hP3+M4tv7l9VAU\nJRUZKtECeTflo9JNUjyCuPlJ4kWKqRQhqpgiIwNFUQIbGYhS5kdGE91ul5vRRFTiw3gOeV6fuKB+\ntX6/z8Wxr9PpTLA+jxI2IwFgQhAUVjkg3QMAYrM+jxqzPji2ZCrMmVZhmlgA0DNXbsU3b/HzyuZX\n0B3pTvhdRrojXbyy+RUcOvtQx98nCYZV+SgNDKafEU0UukWEmCAK2u02pk6dGvduSEyQYiqh2L3w\nRHohGnuJeAR/cZf5ubHaTgqDwQDNZtN2ULLI5HI5aJqGVquFQqGAer0e2LGPRIWVY1/UWFmAdzod\n1xbgdohofR42rEuhWR+cG0HrZ6YVm7Wi9zRPE4tSqaQ/C15MLHiLn7Ub1qK6n/0KenW/KtZuWCvF\nVMQY720aQE7vgSQPDE7SvprhFNtQyblEPKSYSjDGQD+OF4ldpiiMobVxvyz7/T4ajYYv8wwnosq6\n0XbICKRYLNoOSg66nTCh0rRKpRKbY1+UUKmXMXvCWoCTuHKz/0mxPucJDSuHaQAAIABJREFUGYoM\nDQ25Ls3lNdOKfhc704rtuQpaDgjs2zvjxsSCt/jZPr4dhbp9hrtQLGD7+Hb9z0620JJwoJI/um+S\nbnqSdJzK/KQBhZhIMZUyou5TAcxXU8IaxBunAYWqqmg0Gr7NM0RC0zR9latSqSTyWCigrVQqlnXk\nfhz7kiIqgmZP/IiKpEPCM4hLoZmg9TvTylgOyP4++vcwTCyMVtrbmts8ix87po5MxVZ1KwpF69+p\nqRqmjqSjZEmkahA/sBn7JA4MTvr5d4vsmRIXKaZSRhxig4U1ARB1aK0fKEAN0zwjqmtHwVqtVkts\nEE1mGayYYBHBsS9qvGRPKDhKg/W5W7rdLndDETb49DLTyohdOSCwR/jyEFZGIUhW2qOlUWxpb0Gp\nbG224UX8zD18Ln6z7jd6v5UZrb+0MHfOXF/HIgkfJ9MTQA4M5o20Rk8u2fiKSkKDFQBR9N/EYUDR\n7XahaVrixSEJXU3T9AxMmIRxrYyOffRRN/6MiI59UWJXDkgB+tDQUKqO2Qqye1cUJXRDETczrUql\nkutyQGDfmVZkYhHU4potB3zn296J3637HUpTS1BVVc9UsCLPi/g5eObBqPzaviKhMl7BwTMP9r3/\nkmgxMz3hMTBYsgc330qZmRKX5EaGEtNgNa4yuLD7b4zbiwK2RCwqc4awjo11uyuXy4n82LkR616E\nVJyOfVFCQVChUNBL0crlsp6dcmumkERYu/eRkZFIj48VK2zWqtPpQNM0166MZjOtrNwB/ZY7zZo5\nC5VfV1CYvifLMBgMJrgE5nI5FHcXcdCMg1xto1Qq4YhJR2D9y4zVerEATdXQ+ksLlfE9VutJzgSn\nCa/3DWt6wmNgcFDSVOYne6aSiRRTKSOOzM1gMMDu3bsT3X9jhMRhLpdDpVKJJAgL67yxphn1eh2d\nTidSQcoD9hiMLntsZtSN0YSIjn1hwx4z63jI9kR4MVNIAiLZvbPBJwBdpPidaUW/g80QGP/OyzvL\nSvwM+gN0d3RRapRw6OiheqbNTXnXhfMvNB8CPMd8CHCSA+Ik7zsPjKYnWRsYHBWyzE9cpJhKGVFn\nbrrdLgBwG/TqZdthfbwURUGz2cTw8LDeCB4VvK8dOSpWKpXITTN4bcvuGFhRkBbHPt7YHbOZ85vR\nTMGLO6Ao9Pt9tFot5PN5bk6iPHEa0uzmvLPlgKVSSb9uhULB10wrN+LHa3lXqVTCobMPlfbnGcJs\n4cBuYDCPZzMNYtbNMcjMlLhIMSXxBTtrCUBkvURhvzCNRhO0sh0FvI+NHBWNphm5XE7vmxEdN66Q\nlF0BYBswZtEGnI65XC47Zo2tzBR6vZ6n2UpxQ3PHSqVSIjLlQV0ZgT0Ba7vd1o+ZyvRYEwt2WLXV\n73ESP6KVd0n4EKYYcRoYbHQIlFjT7XYTaxqVdqSYSjBmL54oMlNUcpXP5zE6OoodO3aEuj0jYdi/\nG40NaFUt6rJJHtuifqBOpxOraUbQc0eOfVZZTwoYFUXRA1Ir0uLY54Wg1udmZgqilwOmwe7d6Mro\ndN7NBhDT9bAzsSBRxXOmFVveRYGyaPeIJD6MCwdmWaukDgwOituYRuSFrCwjxVTKCDv4Nyu5CkPc\n2MH7GKkMKkwXQjfwKnegjOHY2FgiX7zU66IoygRha/yZfr+PUqmkN/VblUeRJXaWbMB7vR5X6/Mk\nlAOmUTA7nfd8Pg9N0zA0NGQ7z8/Ya0XCirIEJHyCWq9b9YWJPKOIB3LgsD+sslZeBwanoczPDVk4\nxqSSjcgiQ4QppqxmLcVhesELTdPQaDRQKpVMXQijLokLch77/b5umjE6Omr54hX5enl17KOPLWBe\nHkU/m3bHPoL6GHu9Xmh27yKWA/IWjyJiPO/dbhedTgf5fB6dTgeKonCbaWW0RfcD9YUBckaR6Igg\nRtj722lgcBrf5U7XgCoxJGKSzq9ORojq5SfaIF5eYoA1mhgaGuKwZ8EIcj1JFJbLZWEa7r1eJyof\ntbPXtzOaYMuj2GwjZbrcuKUlmbjs3uMsB4xCPIoIOx+NFg3MZlrR/7kxsQDMs1bsvwfJWjnNKEpK\nH6ckfOjd7laMiyAGoyIrx5k0pJhKGXGUwImc6bDCqR+HSELPFIlCO5MGFhGvlxvXQa+OfYVCAcPD\nwwCwj1saBfhpaXoWxe49ynLALM0KY6GyVVY8suedzRayWdqgM60AdyYWTliZWLCZNmliIWFxEuP0\nPfA6EkAk3AhC+SyIixRTKYNnWZpTCRy7zSiD8yDbo6BTVVXLfpy48POidCsKRcbKdZDFq2Of0b3O\n+CE2lgO6CTRFxSgeRfngOpUDkqU3rTB7gZ7jwWCQqVlhbsSjVe8Sa53OY6YVbxMLRVH0599P30yc\nJD0zkqT9NxPjnU5nwjiENIpxWsiQiIkUUymDl7BxY0kdF36P0W1PEY9t+cXtttyYNFgR1TE5bYdK\ntNrttmX5KNsf5dS0TgYEdk5u7IeYygGNw1Pd9J2Ighfr87hxKgekAN8paGaDJrtFnjRBpdb9fh8j\nIyOegqowZlqRqGJNA3iaWBSLxX2ezyz0zUi8Q/cbe28mcWCwk6BttVp6pYVEPKSYSjBhBBGsrbbb\nbIeIZWNGROwpMuL2PIriPhgENxlCL0LKr2OfMdA06ztxE+DHQZJtwN2UA9K5Z897FocusyWcIyMj\ngY7ZaE3tZ6YV4M7EIqiwou1IEwuJW8yysmEPDI6KdruNarUa925ILJBiKmUELYHzY6steplfkCyb\naEJR0zQ0m01bkwaRMDt35NgHwDJD6FZI8eybseo7oRISqwA/DtLkXmdVDmjMFubzebTb7QnzlNIO\nvZPz+Xwoi0BeZ1qZYWdiwZYFBs0MuDGxYGcUSdwh0vfNL1bW9EkaGOx0HVqtlhRTApPsr7BkH/wG\n/xSkFwoF1yVwouMny2YkSjHl1O/Gy30wyjI/I27EoFujiTD7Zqz6TszKAaPsuxsMBhOc3ETq+eOF\nWTlgr9eDqqr6M8JmPtJK1Fk4v9lCI2YmFhTEkrAyM7Hw0rdj7JuJe/hrknqOrEj6/jthzMrGfc9Y\n7aMVUkyJjRRTKcNPoExB+tDQkK+PtoiZKTbLJprRhB+sZnwlCVVV0Wg0MDw8bNnf48WxL8q+GbNy\nQD/9PkHIonsdPeuapunX2U+AnzTi7oVzmy10O9OqWCyalgOyJhZB4DX8VZIdknbPSDElNlJMJRge\nDzi5wQUJ0kUTU36MJvxuiydm22JnfPEShXEYUETh2BcVblbwedl/E6JYn0eNmQ24mwA/yYsndH+L\n1Atnli3kNdOKfh/9Lw8TC9oXaWKRDYJmBtl7Jq6BwValigTFaRIxkWIqZbgNlIO4wYkMzSsS2WjC\nLdRblHSjiXa7jU6nE5ljX5RYreCT/bfbhn472Cxc0u9pt7jJwrkJ8EU1D7GCTEWGh4eFHXVg1Vvo\nd6ZVv99Ht9vVf54yWCSoojCxSKIhAS/SUKLIE/oGiWZ8Qn3fEjGRYipluBFTbOZmbGws8MtAlMxU\nGHbucWWm+v0+Go0GCoVCKP1AURwTm2myMjTxIqSSYLrgZP/tpqGfRdM0tFotlEol4a3PeeHHBtyt\neYjI2QhaKBD5/jZi1VvodqYV9YWx9zdbAsj2XJGo4m1iYWaj7TWrLAVJvIR5/qMyPnE6BunmJzbJ\neGNLTDF78JwC5TAyN07GCbwxbo9WsbvdrmX2I0lQb5HfHjYR6Pf76PV6AGAp2P049iXJdMGsHJAC\nZjflgEm2PvcLDxtwL+YhomQjzMoZk4iXmVYkpIzujBSQsiYWYc60srPRjtuQQCIWRuMTWjAjh8Aw\nrddlmZ/YJDvqlFhitsoh8iBevxiNJnivOkedmaJ5WEk2mqBjoFVkXo59XoeVhoGiKNi0eRPWbViH\nbc1tmFabhjmHz8GsmbNsy7KMTlJm833YAJ+ycCKXe/EmLPc6kWeJDQZ7BlcripI6UxGnex6Avthg\nh5uZVvQzQcsBk2RIwAuZVfOPccEsyMBgN0N7999/f96HIOGEFFMJxxjsWwWuZGIQRuYmrjI/thQu\nbDv3sD84FFT1+32Mjo6Gml0L83qx9u0AdCtkFlEd+5y4+8G7sX7nevRGeqjuV0WhVsBWdSueXfss\nyk+WccSkI3DxORe7+l3sfB9jaRRdn+Hh4cRnWd0SlamIXTmgpmm6oI2iHNCYcU2TkDKD7vlCoaBf\na+oLdVsCazfTirVep3/nYWLBinA500pMRBCEbjKdQbJW1EspERP5FkghbLBMHytVVUML0qMWU8Ce\nF9Xu3btRLpd9lwO5IYoXNGXXaIU1qQF0t9tFs9nEyMiInlkwcyck5y67Dwo7j0oE0wVFUbB+53pU\nZldQn15Hobjng1koFlCfXkdldgXrd66HoiiefzdlTtgsVKlUQqfTQaPRQLvdhqIoqRiuaQZliaIu\na6XgZ2hoCLVaTV9oUhQFjUYDzWYT3W5XF/48oQUuTdNSl5Gyg0r+qtUqhoeHUa1WUa/X9SCx3W6j\n0Wig1Wqh1+s5nnfKJFUqFZTLZT1QJWGlKMqELJYfqJSwXC6jWq1iZGQExWJR72ekzDllzSQSYO+9\nOTw8PKHShDKznU5nwnvdTWYqrjK/5cuX49hjj0WhUMDzzz9v+XM//elPcdRRR+Hwww/Hv/3bv0W4\nh/GTzKhN4git/jsNSOW5vaigVfxarZbYUjiCNQMZGRnRy1/ChO4DXqt5bnrWvBhNiNgrtGnzJvRG\neqjAujy2V+1h0+ZNOGz2YZ5/P1vOWK/XJ2Rf/TilJQXqYxKhnDGqckBaPKFnPu6FgqiwMpCxcsT0\nO9MK2FsOSNkBYOJMq6AmFsbSLqr8CGJiERciZHWCIvoxGEtezbJWdC9ZfR/j7Jk67rjjsHLlSlx+\n+eWWP6NpGq666ir8/Oc/x4wZM/COd7wDCxYswNFHHx3hnsaHFFMpJJfLTQhShoaGQt9eFLDlitQA\nGgUU2PI+TqMZSBJXNu161ui8pcGxb92GdajuZ++kVJ1axboN6zyLKatyxiQaKXhB1GsNOJcD+hW1\ndK3puv75//uz5/67JELX2o3Bhp3lPYAJpZhuygFLpVLoJhYAMDw8PMFGW5pYSKww68+jBUlgb3+e\noih61jbOob1HHXWU488888wzOOyww3DIIYcAABYvXoxVq1ZJMSVJBsZSKgpe2+02arVaJB/lKMr8\n2JlL1WpVf+lEQRjHF7cZCA+B6HY4slvHPmrEF9HRbFtzGwo1+30qFAvY1tzm6fd6sT4X2UjBC6Jf\nayNuRK2d/TfB2oAv/9lybNi1gUv/negEcSq0ErV+Z1oB5iYWmqZxm2llZ2IRx3wiidjQuxuALpxU\nVcXOnTsxb948zJ07F2eccQa63a7Q1uivvfYaZs6cqf/5oIMOwtNPPx3jHkWLFFMpgrIE5HwW5epm\nmGKKyhVp5lIYPQxRQYGkmdiNo/fML+TY52SxT6u0dsGDn7lCUTOtNg1b1a16r5QZmqphWm2a698Z\npJzRLnPCzlUqlUpCBW1pMF2wE7WAeeaEDDYqlQry+Tw27NqAyuzKhLJR6r8DgPUv7+m/S3KGirdT\noZWodTvTirAzsaDfSdtys89W72yjiUVY84mCInqJnBN0/tNyDLncnoHBU6dOxe9//3v88pe/xCOP\nPIKHH34Yjz/+OBYuXIizzjoL73vf+7guxJ5++ul4/fXX9/n7G2+8Eeecc47jf5/k888DKaZSAuts\nF/WqV5jbIne4OGcu8RI51BdDZiCir8hbwTr2WZWQ0gc6n8+j1WpNCP7ZQIctcRO5f2TO4XPw7Npn\n9WDXjNb2FubMm+Pq9/HsFTILMq16TuK859gZUrwHUceFm8wJWd0PDw+jXC7jTy//KdT+OxEg0axp\nWmii2ctMK6eML5u1Yp0Bqd/KTdbKbhvsMxr1fCJJcjBe97GxMSxatAiLFi3C+eefj3/4h3/Ak08+\niRtuuAG///3vceqpp+Kss87CWWedNSEr5If//u//DvTfz5gxA5s3b9b/vHnzZhx00EGBfmeSkGIq\nBVDvTaVSwdDQEJrNZqTbDyujQgGJceZSkjI4hJuSuCiPy++26JrYlZBSoEAN9maBDomqbrcbuh02\nD2bNnIXyk/bZo3KrjFkzZzn+rrAHtJr1nFCA79aCmjesaBbBnTEMzERtt9vVh1dTRuL5Pz6P4Sn2\nFsd+++9EwJhpjuJaGxv8zea4sVkrK0hY0VBhs3LAsEwszOYTJcXEQhIMN9nBdruNd73rXTj11FPx\nz//8z/jLX/6iZ6x++ctf4p577olsX814+9vfjg0bNmDjxo14y1vegnvvvRc//vGPI9knEZBiKuGw\ndtQkOKIWG7y3xxpNmGVwknZ8VBJXKpWEmJfkBzezyqyMJthAh36m2+3qfQQktER2qCuVSjhi0hFY\n//J69Ko9VKdWUSgWoKkaWttbKLf29LnYZZnYEreo7LCNQRsFme1229PqfRDCGsYrOiRiSTRTSdqW\nHVugDWkYKAPLwdZ++u9EgM0+xplpZue4mS0ouOkvdDvTKugxmolwVgzSv9EzyvucpqHML8n775Ze\nrzfh+7LffvvhwgsvxIUXXhj6tleuXIlly5Zh+/btOPvsszFv3jysWbMGW7ZswdKlS/HQQw+hWCzi\n29/+Nj7wgQ9A0zRceumlmTGfAIDcIGlL/JIJULaDDW7Hx8f1+SlRMBgMsGPHDkyePDnwS401mrAK\nOPv9Pnbt2oXJkycH2pZbdu/e7bscy6wkTlEUbNq8CS+89AK2N7djam0q5h05DwcfdDCazSaX8+jE\nrl279HkpTrCOffV63fSa+HXsy+fzeqBDvVUilKRZQdfOqwMba30uSjkjlaRRkO929d4LbK9QHEYr\ncWGXfVzx0xX4feX3yOVz+jNDZV4krDRVw7GdY3HuB86N6Qi8Q+8JkbOP7IICzfih+97LYg6btaLf\nRf1wQU0srPaXxBtvEwua55XU55Os6eOyDeeBm2P44Ac/iF/96ldCPlcSmZlKPENDQ/pLliXqzA0P\n3M7FSkpmyqwk7v898P/w0psvoVfb6+L1hvoGnn3+WZT/p4wZlRn428V/y/sQfEPlifl83rI80a2Q\noob0Xq83Icg0NvPHXZJmR6lUwmGzD/NUfmVlfR43YZcDijgvLGzcZB/nHjEXv1n7G73/jn1+FEVB\nPp9Hc1sTx807LjGr7knJPrJZ8qAzrYC9JhhDQ0PI5/MTeq54lQMas/oimljESVKeETvcHIPMe4iN\nFFMJx6r3Jo79CPJSc2NqYETUl6hVmaKiKHjpzZdQOdTCxWs68PIfXkav1wt9ldCNQHTj2Ecrp3Qt\n3Dj2WQWZIpSk8caL9XmcmJ17CjCpx81ptg+LyDOkwsKtK6Wx/44t86KgudKsYOp+U/XyYC/nPmpY\ny3eR73Ezgsy0oufDeI8bZ1qpqgoA3GZa8TaxEPU7KtmLFFLik42vXMZImkFDp9PxNBcr6he/l/PJ\nlikah9hu2rwJvZq9i1d3pItNmzfhiMOOCLzfQSBxazcHy62QoswMGVK4uX7GFWSzhnI/Q1OjJKmZ\nGTfN/HbnPmyDDRHx0ivkpv/umGnHYPLkyROMCUS879NUxunGmZHOvaqqlkOInWZasaMiwjCxoF5U\nNmslxZLYuBG0YfTLSfghxVQKyeVy+os7ym16FXAUgCiK4tkqPGgmzCtujs2pTPGFl15AdT/7oXvV\n/apYu35trGLKq2OfXUDAKzNjbCinXh8v82WihKf1edyw595utk8ul0O3243UYEME/PQKXXzOxeb9\nd/Mm9t+5Pfdx3PckpJK2WOAGM1MI9twD0LNDdt8hp5lWVKIftEyP3V/2XqHZc2zmM23PpcysSURA\niikJF7yKKaNVuMgveDcvalVV0Wg0bOdhbW9uR6FmLxgLxQK27Qjfxcvsejm5KNLPuDWaCCszk8vl\nLIemunXqCpM0Z2asZvvQsPBcLid0zwxvgvQKee2/c5qrFGU5ID3baVgscAOde1rIocyV1xJks5lW\nRndAHiYWtL/ARBMLEoKsiYUUI/HjdA00TRM6RpJIMZV4rHqmRC7zc9OL40SUx+i0Lat5WEam1qbi\nDfUNFIrWAXZf62PqyNRA++sHWl3v9/uW4taPY1/YwZZVaU4cfVZxWJ/HCQlXsv2m+Ty9Xg/tdntC\ncJ/Gc8GWuJXL5UgDUjNjgqjKAa16hdIMmecoirKPo2nQmVbA3nJANlsVlYkF3bfkKpk0siAGx8fH\nUa3aV7VI4iUbb8KMEYeYcrvNXq+nvxiC1NiLIBgpeO52u5azl1jmHTkPzz7/rO7iZUbrLy3Meccc\n3ru6D+z56/f7aDQaKBQKqNfroTj2RQFb6sIKq16v5ynI8QNrfV6r1VL/cSesMjNsmZHRJS0N2TqR\n+uGsSryof4ZELo9ywKwai9AiiZmxCO+ZVqVSaR8TC15ZK6OJRb/fR6fTmeA4yroDZuU9FjdOgjDp\n1u9ZIBtvw4whopiiINuL0YQoWJXE0ewlt2WKs2bOQvl/ysB0658pj5dx8EEHB91l16iqimazGZlj\nX5S4sf7mEWCKan0eNpSZKZfL+/TDGUvSRCvFDILoJW5hlQOmuXzVChJSmqbZOjQSbhxJ3WRrnUws\nqOyLRzkg6wJIwk2aWIgFvW8k4iLFlCR0aNVeVVXPRhNWxJmZYjM5VrOXzCiVSjhyypF46c8voTdi\n4uI1XsbhY4dHEqDlcjndHMKtY5/dR5vEpRfHviixsv4OGmAm2RY6CF4yM25KMVkTC5FJWmbGjTOj\nU7aWLXETYZEkKoxW917vTaMjqV221s1MKzsTiyDlgOwiGe1vkkws0lDm53QM9J2WiIv4XwOJLaL0\nTFlt02g0kcSXHuuOSJmcSqXiq9H+ows+qrt4vfDSC9je3I6ptamYd+I8zJo5Sw8ww4aCqnq9bine\njB9qK5IysJMw6yFgLZDd9vqQoEiDLbQXgjgVWpVi0u8MsxQzKGnIzFi5YloNanYqcUsrXqzu3WKX\nrQXsZ1oZf4/RxIIySrTwxcN63YuJhejv/KRDPdkScZFiKoWIIqbclJDx3F7Y8Or3snPxovKKsKDV\nVk3TMDQ0ZBoM+3HsS6qgsLJANq4eG4P7NFmfe4F3ZsZNKWbcZUZpzcwYXTGNg5qLxaJeYpZVIRVW\n2a5VttargQgJK/ZaGcsBwzKxUFVVN7GgZzSOwdJpyUzZXR8yfJGIixRTKUQEcwZewsOKqI+RPhxu\njCaCEtZxsQOFrdzHRHTsixKz1WNjcD8YDHSDjSSUevGAFRRhZWbc9JtE5cxIZCUzY1YOSCWwtAAj\nasaQJ35mhgXFakHHOE/MaVHBrhyQNbGgf6ef9ypGzPaXLR+VJhb8kW5+4pONSCDFiPKiInFDwUen\n04lEeIQNBc5kGR52eU9Y15Pt86rVanqpBksSHPuixBjckzsanZ9er6cH+aI8h2Fg7B2JIpg26zcx\nrtyHHdxn1aGR3uFkqALAsRwwDcQhpMywMhDhOdMK4De7iLbDLoJIEwtvuHHzk2JKbJId6UpMiavM\nj3pnNE3D2NhYqEFXFMdI/V5Ugx6VaOB9XGZ9Xsbz59WxT9O0VJU8uUFRFORyOdTrdV1cRTHXJ07C\n6B3xg7Ec0Cy45+HMSIhuqBIWrDMlKyh4BPciI2rfp5WBiNdxD1YzrVRV1f+XSs14lQMas/thmVg4\nlcilAdkzJT5STKUAY2BMH4Ioa4kpg1MqlRJrNMHCDhYuFArodruRbJf3eXNTbunHsS9LK/VsgMkG\n1mZzfby4dImOVWAdN1a9PkGdGQlRA+uwcXPcPNwBRSNJjpw8Z1rlcjl0Oh2Uy2W9F4qniQUtyrEm\nFqqq6iWkrCV7kt+TPHBaQG21WjjwwAMj2huJH6SYSikksKJ4QbG10lGt4oaZmVIUBc1mUxcgiqKE\nsp2w6XQ6jnO90urYxws3x53GmUpJCTDdBPdeMoZJOW7e+D1up+Be9HJAqj5IooGOmx5DK1dSq+M2\nM7FQVZWLO6Bxf2kRqtvtBjKxSIMBBWC/kEpmRxJxkWJKEgjKfFAgGdVLLSwxZSZAoiyb5LEtKs1S\nFMW2z4sVUml27POLn+O2culKUkkUDeNN4vVmg3szZ0Y2a2I8/0k+7iDwOm4RDUTsSNP1NusxtJpp\nRd8Hs+N2M9OK/j2osJImFu5ptVqo1Wpx74bEBimmUkrYAoB6Z8jhjkptkopbASI6rGPf6Oio6QeP\nRC9dL7usSVYtwHkcNxswsMLKa79DlJCATMP1djPXh+59Kj1yM4Q4TXgZvuwFKwMRUe59ElJpvd52\n9z6V8OXzeccFUKeZVvQzQbNWTiYWaZ9pJYf2Jh8pplKAmXAKU0yZBexUHhAVZHjBAycBkpTMFDn2\nFYtFy/koVF5BTl1WK8fAnqxj0oeU+oGGs/KapUTYzVSilVieJgpe4T1DSiSsMoadTkcPCql3JCtE\nKZxFmieWpgUDN9D5zefz6PV6ejYqCTOtyuWyLuDIVZd1B3QjCNOAdPMTn+x8OTJGWAJA0zQ0m03d\nYpteYnE4CPKAjsdOgCQBM8c+I0ajCfpoma0c039frVYzI6SimKVEmJVE8TRR8AoJyCwIZzZj2Ov1\n0G639aCNxgewwX0aocxrHMI5znLArAkpgjJxw8PDEzJxrHkO2eEHmWnFZpXo54KaWNCzymbZNE3T\nF6Fo20kuB5TW6MlHiimJa1RVRaPRwNDQUOwmBDzEGxlNDA8P2zZdR52Z8ppxo761kZERy5IVJ8c+\nWjkul8t6KUg+n8f4+Lhjr0kaiGOWEsGuxFLmkJ2pRIFlqVTifu7ZobRZsron99Fut4taraYHhWkx\nELGDMpAiCOcoywHjFJBxYicgw5ppxWatSCjwKAc0M7Fot9v6PePXxCJO3MQWsmdKfLLzRkkxVha2\nPAUABXZWAXvUmamg23M6niRAmZR2u207IJk+an4c+7IQXIo0U8jaSDzYAAAgAElEQVSsMduskZxH\ncMkKyCxZ3dsJSGM5oOgmCl4RPQMZVjmgFFLOmTgrZ0w/M62APVkrtgSQ7bniVQ5I9wE53ZmZWNCz\nKvrzKnumkk123ioZg5e4MRpNWH2IklLm5/Z4WETsmSLDDFVVLQ0zaOWOhJTdy5p1tiqXyxPKN5Pu\nTmeH6JbvZo3kPIJLkQRklHjJQIpuouAFtoQ1KRlIXuWAImXioiRoSSPPmVZs1spYDshjphVtw2hi\nQfcLkGwTi3a7LYf2Co4UUymFl8W2kzNcXPg5vqDHI0qjKx0HANTrdUvHPrdCyq1znZU7nd+ZPnGT\nNGtkXsGl6AIyLGgBAoAvASmSiYIX2Exc1CWsvHAStlZ9bqJn4sKChBSvTJybd4/VTCsWu3JA2m/6\nGbf3qdl32ax02s7EIk7cxBWqqmaqxy+JSDElMcWrMYPoZX5sc7nXkqYoAyOn43JzXdwKKbZvxM9H\nlw0u7eaaiBjEJN3y3Rhcuh1WSwKyXC5nbihtq9VCPp/H8PBw4OOO00TBC2kt5XQStqwjqdWCU1oJ\nu6TRTNhavfvtemztZlqxJhb072GaWJC4ErUnWJSFXIk1UkylAN49U26NGXhtL2zcON05QccX5wuN\nDEDsrgtrNOEkpHgaD9jNNRFt1T6NFuBOw2rJvKLT6aR2to4VYWfiVFXFps2bsG7DOmxrbsOU4Sl4\n2+y34cDpB06wvI86Yxs0E5cUzIQtWd7TPR+WgYtoxNEb5maemxtnUrOZVuygYNaxj37OT8xhZmJB\nC1FUchjltyruuELCh3REEpJ98CtuOp0O2u02arWarxX7qF4Mbo/PjdOdSFgdFw/HPvbnKMgKY7Xa\nqYk/attvIkrr8zgxC256vR5UVUUul9OvhwjCNmzCLuW8+8G7sX7nevRGeqjuV0WhVsBWdSue/8Pz\nKD9bxuFjh+P8M8/fx3o6bGdM6onjlYlLEoqiYDAYoF6v639OSsY8CCKYbFj12PqdaQXsLQc0Cit2\nsdDv/W1n+NPpdPR/i7N0XYqtZCDFVErJ5bxZbFOArSiKpaGB0/ZEgjIvnU7HtdGEHXFl3ug4ut1u\naI59YeK3HI03cVqfxwm9BzRNQ7VaRT6fT5WBiB3UNxJWJk5RFKzfuR6V2RVUsFeoFYoF1KfvCeQ3\nvLwBuVwO1Wo1snliVNJIvY1pu65W0LtS07QJz7hTOWAanEndmGwoijIhgzqtNg1zDp+DWTNnhVLq\nbCVUaGHBbcUCWw5YKpUmmFioqqofPy8TC3pXRGVi4VYsJfn+zAJSTEnQ7/d1Q4MgRhNRlsLZiRta\nldU0DWNjY4kKnNnjMjr2BTWasHLsixI35Wi83dGy7FxnlokzGogk0Z3OiSh64jZt3oTeSG+CkDLS\nq/awafMmHDb7MNOmeN4LC7RYUiqVMtUTZ1wssSp9d2OikLRyQDdCyiqD+uzaZ1F+sowjJh2Bi8+5\nONT95D3Tiso5K5WKPrwXMC8H9INIJhaitlBI9iLFVAoI0jOlaRoajQZKpZIrowkn4rYQJ2GYy+Uw\nOjrK7aMYdWbKzXGE4dgXJW5sv4OWQ2XZuc4pE2ds4lcUZZ8ZLUkc1BxVT9y6DetQ3c9+9kt1ahXr\nNqzDYbMPm/D37Kq91cKC1/OfNHdKXvjpDfNioiByOaDbjJRTBnX9y+uhKEpk3wb2/APWM62szj/d\n68asM2tiQdeUnjUeM63IxII1yWDfl7QdL+9LpwVoRVFS09ubZuQVSilugn/WaGJoaIjLNuOEhGG5\nXE5snwCVZe3evdtW4HoRUmQPLLLhgtmqcdByKBEycXHgN7g0WzVmm8iTUA4VpRX2tuY2FGr22ygU\nC9jW3Ob4u5wMXJzK0ayCy7TD3utBFgODnv84cHuve82gxoGXmVa0QGZ2r5uZWJDooX4rHlkrs5lW\nlCmj4+FlYtFqteSMqQQgZmQl4YJdGVy32w1kNGFGlNkbekHRqg4ZNFSr1VBWZaM6NlVVMRgMbAVu\nXI59UWFWXsE2MZOwsivHETETFwU8LMDNVu2pIVvTNFfnP2riGEo7rTYNW9WtKBStA1lN1TCtNs3T\n77Vq4u90Ouj3+/uUo4XdGyYqYZlsuD3/cZoSkJByc68HyaDGgV05JpXy0TvIDhI8xWLRdKYVmVh4\nmWlltb90PxizzG5MLJziChq8LBEbKaZSgFWZnxnGPhzeq7dx1PYGdSAUBRILAFwJKTeOfYPBINHz\nZezcltrttmmfTxqtz90QRr+M0/kPq8/NC1bGA2Ez5/A5eHbts3qplBmt7S3MmTfH9zaczj/1imRN\nSEVlsuH2/o9yRlGn0/G0aMAzgxo1rFAplUpoNpu6yKK5kW7KYd3OtOKVtfJqYmF335BDYxwsX74c\nX/ziF/HHP/4Rzz77LE444QTTnzvkkEP0eLJUKuGZZ56JeE/jJzuRRsYwy6SE1U/EbjNqyGgiDGHI\nEmZminXsq9VquhmIEa+OfYVCgUsfnEg49VlRmWTWhFRU/TJu+tyintFCiwZRm4vMmjkL5SftBUy5\nVcasmbO4bZM9/71eT19Q6Ha76PV6Qpaj8SbOPsg4ywGNhjJuA/6wMqhRQu+34eHhCUKF10wrNmtF\nFR9RmFjQ39vta5xlfscddxxWrlyJyy+/3PbncrkcHnvsMUyZMiWiPROP7EQbGcMY/NPg2jD7iaIs\n86NUfb/fT/SEe9Z5kASu8Rz6cewrl8upd/Niy0FopZruCyoHTHtgCcRX0mjV5xbVPDG2zCuORYNS\nqYQjJh2B9S+vR6/aQ3VqFYViAZqqobW9hXJrj0taGNeEsq+1Wg2FQsHSnS5ttvciuRXalQOy5bA8\nygH9CikgmgxqmLBCin2WzM6/H3dMNmvFzrRie654lQOamVj0ej19UcjMxKLVasWWmTrqqKNc/2zW\nHQelmEoxdHOH3U9ERCWmyGgCgD47J2zCODazTGEQIUWBbNZKfsi5LpfL6YM6zfoc0hZYAuKUNFq5\nc4U1T0wUl8aLz7nYfH7PvPDm95gZD1j1uaXJ9p7elyK6FYZZDsj2vvopY40jg8oLKyFlxModM8hM\nK2BvOSC7WEH/zsvEghYAC4WCbmLxla98Bbt378aZZ56Jcrkcm5hySy6Xw1//9V+jUCjg8ssvx9Kl\nS+PepciRYioFWPVMUZDJa3CtCLAOhN1uN7Lt8hZTTs6DtK00OfaFgVVQbQxs0hZYDgYD9Hq9yJzr\nvOJmnphf22mRshPAngzVYbMPC71534vJhtH2Pu5yzKAkzfadVzkg2w/ot/c1zgxqENwKKTN4z7QC\n9i0HBPZU/AQVVoPBQO/9KhaLKJfL+MQnPoGHHnoIt912G9auXYuZM2figAMOwNlnn423vvWtvrZj\nxemnn47XX399n7+/8cYbcc4557j6HU8++SQOPPBAbNu2DaeffjqOOuoovOc97+G6n6KTG2Q9N5cS\njMKi3+9j586dKBQKeilI2FCfDg+bdTNolZuMJnbt2oVqtRrJR4DnsTlZ0r/55puYNGnShPptN459\n1WpVuKA6TPxYn7PzlBRF8TXPJ26CrlTHCRtYKoriuc8kaUE1L9igOkg2ng0syTlU9KxtmmzfWXdS\nVVWhaZpl1tbNIGIvmGZQDw8vgxqEIELKze+md5Cqqo4zraxgTSzYMNrrTCty/LM6zh/+8Id4+umn\nMRgM8PDDD2PatGmYP38+zj77bJx88smRLJ6edtppuPnmmy0NKFhuuOEG1Go1XH311aHvl0hkZwk7\n5bCZk36/r5fBRdlPFFaZH31Uer3eBKOJKD/8vI7NKAitYN2FrDA23ycpqA6KXzvoXC6XuHkyLEl3\naTT2OXjp86FrnjW7e55BddTlmEFJ2zV3Uw5I16fb7XI1VokqgxqUMIUU4G2mlZeslXGuFf2MU9bK\nyYBCVVWcfPLJWLp0Kfr9Pp599lmsXr0an/nMZ7Bp0yb8+c9/xqRJk3yeDfdYxT+tVguapqFer2N8\nfBw/+9nP8IUvfCH0/RENmZlKCdTESEYTlUoF7XYbkydPjizgarVayOVyXGciDAYDNJtNPXhkX0qN\nRkPPSoRN0GNjBWGtVrNcTWL7wexKcXjME0oqYfQJsSvGiqIIuWIf1lwdUWBX7GnFmM6/pmm6RXCW\nylh5DaV1uy2RsrZpE1JOsIG9oigA9g7LFuUdFDZhCyk72L4oVVV9zxRjTSxIVAGwNLFot9u2c7Pu\nuOMOzJgxAxdeeOE+//bGG29g+vTpHo7SGytXrsSyZcuwfft2jI2NYd68eVizZg22bNmCpUuX4qGH\nHsLLL7+MD3/4wwD2PLMXXXQRrrvuutD2SVSkmEoJ1D8xPj6OkZERlMtl7NixA2NjY5GtMNLqMq9m\nScqwFQoF09W5KMVUkGNjHfusMoWs0QQwccXS6IxGPSNZcOxjoZ6RXq8Xep8QK6zsSnGiQhTDhagw\nBvYA9IxiUsoxgxKneDYrBwzbnZGFMjVZFc+DwQBDQ0N6YC/COyhsRBPP7DeYeqP8LC6wJhb0fQf2\nZq06nQ4qlYrl9+yWW27B8ccfj0WLFnE5Lkk4ZOctlWKsjCaitCqn7bEviyCoqopGo4GhoSHL4DHq\n4/ODm9leZo59NLmdLYVih/qK0nwfFWypk9thlUEwNvCTsOJhoOAVP71hSYfKAel9Qg517DwZkcsx\ngxK3eDabj0OlUGGXA2ZdSAHQFw/p+K3KAZPU62mHaEIKsDcRAfjNtKLny6ocMM45UxL3ZOdNlQFG\nR0cnPIxJEBtmkJU7ZdisiPL4/AhFJ8c+wJ31OTstvd1u6zMqdu/enQpnOifMgowoceqzCtMZzW9v\nWNJhTTbYbK5xng9bilMqlRIfVALiuRWGaftthEp4RXSoDBOnck5egb2IiCikjIQx04od6QFA77Uy\nlgPGOWdK4h4pplJALpdDtVrllhUKsh9BxA0FUN1uN/FW7uTYZzfbi1ao3Dj2sZbIFGQYm2cpm0Ur\n9mkg7hV6I0EMFLwS1zDeuDFmIdnz6BTYJ31xIQluhbxsv42Yzc/KAl7LOc0C+6iyhrxJgpAywmOm\nFX3TNU3TzaOMBhYUG5Dzr0RskhutShyJo8zP7/bYviJjhi2M7XnFy7bcOPaxQsqvYx/7UWV7HKLI\nmEQBBZai9oaxpVBm5ZhBgposB5ZespBmgX1S5ykl0QLcKrD3mjWkXsgoSnhFImhfnNXiAi3wiFwO\nmEQhZYafmVa0OMp+0ykbRX3Rg8EA27Ztw6OPPoorrrgizkOUuECKqZSQ1J4iYG9fUT6ft+wrihs3\n59LKwt0I1Us7Waayjn1OTl5WgT290JNWBpLE8jY3g2qdMiZeBrOmjaAOlVaLC0l4BtIQWJoF9k69\nhuz9nrXxDiSkaH4hj3vSKrCnBTlRnoE03O9mGEcPmA2Mp9J+u/d7Pp/Hm2++iUsuuQQ/+MEP8I53\nvCPKw5D4QLr5pQRy/GFpNpt63X0U0EdzdHTU9X9DVu52fUVW8HYPtIPcEuv1uum/04fR7iXppj+K\n4JmVIWFFznT0QRW1xyQM6/M4YTMmqqpaZkzY8rYgg1mTSNjlnMZnQKRSqCwYLpg9A7QCr2laZhcO\neAopO+jbI8IzkFYh5QRl3en+Z0tiaSGC2LlzJ84//3zccMMNeP/73x/jXkvcks43tyQWvGbCyGjC\nrq/IaXtR9YnZHRtr4V6v130bTRC8szJ2GRORekyitD6PErcZEypNi8NkI06i6BNykzWMyp2RJW0L\nB1YYnwHqL6H3YafTycw8pTj6QO36fKIsB8yqkAL2POv9fl+PEWiBZ/v27XjnO9+J97znPTjzzDNx\nyimn4KqrrsLnP/95KaQSRHrf3hJhy/woaG6327Z9RUmAl2MfEXZwZddjwhpYRF1fT1mZtK9SG8tA\nNE3TS0AAoFgsQlEUYbOGvImjnDMsAwWvZLUvDtiTjaNxETR6gC2FEmWBhzeiODXGUQ6YZSHFLhLS\nPU3n94ADDsBTTz2FNWvW4P7778fnPvc5HHLIIXjuuedw4IEH4m1ve1smvgVJR5b5pQRa5WBptVrI\n5XKROcGQsJg0aZLlz7CpbtaZzg9sb0nYULA1Njam/11Yjn3VajXy4Ir9oFKgE1VQ6WQLnGY0TUOr\n1dJX7dlBqW77rJKKaG6F9Ayww7J5ujOy28lyn5Dds+62JDaJiCKk7AirHDDrQqrb7TouEo6Pj2Px\n4sW48sorUa/XsXr1ajz44IPo9/uYP38+5s+fj9NOOw1DQ0MR7r3ELVJMpQQzMRVlTxGw52Oxa9cu\nTJ482fLfaYCt0fLYD3GKqU6n45hZ8+LYJ1KvDDukk4LKsBqXKcAoFAq+TAeSDAUYZuVtVkGliK5c\nfkhCeRv7DPAKKtn5WVJI2d/D7AKPqqpCGSh4hRVSSQqG2XJAVVV9VS9IIeUspFqtFi688EJcdtll\nOO+88/S/HwwGePHFF7F69WqsXr0aBx54IO69994odl3iESmmUoLoYoqyVqVSiVv2wckUgie0/2Nj\nY7pjX71ed+XYZ3esQR3MoiAsAwvRrc/DxEtWxiqojCJrGAZJLG+jUjR6Dvz0mIi2aBIlQS3AAbFN\nROygRUSRZ4e5wew95JS5JSEl8qJJWNCCkZOQarfbuPjii7FkyRKcf/75tr+z3+8Lfa9nmWzd3SnG\nyho9ykG+Vj1aVA43PDzMdVUu6p4wGqA3GAwsZ2F5deyjEi+RxUQYBhZJtD7nhdesDNtnxWYNvc7y\niZsk277ncjnTHhO3fVbGeXEiXyfe8HKuE8FAwStJGMLsFrN+T+NcPfYaSCHVccw+d7tdfOxjH8NF\nF13kKKQAJOqdmTWydYdnjLgMKKg/CHBXDpcEBoOBflxWJYpxOvZFBQ8DiySUeIUBD7dCp1k+ojbv\ns1mZpJe3GWe6OYlbr4OI00RYznVWBgrj4+MAIEQ5YBKHMHuBFbds5pZcSfv9PoaGhhKTfeYFK6Ts\njr3X6+HjH/84zjvvPFx00UUR7qEkDLITyWSQqMUU+9FyO8A26PaiOD5VVdFoNABYB0MiOfZFhZXl\nt9Vq/WAw0Eszk1TixQO2V4ZnViafz+ur3saAJk53RpY0iwk3g2r7/T4KhULmzFWiMlywEreUMWGF\nVVQiPu1CygibuSVXwFKppL/vwzByERG3QkpRFFx66aU4++yz8bGPfSzV5yQrJDeSkwgJrUhRSYtV\nORyvbYUtpthZWCQSjHh17EvbHCXAOqChvj0qUUu79bkZbIkXD+MVK4KWooUBj16ZJMGKWwqoaaYM\nDVGPW9xGQVzlbWbiNuqZYlkTUixUdjkyMuK6HDAtUHba6duuqiqWLl2K97///fjkJz+Z6vdAlpBi\nKiVY9UzFUebH22giLtgSxWKxiPHx8QkljIA/x760iwk2oBkaGtJ7w6h/r9PpJKLHhwesmIjyeXAj\nbsNeKY5jOKko0IISmasAiGSWjwiI1CcU9UyxLDvXWfVIOZUDpsH6nt6tboTUFVdcgVNOOQVXXnll\nYo9Xsi9STKWYqMUUOfyUy+VIAsewjo8yCYqi2JYoso59duKIAqtcLpe6Micn+v2+viJcq9Um9FmJ\n3OPDA1HEhFHcGsugwnBFS4q5ShhYiQmn5v0kONM5IXJWhi1LtlpgCLLII4WUs9mEVfY8ykUe3rgV\nUpqm4VOf+hTmzZuHZcuWJeb4JO6QYirFRCmmKCigMpekvijsHPvY8+nVsS/ugDoOzKzPjR9TPwYW\nSUCk1XkjVn1WvMqgRD72sHFrLGPnkBlFKVoYJElMWC0wGK+B20WeJB07b/y69lm5A/Z6vcSUA9L9\nUq1WbZ/Vfr+Pz372szjqqKNw9dVXJ/rbJjFHiilJIFijiXq9rpewRAFvsdjv99FoNFAsFi0za+Tq\nl2bHPh64OXavBhZJIUnX3UzcBimDkkGl92O3c8hMShlU0q+7cYHByzXIsgU4KyaCHruxHFD058Dt\nsff7fVxzzTU4+OCDce211wqx7xL+ZOvJTzFx9ExRP4imaROyOFH3aRn7mPygqqo+WNEqg8TO7XLr\n2JfU4CIIfo5dhB4fHvAMLqLGWAZFK8Vur0GSjz0ovI7dbIHByzWIg7Rddy/XgP4+LcfuhTCvu+jP\ngdvr3u/3cd1112Hq1Kn4/Oc/L8wzK+FPbhCHQ4EkFLrd7oQ/DwYD7NixA1OmTOG+LcriFAqFCX1A\njUYDlUolshX5N998E5MnTw70kiLHvpGREcv9HgwG2LVrF/L5vP6St8pcpdWxz4mwrM/pQ6ooCjRN\n0z+kohlYdLvd1Nq+s2VQ7DWgHh+3lsBpJKpRB07XIA7SMubBLcZrAEAvYxa1FC0M4hTQdA0oix51\nOaDbTGS/38e//Mu/oFQq4aabbsrU/ZFFpJhKEb1eb0JWiMRUULFhxC6LQ/a/UfVK7NixA2NjY75e\nVCR82u026vW65YuRSg6oT4pe5MZghnXsq1armXp5snOUwhzKyvaXxPEhNYPuI0VREj+Q1g3Ga0AZ\n8Gq1mrksbFwCmu11UxQFhUIh8n7DLAtocmVke97YbErSez7tECkTyZYDstcgrHJAt0JqMBjgS1/6\nEnq9Hm6++ebUfxMksswv1YTxMmfnLlkJpiToc3LsU1XVtWMfvTypt8HYuN/v95HP5zPn2BfVHCXA\nvr8kDgMLVkBnQUgBe69BqVRCu92Gqqr6/9/pdITrbQgDVkDHMeqAd6+bV9KchXWCRGStVtOPne35\nTLP1vUhCCoi2HNCLkLrpppswPj6OW2+9NRPfBInMTKUKY2YKCJa5YaHMQ6fTsc3ijI+P6w5JUbBz\n507U63VPH3TWsc8qECKTCbeOfRTEUP9WFlYogb2273EPZWWDGUVRIgkoSUQCSPxMNa8YRSTd+2xJ\nZloDyqiysH6g9xYt9PT7fe79JWwZs0jHHgVus3FWpclJtr4XTUg5wbMc0K3BymAwwM0334zXXnsN\nt99+e2KvtcQ7UkylCEVRdIMEwo/YMMIaTbCrcWbQPKXh4WHf2/PCrl27Jkxbd0LTNDSbTUfHPrdC\nil6yrBNU1EF9XIg6S4gNKCmo5x1QiiIi48CtiExKr5sXzESkyPAMKLNWzmrEb1kjlQHGWZIZlKQJ\nKSNBygG9CKlbb70VGzZswHe/+93MZWyzjhRTKcJMTHkVG0b6/T6azSZyuZyrEi42yIoCL8enqioa\njQaGh4ctg38vQsrJtS6KoD4ukmT/bdW47zeoF1VERoFfEWnss/I6x0cEkp6JtAoo3QT1ImfjosBP\nWaOiKNi0eRPWbViHbc1tmFabhuMPOx4zDpyBXC4HRVEAQL8Goi62JV1IGTHLoFsNbKaqEzdC6rbb\nbsPvfvc7fP/735dCKoNIMZUieIspTdPQaDRQLpddB05UqxyVmNq9e7crC263jn2apumlelbH69ex\nz7hST6IqaSv19HFNou17UAOLJIlI3vT7fYyPjwcWkUGC+rig7HxaMpFsBl1VVduSzKRl43hDQspL\nb9zdD96N9TvXozfSQ3W/KgrFAjRVQ+svLZTHyzhi0hG4aP5FEzKH7DdBlHLAtAkpM4zZW1royefz\nrr5zg8EA3/ve9/D000/jBz/4QWrPk8QeedVTjt9ZU4qioNls2hpNWG3PKOjCxu743PZ6UYAHwPYj\nRoEFlTx6+eCxQwnZoL7dbieipj4s6/MoCWJgkWQRGRRaoaVy1iBYDWtmG/dFWqlPY0knO9eNMuiq\nqqLb7epZV/r3TqeTWSHV6XQ8m4woioL1O9ejMruCCvY+K4ViAfXpdQDA+pfX68Yt9B41fhMoqKdS\ntKjJgpACzAc293o9faGH/tfsfTQYDHDXXXfhySefxA9/+MNUnyeJPfLKpwheg3s7nQ7a7TZqtZrn\noDHsQcFm27OCdeyzM+FgHfucfh8ZTQR1rTMG9UZnQNFKoNgynzjcy8LAKqg3c0RTFCVT83RYwszG\nmQX1dK7JPCHO7C1l42iYdBrFBAWKVgs95BzY7/cTuYDihyD9YZs2b0JvpDdBSBnpVXvYtHkTDpt9\nmP53Zgs9UTo0smRFSBnJ5XLI5/PQNA1DQ0MoFAoT3AG//OUv48QTT8SZZ56JsbEx3H333Xj00Udx\nzz33ZG6BTTKR7DwlGcatuCHxoSiKrV24SFiJN7bXa3R0NHB/VJhBlZnNMWVLRCiBitL6PC7YoH5o\naEgP6qm8CYD+cc0SUWbj2KAemNjrRtnbKGeKUTauXC5H5k4qAjSYXFEU/XyzQX3are+DGm2s27AO\n1f3sy9yrU6tYt2HdBDHFwr73h4aGQrX8NkLPW1KrD4JAzzy7cETfBFVVceihh+LHP/4xPv3pT+Oo\no45Cq9XCf/3Xf2Wu5FuyL7JnKkVQ3TWL2yG6JBbs7MLdQGVg9Xrd13/vFbPjC9uxLypEcAZMY4mT\nWygbpygKyuWy/nylwZXODWSwIsLqtLHPKuyZYjzLGpOGVX+YVeN+Ggx1CB5GG3f85A785YC/OP7c\nfq/vh7899289/36eDo1GpJAad5WB/9GPfoQVK1ZgxowZWLNmDUZHR3HOOedg/vz5OOWUU2J/X0qi\nR17xlOOm7M6N+OC5PZ4Yt8c69lmtJnsRUnH2ydhlS6IIZLLsWsdm4+r1un7sVn0NIpVk8kC0oax2\nJZkAX0e0rJuMtFotfVYgey6N7yMSVtRnlYS+TztISGmaFsixcFptGraqW1Eo2syhUjVMq03z9fvN\nenyMlQx+ModZFlK0mOzmmb///vuxYsUKrFy5EsPDw+j3+3j++eexevVqfO5zn8PGjRvxkY98BHfc\ncUdEey8RAZmZShH0cWNxmvtERhN24sML9EIeHR0N/LvcwK6g0kedl2OfyGYLYTsDyoDSORsXdbYk\nCpI2S4j3+IEsm4wEKWU2m6XECivRnwWejoV/evlP+N7a7+lmE2Y0Xm/gk/M+aVnm54cgmcOsC6lm\ns+kqC7169Wp873vfw8qVKzEyMmL6M6+99hr+8Ic/4PTTT6Kxpn4AACAASURBVA9jdyWCIjNTGcBK\nL7sRH16JKzPVbrf18kIejn2imy2E6QwoA0p3AaUXAwvRg0lg34BSxPveCNtnxWZve72e52xJVpvu\ngeC29yKZJ3iFt/X7rJmzUH7S/ntabpUxa+asQNsx4jdzKIWUOyH1yCOP4Dvf+Q7uv/9+SyEFADNm\nzMCMGTN476pEcLL1xcggZuKGPh69Xo+70UTUYgqAPvxwdHSUi2MfDeZMitkCT2dA0cq7oiRIn0zc\nJZlBYe/7JFtgG0ugjM+CVeaQ+sPkfR+8P8xoniDysxDGDK1SqYQjJh2B9S+vR6/aQ3UqM2dqewvl\n1p45U2EvVLELbuyz0Ol09Cx6LpdDp9NBrVbL3H1PCwhu7vtHH30Ut956K+6///7I+sElyUKW+aUI\n+mixsDXgwJ6PR7PZDGw0YQUN+p00aRLX32tGv9/H7t27AQBjY2NCO/bFgZfhqDwar5NMmGWNbBma\niAYWaRtIawabLTGaudBcmSwLqajKecM0T/AKu4AQtFfYDEVRsGnzJqzbsA7bmtswrTYNcw6fg1kz\nZ8Wa8acsOsUGbJ+VCAI3CuhbXy6XHYXU448/jptuugmrVq3C5MmTI9pDSdKQYipFmIkp6n+o1Wro\n9/toNBooFAqhrT73+33s2rUr9JcOibZ8Po98Po9arbbPz3gRUuzqbLlcTt0Hxc4ZkCa9DwaDRGcl\n/BKlax1bkqmqauwGFmlbQHADvRd6vd6E3pJyuZyZYBKIXkgZibPnMGwhJTrsO48G0xoXe5JqJOIE\nW9Lq1Cf+xBNP4Etf+hIeeOABTJkyJaI99M/mzZtxySWXYOvWrcjlcrjsssuwbNmyCT/z2GOPYeHC\nhZg9ezYA4Nxzz8X1118fx+6mClnmlwHoo0W1wWEGTVGU+bGmGblcbh8BCSTHsS8qnOYo5XK5TM3S\nIaIuazTrLYlrplhW3RppMCf9/9VqFZqmpcaVzg2UiY3znWfVc0gummFlS6SQ2rek1ar/1q40Nol4\nEVL/+7//iy9+8YuJEVLAnhLTW265BXPnzkWz2cSJJ56I008/HUcfffSEn3vf+96HBx54IKa9TCdS\nTKWcXC6nZ6R4Gk04QW55vKGAp1aroVQqodvtmm7bq2NflprOqWkfgD5DKZfLodfrod1uc3cGFBER\nTEbiNLCIOysRJ2yfDPVFFotFy2CStZpOAyIIKSPsYg/r0Ejve17vpCyUtNrh1BuYZCMRJ7wIqWef\nfRaf//znsXLlSkydOjWiPQzOAQccgAMOOADAnp7vo48+Glu2bNlHTMmCNP5kI3rMCMaXG4kFTdMw\nOjoaiVgI6wVLwa/Rsc+YCUuTY1+YWA0i5u0MKCIiutZFaWAhYjAdFU5GG07BpN8ZPqKQBMdC1qER\n4DfbTQopbyYrVkYi1GuVpEU3o1ulHc8//zyuvfZa3HfffZg+fXpEe8ifjRs34oUXXsBJJ5004e9z\nuRx+/etfY86cOZgxYwa+/vWv45hjjolpL9ODmG9TSWDow8HWokcFCRxeL1g6FhKFWXTs44ldWSNP\nZ0ARSYJrnZXdN48ytCQE02HhNZg2BpNkNU0CN2lN+1H2BvLETWmsk8CVQiqYW6VbgStiBpfe+ZR9\ntrv2v/3tb3H11Vfjvvvuw4EHHhjhXvKl2WzivPPOwze/+c19+slPOOEEbN68GdVqFWvWrMGiRYuw\nfv36mPY0PUgDihRBmSianUB9MK1WC2NjY5Htx44dOzA2NsYl4GaPxUz4sDMyvDj2FQqFTH5UqUfI\na0DlxRlQVNJgthDEwCLLtve8r71xaLboGdw0Wr+7HVJLQ7hpcSKJz30Qwr72Zt8GUcoBSUS7ufb/\n93//h7/7u7/DihUrcPDBB0e4l3xRFAXz58/HBz/4QXzmM59x/Pm3vvWteO655xLTFyYqyVmekriC\njCbK5TKGh4fR7/cjr4/lZUJBjn10LFYvwn6/D03THIP6tDv22RG0rDHpA2rp2pMVroj76AY/BhaD\nwUB39UxTMO2WoANpzbAbmi1aBjetItrNkNpisYhut6tnF5P63PslChFt9m1gM7hxzRXzIqRefPFF\nXHnllbj33nsTLaQGgwEuvfRSHHPMMZZC6o033sD++++PXC6HZ555BoPBQAopDkgxlSIGgwEajQaq\n1apeFxzHEF0e2yTHPvZYjLAGE81mU3+hm720s+DYZwXvHqEo+3t4EOYMqThxI3CLxaKePRGlPyxK\neA+kNUMkh0YjnU5HH42R9mtvFLjU3wPsuQ96vZ6QZWhhEUc20urb0Ov1JgjcsBcavAip9evX44or\nrsCPf/xj3S48qTz55JO4++67cfzxx2PevHkAgBtvvBGvvPIKAODyyy/HihUrcPvtt6NYLKJareKe\ne+6Jc5dTgyzzSxntdnvCS2owGGDHjh2Rrjzs2rULIyMjvuvyjY59Zhgd+9j+HhoGSQE9BTZJ6xXg\nAZW4RNUrYCx/irtJOYsi2uiGBsB2oSGtxO1YyApcVVUj7bMyZiPTLqSMsNnIcrk84b2UhEx6UEQs\n67QqFedt6OKlP+7Pf/4zPvGJT+Duu+/GkUceyWX7kmwixVTK6PV6+7jb7dixA5MnT47so7F7925f\nwStlUHq9Hur1uuVHwMmxj4QVvbQB6KV9WQoq4u4RMvb3RN1XktSGex6wRhtDQ0OJ6u/hgWiOhazA\nVVU11IUGtqQ360LKaIHNXge7PqskI6KQMmK20MDjOngRUhs3bsSSJUtw1113STc7SWCkmEoZRjEF\nAG+++WakYqrRaOjixS30EqTZL7wc+/r9PiqVip6xyufzwroO8cTK+jwu2Myhoiih9pWwq/LVajXV\n19kMu2xkEAOLpJCEbKTZQgOP8idjSW8axIEXyLDI7XuPFbg8r0NcJEFImcHD0IW++blczlFIvfrq\nq7j44otx55134rjjjuN1GJIMI8VUyjATUzzd9dzgVUzRUOFCoWAZANCKYhDHPnZuDJV7JM2Rzg2i\nB5NhOgPKVXn3ZgtpcGg0ksRsJK/rkHUhFbQ/zlgqTiNFkvI8JFVIGTFbeHO6Dl6E1JYtW3DRRRfh\nO9/5DubOnRvmoUgyhBRTKUNRFPT7/Ql/t3PnTtuyOd6QGYSbD5obxz4vQsqtaxtbZpCmOnq/1udx\nwfM6sKVt1Wo1sdfQL0GCSeN1APb2WSXleUiDa53f6yDvfb79cUl7HtIipIy46Tv0cu+//vrruOCC\nC3DbbbfhxBNPjOowJBlAiqmUIYKYYl107HDr2OdWSFFGxusH1ayOXuQPpxlpKG0L0s8QtdGGaPB0\nLExiX0mn00Gv10tVMGnss+r3+6bXwcuqfBoJ22gkyn43P6RVSBkxuw7FYlGPDZyysVu3bsUFF1yA\nW265Be9617si3HNJFpBiKmWYiamg7npeYRtAreh0Omi3254c++xelDwzMuxKmFUAIxJseU+1Wk1N\naZtbZ8C4jTbiJuyyTlZYiWZgkaWyTqv+nl6vl9kh5HE4NorUd5iGbKxfNE1Dq9XCYDDAYDDQr0Oh\nUEA+n59wLbZv347Fixfj3//933HKKafEuNeStCLFVMowE1N+3fX8wq6SGuHl2Mf+HAVTYWRkrAJJ\nEVYkgb3GHblcLtXlPVbOgLlcDu12WxijjaiJukdIpEAyrYsIbhgMBuj1euh2uxgMBrqxTlL6e3gg\ngmNjVHbfZmRZSNGzPxgMUK1WAUBfZFi7di0++clP4swzz8TZZ5+NY489Fh/96Efxr//6r3jf+94X\n855L0ooUUymD0t8sftz1gmB8yRGDwQDNZhODwYCrYx9tK+xgKm6rb7P9yWJGhhqUe70eNE3Th6Ym\n1YHLL3EHU3EaWGTdbME4R4ld9ElL/6cdIggpI1RJQc9EmHPF6NnPwjBmI0YhZTyv/X4f69atw+rV\nq7FmzRr86U9/wjvf+U4sXboUH/zgBzFp0qSY9lySZqSYShmiiCkKcogwHPvi7JGJ0urbjKDOVUmH\nMjKU/UyTI50TIpa2Rdmwn3WzhazPURJRSJnBw+7bDCmk3C2i7N69G4sXL8Zll12GZrOJBx98EI8/\n/jje/va3Y8GCBTjnnHNw6KGHRrj3kjQjxVTKMBNTXtz1eNDpdKBpmi6mVFXVZ39YZVDCcOyLCuMK\nPWupG0bGQHTr87Cxysik1aGRJQmlbWEG9F6GcqYRr4soIve7+YGEVFLcSgmr8liv8w6lkHInpBqN\nBi644AJcffXVOPvss/W/b7Va+PnPf44HHngAq1evxoc//GHcdtttUey+JOVIMZUyaDWMxa27Hi/I\nVa5Wq6HX62F8fJybYx9P17IwMAvoeWZKkjhHhxdeMjJpXKFPakaGV0Cf1bJWIqjZglU2PSkDzGkR\nKenvPrN5h24WfbIupNhFWrtnf3x8HIsXL8anPvUpLFq0yPLn+v0+du7ciSlTpoSxy5KMIcVUyjAT\nU3aGEGFAjdGlUomrY1/ShITVjAy/M5SSbn0ehKAZGbfOgKKSloyMXwMLL8OI0wjvRSSrAeZRGCf4\nIS1CyojbRR8ppNwJqVarhQsvvBCXXXYZzjvvvAj3UpJ1pJhKGSKIqW63i3a7DQDcHPuSLiSCZEqS\nUNoVJrwdC0UzEnEirRkZtwYWWe8PDLtHyMw4QaQsblqFlBlm9vfAnnugXq8L+X4KEy9CqtPp4KKL\nLsKSJUtw/vnnR7iXEokUU6nDTExZueuFwWAwQKPRgKZpGBsb4+LYl0YhYZYpMQtesmJ9bkXYQiJu\nIxEnROsPDAsrA4t8Pq8bjYhY1hs2cfRHhmWc4IesDKQ1g7599DwUCgX9WqTVXIfFi5Dqdru45JJL\ncP755+Piiy+OcC8lkj1IMZUyaGWLxWgIEea2G40G8vk8NE0ztSBNkmNfVJitRlIpYKvVSl1Gwi1R\nC4k4rb7NiGMgqQjQO4Ky0QAsFxvSjAgZmTjnimVZSAF7BEKv19OFRFRumSLAVqM49cf2ej0sWbIE\nCxcuxJIlSxJzLjZv3oxLLrkEW7duRS6Xw2WXXYZly5bt83PLli3DmjVrUK1Wcdddd2HevHkx7K3E\niXTnzCUAgFwuh7A1M+vYVywW9UZ5liQ79oVJPp/XS5goeGFnKOXzeb2nLCvEYTTCiic2U0KZwSid\nAZNi/xwGuVxOfw4okFIUBd1uV19cELkskwei9IfSDLdyuTxhsaHb7YbaZyWF1F4hRfc4zasaGhrS\nF+A6nQ76/b7+b0npAXXCrZBSFAWXXnopzjrrrEQJKWCPGL7lllswd+5cNJtNnHjiiTj99NNx9NFH\n6z/z8MMP409/+hM2bNiAp59+GldccQWeeuqpGPdaYoUUU5LAkGPfyMgIyuWybijBkibHvjChDEi/\n39ezcfTRFK0ELSxEsH4n8WQMXqhkNsyeEhEyEnFiJiSMiw10jtL4TIgqJKwWG+iZ4DWgNu5h1HFj\nJqRYcrkcCoWCfm6MzwQrrJL4THQ6HVdCSlVVXHbZZXj/+9+PpUuXJkpIAcABBxyAAw44AABQq9Vw\n9NFHY8uWLRPE1AMPPICPfexjAICTTjoJO3fuxBtvvIHp06fHss8Sa7L3pc4gYWWmKBXfbrdRr9f1\nwMe4vTQ79vHG7PgpeDFbFU5b/byI158NXoaGhvSeEsqU8HQGlIGk/fG7yZQk+ZlIyvVnFxsAcHsm\nsuxaBzgLKTPiyh6GgVshpWkarrjiCpx88sm48sorhT8uJzZu3IgXXngBJ5100oS/f+211zBz5kz9\nzwcddBBeffVVKaYERIxoRcINs5dKGGKKZt6oqorR0VGujn2iBxJh4HT8IpWghUGSrj8JK7NMid8S\nNPb4sxhI+jl+q2ei1WoFGkMQFxRIJvH62z0TbrOHST5+HvgRUkaiyh6GgdvSPk3T8KlPfQpz587F\nsmXLhDsOrzSbTZx33nn45je/iVqtts+/G2O3pB9vWpFiKiPwFFODwQDNZhODwcDUrpXEmx/HviAf\nkqTi9fidStCSFkQm+fobV4WpUd9LEOllGHEa4XH87DPBjiFge0pENbDw0myfBLxmD9N2/H5wm5Hx\nglP2UKTeQ7dCst/v47Of/SyOOOIIXHPNNcI9y15RFAXnnnsuLr74YtMBwzNmzMDmzZv1P7/66quY\nMWNGlLsocYkUUxmA5wtH0zQ0m00Ui0VLq24SbuT+5Naxz8n+NI1Qhg+Ar+M3K0FLShAJBD9+kcjl\ncp5L0FghWavVEn38fgjj+M16SkQ1sEi7kHaTPaRnJasZqTCElBlusodUDhglbks7+/0+/v7v/x4z\nZ87Eddddl/h35WAwwKWXXopjjjkGn/nMZ0x/ZsGCBfj2t7+NxYsX46mnnsKkSZNkiZ+gSGv0FNLt\ndif8WdM0NBoNU6tyL6iqikajgaGhIUurbloVbrVajnN7NE3T6+vT7thnRtgzlNghwTTLSiTHp6xY\n3xtnKLErxiS0sjhDjBXSUR1/nFbfRowZ2Sxdf3omaGwHAOHeT1EQlZCyg8QsPRdRlo17EVL/9E//\nhHq9jq985SupuD+eeOIJvPe978Xxxx+vH8+NN96IV155BQBw+eWXAwCuuuoq/PSnP8XIyAi+//3v\n44QTTohtnyXWSDGVQoxiqt/vY9euXZg8ebLv32l07DPD6NgHwHJuDwVSWXTsA/Zav1cqFZTL5dA/\nDsYgMu7VeRKSWRPS9Iz0ej30ej0A2ZyhJMIw6jjnipGQomHqWbnuBDuQlYbJG2ftJdmRzg0iCCkj\nJHLpuQjTuZTMhtwIqS984QsoFAr46le/Ksy5kkhYpJhKIb1ebx83vR07dmDKlCmefxd99DqdzgTH\nPrOfs3PsY1fn2SCyUqkk1nnLL1RaEZeQpN6euFbnWSFZqVRC355osEKyVCrpgYuI2cMwEDEjyb6f\nVFUNtfcwjoycSDhl5IwiN5/PTxBWaThfIgopM6wGygddhHNr/z8YDPDlL38ZnU4H3/jGN4Q+V5Js\nI8VUCrESU5MnT/b0IWId+2q1GjfHvm63i+HhYX0FLImmCX4RzfrbLHAJs3Y+y8NoAXshKVr2MAzC\nLm3lAWtgoaoq195DysiJJCSjxGtpo1WJbJK/FUkRUkZYg50gIteLkPrqV7+KHTt24NZbb03UuZJk\nDymmUohRTAHAm2++6UlM9ft9NJtN5HI528ZwP4591WpVfzGygQuVFaRRWJGQJMciEa2/zQIXnmVP\nognJqPEyjJoNXJx6D5NCUks7jb2HQezvpZDy3yNm9q0Q3WDHSFKFlBG/IteLkLr55pvx2muv4fbb\nb0/0uZJkAymmUoiZmNqxYwfGxsZcvZTcOvax/VFuHPvc9EewpTZJcKNzg5WQFBmeZU+DwQC9Xi8R\nw0jDgko7/WTk4uzt4UVaSjv9lsgmISMXJmGUNoZVghYGabZ/t8rkGsuV6R3oRkjdeuut2LBhA777\n3e9m8nshSR5STKUQRVHQ7/cn/N2OHTtsh+sS5Ng3PDyMoaEh05/xIqTIsc9PEGHmRpc0YZWG/gir\n7KGb4Y9pt352A8+MXBLLnrxk5JKEW5Gb1IwcL6J4B1plcuOw+jbbt7QKKTPMypVzuZw+kNlJSN1x\nxx1Yu3Yt7rrrrtivnUTiFimmUoiZmNq5cyfq9brty8mPY5/dh5GCKB6r0ValNiI36qd1NZp1e7LL\nHmbZ+pmgHsEwMnJJKHvKSo+cVSa3UCig0+mgXC5bLk6lmTgWk+K0+jbblywJKSO0mEamU9STa5ZV\nHwwGuPPOO/HUU0/hBz/4QSZLwSXJRYqpFGImpnbt2oWRkRHTFxS98Gjeg1/HPhZajQ8jiEpCo37U\n1udxYddP4ra0M43EkZFjRa4IzoBU1pO1Hjlpf78HEXrEorT6Ntt2loUUMPEdUCgUJiw4LFmyBAcc\ncADmz5+PU089Fffeey8ee+wx/PCHP0z1wosknUgxlULMxNTu3btNhQ198DRNQ71et3zhe3Xsi8po\nIW6bbzPSWtbkBIncXq8HTdOQy+VQqVQSbZrgBxF65OJecHDbaJ5WaDFlaGgIxWIxMb09vBBBSJnB\ny0zECSmknBdTXnzxRaxevRoPP/wwXnzxRYyOjuLLX/4yFixYgP322y+GPZZI/CPFVApRVVWfKk/s\n3r17n+A+Kse+qGB7GOJyQMu6Yx0FkVRSkyY3OjeI2CMXtTNgmKWNScBuMUXExR/eiCqkjBgXHHj1\nWUkhtfcZcPMdvOeee7Bq1SrMnz8fa9aswaOPPoq5c+di4cKFWLBgAQ477LCI9loi8Y8UUynETEw1\nGg295AzYE/Q2Gg2Uy2XLD56X/ij6gIpS1mU3+DGMAC8J1udhYxVEpsGNzg1JCCLDvBYyiPTWI5bG\n54KcWwuFQqL6RK2uBQkrt8chnwFvQmrFihW499578ZOf/ETvKWy32/jFL36BBx54AA8++CAmTZqE\n//mf/8HUqVOj2H2JxBdSTKUQMzHVbDZ1NylFUdBsNrk59olutBD2/CTKyGmaltkPqFvrb6tr4TVo\nEQ3RnwEzeDoDStfGYD1iPEcRxEUSnwEzzPqs3LiXymfAm5BatWoV/vM//xMrV67E8PCw6c/0+32s\nXbsW8+bNS+z9JMkGUkylEPoQsIyPj+sf5VarJaRjXxTwtpYWsawraqisy2sQaRW0JCmABNJhNhLE\nGVC6NvI127Ca2yOygUWa7d+Nxi5mTrJSSHkTUqtXr8Z3v/td3H///RgZGYloDyWS8JBiKoWYialm\ns6kHr7wc+4IMIhUBq/lJboN5CiAKhYKwZV1hwpa0kFtTkN8lus23GWk1G3HrDCgXE8I32xB9OG2a\nhZQRsz6rYrGIfr+f6coEL+WtjzzyCL71rW9h1apVqNfrEe2hRBIuUkylEKOYGgwG2LVrFwaDAcbG\nxrg49vV6vdQ1mbMZK6fSDspGlMvl1AcQZoRtNmI2sDlOm28zsjJDycoZsFAooN1uC90jFjZRuxaK\nNpyWFVJZm6NF16Lb7aLf79vOUEozXt6Djz76KG6++WasWrUKY2NjEe2hRBI+UkylEFZMkWNfv99H\nqVSyTKl7dexL+yqc3WBaTdNSmY1wS9TZiLhtvs3Iqmuj0Y0ul8uhXC6jXC6n9l1gRdyuhXEbWNC3\nJSkl3ryh0j5N01CtVidkEN32WSUdWlR0I6Qef/xx3HTTTVi1ahUmT54c0R4G5xOf+AQeeugh7L//\n/vjd7363z78/9thjWLhwIWbPng0AOPfcc3H99ddHvZuSmJFiKoXQS5117MvlcnpPA4tXx74slvQY\nsyQA9AAiK+eAILeuuLIRIlhLxx1Exw1rNED292lxo3ODiI5tURtYsH2CWRdSxj5Bq5430TLrQfEi\npJ544gl86UtfwqpVqxI3Q+pXv/oVarUaLrnkEksx9Y1vfAMPPPBADHsnEYXsLKlmDHLsq1arqFQq\n6HQ6+/xMmhz7wiSfz6NcLusBS6VSgaZp2L17t2kzcloRoTeCzYSwK/Pdblcvswmr5IkNomu1mhBB\ndNSYBdHss6Eoij4iIYixi6iIajRA57tYLE4I5judDncDC3YgcVYz81ZCCthzLQqFgv4OYjPr7XZ7\ngrAS5f7xihch9dRTT+GGG27A/fffnzghBQDvec97sHHjRtufkTkJiRRTKaTX66HZbKJWq+kvulwu\nN+GBT7NjH2/YAKper+sfQDZLkpaPpBUirkSzmRASVqqq6sE8b/t7EYPoKLELotlgfmhoSA/m2+12\nYsxEnDAG0aLeA2bBvKIo6PV6aLVagcpkpZCyF1Jm0GKc1QIQ+81IwrPB3gNOQuo3v/kNrr/+eqxc\nuRLTpk2LaA+jJZfL4de//jXmzJmDGTNm4Otf/zqOOeaYuHdLEjFSTKWQUqmE0dHRCavzrJjKkmNf\nUNjSxlqtNuFcWWVJOp1OLOVnYZGEe4AVT0NDQ1yzJHQPDAaDfe6BrOClyZwN5ulaqKqKbreLVqsl\npJmIE0m2f8/n8/oiCGtg0W63PRlYSCHlXUgZMS4Ase8pAMKPhvByD7zwwgv4x3/8R9x3332YPn16\nRHsYPSeccAI2b96MarWKNWvWYNGiRVi/fn3cuyWJGNkzlULIbY+FAuJ6vZ5pxz4v+O0PMjaGh11+\nFiZJN1oIan8/GAx0QZalPkEWnmJaRDMRJ0hIDQaDVN0DbDbXaZh5VpwrreAhpJx+v+izxbwIqd/+\n9rf49Kc/jfvuuw8zZsyIaA/DY+PGjTjnnHNMe6aMvPWtb8Vzzz2HKVOmRLBnElFIXnQk8Q19PN0Y\nTVBJU9Z7Q/xYn9utPialST8tYtoqS+KmlyTLfYIEbzFtLHkyy5KIlM1Ns+mOVTaXsrDsO0z0zHSY\nhC2kgHBLM3lA70I3QuoPf/gDli1bhuXLl6dCSDnxxhtvYP/990cul8MzzzyDwWAghVQGkWIqA1Dy\nUdM0tNtt25eyXVlbVuA5iNXYS2ImrChjJcq5TrOYpoClUqnoAQuVn7FmIpSRysIgUivCnqFkZyYi\nwqID3QNZmKNlZWBBpY10/ak0PCtEIaTMcCrNjLLPirXAd/oe/vGPf8QVV1yBe++9F7NmzQp1v6Li\nggsuwOOPP47t27dj5syZuOGGG6AoCgDg8ssvx4oVK3D77bejWCyiWq3innvuiXmPJXEgy/xSSrfb\nBTDRaAKAbYmNXImPrqyNMlZ0PcK2MvayX7QynbTekCAYy88AoFgsYnh4OFVi0i1x2r+z2VwqP4va\nGTBLQsoKdlGJLQmMO0sSFXEJKad9MpZmhvlseJkltmHDBnzyk5/Ej370Ixx++OFc90MiER0pplJK\nt9u1NZpgV4IVRUGhUNBtv7O4Eh9nWVvQvh6e+yEDSFXPSAHQnw3Rys/CQrQZSmbPRti9JHJRaW+f\nnHFRic2SsM9GEvtB7UiC4UjYzwY9B1TqbsfLL7+Mj3/847j77rtx5JFHBtquRJJEpJhKKd1uVx/e\n6NQj1ev19PIBTdMyFTwC4tlesxmrqBqRZQBpbrRg75ThDAAAIABJREFUZibCrgSnCXYlvlqtxv4c\nmME+G5qmcXcGFGGWWtxYCSkjVgYWopUteyUJQsoM43D5IBlEL0Jq48aNWLJkCe666y5pCS7JLFJM\npZBNmzbhnnvuwYIFC3DwwQdbfgwoeFIURf9wWjnRpVVYid5gbvxA0rXgKazYGVLlclm4cxAFbso7\nzcrP4u7r4UUSA0jezoBeAsi04lZIGWGfDVrEE6Fs2StJfA7MMD4bXjKI7ILC0NCQ7c+++uqruPji\ni3HnnXfiuOOO43kIEkmikGIqhTSbTSxfvhwrV67Ezp07ceaZZ2LhwoU45JBD9I+Doii45pprMH36\ndFx77bWWZhRW1rlpWJX3a30eF6x1Lhs8BlmV52m2kUT8lneK2vPmB9EXFNxgVX7mdhFIxKHUUcPL\ncCQJNt9mpEVIGfGSQfQipLZs2YILL7wQ3/nOdzBv3rywD0MiERopplLOrl278OCDD+K+++7DG2+8\ngTPOOANnnHEGvvCFL6Db7eJHP/oRJk+e7Ph70rYqH8T6XAR4rMonYRhvmPAq74yjr4cXaeyTM2bX\nnd5VWR9GC4Tr3Gi1CCSSgUVahZQRq0UguhY0VNtJSL3++uu44IIL8B//8R94+9vfHtHeSyTiIsVU\nhmg0Grj77rtx/fXX48gjj8Rpp52GD33oQzj66KM9fTySLqzSlo3xsyofp1ubCLDBE+/+oChKM3mQ\nhT45J2dATdNS9S7wQ9gW+CwiGlhkRUiZYexBpDlwdt+OrVu34oILLsA3vvENvPvd7454jyUSMZFi\nKkOsXbsW55xzDq666ipcddVVeOSRR7BixQq8/PLLOPXUU/GhD30Ixx57rKfA0lgrDyByG2MvpD0b\n49TzJppbWxxEWdYm6qp8Fo0WzDKIg8Egsw6mQPwW+HEbWGRZSBFsdrpQKOjXpFAo4PHHH8fRRx+N\n2bNnAwC2b9+OxYsX42tf+xr+6q/+KuY9l0jEQYqpjPDQQw9hyZIluO222/CRj3xkwr91Oh387Gc/\nw09+8hO8+OKLeO9734tFixZh7ty5noWVCBbfVvsWl/V5XJgFK0RWhVScfXK0Ks+WZrLDN6NC9gft\nWVRptVool8vQNC0UZ0DRISElwmBuu/KzsDK6UkjtFVKFQmFCdpq+Hddddx2WL1+O/fffH6effjqe\nfPJJfO1rX8Npp50W855LJGIhxVQGuOOOO3DDDTfgvvvuc0zL93o9/OIXv8Dy5cvx29/+FieffDIW\nLVqEd7zjHYkVVqJZn8cBiQga3py00kweiFTWZjbnLYpyJ9kfZO5Yx9sZUHTIxVXU9yFb7RCGgYUU\nUtZCyoiqqvjlL3+Jb33rW3jppZcAAAsWLMDChQtx6qmnZvY9IpGwSDGVAe6//34cf/zxeqreLaqq\n4vHHH8fy5cvx3HPP4aSTTsKCBQvw7ne/23PAx/YtRLHqSFBJ12AwyOxH05iNAZAKG2MviJyNsXPN\n5Cl0qVcwrSWubnDTHxTUGVBkkljmy7tUVgop90IKAHbv3o3Fixfjuuuuwwc+8AH88Y9/xKpVq7Bq\n1Sq8+OKL+MAHPoCFCxdi4cKFqFarER6FRCIOUkxJXKFpGn71q1/hJz/5CZ566imccMIJWLRoEU45\n5RRP80iAiQ36YdrmJs36PAyowd6qN0akDGJYJMlwxMkwwe/18Ds/KE34MVrw6gwoMkkUUkaCGliQ\nkBoMBokdAxAULw6ezWYTixcvxtVXX42zzz57n39//fXX8eCDD2LVqlW48847MX369DB3XSIRFimm\nJJ7RNA1PPfUUVqxYgSeeeALHHXccFi1ahPe+972eg9WwnM+cREQWIBHhJRsTdnlN1Pz/7N15eJTl\nvf/x98wEEpJAFFkDXBCUQ6JQIRUsWIFAAhKSzASVRXBh0VgpiLQFLT2KPYriQewRWqViRbEsZrKw\nJKRBMAhogqAVXFiUCgEJyE62SWbm+f3B7xknQ5aZLLN+X9fVq4ZMJnfmyXJ/nvu+v19fLjjSXEHX\nmYbE/q45Ci20VNB1B3/c6uxqAQsJUq4FqbKyMiZPnsysWbNITU114yiF8D0SpkSTWK1W9u3bh9Fo\npKCggOjoaPR6PSNHjnR5O1VzBStfWoloKc0RInylxHdd/C1ENCboSgn8llmN8aXeYmqQslgszd4G\nwFs0VMACkCD1/7e8azSaBoNURUUFDzzwADNnzryuYJUQ4noSpkSzsVqtHDhwgPT0dLZv305UVBQG\ng4H4+HjbWR1Xnqu2A+ENVdry5ZWI5tISIcIxWDl7PTzF30NEbUHXvhKdP2zpaip3rsY49uvxlsqA\ngXo+yPF6aDQaNBpNQP8sOBukKisrmTp1Kg899BCTJk1y4yiF8F0SpkSLUBSFr776CqPRyLZt24iM\njMRgMDBmzBjCwsJcei5nK235+wS6IeoEuqqqqkVfA2+ufBaIIaK266GunHhD2WtP8ORqjLf8fARq\nkLKnhgir1YpGo6lxI8gbfl+5gyt99UwmEw899BATJkzgwQcfdNcQm2z69Onk5OTQqVMnDh48WOtj\n5syZw9atWwkNDWX16tUMHDjQzaMU/kzClGhxiqJw+PBhjEYjeXl5dOzYEb1ezz333EO7du1cfq7a\nevWovWICZQLtyFNnIhyvhycrnwXCdqaG2JfAVxTFryrROcubQoSnKgN602vgKbWdkWpqAQtf40qQ\nqqqqYtq0aSQnJzNt2jSf+p7ZtWsX4eHhPPTQQ7WGqdzcXFasWEFubi5FRUU8+eSTFBYWemCkwl9J\nmBJupSgK33//PRkZGeTk5BAREUFKSgrjxo3jhhtucPm5qqurqaysDNiJI3hP+fe6eie543p4y2vg\nSY4TJ6DGColWq61RMMEfuTJ5dDd3VQb05tfAXZx5DVwtYOFrXPk+qK6uZsaMGSQkJPDYY4/55Nf+\nww8/kJycXGuYevzxx4mLi2PixIkAREdHs3PnTqk+KJqN75/KFj5Fo9Fwyy23sGDBAubPn8/x48fJ\nyMhgypQphISEkJKSQlJSEu3bt2/wF7qiKFRVVdmasKoH9CsrKwMmWNlXZ/L0xMl+cmg/cTSZTC06\nkfem18BT6po42V8P9eejrKzMp0t818XbQ4Tjz4fj9WiOyoDe/hq4g7Ovgf31UP9+mM1m22qWu3oh\ntgR1VQ4a/j4wm82kpaUxYsQInw1SDTl16hQ9evSwvd29e3dOnjwpYUo0GwlTwmM0Gg29evXid7/7\nHfPmzePUqVNkZmYybdo0tFotycnJJCcn07Fjx+t+wR85coQDBw6QlJRkK32u1WrrnMj7Y7CyWq2U\nlZXZwqQ3/RFsaOLYXBN5b34N3MWZfmrqZN3xxoO6mufrvcVcKfnsDRyvh1pQRJ3IN6YyoASpxr8G\ntf18mM1mTCaTrcWGNxQUcYYrJeAtFgtPPPEEv/rVr5g1a5bXf21N4bgJy5+/VuF+EqaEV9BoNHTv\n3p05c+Ywe/Zszpw5Q1ZWFmlpaVRXV5OUlIRer6dLly4UFRUxefJknn76aUJCQmp9rrpWSOzf58tb\nnSwWC2VlZS71kPKUuibyTb0jrwapQO4l1pgwaX897Et8++odeV8LUo40Gg06nQ6dTtfoibyvvwbN\noTnDpHo9goODa1TOrKio8OoCFq6clbNYLMyePZvbb7+dJ5980q+/Z7p160ZxcbHt7ZMnT9KtWzcP\njkj4GzkzJbyaoiicO3eO7OxssrKyKCkp4YcffuDll19mypQpLv0BqK3ppi9udfKXPlpNaUrrS2Gy\npbREmLQvKe0LTZv9fWXSmcqAEqTctyrnzQUsXAlSVquVuXPn0rt3b5555hm/+J6p78yUfQGKwsJC\n5s6dKwUoRLOSMCV8xvLly3nxxRf5zW9+w/79+7l06RJjxoxBr9cTFRUVEMFKvTvqL41o7dlfj/q2\nOqlhMpB7ibkjTKpBVz2k7229xQJtZbK2iXxQUJDtvyVIuXd7ozcVsLCvZOpMkPrDH/5A586dee65\n5/zie2by5Mns3LmTc+fO0blzZ55//nmqq6sBSEtLA+C3v/0teXl5hIWF8c477xAbG+vJIQs/I2FK\neD31l39ubi65ublERUUBcPnyZbZs2UJGRgZnzpxh9OjR6PV6+vTp0+hgZTabAZrlMHhzC6Q+WvYr\nVvYrJOqkwR/DpLM8sTJZ2wqJek08sdXJarVSWloasCuTjpVMHc+FesvvrJbmLefE1L8h6s+IO7fL\nuhqk/vjHP9K2bVteeOGFgPk+EaKlSZgSXq2yspIHH3yQM2fOkJ2dTfv27Wt93NWrV8nNzcVoNHLq\n1ClGjhyJwWAgJibG5WDV2K1nLSUQG9HaU69HVVVVjWDlLSsk7uQNq3KeLIEPssUTam5vdDzX01yV\nAb2dtwSp2tgHK4vF0mIFLFwNUosWLUKj0bBkyZKA+zsiREuSMCW82muvvUZRURGrV6+utdhEbcrL\ny8nLy8NoNHLs2DFGjBiBwWCgX79+Lv0B8YZgZb8PPlAb0aphsqqqitDQ0BrbzwIpWHnjFk939U5S\nqUHK188LNkV92xtr+53l7efeGsObg5SjllrVtW/UHh4eXu9roCgKL7zwAhUVFSxbtiwg/44I0ZIk\nTAmvZrFYbGXPG6OyspL8/HwyMjL49ttvGTZsGAaDgQEDBrj8nI5nelp6G4cvTRhaiv2EwXFVTt3q\n5C1bz1pSVVUVlZWVXr3Fs65ziM11hsQbVuU8zdVzYu5aIXEnX/692FwFLFzZraAoCkuWLOH8+fMs\nX77c7343CuENJEyJgFFVVcWOHTswGo18+eWXDB06FIPBwKBBg1z+A1PXmZ7mClbqpCnQD5Y7W53K\n01vPWpIvnpWr6wxJY1d1JUjVDFLOrtI7fnxDlQG9nRqkNBqNz/9ebEoBi8rKSqeD1LJlyyguLubN\nN9/0messhK+RMCUCktlsZufOnaSnp7N//37uvPNOUlJSGDJkiMsTVvtgpd79bUqwslgstv4ygVCl\nrDZNufvsuPVMPZzvDeWLXeFPZ+XsC7y4evPBG7c3ultzF9yoa4XEm28++FOQcuRKAQtXgtTrr7/O\nkSNHWLVqlU/97hPC10iYEgHPYrGwa9cuMjIyKCwsJDY2FoPBwF133eXy5K2pwcpfekg1hdVqpby8\nvFn65vhqCfz6tjf6utp+RuraeiZBquULbrj73Ftjx+ivQao2dW3PVP/dmSD15ptv8u9//5vVq1dL\nkBKihUmYEsKOxWKhsLAQo9HI7t276d+/PwaDgWHDhrkcburaVlPXeQV14ihbmVqmCWtLn+lpLq5s\nb/R19W09M5vNXn9OrKW5u+BGbT8jnq4MGGhBypH6M2IymbBarQ2uIiqKwttvv82nn37KmjVrAvYm\nhBDuJGFKiDpYrVb27duH0WikoKCA6Oho9Ho9I0eOdPkOcUPBSi0wIHfg3VPyurnP9DTnuHz1cH1T\nORYUAWjdujXBwcF+tTLnLE9XLvSGyoCBHqRUtVUzra6u5vLly6xduxa9Xk9MTAyKovDuu+/y0Ucf\nsXbt2oC9KSeEu0mYEsIJVquVAwcOkJ6ezvbt24mKisJgMBAfH0+bNm1cei7HSaNGo0FRFMLCwgI2\nSHlye2NdJfDd0XDTcRxlZWXNsr3Rl5lMJiorKwkJCbEFXl8999ZYng5StXF3ZUAJUteoBWjCw8Ov\nq2Z64sQJli5dSm5uLuHh4cTGxlJSUsK//vWvRhUpEUI0joQpIVykKApfffUVRqORbdu2ERkZicFg\nYMyYMYSFhbn0PBUVFZjNZnQ6ne3/vf0geHPztu2N9pPGlqjUWBv1nJhOp2v27Y2+oq6CG3VVPfOm\nMz3NyRcqF7Z0ZUAJUtfUFaQcWSwW/va3v5Gdnc3ly5e5ePEier0eg8FAXFxcwDa3FsJdJEwJ0QSK\nonD48GGMRiN5eXl07NiRlJQUxo4dS7t27er8OIvFQmVlpW1FSl2d8tfy3nXx9u2NzV2psa7P4Urv\nIH/kbMENxzM9gFdsz2wuvhCkHDV3ZUBZob3Gld5yGRkZrF+/noyMDEJCQjhy5AgbN24kOzubr7/+\nmnvuuYf77ruP++67z02jFyKwSJgSopkoisL3339PRkYGOTk5REREkJKSwrhx47jhhhtsjzt37hwT\nJkxg4cKFjBw5stbJQl3lvf0pWPla/yRXC4o4w53nxLyVGqQsFguhoaFOf397y/bM5uKLQcpRUysD\nSpC6xpUgtWnTJlavXk1mZiahoaHXvf/MmTNs3ryZ48eP8z//8z8tNWQhApqEKSFagKIoHD9+nIyM\nDLZs2UJISAgpKSkMHDiQhx56iNGjR/PSSy85FSLqm6D4Qghx5A/9k5pjm5M3notxt+asXOiJ7ZnN\nRQ1S3rpC2xiuVgaUIHWNK0EqJyeHv//972RnZ7u0xVwI0bwkTAnRwhRF4dSpUyxfvpy//vWvjBw5\nkoSEBJKTk+nYsaPLDWnr6pvkC8HKfvLsyiqEN2vMNifpJ9aylQsdt2c2xypiSwmEXloNVQYEJEjh\nWpDKz8/n9ddfJzs7u94t5UKIlidhSgg3KCgoYMKECbz++uuMGDGCrKwssrOzqa6uJikpCb1eT5cu\nXZotWHnjwfxAKPvtzPZMbyu44Qnu/F5o6WIJTREIQao2jpUBNRoNWq3Wb26wNIb6veBMkNqxYwdL\nly5l48aNREREuGmEQoi6SJgSooVt2LCB2bNns2HDBuLi4mz/rigK58+fJzs7m6ysLMrKykhMTCQl\nJYUePXo0OVh5utmm4/gC7c5zbVXodDqdbXtjIE2e7Xnye6G5iyU0RaAGKXuKolBaWmr7HrBfRfSG\nsOsurgSpjz/+mMWLF7Nx40ZuvPFGN42weeTl5TF37lwsFgszZ85kwYIFNd5fUFCAXq+nd+/eANx7\n77386U9/8sRQhXCJhCkhWtBf/vIXli5dSk5ODrfffnu9j71w4QKbNm0iMzOTS5cuMWbMGPR6PVFR\nUS4Hq9oO5nsqWKnV6oKCggK67HdlZSVVVVVoNBqvX0VsKd5UAt6TZxFd2c7lr2oL1d4Udt3FlSC1\nZ88eFi1axKZNm7jpppvcNMLmYbFY6Nu3Lx9++CHdunVj0KBBrFu3jpiYGNtjCgoKWLZsGZs2bfLg\nSIVwXWDeDvNh6enpLFq0iEOHDvHZZ58RGxtb6+N69epFu3btbH+M9u7d6+aRCrhWsW7Pnj307Nmz\nwce2b9+eRx55hEceeYTLly+zZcsWnn32Wc6cOcPo0aPR6/X06dOnwQmougKi0+kIDg62BauKigq3\nByuLxUJ5eXlAl/2Ga5Pn6upqW78YdRWxvLzc42HXXbwtVNuHJ/uV3bKyMtv71CbBzTlWCVJ1r05q\nNBpat25N69ata4Rdk8nklzcg7FcnG/peKCws5LnnnmPjxo0+F6QA9u7dyy233EKvXr0AmDRpEhs3\nbqwRpuDa94YQvkbClI/p378/WVlZpKWl1fs4jUZDQUEB7du3d9PIRG0ctzE4KyIigilTpjBlyhSu\nXr1Kbm4uixcv5uTJk4wcORKDwUBMTIxLwSokJMQ2YbQPVi1VSlrKftesXGjfeFN9ze1XET0Rdt3F\n23tpqdti1aCnnulp7msiQcr5bZ4NhV1v2sbcGK5s89y3bx8LFy4kOzubjh07ummEzevUqVP06NHD\n9nb37t0pKiqq8RiNRsMnn3zC7bffTrdu3Vi6dCm33nqru4cqhMskTPmY6Ohopx8rd3j8Q9u2bZk4\ncSITJ06kvLycvLw8li1bxrFjxxg+fDipqan069fPqW0wjsHKbDZjMpmoqKho1lLS/tAzp6ns+yfV\nVQK+rrBbWVnpc+W962K1WiktLfWZUG0frGpb2W3sNfG1vmotQQ1Srm7zdAy7zXVNPEUN6s4EqS++\n+IL58+eTmZlJ586d3TTC5ufMdYmNjaW4uJjQ0FC2bt2KwWDgyJEjbhidEE0jYcpPaTQa4uPj0el0\npKWl8eijj3p6SKIZhIaGMn78eMaPH4/JZCI/P5833niDb7/9lmHDhmEwGBgwYIBLwcp+wtgcwUoO\n1je+f5J6TYAa10TdKulLE0bw/dVJx7Db2GuiBin71clA09gg5ai2GxDqTSH1mqi/v7zx58SVnmIH\nDx5k3rx5ZGRkEBkZ6aYRtoxu3bpRXFxse7u4uJju3bvXeEzbtm1t/z127FieeOIJLly4IDtshNcL\nzJmOl0tISKCkpOS6f1+8eDHJyclOPceePXvo2rUrP/30EwkJCURHR3P33Xc391CFBwUHB5OcnExy\ncjJVVVXs2LGD1atX8+WXXzJ06FAMBgODBg1yavKm1WptE96mTOJlG1PNst9NaURb3zXx5r5JKn9s\nSlzbNamqqqpxTRyr0FVWVl63zTPQNFeQqo3jTSH1nJXjTSFveO1dCVLffPMNs2fP5oMPPrgudPii\nO+64g6NHj/LDDz8QGRnJhg0bWLduXY3HnDlzhk6dOqHRaNi7dy+KokiQEj5BwpQX2rZtW5Ofo2vX\nrgB07NiR1NRU9u7dK2HKj7Vu3Zp77rmHe+65B7PZzM6dO9mwYQPz589n8ODB6PV6hgwZ4lTAcZww\nms3m6yaMjpN49WxQVVVVwAeplij7Xds18dYJIwTGNk/7a6JWoVOviVr4R71WdW3zDAQtGaQcabXa\nGgUs1MqA9tfEU5UBXQlShw4d4oknnmD9+vW2gg2+LigoiBUrVjBmzBgsFgszZswgJiaGlStXApCW\nlobRaOSNN94gKCiI0NBQ1q9f7+FRC+EcKY3uo+Li4li6dCm//OUvr3tfeXk5FouFtm3bUlZWxujR\no3nuuecYPXq0B0YqPMlisbB7926MRiOFhYXExsZiMBi46667XN6CV1/zU5PJFPCTRk9Uq7OfxJvN\nZo9PGCEwglR91GtiMpmwWq22Cb5aGTCQuDNINTSOusrgu6MyoCs/E0ePHmXmzJmsXbuWPn36tOi4\nhBDNQ8KUj8nKymLOnDmcO3eOiIgIBg4cyNatW/nxxx959NFHycnJ4dixY4wfPx649kt8ypQpPPPM\nMx4eufA0i8VCYWEhGRkZ7Nq1i/79+2MwGBg2bJjL27AcJ/EAISEhft0Ppj7eUK3OfsLoqR49cl7u\n58IjZrOZ0NDQGjch/LG8d128JUg5cneDc1eC1LFjx5g2bRpr1qxxqdiUEMKzJEwJEYCsViv79u3D\naDRSUFBAdHQ0er2ekSNHOl0oQD0bpCgKrVu3DqhGm/a8sciCJxrSSpCqWcExNDS0xve/uyfxnuSt\nQcpRbQ3Om7MyoPq7wZkgdfz4cR5++GHeeecdbrvttiZ9XiGEe0mYEiLAWa1WDhw4QHp6Otu3bycq\nKgqDwUB8fDxt2rSp9WN++uknrFYrbdu2rXE2yBtWR9zJF4os1DaJb+7VESk84loFx9om8f7SX8xX\nglRt1MqA1dXVWCyWJlUGdCVInTx5kqlTp7Jq1Sp+8YtfNOVLEEJ4gIQpIYSNoih89dVXGI1Gtm3b\nRmRkJAaDgTFjxhAWFgZcu4Oq1+uZM2cO06ZNq3OS4bg6otVq/SpY+eLZoJZYHZH+SY0vha9Sr4nZ\nbPbp/mK+HKQc1XdGtKHfX67cZDl9+jQPPPAAb775JgMHDmzOL0EI4SYSpoQQtVIUhcOHD2M0GsnL\ny6Njx47cddddvPbaa/zmN79h3rx5Lj2XY7Cyn8T7Gn/Y0tYcqyPSP6npQcqR/TWxWCw+UQYf/CtI\nObKvDNjQirsrQaqkpIQHHniA119/ncGDB7fklyCEaEESpoQQDVIUBaPRyPTp0xkyZAjBwcGkpKQw\nbtw4brjhBpefq65tZ74QrNQtbb4cpGpjf00aOjuilsKvrq4O6AqO9j3FQkNDmz1ANGV1xJ08UcnS\nU+o7j6h+PzgTpM6ePcvkyZNZtmwZQ4YMcdPohRAtQcKUEKJBW7du5aGHHuLdd99l7NixHD9+nIyM\nDLZs2UJISAgpKSkkJSXRvn17lyZS7jjP05wCZUub/eqI47YzwFatToJUywWp2j6fs6sj7hRIQcqR\n4+8v9SZEcHBwvau758+fZ9KkSbz88svS/1EIPyBhSghRr/fff5/f/e53ZGdnX3cHVVEUTp06RWZm\nJps2bUKr1ZKUlERycrKtk72z6gpWan8eT07SAnklxnHbmVarRVGUgN/a584gVdvn94Zts4EcpOxZ\nrVauXr1qq+ZpH6y++OILfvnLXxISEgLAhQsXmDRpEi+88AIjRozw4KiFEM1FwpQQok5vvPEGixcv\nJi8vr8FyvYqicPbsWTIzM8nOzqa6upqkpCT0ej1dunRxOVh5S7Uz+75BgRak7KkBwmKxoNPpvHrb\nWUtSzwZptdoalSw9OR5PrO5KkLrGarVSWlp6XWsEi8VCZWUler2er7/+mpEjRzJ69GjWrFnDn//8\nZ+Lj4z04aiFEc5IwJdwmPT2dRYsWcejQIT777DNiY2NrfVxeXh5z587FYrEwc+ZMFixY4OaRCtVn\nn31Gp06d6Nmzp0sfpygK58+fJzs7m6ysLMrKykhMTCQlJYUePXr4TLCyLy7g2DcokNS2EuPYuDko\nKMgWrvz1dfK2IOXIPliZzeYW+1nxhibV3kB9HVq3bl1vj7mSkhIyMzNZs2YNR48eJS4uDoPBQEpK\nCp07d3bjiIUQLUHClHCbQ4cOodVqSUtL49VXX601TFksFvr27cuHH35It27dGDRoEOvWrSMmJsYD\nIxbN5cKFC2zatInMzEwuXbrEmDFj0Ov1REVFNbqMdEsHK/umxM1Rpc1XObOlLRD6i3l7kHLUUg1p\nJUhd42yQAigtLWXSpEnMmzePYcOGkZubS3Z2Nnl5efTv35/U1FRSU1OJiopy0+iFEM1JwpRwu7i4\nuDrD1Keffsrzzz9PXl4eAC+//DIATz/9tFvHKFrO5cuX2bJlCxkZGZw9e5aEhAT0ej19+vRpVLBS\nJ/HN2Z/H02divEVjAoS3nOdpTv5Q9ru2hrQZ7W3YAAAgAElEQVSu/qxIkLrGlSBVVlbG5MmTmTVr\nFqmpqTXeZzKZ2L59O1lZWWzevJnPP/+cyMjIlhy6EKIF+E9dX+EXTp06RY8ePWxvd+/enaKiIg+O\nSDS3iIgIpkyZwpQpUygtLSU3N5fFixdTXFzMqFGjMBgMxMTEODVR0+l06HQ6goODbXfhTSYTFRUV\njQ5WvrYC0VKsVivl5eUuBwjHUtHqSmJZWZnXV2usjb+cDartZ6Wqqory8nKnellJkLrG8XWoT0VF\nBVOnTiUtLe26IAUQHBxMYmIiiYmJWK1Wv1nFFSLQSJgSzSohIYGSkpLr/n3x4sUkJyc3+PGB+gc6\nUIWHhzNhwgQmTJhAeXk5eXl5LFu2jGPHjjF8+HBSU1Pp16+fU5MMrVZrOwRuH6zKy8udvgvvLxPn\npmqu10Gj0djOUoWEhNQarLyhWmNd/DVAOP6sqCtW6k0Ix7Nv/vo6uMr+dVCr89WlsrKSBx98kEce\neYT777+/weeWICWE75IwJZrVtm3bmvTx3bp1o7i42PZ2cXEx3bt3b+qwhA8IDQ1l/PjxjB8/HpPJ\nRH5+Pm+88Qbffvstw4YNw2AwMGDAgEYFK7PZ3OBdeJkwXtNSr0NtwcpsNlNRUeHRao11CZTvB61W\nS+vWrWndunWNLZqVlZXodDqCgoKoqqqybWnz19ehIa6sSJlMJh5++GEmTZrE5MmT3TRCIYSnyK0Q\n4RF1HdW74447OHr0KD/88ANVVVVs2LCBlJQUN49OeFpwcDDJycm8++677N69m/j4eFavXk1cXBzP\nPPMMRUVFWK1Wp55LnSyGhYXRtm1bWrVqRXV1NVeuXKGsrIyqqirMZjOlpaW0bt06oFekLBaLW14H\nNViFhIQQHh5uK/BRUVHB1atXqaiosBVN8ATHFYhA+X5QVwtDQ0Np164drVu3xmQy2So3mkwmLBaL\nx66Lp7gSrKuqqpgxYwapqak8+OCDbhxl88jLyyM6Opo+ffqwZMmSWh8zZ84c+vTpw+23384XX3zh\n5hEK4X2kAIVwm6ysLObMmcO5c+eIiIhg4MCBbN26lR9//JFHH32UnJwcALZu3WorjT5jxgyeeeYZ\nD49ceAuz2czOnTtJT09n//79DB48GL1ez5AhQ1wubqBOEKuqqmzNaIODgwOqZ5I9i8VCWVnZdf1y\nPDGOligq4qy6+gYFGscA4djLyr6oiD+HTVeKj1RXVzNjxgzi4+NJS0vzudfFmWq6ubm5rFixgtzc\nXIqKinjyyScpLCz04KiF8DwJU0IIn2SxWNi9ezdGo5HCwkJiY2MxGAzcddddBAU5t4PZbDZTXl5u\nO/+gTuL9sbR3fdQgFRISQuvWrT09HBv70t6NrUDnCm8JlJ5W39kgb2qo3dJcCVJms5nHHnuMX//6\n18yaNcsnXwdnquk+/vjjxMXFMXHiRACio6PZuXOn9MsSAU3OTAkhfJJOp2P48OEMHz4ci8VCYWEh\nGRkZPPvss/Tv3x+DwcCwYcPqDAdffPEFvXv3JiwszBa+6jo34s/BSg2Ubdq0oVWrVp4eTg2NOfvW\nWN4aKN2toSILGo3GVhnQvqhIZWWlR1YSW4orQcpisTBr1izuvPNOnw1S4Fw13doec/LkSQlTIqBJ\nmBJC+DydTsddd93FXXfdhdVqZd++fRiNRl588UX+67/+C4PBwMiRI22rDe+99x7PPvssO3fuJCIi\nosZzOZb2VoOVyWRCq9X6VbDy5iDlyLFQgroy4lgGvzHXRYLUNa5Uq1OpwUr9eMcqmuq18aWA4WqQ\nmjNnDv3792fu3Lk+9XU6cnbsjhuafPlrFqI5SJgSQvgVrVbL4MGDGTx4MFarlQMHDpCens7//u//\nEhUVRYcOHcjIyCAnJ4eePXvW+1wNBStfbkarBpHQ0FCnt0V6C41Gc12wUisDurqSKEHqmsYEKUcN\nlVxvSuB1F/s+cw0FKavVyrx587jlllv4wx/+4POhwplquo6POXnyJN26dXPbGIXwRnJmSggREKxW\nK7Nnz+aDDz5gwIABREREYDAYGDNmDGFhYS49l30zWvVAvv25EW9XVVVFZWWlTwap+tgHXrPZ3OBK\noi+tzLWk5ghS9bFfSTSbzV67ddaVht1Wq5X58+fTsWNHFi1a5PNBCq79PPTt25ft27cTGRnJ4MGD\n6y1AUVhYyNy5c6UAhQh4/vNXVAgh6qDeQd69ezcHDx6kc+fOHD58GKPRSGpqKh07diQlJYWxY8fS\nrl27Bp/PmWa06kTR2yZZapAKCwvzieDnitpWEtWy947XxWKxSJDi5yCl9pFqCY4rid64wqsoCuXl\n5U4HqYULF3LDDTf4TZACCAoKYsWKFYwZM8ZWTTcmJoaVK1cCkJaWRmJiIrm5udxyyy2EhYXxzjvv\neHjUrlMUxXbN7P9biMaSlSkhhF8zm83MnDmTo0ePkpOTww033FDj/Yqi8P3339u2/kVERJCcnMy4\nceO48cYbXfpcda1YBQUFeUWlM5PJhMlk8ssgVR/H66L+m7q1z9PXxVPcEaTqU98KrztvRKhBSqPR\nOBWkFi1aBMArr7ziVStromFms5mgoCAsFktA/Q4ULUvClBDCbymKwn333Ud5eTlGo7HB7XyKonD8\n+HEyMzPZvHkzISEhpKSkkJSURPv27V2a3HlbCWmTyURVVRVhYWEBPQGsrq62FUdQG9D6a2nv+ng6\nSDmyD1Zms9lt10UNUgChoaH1fh5FUXjhhRcoLy/ntddeC+ifI1+kBqiqqiqeeOIJJk6cSEJCgqeH\nJfyAhCkhnHThwgUmTpzI8ePH6dWrFx988MF1qxwAvXr1ol27drZzAXv37vXAaIUqLy+PkSNHulxc\nQFEUTp06ZQtWGo2GpKQkkpOT6dSpk88EK0VRMJlMVFdXS5ByKLrhbYHXXbwtSDmq67qoW2ub67q4\nGqSWLFnCuXPnWLFiRUD/HPkyq9XK8OHDGTlyJM8///x175PrKhpDwpQQTpo/fz4dOnRg/vz5LFmy\nhIsXL9qaGtqLiopi//79tG/f3gOjFC1BURTOnj1LZmYm2dnZVFdXk5SUhF6vp0uXLi5P7uy3NrXk\nBF5RFCorKzGbzRKknKheaL8y4k89k+x5e5CqjcVisZ2zaq7roigKFRUVKIriVJB67bXXOH78OCtX\nrgzonyNfpZ6N2rZtG2+++SYZGRls376drVu38u2337Jp0ybZ9icaTcKUEE6y7/ReUlLCiBEjOHTo\n0HWPi4qKYt++fdx0000eGKVoaYqicP78ebKzs8nKyqKsrIzExERSUlLo0aNHo4JVc08U1XFWVFRg\ntVoJCwvzmzDQGI0pA2+/MmKxWGyB15eDlS8GKUeO16UxzZtdDVLLly/n8OHDrFq1SibcPsbxbNSl\nS5dITEzkwoULjB07lgEDBpCbm0tcXByPP/64B0cqfJmEKSGcdOONN3Lx4kXg2h/Y9u3b296217t3\nbyIiItDpdKSlpfHoo4+6e6jCjS5cuMCmTZvIzMzk0qVLjBkzBr1eT1RUlMuTbvuJYlOClQSpnzVH\n9UL1uqjVARszgfc0q9VKaWmprQ+UP7DvZWV/XerrZeVqkFq5ciVffPEFq1evliDlY+yD1DPPPEN0\ndDQ33HADCQkJFBYWMnLkSAAmT57MuHHjmDp1qieHK3yYhCkh7CQkJFBSUnLdv7/44os8/PDDNcJT\n+/btuXDhwnWPPX36NF27duWnn34iISGB5cuXc/fdd7fouIV3uHz5Mlu2bCEjI4OzZ8+SkJCAXq+n\nT58+TQpWrqyMuHIOxN+1RBn4xkzgPc0fg5Qj+5Lr1dXVtfaycuUmg6IovP3223z66aesWbPGr/qx\nBZqkpCRiYmK46aabWL9+PRkZGdx8881cvnyZ++67j169evHWW295epjCh0mYEsJJ0dHRFBQU0KVL\nF06fPk1cXFyt2/zsPf/884SHh/O73/3OTaMU3qK0tJTc3FyMRiPFxcWMGjUKg8FATExMo4NVQysj\nEqR+5o5+Wr7QjDYQgpQjx+bNasl1i8WC1WolPDy8wSD13nvvsWPHDtauXRvQfch83eeff056ejov\nvfQSo0aNIjExkd/97ncUFxcTFBTE+vXreeqpp4DrtwQK4SwJU0I4af78+dx0000sWLCAl19+mUuX\nLl1XgKK8vByLxULbtm0pKytj9OjRPPfcc4wePdpDoxbeoLy8nLy8PIxGI8eOHWP48OGkpqbSr18/\nlyfd9a2MONt01N95op+W4wReq9V6PFgFYpBypF6XyspKW7W2+nq/KYrC2rVryc3NZcOGDS5XARWe\nZV+Rz2q1cuTIEWbMmIGiKBgMBubPnw/ASy+9xLRp0+jSpQsgQUo0jYQpIZx04cIFJkyYwIkTJ2qU\nRv/xxx959NFHycnJ4dixY4wfPx641hxwypQpPPPMMx4eufAmJpOJ/Px8jEYj3377LcOGDUOv1zNw\n4ECXJ92OKyMajYbg4GCvWhlxNzVIhYeHe+w1qGtlRK3Y6A4SpK5RK1paLBZCQ0Nr3Iy4fPkyy5Yt\nIyUlhV//+tcEBQWxYcMGMjMzMRqNAf26+bq//OUv3HrrrSQkJDB//nyKiorYsmUL7dq1Y8qUKbbQ\nLERzkDAlhBAeUlVVxUcffUR6ejpffvklQ4cOxWAwMGjQIKeDgFqhTafTERQUVGPFSl21CpRgVVlZ\n6XX9tOyb0VZXV9cIVlqttkVWECVIXWMfpBzPSKlVOVeuXMmWLVs4deoUQ4YM4fTp02zfvp2IiAgP\njly4ynFlaeHChRw5coRZs2YREhLCtm3bePvttxk0aBAA6enpgPSWEs1DwpQQQngBs9nMzp07SU9P\nZ//+/QwePBi9Xs+QIUPqXM04ffo0ISEhtGnThuDgYNtk0ZnD+P7EVxoT1xas1MDbXD3GLBYLZWVl\nEqTseqw1dEYKYM2aNfzzn//EarXy1VdfMXbsWMaPH8/YsWMJDw9306hFU+3bt4877rgDgFdeeYUv\nvviCmTNnMmrUKL7++mtCQkK4+eabAdnaJ5qPbtGiRYs8PQghhAh0Wq2W3r17k5SUxIwZM2jbti3Z\n2dm8+OKLHDhwgJCQELp162b743/48GHGjBlDTEwMt956a43JokajsQWo4OBgtFqt7dyI2ii4pVZF\n3M1XghRcuy7qmZ3WrVsTFBSE1Wq1bU20Wq1oNBrb/1wlQeoa9XvC2WbVOTk5vPfee2zevJnHH3+c\nadOmYTKZWLt2LXPnzuXTTz/FZDJx2223yeTby6xdu5bDhw9z66238vHHH7N06VIA+vXrx1133cU3\n33zDn//8Z3r37s3gwYPp2LEjIEFKNC9ZmRJCCC9msVgoLCwkIyODXbt20b9/f371q1/x3HPPsWDB\nAh577DGnn6u2Ign2KyO+xn71wduDVEPsV6wURXG5x5gapEJCQgK+aIIr2z3z8/N5/fXXyc7Opl27\ndte9/9KlS+Tk5LB9+3ZWrVrl099j/mjdunUsWrSIV199laSkJN566y2KiooYNWoUkydPBuCXv/wl\n999/P08//bSHRyv8lYQpIYTwEVarlTVr1jBr1iyGDBlCly5dMBgMjBw50uWViPrO8vhCsHIsLOBP\nk1xXmzdLkPqZK0Fqx44dLF26lI0bN8oZKR+2adMm/vjHP/Liiy+i1+v5xz/+QUFBAbfddhuXLl3i\n4sWLvPnmm8C13xv+sCIvvIt0oRNCCB/x6aef8oc//IE1a9ag1+s5cOAA6enp/O///i9RUVHo9XoS\nEhJo06ZNg8+lntcJCgoiJCTEFqzKysrcUiShKVxpvuqLtFqtbaueGqxMJhPl5eXX9RiTIPUzV4LU\nxx9/zJIlS9i0aZMEKR/juEUvJSUFRVFYuHAhZrOZ6dOn06NHD959910A2//L1j7RUmRlSgghfMCH\nH37I5MmTef/99xkzZkyN9ymKwtdff43RaCQ/P5/IyEgMBgNjxowhLCzMpc/jiepzro7Pn4NUfRx7\njOl0OiwWCyEhIQF9RgqulcSvqqpyKkjt2bOH559/no0bN3LTTTe5aYTN78KFC0ycOJHjx4/XaNfh\nqFevXrRr1852jnLv3r0eGG3zsK++t2HDBoKDg4mJiaFv375s2bKFP/7xjzz99NM88MADNR6vVjgV\noiVImBJCCC+3efNmZsyYgdFoZNiwYfU+VlEUDh8+jNFo5F//+hcdOnQgJSWFsWPH1nompKHnst9y\npihKja2A7g4ygRykHJnNZsrKytBqtbatgIFWCl/lSpAqKipi4cKFbNy40VaMwFfNnz+fDh06MH/+\nfJYsWcLFixevayQPEBUVxf79+2nfvr0HRtkynn32WYqKikhISGDZsmVs2bKF2NhY/vWvf/HII4+w\nfPly7rvvPkC29omWF1i/cYUIQHl5eURHR9OnTx+WLFlS62PmzJlDnz59uP322/niiy/cPELREK1W\nS05OToNBCq5t34uOjuZPf/qTrbrV2bNnmThxIhMnTuT999/n4sWLTn1etSpgSEgI4eHhtgBTUVHB\n1atXqaiowGw24457coqiUF5ejqIoAR+kLBYL5eXltGnThrZt29KuXTtat26NxWLh6tWrlJaW2qoD\n+ju1EqIzQWrfvn0sXLiQzMxMnw9ScO2s0MMPPwzAww8/THZ2dp2P9fX75vbjz8vLo6ioiNzcXE6f\nPk3Xrl0ZOnQon3zyCWPGjCE7O5tx48bZHh/IvyuEe8jKlBB+zGKx0LdvXz788EO6devGoEGDWLdu\nHTExMbbH5ObmsmLFCnJzcykqKuLJJ5+ksLDQg6MWLUFRFE6cOEFGRgabN28mJCSElJQUkpKSaN++\nvcsTDsfqcy25YqUGKYDQ0NCAnhw1dEbK3yo21kcNUuHh4Q0GqX//+9/MmzePzMxMIiMj3TTClnXj\njTfabowoikL79u1rvVHSu3dvIiIi0Ol0pKWl8eijj7p7qM3m6NGjtq/ln//8Jzt27CA7O5vHHnuM\nVatW8fnnnzNgwABAzkgJ95ENpEL4sb1793LLLbfQq1cvACZNmsTGjRtrhCn7u5t33nknly5d4syZ\nM3Tu3NkTQxYtRKPR0LNnT+bNm8dTTz3FqVOnyMzMZPr06Wg0GpKSkkhOTqZTp05OhRWdTmdbtbJY\nLLY+Vs5Un3OFBKmfOVNswv6Mm/35N18oLOKKqqoqp1ekDh48yFNPPUVGRobPBamEhARKSkqu+/cX\nX3yxxtv19Sbbs2cPXbt25aeffiIhIYHo6GjuvvvuFhlvS9q3bx+vvfYa//znPwG4fPkyCQkJAPTv\n35/HHnuMnj172h4vQUq4i4QpIfzYqVOn6NGjh+3t7t27U1RU1OBjTp48KWHKj2k0Grp3786cOXOY\nPXs2Z8+eJTMzk8cff5zq6mrGjRuHwWCgS5cuLgUrx+pzFRUVTQpWapDSaDS0adPGpyf/TdWYqn3O\nVGwMCgryyPm3pqiqqqKyspKwsLAGJ8zffPMNs2fP5oMPPqB79+5uGmHz2bZtW53v69y5MyUlJXTp\n0oXTp0/TqVOnWh/XtWtXADp27Ehqaip79+71iTDleNYpNjaWEydO8N///d/8z//8DzfddBOfffYZ\nkyZN4tixY3z44Ye0a9dOik0It5MzU0L4MWcnSI67fX1pYiWaRqPR0LlzZ37zm9+Ql5fHBx98QERE\nBHPmzGHcuHGsWLGCEydOOH3mQi3rHR4eTnh4ODqdDpPJxJUrVygvL7dtC2yIoii2Sb8EqaaXP1eD\nlXrOKjQ0FMAj59+awpUgdejQIZ544gnWrVtnW533JykpKTXKfxsMhuseU15eztWrVwEoKysjPz+f\n/v37u3WcjaX+zJ84cYIff/wRrVbLm2++yblz5ygpKeHBBx8kNTWVu+66y9Z0WV0ZF8Kd5DtOCD/W\nrVs3iouLbW8XFxdfd3fW8TEnT56kW7dubhuj8B4ajYYOHTowc+ZMZs6cycWLF9m4cSMLFizg4sWL\njBkzBr1eT1RUlFPhprZ+SVVVVbX2S7KnBimtVitBqgX6SKmFRRxXEysqKmzn39QVLW967V0JUkeP\nHiUtLY21a9dy8803u2mE7vX0008zYcIE3n77bVtpdIAff/yRRx99lJycHEpKShg/fjxwrQLklClT\nGD16tCeH7TRFUTh06BB//OMf6dSpE7/+9a9JTU3l6tWr7N69m/vuu4+UlBTb42VFSniKFKAQwo+Z\nzWb69u3L9u3biYyMZPDgwfUWoCgsLGTu3LlSgEJc5/Lly2zZsoWMjAzOnj1LQkICer2ePn36uDzh\nduyXZB+s4NoddPU8ljdN5t3NEw151fNv1dXVzX7+rSnUsOdMkDp27BjTpk1jzZo1REdHu2mEoqV8\n8803lJSUMGfOHKZPn86ePXv497//zfbt2/1yxVH4HglTQvi5rVu3MnfuXCwWCzNmzOCZZ55h5cqV\nAKSlpQHw29/+lry8PMLCwnjnnXeIjY315JCFlystLSU3Nxej0UhxcTGjRo3CYDAQExPTqHNRalVA\ns9kMXDuD1aZNm4A+QO6JIOXIvseYxWKxharaVhNbkitB6sSJEzz44IOsXr2a2267zU0jFC3BcaXp\n9OnTFBQUsGfPHjIyMjh48CAdOnTw4AiFuEbClBBCiEYrLy8nLy+PjIwMvvvuO0aMGEFqair9+vVz\nqXms1WqltLTUNllWJ1KB2IjWG4KUo/pWE1syWLkSpE6dOsWUKVNYtWoVv/jFL1psTKJlff/990RF\nRdX4mbdarTXePnv2LJ06dbru34XwBAlTQgghmoXJZCI/Px+j0ci3337LsGHD0Ov1DBw4sN4Jj9qE\ntlWrVgQHB6PRaGr0S6qurkan09Uo6+2vvDFIOXJcTbTfCtic10YNUqGhoQ2ehTl9+jQPPPAAb7zx\nhqys+7Djx4/zyiuvsGTJEsLDw6+r6Kf2jrJYLGg0Gr/+XSB8h4QpIYQQza6qqoqPPvqI9PR0vvzy\nS4YOHYrBYGDQoEE1JkDFxcVMnDiRtWvX1nn+obZGtP4YrHwhSDlSg5V6fZor9LoSpEpKSnjggQd4\n/fXXGTx4cKM/p/C8K1eukJiYyPjx45k3b95175dGvMIbSZgSQgjRosxmMzt37iQ9PZ39+/czePBg\n9Ho9Xbp0ISUlhZkzZ9Y6capNXcFK7Zfkq9Qg1aZNG1shDl/TXNfGbDZTXl7uVJD66aefmDRpEsuW\nLWPIkCFN/RKEh5w+fRqz2UyPHj344osvWL58Oc8++yw9e/a0rUypQeqbb74hNzeX3//+9x4etRDX\nSA1JIYQQLSooKIhRo0YxatQoLBYLu3fvZtWqVWzatImkpCRiY2Oprq52KkSozWZbtWqFoii1NqJt\n1aqVTwUrfwhScP21MZvNmM3m666NVqut85yVK0Hq/PnzTJ48mVdeeUWClA+7ePEiL730El999RWz\nZs3i5ptvRqfTcebMGXr16oWiKFitVnQ6Hd9//z3Tp0/nvffe8/SwhbCRlSkhhBBudejQIRISEli4\ncCG/+MUvMBqN7Nq1i/79+2MwGBg2bJjL29zsg1V1dbXTk3dP85cgVR9nr40rQerixYtMmjSJP//5\nz8TFxbnjyxAt6OrVq3zyySf8/e9/Z+DAgSxdupQBAwaQnp5Ox44dAfjPf/7D1KlTeeedd/iv//ov\nD49YiJ9JmBJCCOE2X331FaNHj2bx4sU88sgjtn+3Wq3s27ePjIwMPvroI/r27YvBYGDkyJEEBwe7\n9Dl8JVgFQpBypF4bdTug2iRYq9XaGvI2FKQuX77MxIkTefbZZ4mPj3fTyIU7nD17lqqqKv76179y\n9OhRFi5cyMCBAzl//jxxcXGsW7dOSt4LryNhSgghhFt8+eWX3HPPPSxdupQpU6bU+Tir1cqBAwdI\nT09n+/btREVFodfriY+PJzQ01KXPqW4RUoOVOnlXtwJ6KlgFYpBypF4bk8lEdXU1AK1bt6732ly5\ncoXJkyezYMEC7rnnHncPWbjRwoULuXLlCsuXL+fixYtUVFQQGRnp6WEJcR0JU0IIr5eXl2drPDxz\n5kwWLFhQ4/0FBQXo9Xp69+4NwL333suf/vQnTwxV1GPKlCkYDAbuv/9+pz9GURS+/vprjEYj+fn5\nREZGYjAYGD16NOHh4S59fm8JVup2tkAOUir7UKnVam3FK6xWK5mZmXTo0IH4+HhCQkIoLS1l0qRJ\nzJs3j6SkJE8PXbQQtRz66tWrMRqNZGZm+kx1SxGYJEwJIbyaxWKhb9++fPjhh3Tr1o1Bgwaxbt06\nYmJibI8pKChg2bJlbNq0yYMjFQ1x7BnTmI8/cuQIRqORrVu30qFDB/R6PWPHjqVdu3YuP5/9VkB3\nBSsJUj+rb3XOarWyevVq3n//fQ4dOsTIkSM5c+YMs2bN4oEHHvDQiIW7KIpCdnY2MTExREdHe3o4\nQtRLwpQQwqt9+umnPP/88+Tl5QHw8ssvA/D000/bHlNQUMCrr77K5s2bPTJG4X6KonDs2DGMRiO5\nubm0a9eO5ORkxo0bx4033ujy89mf47FarTUa0TZXsJIg9TNXtjkeO3aM//7v/+bYsWP85z//IT4+\nnnvvvZekpCQiIiLcNGIhhKid/3Q7FEL4pVOnTtGjRw/b2927d+fUqVM1HqPRaPjkk0+4/fbbSUxM\n5JtvvnH3MIWbaTQabr75ZhYsWEBBQQErVqygtLSUqVOncu+99/Luu+9y7tw5nL1fqNPpCA4OJjw8\nnPDwcHQ6HSaTiatXr1JeXm5bvWosCVI/s29O3NBrUVlZyfz587n//vv58ssv+c9//kNKSgrr16+n\nR48eJCYm8vbbb3Pu3Dk3jV4IIWqSPlNCCK/mzKpAbGwsxcXFhIaGsnXrVgwGA0eOHHHD6IQ30Gg0\n9OzZk3nz5vHUU09x6tQpMjMzmT59OhqNhuTkZJKTk+nUqZNT309arZbg4GCCg4NtZ6xMJhPl5eW2\nrYCurFhJkPqZfZBq6ByMyWTikUceYWZuFSQAABgWSURBVNKkSUyePBmAm266iUceeYRHHnmEK1eu\nkJubS0ZGBoqiMHPmTHd8CUIIUYNs8xNCeLXCwkIWLVpk2+b30ksvodVqrytCYS8qKor9+/fTvn17\ndw1TeCFFUTh79iyZmZlkZ2djNptJTEzEYDDQpUsXl7fvqcFKbUarbgVs1apVg01oJUi5FqSqqqqY\nNm0aSUlJtlAshBDeSMKUEMKrmc1m+vbty/bt24mMjGTw4MHXFaA4c+aMbdVh7969TJgwgR9++MFz\ngxZeR1EUzp8/T3Z2NllZWZSVlZGYmEhKSgo9evRoVLBSz1jVFawkSP3MlSBVXV3NzJkzGTVqFGlp\naRKkhBBeTc5MCSG8WlBQECtWrGDMmDHceuutTJw4kZiYGFauXMnKlSsBMBqN9O/fnwEDBjB37lzW\nr1/v4VELb6PRaOjQoQMzZ84kJyeHrKwsOnXqxIIFCxg7diyvvfYax44dc/pclFarpXXr1oSFhdGu\nXTtatWpFdXU1V65coaysjIqKioDvI6WyWq1OBymz2czjjz/O8OHDfT5Ipaenc9ttt6HT6fj888/r\nfFxeXh7R0dH06dOHJUuWuHGEQojmICtTQgghAtrly5fZsmULmZmZnDlzhvj4eAwGA3369HF5Mq8o\nCiaTCZPJBFy7GaCuWmm1gXf/0mq1UlpaajuDVh+LxcITTzxBbGwsc+fO9ekgBXDo0CG0Wi1paWm8\n+uqrxMbGXvcYZ1o/CCG8mxSgEEIIEdAiIiKYMmUKU6ZMobS0lNzcXBYvXkxxcTGjRo3CYDAQExPj\n1OTeYrFQVVVFaGgoQUFBtq2AlZWV6HQ621bAQAhW6oqUs0HqySefpH///n4RpACn+iPt3buXW265\nhV69egEwadIkNm7cKGFKCB8iYUoIIYT4/8LDw5kwYQITJkygvLycvLw8XnvtNb777jtGjBhBamoq\n/fr1qzUM7dmzh/DwcG699Vbb1j41PCmKYgtWJpMJrVbr18FKDVKtW7duMEhZrVbmzZtH7969+cMf\n/uAXQcpZtbV+KCoq8uCIhBCukjAlhBBC1CI0NJTx48czfvx4TCYT+fn5vPHGG3z77bcMGzYMvV7P\nwIED0Wq1fPzxx0ydOpV//OMftZ6R0mg0DQaroKAgdDqdB77S5uVqkJo/fz6RkZEsXLjQ54JUQkIC\nJSUl1/374sWLSU5ObvDjfe3rFUJcT8KUEEII0YDg4GBbv6qqqio++ugj3n33XebNm8ett95KTk4O\nb731FvHx8Q0+l2OwslgsVFdXU1ZWVuN9vhis1CDVqlUrp4LUn/70JyIiIli0aJFPBott27Y16eO7\ndetGcXGx7e3i4mK6d+/e1GEJIdxIClAIIYQQjbRjxw7Gjx9PYmIiR48eZfDgwej1eoYMGeJyGLIP\nVtXV1TWClVar9fqwYR+kQkJCGnzs888/j6IovPLKK3651VEVFxfH0qVL+eUvf3nd+5xp/SCE8G7+\n+9tLCCGEaEEFBQVMnDiRzMxM1q5dS2FhIRMmTGDz5s2MHDmSuXPnUlBQQHV1tVPPp9FoCAoKok2b\nNrRt25Y2bdqgKAplZWWUlpZSWVmJxWJxuny7O7myIqUoCosXL8ZkMvl1kMrKyqJHjx4UFhYybtw4\nxo4dC8CPP/7IuHHjgLpbPwghfIesTAkhhBAuKigoYMKECWzYsIG4uLjr3m+1WiksLMRoNLJr1y76\n9++PwWBg2LBhDfZacqSuWKnnrBRFqbEV0NMrVoqiUFpaagtS9Y1HXYk6e/Ysf/3rX/02SAkhAoeE\nKSGEaGHTp08nJyeHTp06cfDgwVofM2fOHLZu3UpoaCirV69m4MCBbh6lcNaePXtITU3lgw8+YMSI\nEQ0+3mq1sm/fPjIyMvjoo4/o27cvBoOBuLi4BrfDOVIUBavVatsK6Olgpa6c6XQ6QkJCGgxSf/nL\nX/jPf/7D3//+dwlSQgi/IGFKCCFa2K5duwgPD+ehhx6qNUzl5uayYsUKcnNzKSoq4sknn6SwsNAD\nIxXOOHv2LN999x1Dhw51+WOtVisHDhwgPT2dHTt20LNnTwwGA/Hx8YSGhrr8fPZnrNwdrFwNUsuX\nL+fQoUO8/fbbPllcQwghaiNhSggh3OCHH34gOTm51jD1+OOPExcXx8SJE4FrzT537txJ586d3T1M\n4UaKovD1119jNBrJz88nMjISg8HA6NGjCQ8Pd/n51GBlNpuxWq0EBQXZSq43d7ByNUitXLmSzz//\nnNWrVxMUJIWEhRD+Q36jCSGEh9XWuPPkyZMSpvycRqOhX79+9OvXj+eee44jR45gNBoZP348HTp0\nQK/XM3bsWNq1a+fU8+l0OtuKj7oV0GQyUVFR0azBytUg9fbbb/PZZ5+xZs0aCVJCCL8jG5aFEMIL\nOG4S8HRRAeFeGo2Gvn37snDhQnbt2sWrr77K2bNnmThxIhMmTOD999/n4sWLTj+fVqslODiY8PBw\nwsPD0el0mEwmrly5Qnl5uW1boKvUIKXVap0KUu+99x4ff/wx7733ngQpIYRfkjAlhBAe5ti48+TJ\nk3Tr1s2DIxKepNFouPnmm1mwYAEFBQX89a9/pbS0lKlTp3Lvvffy7rvvcu7cOafDkH2watu27XXB\nqqqqyqnnsg9Sbdq0aTBIrV27lvz8fNauXUurVq2c/vqFEMKXSJgSQggPS0lJ4b333gOgsLCQG264\nQbb4CeBasOrZsyfz5s1jx44drFq1CrPZzPTp0zEYDKxatYozZ840OlgFBQVRXV3NlStXKCsrqzNY\nKYpCeXm5U0EKID09nU2bNrF+/XqXS8ELIYQvkQIUQgjRwiZPnszOnTs5d+4cnTt35vnnn7c1ck1L\nSwPgt7/9LXl5eYSFhfHOO+8QGxvrySELL6coCmfPniUzM5Ps7GzMZjOJiYno9Xq6du3q8jZRRVFs\nVQHNZvN1Z6zKy8vRaDROBSm1iXFGRgZt2rRpypcphBBeT8KUEEII4cMUReH8+fNkZ2eTlZVFWVkZ\niYmJpKSk0KNHjyYHK41Gg0ajITQ0tMGS5ps3b+Yf//gHWVlZjSr1LoQQvkbClBBCCOFHLl68yMaN\nG8nKyuLChQvcc8896PV6oqKiXApW6hkpRVHQarWYzWZ0Oh2tWrVCUZTrGg7n5uby5ptvkp2d3ajS\n7kII4YskTAkhhBB+6vLly2zZsoXMzExKSkpISEjAYDDQp0+fBgtIVFRUoCgKoaGhaDQaFEXBbDZT\nXV3NxIkTuXr1Knq9ntTUVI4ePcpf/vIXNm7c6HQpdyGE8AcSpoQQQogAUFpaSm5uLkajkeLiYkaN\nGoXBYCAmJqZGsKquriYtLY2pU6cSFxdXa+gymUxs376drKwstm7dilarZfbs2UydOpWbb77ZnV+W\nEEJ4lIQpIYQQIsCUl5eTl5dHRkYG3333HSNGjCA1NZXo6Ggee+wxzpw5Q0ZGRoPnnj7++GMWL17M\n3Llzyc/PJysri8jISO677z7uvfdeoqOj3fQVCSGEZ0iYEkIIIQKYyWQiPz+f9PR0du/ezY033siS\nJUv41a9+hVZbdweVTz75hOeee46NGzfSoUMHACwWC7t37yYjI4OMjAxuvPFGFi1axH333eeuL0cI\nIdxKwpQQQggR4KxWK2lpaRw6dIjf//73bN68mS+//JKhQ4ei1+sZNGhQjUp+RUVFLFy4kOzsbDp1\n6lTncxYVFdGmTRsGDBjgri9FCCHcSsKUEEIIEcAUReGJJ57g4MGDbN26lbZt2wJgNpv5+OOPSU9P\nZ9++fQwePBi9Xk9wcDBPP/00WVlZdOnSxcOjF0IIz5IwJYQQQgQoRVGYM2cO+/bt41//+ledlfjU\n7Xvp6els2rSJwsJCIiMj3TxaIYTwPnVvhhZCCCHsTJ8+nc6dO9O/f/9a319QUEBERAQDBw5k4MCB\nvPDCC24eoXDVP//5T4qKisjLy6u3pLlOp2P48OGsWLGCEydO+HyQSk9P57bbbkOn0/H555/X+bhe\nvXrxi1/8goEDBzJ48GA3jlAI4StkZUoIIYRTdu3aRXh4OA899BAHDx687v0FBQUsW7aMTZs2eWB0\nojHMZjPl5eUB1xvq0KFDaLVa0tLSePXVV4mNja31cVFRUezfv5/27du7eYRCCF8R5OkBCCGE8A13\n3303P/zwQ72PkftzviUoKCjgghTgUsl2+Z4WQtRHtvkJIZx2/PhxrFYrFovF00MRXkij0fDJJ59w\n++23k5iYyDfffOPpIQnRJBqNhvj4eO644w7eeustTw9HCOGFZGVKCOG0l156iYiICJYsWcLp06fp\n0KEDrVq18vSwhJeIjY2luLiY0NBQtm7disFg4MiRI54elghQCQkJlJSUXPfvixcvJjk52ann2LNn\nD127duWnn34iISGB6Oho7r777uYeqhDCh8nKlBDCaXq9HkVRyM/PZ9q0aSxevLjG+2U7TGBr27Yt\noaGhAIwdO5bq6mouXLjg4VGJQLVt2zYOHjx43f+cDVIAXbt2BaBjx46kpqayd+/elhquEMJHSZgS\nQjjt7rvvZuvWrbz66qtMnz6d+fPn295nsVjQaDTs37+fqqoq4OdwJSErMJw5c8Z2rffu3YuiKHJw\nX3i9un4/lZeXc/XqVQDKysrIz8+vs5KlECJwSZgSQjjlxIkTvPXWW3z99dcMGDCACRMmEBISYnu/\nTqfDarXy+uuvk52djdVqRaPRYDKZ0Gg0tsfJmSvfNXnyZIYOHcrhw4fp0aMH//jHP1i5ciUrV64E\nwGg00r9/fwYMGMDcuXNZv369h0csRO2ysrLo0aMHhYWFjBs3jrFjxwLw448/Mm7cOABKSkq4++67\nGTBgAHfeeSdJSUmMHj3ak8MWQnghKY0uhGjQv//9b+bMmcP999/PiRMn6Nq1K/PmzcNsNhMUdO3o\npdVqRavVsnLlSoqLi3nhhRf48ccfeeqpp0hLS+OOO+6gurqam2666brn/+6777jlllvc/WUJIYQQ\nQjSJrEwJIRoUHBzM5MmTmT17Nk899RQffPABFy5csAUp+HmrzCeffGLb2vX666/TqlUrhg8fztdf\nf82oUaOIj4/n3XfftX3cd999x/Dhw7ly5UqN5xFCCCGE8HYSpoQQDYqJieE3v/kNAGFhYcTHx3Pu\n3Lkaj9HpdAB07tyZ6Oho/va3v3Hx4kV+//vfo9PpuPnmm/n888/5v//7Pz7//HNOnz4NXGv0eued\nd9p63dhvCZRgJYQQQghvJtv8hBANUrfw1fbviqKg0+lQFAWNRsO6dev44IMPOHv2LH/729+4/fbb\n2bJlC6tXr+b7779n6NChbN68mfXr1zN06FBSUlKYNGkSer2eXbt28f/au//Qqqs/juPPm1uT60aU\nhKPNyJi5Ddp2veFCKPt1i7Rs/qhFjBUYWw637A/xnwz9o4WlDEGwUGpJoEEEC7mu35N+qWVjVvZj\npWP3TtqCmHVbkK77/SO833Qz6WK723w+/rvnc+7lfeH+sdfO+5xz0003EQwGzwhVkiRJ45ErU5LO\n6+9BKh6P88knn6TGT69Inf6/zLfffktbWxtLliyhvLycQ4cOsXPnTu6//346OzspKiri999/Z/78\n+cRiMY4ePcqiRYvYt28f27dvJx6PEwgE6OjoGHGsdjKZZHh42BUrSZI0LhimJP0rOTk5vPDCC1RW\nVrJq1Sref/994K9g9eeff7J+/Xq+/PJL6urqACgoKCAYDJKXlwdAV1cXN954IwDRaJSioiIuu+wy\nvvnmG2bPns2cOXMAWLduXeqzh4aGOHr0KIFAgClTpow4HVCSJCkTss4/RZL+78orr6S1tZXh4WEO\nHz7M888/z549e9i8eXMq5JSWlqbm5+fnM2fOHNauXUtHRwc7d+5kz549ALz11lssWbKEEydO0Nvb\nSzgcBuCDDz7gqquuIhwOc+zYMbZv385nn33G0NAQjzzyCI8++mjq80+vmg0PD6dWySRJksaCe6Yk\nXTCn902dSywWY8eOHWzYsIF4PE44HKarq4uhoSEaGhrYtm0bs2bN4qmnniI7O5sHHniATZs28cMP\nP/Dee+9x4MABXn/9dTZu3Mivv/5KR0cHM2bMYN68eWP4LSVJkv7iypSkC2a0IHV6n1NWVhYzZ85k\nw4YNJJNJpk2bRnNzM/n5+fT19fHTTz/xyy+/MDg4yK5du9i0aRMDAwP8/PPP5OXlMW/ePHJycggE\nAnzxxRdEo1E+/fRT+vv7ycnJYd26dSxYsCAD31oTTSwWo7a2loGBAQKBAHV1dTQ1NY2Y19TUxN69\newkGg7S2thIKhTJQrSRpPDNMSfpPBQKBMy72DQQCBAIBLr/8clasWEEymWT69OnU1tbyxBNPkJWV\nxSWXXEIoFKK/v59jx47x+eefA/Dmm2/S3d1NaWkp9fX11NTU0NDQwOHDh1N7ss63OiZlZ2fT0tJC\nRUUFiUSCcDhMJBKhpKQkNScajfL999/T3d3NgQMHWLlyJfv3789g1ZKk8cg2P0kZca7j1uPxOL29\nvVx//fX89ttvPP7449TX13PbbbedMe+dd95h9+7d3HLLLdTU1IxV2ZqEqqqqaGxs5Pbbb0+NPfbY\nY9x6661UV1cDUFxczL59+5gxY0amypQkjUOe5icpI/4epJLJJKdOnQKgsLCQ+fPnk5eXR35+PkuX\nLmX9+vUUFxfz7LPP0tfXRyKR4I477mDNmjW8/PLL7NixI1NfQxNcT08PnZ2dVFZWnjHe19fHzJkz\nU68LCwuJx+NjXZ4kaZyzzU9Sxv29FfDsNr3q6mqqq6vp7e1lcHAw1R44depU1q5dSzKZZHBwcNT3\nSv8kkUiwfPlytmzZQm5u7ojnZzdu+NuSJJ3NlSlJ48rZf7CeOnWKZDLJ1VdfTVlZGcFgkM2bNxMK\nhWhsbGTx4sWsXLly1PdK53Ly5EmWLVtGTU0NVVVVI54XFBQQi8VSr+PxOAUFBWNZoiRpAnDPlKQJ\nzdUo/VvJZJKHH36Y6dOn09LSMuqcaDTK1q1biUaj7N+/n9WrV3sAhSRpBMOUpAnn9HHrU6ZMMUjp\nX/vwww+5+eabKSsrS/1+mpub6e3tBaC+vh6AVatW0d7ezrRp03jppZeYO3duxmqWJI1PhilJkiRJ\nSoN7piRJ0riyZs0aSkpKKC8vZ+nSpZw4cWLUee3t7RQXFzN79mw2btw4xlVKkmFKkiSNM3feeSdf\nffUVXV1dXHfddTzzzDMj5gwPD6daMY8cOcKuXbv4+uuvM1CtpIuZYUqSJI0rkUgkdRddZWXlqHd8\nHTx4kKKiIq655hqys7N58MEHaWtrG+tSJV3kDFOSJGncevHFF1m4cOGI8dEuVu7r6xvL0iTJS3sl\nSdLYi0Qi/PjjjyPGm5ubuffeewF4+umnufTSS3nooYdGzPMkT0njgWFKkiSNubfffvsfn7e2thKN\nRnn33XdHfX72xcqxWIzCwsILWqMknY9tfpIkaVxpb2/nueeeo62tjalTp44654YbbqC7u5uenh7+\n+OMPXn31VRYvXjzGlUq62BmmJEnSuNLY2EgikSASiRAKhWhoaADg+PHjLFq0CICsrCy2bt3KXXfd\nRWlpKdXV1ZSUlGSybEkXIS/tlSRpgorFYtTW1jIwMEAgEKCuro6mpqYz5nR0dHDfffdx7bXXArBs\n2TKefPLJTJQrSZOOe6YkSZqgsrOzaWlpoaKigkQiQTgcJhKJjFihWbBgAW+88UaGqpSkycs2P0mS\nJqj8/HwqKioAyM3NpaSkhOPHj4+YZxOKJP03DFOSJE0CPT09dHZ2UllZecZ4IBDg448/pry8nIUL\nF3LkyJEMVShJk49tfpIkTXCJRILly5ezZcsWcnNzz3g2d+5cYrEYwWCQvXv3UlVVxXfffZehSiVp\ncvEACkmSJrCTJ09yzz33cPfdd7N69erzzp81axaHDh3iiiuuGIPqJGlys81PkqQJKplMsmLFCkpL\nS88ZpPr7+1N7pg4ePEgymTRISdIFYpufJEkT1EcffcQrr7xCWVkZoVAIgObmZnp7ewGor6/ntdde\nY9u2bWRlZREMBtm9e3cmS5akScU2P0mSJElKg21+kiRJkpQGw5QkSZIkpcEwJUmSJElpMExJkiRJ\nUhoMU5IkSZKUBsOUJEmSJKXBMCVJkiRJaTBMSZIkSVIaDFOSJEmSlAbDlCRJkiSlwTAlSZIkSWkw\nTEmSJElSGgxTkiRJkpQGw5QkSZIkpcEwJUmSJElpMExJkiRJUhr+Bxfui6UxPFUVAAAAAElFTkSu\nQmCC\n", - "text": [ - "" - ] - } - ], - "prompt_number": 230 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Calculate the Covariance matrix" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$ \\Sigma_i = \\Bigg[ \n", - "\\begin{array}{cc}\n", - "\\sigma_{11}^2 & \\sigma_{12}^2 & \\sigma_{13}^2\\\\\n", - "\\sigma_{21}^2 & \\sigma_{22}^2 & \\sigma_{23}^2\\\\\n", - "\\sigma_{31}^2 & \\sigma_{32}^2 & \\sigma_{33}^2\\\\\n", - "\\end{array} \\Bigg]$" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "cov_mat = np.cov([samples[:,0],samples[:,1],samples[:,2]])\n", - "print('Covariance Matrix:\\n', cov_mat)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Covariance Matrix:\n", - " [[ 1.25425468 0.1824987 0.18482315]\n", - " [ 0.1824987 0.97253923 0.07018075]\n", - " [ 0.18482315 0.07018075 0.91375323]]\n" - ] - } - ], - "prompt_number": 231 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##Calculating Eigenvectors and Eigenvalues of the Covariance matrix" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "eig_val, eig_vec = np.linalg.eig(cov_mat)\n", - "for i in range(len(eig_val)):\n", - " eigv = eig_vec[:,i].reshape(1,3).T\n", - " print('Eigenvector {}: \\n{}'.format(i+1, eigv))\n", - " print('Eigenvalue {}: {}'.format(i+1, eig_val[i]))\n", - " print(40 * '-')\n", - "\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Eigenvector 1: \n", - "[[-0.84190486]\n", - " [-0.39978877]\n", - " [-0.36244329]]\n", - "Eigenvalue 1: 1.4204834860846778\n", - "----------------------------------------\n", - "Eigenvector 2: \n", - "[[-0.44565232]\n", - " [ 0.13637858]\n", - " [ 0.88475697]]\n", - "Eigenvalue 2: 0.8314755900749454\n", - "----------------------------------------\n", - "Eigenvector 3: \n", - "[[ 0.30428639]\n", - " [-0.90640489]\n", - " [ 0.29298458]]\n", - "Eigenvalue 3: 0.888588059693973\n", - "----------------------------------------\n" - ] - } - ], - "prompt_number": 232 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Checking the Eigenvector and Eigenvalue calculation\n", - "\n", - "We expect $ \\Sigma\\vec{v} = \\lambda\\vec{v} $ \n", - "where \n", - "$ \\Sigma = Covariance \\; matrix, \\; \\vec{v} = \\; Eigenvector, \\; \\lambda = \\; Eigenvalue$" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "for i in range(len(eig_val)):\n", - " eigv = eig_vec[:,i].reshape(1,3).T\n", - " print('{}\\n = \\n{}'.format(cov_mat.dot(eigv), eig_val[i] * eigv))\n", - " np.testing.assert_array_almost_equal(cov_mat.dot(eigv), eig_val[i] * eigv, \n", - " decimal=6, err_msg='', verbose=True)\n", - " print(40 * '-')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[[-1.19591196]\n", - " [-0.56789334]\n", - " [-0.51484471]]\n", - " = \n", - "[[-1.19591196]\n", - " [-0.56789334]\n", - " [-0.51484471]]\n", - "----------------------------------------\n", - "[[-0.37054903]\n", - " [ 0.11339546]\n", - " [ 0.73565382]]\n", - " = \n", - "[[-0.37054903]\n", - " [ 0.11339546]\n", - " [ 0.73565382]]\n", - "----------------------------------------\n", - "[[ 0.27038526]\n", - " [-0.80542056]\n", - " [ 0.2603426 ]]\n", - " = \n", - "[[ 0.27038526]\n", - " [-0.80542056]\n", - " [ 0.2603426 ]]\n", - "----------------------------------------\n" - ] - } - ], - "prompt_number": 233 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Visualizing the Eigenvectors" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Calculating the mean for every dimension to center the eigenvectors" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "mean_x = np.mean(samples[:,0])\n", - "mean_y = np.mean(samples[:,1])\n", - "mean_z = np.mean(samples[:,2])\n", - "\n", - "class Arrow3D(FancyArrowPatch):\n", - " def __init__(self, xs, ys, zs, *args, **kwargs):\n", - " FancyArrowPatch.__init__(self, (0,0), (0,0), *args, **kwargs)\n", - " self._verts3d = xs, ys, zs\n", - "\n", - " def draw(self, renderer):\n", - " xs3d, ys3d, zs3d = self._verts3d\n", - " xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, renderer.M)\n", - " self.set_positions((xs[0],ys[0]),(xs[1],ys[1]))\n", - " FancyArrowPatch.draw(self, renderer)\n", - "\n", - "fig = plt.figure(figsize=(15,15))\n", - "ax = fig.add_subplot(111, projection='3d')\n", - "\n", - "ax.plot(samples[:,0], samples[:,1], samples[:,2], 'o', markersize=10, color='green', alpha=0.2)\n", - "ax.plot([mean_x], [mean_y], [mean_z], 'o', markersize=10, color='red', alpha=0.5)\n", - "for v in eig_vec:\n", - " #ax.plot([mean_x, v[0]], [mean_y, v[1]], [mean_z, v[2]], color='red', alpha=0.8, lw=3)\n", - " a = Arrow3D([mean_x, v[0]], [mean_y, v[1]], [mean_z, v[2]], mutation_scale=20, lw=3, arrowstyle=\"-|>\", color=\"r\")\n", - " ax.add_artist(a)\n", - "ax.set_xlabel('x_values')\n", - "ax.set_ylabel('y_values')\n", - "ax.set_zlabel('z_values')\n", - "\n", - "plt.title('Eigenvectors')\n", - "\n", - "plt.draw()\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAANTCAYAAABLuEecAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X2wJGdVP/Dv9Ly/3JnduEkWkk1iTMgrkBUlKMlvCYES\ngkBC0AoQk0KkAhUSKa1SXkRLS6EULAqMJQQRBAwYrFIChCJWCrSEhAgGpdCUiZpkdxOWXHN3752e\n6Z5++/1xfZq+fXtmume6n3665/upsn4/dm92umf6Tj+nz3nOqXie54GIiIiIiIgS0fI+ACIiIiIi\noiJiMEVERERERLQABlNEREREREQLYDBFRERERES0AAZTREREREREC2AwRUREREREtAAGU0RERERE\nRAtgMEVERERERLQABlNEREREREQLYDBFRERERES0AAZTREREREREC2AwRUREREREtAAGU0RERERE\nRAtgMEVERERERLQABlNEREREREQLYDBFRERERES0AAZTREREREREC2AwRUREREREtAAGU0RERERE\nRAtgMEVERERERLQABlNEREREREQLYDBFRERERES0AAZTREREREREC2AwRUREREREtAAGU0RERERE\nRAtgMEVERERERLQABlNEREREREQLYDBFRERERES0AAZTREREREREC2AwRUREREREtAAGU0RERERE\nRAtgMEVERERERLQABlNEREREREQLYDBFRERERES0AAZTREREREREC2AwRUREREREtAAGU0RERERE\nRAtgMEVERERERLQABlNEREREREQLYDBFRERERES0AAZTREREREREC2AwRUREREREtAAGU0RERERE\nRAtgMEVERERERLQABlNEREREREQLYDBFRERERES0AAZTREREREREC2AwRUREREREtAAGU0RERERE\nRAtgMEVERERERLQABlNEREREREQLYDBFRERERES0AAZTREREREREC2AwRUREREREtAAGU0RERERE\nRAtgMEVERERERLQABlNEREREREQLYDBFRERERES0AAZTREQ001/91V/h537u5/I+DCIiIuUwmCIi\nIgDAWWedhU6ng7W1Nf//br31VrzhDW/AV7/61bwPbyGf/OQncfnll+d9GEREVFK1vA+AiGhVua6L\n0WgE13XRaDRQq9VQrVZRqVRyOZ5KpYIvfelLePGLX5zL66vIcRxUq9W8D4OIiBTFzBQRkWSe58G2\nbZimCc/z4LouDMPAcDjEiRMnsLW1BcMwYNs2PM/L+3B3ZXfuuecenHfeedizZw9uvvlmHDp0CB//\n+Mf9v/+Lv/gLXHjhhTjppJPwspe9DI8//rj/d5qm4aMf/Sie9axnYe/evXjb294GADBNE3v27MH3\nv/99/2efeuopdDodrK+vAwC+9KUv4ZJLLsHevXvxwhe+EN/73vf8nz18+DBe85rX4JRTTsG+fftw\nyy234KGHHsJb3vIW3HfffVhbW8NJJ50EADhx4gRuuOEGnHLKKTjrrLPwB3/wB/77/MlPfhIvfOEL\n8Wu/9mvYt28ffvd3fxePPPIIDh06hD179uDkk0/Gddddl8G7TERERcRgiohIIs/zMJlMYFkWKpUK\nKpUKNE1DtVpFtVqFpmk7gqv19XVsbm5KC67m/fvr6+v4hV/4BfzhH/4hnn76aZx33nm47777/Gza\nF77wBbzvfe/D3/7t32J9fR2XX345Xve61+34N7785S/j29/+Nv7t3/4Nd955J7761a+i2Wzi2muv\nxWc/+1n/5+6880686EUvwr59+/Dggw/iTW96Ez72sY/h6aefxk033YRXvepVsCwLjuPg53/+5/Hj\nP/7jeOyxx3D06FG87nWvw/nnn4+PfvSj+Jmf+RlsbW3h6aefBgDccsst2Nrawv/8z//gH/7hH/Cp\nT30Kn/jEJ/zXfeCBB/ATP/ET+OEPf4h3vetdeM973oOXvexlOH78OI4ePYpbb701rbebiIgKjsEU\nEZEktm3DMAy4rusHUmHh4Mq2bWmZK8/zcPXVV2Pv3r3+//35n//5juO8++67cfHFF+Pqq6+Gpmm4\n9dZbsX//fv/vP/KRj+Cd73wnzjvvPGiahne+85347ne/i8OHD/s/8453vAP9fh8HDhzAFVdcge9+\n97sAgNe//vX43Oc+5//cHXfcgde//vUAgNtvvx033XQTfvqnfxqVSgU33HADms0m7rvvPjzwwAN4\n8skn8f73vx/tdhvNZhM/+7M/659TkOM4+Ou//mu8733vQ7fbxZlnnolf//Vfx6c//Wn/Z575zGfi\n5ptvhqZpaLVaaDQaePTRR3H06FE0Gg3/3yYiImIwRUSUMc/zYFkWtra2MB6PoWmaH6DE2R8Vlbka\nj8epB1eVSgVf+MIXsLGx4f/fr/zKr+z4N5944gmcfvrpO/674P9+7LHH8Ku/+qt+MPZjP/ZjAICj\nR4/6PxMMvjqdDobDIQDgRS96EUajER544AE8+uij+Nd//Vdcc801/r/7x3/8xzsCvSNHjuDJJ5/E\n4cOHceaZZ0LT5t/S1tfXYVkWzjzzTP/PzjjjjB3Hd+DAgR3/zR/90R/B8zw8//nPx8UXX7wji0VE\nRKuNDSiIiDLkui4sy/KzUctmkoKlgQD8PVfj8dgPzKrVKur1eiYNLZ75zGfii1/8ov+/Pc/DkSNH\n/P99xhln4D3vec+u0r44qtUqfvEXfxGf/exnccopp+CVr3wlut2u/++++93vxrve9a5d/919992H\nxx9/PLJZRPjc9+3bh3q9jkcffRQXXHABAODxxx/fERCG/5tTTz0Vt99+OwDgG9/4Bl7ykpfg0KFD\nOPvssxOfIxERlQszU0REGQg2mZhV1rcsEViJwGnZzNW8v7/qqqvwve99D1/4whdg2zb+9E//FD/4\nwQ/8v3/LW96C9773vfj3f/93ANvNHj7/+c/Hfj1R6hcs8QOAN7/5zfjIRz6CBx54AJ7nQdd1fPnL\nX8ZwOMSll16KZzzjGXjHO96B0WgEwzDwzW9+E8B2IHTkyBFYlgXgRwHbu9/9bgyHQzz22GP44Ac/\niOuvv37qMX7+85/3A8Y9e/bsCGaJiGi18W5ARJQyEUiJJhPBsr5F/7244gRXw+FwanD1yle+csec\nqde85jU7AsF9+/bh85//PH7jN34D+/btw3/8x3/gp37qp9BsNgEAV199NX7zN38T1113HQaDAZ79\n7GfvmFEVfh/CQebzn/989Ho9PPnkk3j5y1/u//nznvc8fOxjH8Pb3vY2nHTSSTj33HPxqU99CsB2\nGeQXv/hFPPLIIzjjjDNw4MAB3HnnnQCAK6+8EhdddBH279+PU045BQDwJ3/yJ+h2uzj77LNx+eWX\n4w1veAPe+MY3Rh4PAHz729/GC17wAqytreHVr341PvzhD+Oss86K/ZkQEVF5VTwV+u4SEZWE67qY\nTCbwPG/XwtwwDDiO45euua4LXdfhed6OPVFBuq6j3W6nlgnxPM8vDRTHVqvV/P9LWhboui4OHDiA\nO+64A4cOHUrlGImIiIqCe6aIiFLgeR4cx9mRjZrFtm0Mh0M/eBElgZVKxQ+sshgWG7XnynEc2Lbt\n/0ytVvP3XEVl1e655x48//nPR7vdxvvf/34AwAte8ILUj5WIiEh1DKaIiJYkZkfF2RvleR7G4zEM\nw0C324WmabBtG5qm+RkjEdyYpgkAmEwmmTSTAHaXtQWDK5FdCwdX9913H17/+tdjMpngoosuwt/9\n3d/5ZX5ERESrhGV+RERLmFXWFyaCqGq1im6368+REsFUmGi0UK/X/SAr2CY9i+Aq6hjE/wHwM2ez\nMldERESrgpkpIqIFiCYTtm3HKuuzLAuGYaBSqWBtbS1WACKCs3q9vitzJf69rIOrWZkr8ffBPVcM\nroiIaJUwmCIiSmiRsr7JZIJms7mj8UNSwf1U4t9WIbgSnQvF3zO4IiKiVcFgiogopmCTCSC6jXaQ\n4zgYDofQNA39ft8f3psW1YMry7JQq9XQaDQYXBERUSkxmCIiiiFc1jcvIDBNE6PRCO12G81mU0oA\nERVcOY4Dx3H8TJrM4Eo00BCBlfh7Zq6IiKgsGEwREc3huq6fVYpT1qfrOmzbxtraGmq1H33NViqV\nXUNy4wQSi/YJCgYu4t/JI7gKtnj3PC8yuKrX6/6cLQZXRERUFAymiIimCJf1xZ0dVavVMBgMUgkK\n0gwskgRXWWWN4gRXolMggysiIlIdgykioghike84TqxslGmaGI/H6HQ6hZm5NCu4Mk0TruvuyFrJ\nCq4mk4k/wJjBFRERqYzBFBFRSJLZUa7rQtd1uK6Lfr+/IzAoGtWDK2A7OyiCq1qtFmv/GhERUVYY\nTBER/Z9FZkeJobq9Xq90i3rVg6tg5krsuWJwRUREMjGYIiJC8tlRhmHAMAx0u100Go1Er1NUSYMr\nz/NSP99gcCX+7clkgslkAmA7cxVsaMHgioiIssRgiohWnm3b2Nra8hfh88r6hsMhAGAwGMzNXgWV\nbVEfDq5c14Xruv6cqWCAmkXmSvxbSYKrJJ8XERHRPAymiGhlBcv6HMeZ2xp8MplA13W0Wi20Wq3S\nBUfL0jTND14AYDQaoVqt+q3lPc/LtCyQwRUREcnGYIqIVlLS2VGj0QiWZaHX66Fer0s80uISJXnB\nzJUoCwwGV6JTX9oleQyuiIgoawymiGilJJ0d5TgOhsMhNE1Dv9/PZbFd5H1WQSJzJYLRYHAlgpvw\nAGEGV0REpDIGU0S0MpLMjgIA0zQxGo3QbrfRbDZTWdgnDYzKXEqoYnAV7BZoWRZardauOVdEREQC\ngykiWgnzZkdVKhU/0PE8D7quw7ZtrK2t+WVqyypzYJSGYHAlAptZwVXagU3wuhCBnRjIHDXnisEV\nERExmCKiUks6O8q2bQyHQ9TrdQwGg8wDIAZY0URgk3dwFfw3xTEwuCIiIoHBFBGVVtLZUZZlYTwe\no9PpoNlsSjxSmmdWcGXbtj/EV1bmCogOrqrVqr/fqlarMVgmIio5BlNEVErBjnHzAikxGwkA+v2+\nv4eG1BUVXInSvDyDK9d1YRiG/2cMroiIyo3BFBGVStKyPsuy/G59YtGb9fFR+oKBE4CZwVWwFXva\nxxA3uMrqGIiISC4GU0RUGklnR43HY5imiV6vB8uyuD+qRGYFV5ZlwTAMaJq2q1tg2sfA4IqIqNwY\nTBFR4S0yO0rXdQDAYDCApmn+f0vllDS4yiKoYXBFRFQ+DKaIqNCSzo6aTCbQdR2tVgutVouL1RU1\nL7hyHAfA9qwxZq6IiGgaBlNEVFjzZkcFeZ6H0WgEy7Kmzo5ScT9TcP4VZSccXDmOg/F4jEqlkntZ\noDgOgMEVEZFqGEwRUeEkbTLhOA6GwyGq1Sr6/X7kz8sKWhgYFYMIbBqNBoCdmSvRbl9WcCWuVwZX\nRETqYTBFRIWSdHaUaZr+7KhGo5HrYpML3eIKZq4ajcauAcIMroiIVhODKSIqjKSzo0ajERzHUX52\nFBe8xVOpVFCr1fxyURWDK9u20Ww2GVwREWWIwRQRKS9pWZ9t2xgOh6jX6+j3+7EXkCzBo0XFCa7C\nA4SzDq4Mw0C1WvV/bwCgVqv589QYXBERLY/BFBEpLWmTCcMwYBgGut2uv98lDi4qKU2zgivTNKUE\nV8D2mIBg5koMMRZEcFWr1TI7BiKiMmMwRURKEgu/0WgE0zSxtrY2t6xvOBwCgPJlfbR68giuxAOI\n4DGEuwWK4Er8LIMrIqJkGEwRkXLCZX3zMlJidlSz2US73VZ2Acg25ySokLmaFVyJvw82tGBwRUS0\nG4MpIlJKuKwPmL6XyfM8jMdjTCYT9Ho91Ov1pV47r0AnnEGg1VOU4EocI4MrIqJtDKaISAli4WZZ\n1o5N9NMWa2J2lKZpU2dHJaFqy3Rms1ZTOLgSM66CHS3zCK5s24ZlWbuOkcEVEa0qBlNElLsks6MA\nwDRNjEYjtNttNJvNQi/ginzscTAQTIdoJCGyr3GCq7QxuCIi2o3BFBHlKk63PrEg9zwPuq7Dtm2s\nra35T+1JTVxIZ2decCVYloVarRbrIUVSUcGVZVm7givRip3BFRGVEVciRJSLuLOjxOJLzI6q1WoY\nDAaZLAyzzqIE94BxUUlpigquRqORP8QXwK4Bwln8DgW7aDK4IqJVwGCKiKRzXReWZcUq6/M8D67r\nYmtrC51OB81mU+KREhWTeDghfl/CQ4QBNYIr0SmQwRURFRWDKSKSJthkAthdJhQmnqp7nofBYMDZ\nUUQLEL9nInPled7c4CqrPVfh4GoymcA0Tf8YGVwRUdEwmCIiKaJmR81iWRZ0Xff3ezCQIkpHEYKr\n4N83m83M9n0RES2LwRQRZS5pWZ9hGDAMA91uF9Vq1Z9zk7U8Os+JhSwXiZSmJNdyVHAlGlrYtu1n\njmQHV7Zt+w1ngpkrseeKwRURqYDBFBFlZtrsqGlc18VwOAQADAYDaJoGx3FkHKq0RZlodFGpVPzz\nFYvFarXqlziFu6QRLWKR6zoYOAHINbgSTSvE78BkMvEzZ5qm7WhoweCKiPLAYIqIMpF0dtRkMoGu\n62i1Wmi1Wv7Pl3VorWVZGA6HaDabaDQaOwJPwzCgaRqq1Wopz52KJU5wJa7XYEOLtI8BwI5jAGYH\nV1kEeEREYQymiCh1cWZHCZ7nYTQawbIs9Ho9v7VzWYkyRtM00e12Ua/XMZlM/MWo+JngYlW8R1ku\nVonimhVchR8GMLgiorJjMEVEqYk7O0pwHAfD4RCapqHf7+e+2Mk6C+S6LoDtrJQoY4x6zfBi1XVd\n1Ot12LbtZ/vEQpFdzyhvWQVXSfd9AQyuiEg+BlNElIqkZX2maWI0GqHdbqPZbE79eVllflkHI6Ks\nDwB6vV6ihVzUYlV0XjNNE67r7tq/wuCK8pJmcLXodczgiohkYTBFREuzbTv27CjP8/wOXWtra6jV\nyv015HkexuMxTNNEr9eDrutL/5tiU7547xhckcpULQsUD4CCwVV4zhUR0TzlXsUQUaaSzo6ybRvD\n4RD1eh2DwaD0C/yo7oRZCAdXYqEaHJAcXqiW/b0ndc3KtAbLWEVWOovRAeHfAfE6pmn6c64YXBFR\nHAymiGghYqEet8mEaZoYj8fodDpoNpuJX0/GLKY0ywlFWV+4O6EMmqb5C0FgZ3AlayBr0bGLojzT\nMq1iNp2u61IyVwyuiGgRDKaIKBGx0NF1HZZlYW1tbebPi8WQ67ro9/s7hnLGIXP+UxrCZX0qdCcM\nBldikRgsC5QxM6iImL3LhwiuhFarFZm5yrIBS5zgqlqt+vutarUarxeiFcVgiohi8zwPlmXBcZxY\npWLBWUq9Xq/0iw1ZZX3LEJ9bMLiSPTOIKI5g1jvvPYJRwZXrujAMw/8zEVxFDd4movJiMEVEsUTN\njppWCqVidiZr04YOR0na8lm0VM+CCs0BKH0yymLzwuCKiFTCYIqIZlpkdpToWJdWdkYEbirumRKB\n42QyiRU4qr6gmhVcBUusRGkTOwVS3lQPrkzTRKPR8NuwM7giKhcGU0Q0VdLZUUmyM6pZ5FhF4Fip\nVJQYOpyFYHDVaDTYhp2Up1pwJR5AMHNFVE4MpogokshGTevWFyzz8zwPo9HIb0hR9tlRQLEDx2Uk\nWaiKTftEeZo3OsDzvMyCK3H9syyQqLzKv+IhokQWKesbDoeoVquZZWdm7c+SLWlZX9lNC65s2/YX\nrI7j7FggcpFIeZo1OiCr4CrqYVRUcDUej3cMGGZwRaQ+BlNE5HNd15/tEmd2lOM42NzcRKfTQaPR\nKPTNPk7AJgJHTdOWChxVCQyzEAyuRPOKSqXCGVeUmKwmGvOCK/EzWT4QCHbZBBhcERUJgyki2jEk\nE8DcBa4oT/E8D4PBIPHsqCJKq6wv6r8r86KoUqmgXq9HzrhicEUqSjr0msEV0WpjMEW04pLOjrJt\n2y/rE13dspZnmd8q7gdLU/Bz44wrKqKiBFciI8zgikgurgqIVljU7KhpPM+DYRgwDAPdbhfVahVb\nW1sSj1a+tMr6VtW8xRxnXFERBYOrednWrPYIRgVX4vcmGFzV63X+7hBljMEU0QpK2mTCdV0Mh0MA\nQL/fR7VaheM4Mg5VOhFYirK+druNZrOZ20JEpeYbWWNwlZ5VuWbyFpVtDQZXtm0DAAzDyLSUdVpw\nJV4fwI45VxxhQJQeBlNEK2bR2VHNZhPtdru0N2BxXjLK+rjQjScquApmADjjaja+F/KFgyvHcTAe\nj6Fpml/KGryusw6uhGBwJR4YMbgiSgeDKaIVEmz9G6esbzwewzTNyBbgMjMmMl9ra2sr07K+qPdc\nVteyolNhGCvJU4bfC/E922g0ACByn2DewZX4++CeK/7uEMXHYIpoBSw6O0rTNAwGg5XYK2SaJgCg\n2WzmWtZH8c0KrkS3SbFArdVqnHFF0oUDwlmlrMHgSjSRyKqUNSq4sm3b7+jK4IooPgZTRCWXZHYU\nsB1UjEaj3PcKyRIs6wOwEudcVsEFYLPZ3NF1bTweA2AbdlKLKvsE5wVXwHbjjWazyeCKKITBFFFJ\nhWdHxSnr03Udtm3H2itUhjI/kYGrVqsYDAY4fvx4KUqLaFvSltYMrihvqgZXtm1jPB7DdV3/75m5\nItrGYIqohBadHVWr1TAYDFbipqhKBi7Y+GIV3vc8RbW0FuWv4fIqIhWoFFwB2HEclmXtKgsUrdgZ\nXNEqYTBFVDJJZ0eZponxeIxOp4Nms5n49YoWBCTNwKUtKsu2Su3PVTGrMYB4EAFsB91sw06LSvv7\nMa/gatrer+DfM7iiVcVgiqgkRFnfiRMn0G635z5dd10Xuq7DdV1/dlQSMm+MaQUbtm1D13W/rG9a\nZz1aPeFFajBbxRlX+fA8j6WXc0wLrmzb9scHyMpczQuuRBt2BldUNgymiEogODsqOKRxGsuyoOs6\n6vU6er1e6W9q4v0ZjUbodDpoNBqR56zi+8CsVT6iMleccUWqizObLa/gajKZ+A8oGFxRmTCYIiq4\nqLK+aYtvz/NgGAYMw0C32/UXiosSr6XyTVCU9TmOk0tZH5VD0WZcMQAnYPZ1Gw6uZjWSWPZ7flZw\nBcDfyyiOlWMMqEi4qiAqqKSzo1zXxXA4BIBCzo5aZHEYbKzR7/d5c6bUFCG44vWeP9UeNqly3cbN\nXIk9VwyuSGUMpogKaNbsqKjM1GQyga7raLVaaLVahbspJT3eZRprZP1En2V75RRepAbbsIt9I+HS\nqqL9HlL5xA2uhKyCw2BwJb4fJ5OJP8JA07QdDS34+0MqYTBFVCCLzI4SA2l7vZ4/byctKgYGwbK+\npI01eHOmtHDG1fJUy+qsgmnBlSgJFA18ssxcRbVhB2YHV/z9oTwxmCIqiHBZ37QbmAhwxEBaTdPQ\n7/dX4mYjyvrq9TrL+kgpUTOuHMfZ0TVQ7Fthp0BShQiuXNeF53loNBrSywIZXJHqGEwRFcCssr4o\nolufjIG0MjJT8zJgaczLIpJF/A4Hg6s8BrFS9sqWXZtVFmgYBjzPY3BFK4fBFJHCgmV9cZpMiOwV\nACmd61RYJCw7LytMtbJFKr+8BrESxTXtezEYXDWbzV17BfMKrkRDCwZXJAODKSJFBWdHxclGiRK3\nSqWCVqu1Ei3Ag2V9aczLkrVAZcBGs8QdxMoZPSRTnGts1l7BcHCVVQv08L8ZDq4sy0Kj0UCj0djx\nO0S0qPKvtogKKGp21DThEjeRxZIljzK/4DmnMS9LpqSfjYpNPkiuWYNYp+1bIVLBrOBqPB4DyL7L\nZfjfHI/HqNfrME0zcs4Vf4coKQZTRApZZHZUuMTNtm1pi+88noanXdanAgZMlEScdtaapvl/XtTM\nVRl+J8q2Z2pZSbtcZtUCPfg7ITJXweBKZM4YXFEcDKaIFJG0rM+yLAyHQzSbzVRK3Iog7bK+KGVY\nwNFqiZpxZVkWbNuGYRgAijvjqijHWXae52USUEzrcilzhEBUWaDruruCK7HfSpQnEgkMpogUYNt2\notlR4/EYpmlOnR0lMzMl67Usy4JpmpmW9fEGSWUgFqjVahWtVoszrqgQorpcph1cifvVrO/6acGV\neDAhjiFYFsh7x2pjMEWUo7izowTHcaDrOgBgMBhE3kjK9qUu9o+VqaxvlbJfRT3Xoh53FBWe/hMl\nJSO4SnIcAoMrCmMwRZSTpLOjJpMJdF1Hq9VCq9VaiS9rMS9L3EzLEEhxfxTladaMKzFAmG3Y05NV\neZxsKuz9inPtBpu1RAVXaXz3MriiMAZTRJIFZ0cBiDU7ajQawbKsWLOjZC7Ws3otz/NgGAYMw0C3\n2/XbQpeR2PsWXgSU4ebLwFF9nHFFRTXr2p0WXIn/Lu3jYHC12hhMEUnkeR4sy4LjOLFnR+m6jmq1\nin6/X4onnPOIbn2e5/llfWITcNZkLv6DAWOr1fJvwME5QuLJKgOSfKzigmfWAjV8bdZqtUw7BaqQ\nDaHiiBtcifL6rIIaBlerh8EUkSTLzI5qNBqxv2wrlQpc103rsOdKc6EvyvoajQba7XZpbzCe52E4\nHMLzPAwGAziOA9d1UavV0Gg0IvcFjMfjHaUrZX1vysx1XQyHQ6yfWMfIGqFT72DfYB96vZ6yD0qC\nC9TwtTltxhWvzfIpYmAbFVyJwdcys67TgqvxeOz/OYOrYmMwRZQxkY2ybdvfCD6L67oYjUZwHEf5\nhgtpfeGHy/qKNIQ3KdFyt9Vq+QGj4zg7fibY6rrRaEDXddTrdb/ro+d5/k23aK2uV9VDjz6EDXMD\nqAONdgNaQ8OGu4Fj68eAJ4G9zb04/6zz8z7MueLMuGJw9SNFDELKSuy3qlQqaLfbuZW0Bvd+AQyu\nyoDBFFGGxOyoEydOoNPpzA2MgnOU+v3+wl+gRSoLE0/rgdkdCmWW32X174q5JbVaDZ1OJ9F/H54j\nxG5sxeG6LjbMDbT2tHb8uaZpaHW3/2zj+IZfQlck04KrYOAvSgIZ+FPegt/vquwXjBNcid8xBldq\nYjBFlBHR8jzOk8k0MzOyv2SXCT6Cg4dVKOvL6vXFPjDXdf39UcuIanUtrjd2Y1PPcDgEdo+D26m+\n/XP9fl9i0qLqAAAgAElEQVTKMWUlaoAwA//iK1OGbdp5JNkvKDu4EgEegys1MZgiSll4dlScsj6R\nmVG9rC9smcyZCB6nDR4ui2C2sdfrwTTNXWV9yxA3XhGAz3q6mnXDAIq2fmIdjfbsBySNdgPrJ9YL\nH0yFccYVFdWs/YIqBFdi71ez2UStVvPHhzC4ko/BFFGKps2OmlamJmZHpZmZUb0ddZyyvjDVzylK\nuIlIs9mc+rNp3viinq5yT0u+RtYIWmP2da5pGkbWKLXXVDGTkHTGlYrnkFTRvrfKbplratZ+wTyC\nq0ql4v/OiN8hQQRXfIAmB4MpohQsMjtqPB7DNM1CZ2aSBjmqlfVFSWPx43kedF2P3UQky/dh1gLA\nMAzuaZGgU+9gw92Y+b3gui469WT76Ipu3p4VYGcXy6I+cS/iMYeVIbBNW5zgKssHV8HOwOFugSK4\nuuOOO9DtdnHjjTem9rq0G4MpoiXFmR0VDDocx8FwOISmabEzM0momMUpSvCYxo3OcRxsbW2hVqtF\nNhGJ+nxkfl7BBUCz2eSeFgn2Dfbh2Poxv9lElMl4gn379kk8KvWEg6vhcIhGo+Fn/DlAmFSmSqfL\n4DpkOBxi7969qb8G7cRgimgJSWZHAYBpmhiNRmi322g2myuxEFikrC9MxQAxivh855X1qWTanhY2\ns0hPr9cDnpzzQ9b//RztILKmgPwn/1Q+MjNsWQdXcc5FlJlTthhMES0gaZMJAH5J1dramv/lmuXx\nyTBvQLDYE9ZqtdBqtUq70PE8D6PRCJZlSfl8szJrTwszA4vTNA17m3uxcTwwZ0rTth/GjCeAtT1n\nilnA2VR58p9EER4CzVOGc1BBHtfveDxGt9tN4/BphmLe8YlyJGZHhZtMTCPmrYiyvqxv7nkvHoDi\nlPVFSbpwEGWb1Wp1qc932lNG8Wd57FmY1cyCmYFkzj/rfD9Lu35iHSNrhE69g3379qHX6zGQConz\nexh3P6DIbuW1H7AsvxNlOA+V9n4tG1zFORdd15mZkoDBFFEC4gl9nLK+YDc38YWpypd4msKLHsdx\noOs6KpVKJnvCspS0nFBk3lalbDPJzb9Wq/GJdoimaej3+6Vrf56lJL9Ts/YDjsdjANwPSOqaNaMt\nOAA72O1ynjzK/AzDwKFDh2CaJiaTCV796lfjfe97366fu/XWW/GVr3wFnU4Hn/zkJ3Hw4EGpx5km\nBlNEMSwyO0oMae33+zBNU9KRyt1fFF7oZFXWp9qeqWXK+lQ7l2XMuvmPx2P/oYMoDeTilWQK7gcE\nOEB4UWX5viqaWddv8KHuZDKZWhmQR5lfq9XC1772NXQ6Hdi2jcsuuwz/9E//hMsuu8z/mbvvvhuP\nPPIIHn74YXzrW9/CW9/6Vtx///1SjzNNDKaI5pg2O2oay7Kg67o/pFX8N2W+IYmyvslkUriyvqSC\n3Rj7/T4XYAHhZhaTyWRHMwsRfHG/FeUhqtmKeEgmrs/wmIBlleV7vyy/q57nFfY7OxxcTSYT2Lbt\nr1EA4Ic//CHuueceHDp0CM961rMwGo1y2TMlsmHiHnDSSSft+Pu77rrLb9d+6aWX4vjx4zh27BhO\nPfVU6ceahmJeUUQSiButKF+KU9Y3Ho8xHA7R6XTQ7XZzq8+X3YBic3PTn6lU9EBq1ns3mUywubmJ\nRqPBfS5ziN+XarWKdruNbrfrZyvFA4fRaATTNGHbdmkWnarg+zmbyJg2Go0d16emaalfn2UJREg9\n1WoVrVYL3W4X7XYbk8kE3/nOd/Ca17wGz3rWs3D48GHceeedePjhh6V+J7iui0suuQSnnnoqrrji\nClx44YU7/v7o0aM4cOCA/79PP/10HDlyRNrxpY0rAaIIYnaUZVn+TXfWDdF1XWxtbcGyLAwGAzQa\njR1/X9bMlHiqm3VwIev9m/YZi7I+XdfR6/WUHTisMhFYBRevon28KA8V2U3HcUr5+yIbr9H4pl2f\nDP7LRaUGFGnTNA3nnXcebr/9dnz/+9/HPffcg0ajgX/+53/GFVdcgQMHDuD666/Hxz/+cfz3f/93\nptewpmn47ne/iyNHjuAf//Ef8fWvf33Xz4Rfv8ifC8v8iEKSzo5alfbfQSK4ELXa7XY770PKTBpz\nsmi3WZ0CVW1zTasjTidLTdP8ksAyX59lDkCKbNbnUqlUcPbZZ0PTNHz6059GpVLBf/3Xf+FrX/sa\n7r33XvzWb/0WOp0OHnrooUyrSQaDAV7xilfg29/+Nl70ohf5f37aaafh8OHD/v8+cuQITjvttMyO\nI2sMpoj+j7hZBrNR835eNCGYt09Iduldlq8V3DPU7XZhGEZmr5U3y7IwHA7RbDZTzUaV6YlcWuZ1\nsgLYLGCVqLaAX6SNNVHegg+FzznnHJxzzjl485vfDM/z8Nhjj2USSK2vr6NWq2HPnj0Yj8f4+7//\ne/zO7/zOjp951atehdtuuw3XXXcd7r//fuzZs6ew+6UABlNEAJLPjlrVJgThVuC2bUt5Xdllkp7n\nwTAMGIaRekMNlRaIKovbiS3NZgFEccUNrgD4WSxeo/lTLUhfxrxmGrPumZVKBWeddVYGRwU8+eST\nuPHGG+G6LlzXxS/90i/hyiuvxEc/+lEAwE033YSrrroKd999N8455xx0u1184hOfyORYZGEwRSsv\nyewoADBNE6PRKNFsoTzalad501imFXiRiIYaw+EQnucpU9Ynrp+yLAIWEe7EJoIry7JgGIbffp2d\nAikPszKrInsfvj6Lco2u+ndPkeVxnT372c/Gv/zLv+z685tuumnH/77ttttkHVLmyrkiIooh6ewo\nz/Og6zps2y51QBE2KwtXtsYaYnHearXYZEJhUftZxOJ11fazkJrENWeaJrrdLmdcKWLVAsMy3Z9V\nthqrQaKQ4A0tzpMb27YxHA5Rr9cxGAwW+jKW+aWWViZjkSxclrK6EXqeB9M0YRgGarWa9InxZSar\nC6NYlDYaDTazIOVEzbgKz2AT12etVuP1SXPNux8ykJKHwRStFHEDMwwDuq7PDYyCe2c6nY7fyjmp\not0Yk5T15dmyPA2u60LXdbiui3a7LWUf2Krc5PK67qftZ7Ftm80sCqIMGYRp5yAe4EWVrYrgSqWy\n1TJ8FqvIsqyF1yyUDIMpWhnhsj5g9mIvuMju9/t+SdEyr18EoqyvWq3ODTaLfoMNZhx7vR4sy8o8\nmCr6e1ZEs/azhEuumBUg2WaVrXJPYLrKFBjOOxdd11llIQmDKVoJSWdHBVti93q9pb98ZX95L7qX\nSbWyvqyIsr7xeLxUxpGKaVozi2BWQPwOlWnxRcUwLbiybXvHnkAR/LNslaKIezllj8EUldq02VHT\ngg3P8zAej2GaZuotsVXOTC3arS+P+VnLLhpEIxHHcVLJOFKxTVu4WpYFx3Gg63ohF67z2iZTceQ9\n4LosDxRUvgcvYt7nIh4WUvYYTFFpzZodFRUEiIUTgNRbYqucmUpS1ld0juNga2sLtVoN/X4/8lzL\ndsOlZMTCVWSlWq0Wm1nQQrIKQhYZIMxr9EdW5b0YjUbodrt5H8ZKYDBFpZS0rE8Mo221Wmi1Wpl1\njFONKOvrdDpoNBqlvskEz3VaWZ+s81fxWqBo85pZeJ7nt2Av2vwgKodZewJ5jZYX90ypg8EUlUrS\n2VGu62I8Hmc+jDaPG9esBXtaM7PyKPNLSrWBw4tcC2Wb51VUYqDz+ol1jKwROvUOTlo7CfV6nfOD\nUlaW0rI8BPcEArMbrsS5RsvyWZTlPOJimZ88DKaoNGaV9YWJv9vc3PRLvsq06Jl17qKDXa1WW4my\nviKUMKp6XPQjDz36EDbMDaAONNoNaA0NG+4Gjj19DLCAvc29OO/M83Y80FGtxTWtpmkzrvgAoLji\nPFxjmZ88DKao8IJNJoD5Q3hFJzcAaDabmZX1BamQWciyg52KT/xE6WbSzoR5f06kHtd1sWFuoLWn\ntePPNU1Dq7v9ZxvHN/ymD41GAwBbXK86Fb8XF5lxVRZl/G5nAwo1MJiiQguX9c27cbmui9FoBMdx\nAEB6+29ZN9dw8JZVBzuZ713cgHSZsj7VFj6khuFwCMxr7Fnf/rl+v+//0awubCKLzkYBlKc4M66A\n7cyVbduFfwBQ5GMPirOW0HWdmSlJGExRYYn2xXHK+oCdA1r7/T5OnDghdb9PXsLnXZabSRRR1qdp\nWulKNyk/6yfW0Wg3Zv5Mo93A+on1HcFU2KwubIZhwPM8vwU7GwVQHqKCKxFQhWdcMbuqNsMwcMop\np+R9GCuBwRQVTrisL87mWcMwYBgGut2uX4JTZpVKBa7rwjAMKYNpVShnkdGRMQ0qlHzSfMHPaGSN\noDVmf89omoaRNUr0GsHgqtlsLt0ogChtIqCvVqt+WWBRs6sq3KfSEudcRPdayh6DKSoUz/P8YZpx\ny/qGwyEA7Cpvk72oTWvobBzBfWFZD6aVXSYZ9WdZDVqm1Sau7U69gw13Y2Yw47ouOvXlFi7TGgWI\nvSwi+FqFjEAZFr5lOAdg53lwxlVxsAGFPAymqDAWnR3VbDbRbrdXZkCrmH9Tq9WwtrZWmhtZ1HkE\ng+U0Bi0za0RR9g324dj6Mb/ZRJTJeIJ9+/al9pqzGgXEaWZRloU8qS3OHDaWrqYvzn2KDSjkYTBF\nyks6OypupkL2F3rWC/Vgt75arSZtCG9eAYhlWRgOh8qX9VHx9Xo94Mk5P2T9389lJGkzCz4UoDzM\nGiCcd+lq2R4wxCnzY2ZKDgZTpLQks6OAnQ0I5mUqypSFcF0Xuq7DdV30+31/w3DZiNInsQduVcr6\nynStFpGmadjb3IuN44E5U5q2nS0fT/w5UzIXhnHKrcR3Z61WY0aAFrbMdw9nXOWHe6bkYTBFyhJl\nAsD82VEAYJomRqNR4rlCsmS1IA526+v1ev57VbbFtzin4XAIz/NSKevLQxk/m1Vw/lnn+2Wl6yfW\nMbJG6NQ72LdvH3q9Xu7XYji4Go1GqFarcF0X4/EYABetspUpE5LGecSZcZXlvsAyfR5xzmU8HjMz\nJQmDKVJO0tlRYoaSbduJ5goVfVEbLOvLs0uhrPdRzAibtQduWUW/JihbouX+rPbnqhBlgbVabVdG\nYNWaWZCa4sy4Yhv2xTEzJQ+DKVLKorOjarUaBoOB0l+0aS7Uw2V94W59ZQoKRNDoOA5arVYpbw6u\n68a+5omSWraZRR7KlEWgeBhcxcfMlFoYTJESFpkdJbIyi85QKmrAYVkWdF3fUdaXt6zex2DQWK/X\nM23xnhfbtrG1tQUAfucrkVFgcEVZmLZotW27cLODKHt5BbZJm67Mu05XLUAXA5YpewymKHeiycTm\n5masVt7zsjKqWjZ4Szp8WFagmNXNKbwXTNf1TF4nTNb7Fn4gINi2DcdxduxzcV23kIE/FcOsRStn\nBy1u1RbvWeOMqx+Je22V9fxVw2CKchXsOGXb9tyfTzMrU6TMVNIAsshfoGlkHRclq5U8AAyHQ//z\nrFQqsCwLlUoF9Xp96tBWy7JY4kKZm9XeWlQPsJkF5W1WcGUYxq5Mv+hsuQoYyMu1GlcVKSfcZGJe\ncJA0K6OiRYM3EUA2Gg1lyvrC0gpKRTMRx3F2BY1FCn5ncRwHwPb5iEBKZJ6Cn21wn4tt26jVatA0\nbdf+AdFEQNWnsGX4zFZdsL01MH12UHAwK5VHURbmweCq2WzuuE7H47H/gApA4QcIe54XaztEUc+v\naBhMkXRJZ0eJdsQAUm2HrfrifJkAUua5pfVl7TgOtra2UKvV/CCjbCaTiV+u2Ol0dgVPsyQpxVJl\nv1Xer7/KslxIhWcHsUkAqSj8EGA8HqNSqXDGFaWOwRRJJW644kYfXkyGFwBi8dlqtdBqtVK/KcsM\nppIEOKKsr8jzlJIQM8Jkl/VNk/ZC1PM8jMdjTCYTrK2tYXNzM3EgFb52ZpVica4QyTKrA5t4aLZI\nBrUMT9XjZA9ILvGdKbJUokJGjAsoSoZ13u9HGX5/ioTBFEkRLuuLusEEF4ye52E0GsGyLPR6Pf/J\nUppU/aKxLAvD4XCpeUqyM1OLvlbwc44zIyzrc8rimhCZVVHWl9XiKpwtCO+3YraAZAgGV41GY6Wb\nBJSB+M4t22ckHuaKio+yZVgnk4kSDyZXBYMpylzS2VGO42A4HPoDMrNafMou85v3emXYF5aE+Jyr\n1WqsGWFFupEJIjAOZ1ajsrBpmjVXiK2vSaZpTQJs22YzC5Jq1ndu0WZczbt/6LpeypmMqmIwRZlJ\nOjuqUqnANE2Ypol2u41ms7kyC7ys9oWpSpRvlvVzDgbGWWVWk4ibLQiWt5TtMyE1zCpPDe5jYYkc\n5SnOjCuVGwCNRiO02+28D2NlMJiiTHieB8uy4DhOrIWZeAok9pTIaF+qSmYqjbK+uK+VhSSvlbSs\nr4iKMAct7oI22MyCKAuzmlmIa1KVbEBSZdi3UoZzSINqM67mfS7j8Rjdbjez16edyreSodyJoCiq\nyUQUMZwV2O5wVsYFdhTRlMA0TSWyF1lbtnxTVoC4TAleeNBwURYhUfutghuzVSpvofIKZgPE73qt\nVosstRKjAngtUlxpBoaqBVdhLPOTazVWrSRFnCYT4Z8XpVCdTsd/Ii5LHpkp13UBZF/WJ/vc5r1W\n1l0ZVaBaR8JFzdqYzf1WJEtw4GqccQC8FilPs7L9UXsDly2lnnfPFfcikoPBFKVikdlR4VIo2cFU\nXqY1JSiqee1ZRUvwsmbfFi1dVHnGWVDS/Vbc50JZmdfMwvM8/zrk3r90lKnMT+a5xB10vUzjFZb5\nqYPBFC1t1uyoKME9QsFSKFX2MGXJsiwpgYUKA4mD2bc0ujIGM3uqCJYuxulIKBR5cRJ3v5WY5UKU\nlSR7//II9Hn9kzBvdEXwodW8azXOdTUej5mZkojBFC1skbK+WXuEVAgAsuK6LgzDKO0Q3vDnVuTs\nW9zrUGbposq/G/MaCADbJZDcbyVXmTIKcam492/VPgOab9boiiTXKlujq6NcKzqSRjSZEIFUnNlR\nW1tbsG0bg8FAiXIvWQvUyWSCEydOlLYMKvjZi4B5OByi1+ul1p1QJeIcdV0v7TkuSjxdbTQaftt7\ncb2L4FOUfTqOo2yASMUnFqviWux2u/4YBsuyoOs6RqMRTNOEbdu8Fqcoy/ui8vDh8PdmGtdqHnum\nDh8+jCuuuAIXXXQRLr74Ynz4wx/e9TNf//rXMRgMcPDgQRw8eBC///u/L/UYs8LMFCUSnh0VJ5CK\n+wS/bGV+4f1CnufBNM3MXi8oj0yG2AeXVfZNhexM1udYNuL7QTTkCO63Epna4B4Xvp8kpJ1ZizM3\niM0sovF9kGvaAGHbtv1rFdjO+E/ramkYBp7xjGdIPe56vY4PfvCDuOSSSzAcDvG85z0PL33pS3HB\nBRfs+LlDhw7hrrvuknpsWWMwRbGFy/rizI5KujE/78VyWhzHga7rqFQq/n4h0S6+bCqVCmzbxubm\npv9krYw3X9H2PK1zLOO1ME9wj0uz2Zy534olgZSlWa2tRaDPQdblUeTv23Bw5TgOxuMxAPhNgCqV\nCm6//Xa88IUvxMGDB6HruvShvfv378f+/fsBAL1eDxdccAGeeOKJXcFUkT+LaRhMUSyLzI7SdR3V\najV284GyZKamZeJk3ohlvZdiOLNlWej1en477SILv3cioyi6I6VxjlyUbZu13yo4U4j7rShrcQP9\nJFnUVdy3prIyfRaapu3I+G9ubuLo0aO45ZZbcPToUVx00UX43//9X5x55pm4+OKLpWf9H330UTz4\n4IO49NJLd/x5pVLBN7/5TTz3uc/Faaedhg984AO48MILpR5bFhhM0UzBsr64TSbEwrPT6aDRaCTq\ncKZat7Ykgpm4ad36yvRERpS8OY6DRqMhJZCS/f55nuefo2jhT9lgGRapJE73tXAb9jJiQKi+SqWC\nwWCAD3zgAwCAY8eO4bd/+7fxxBNP4Nprr8Xx48dxxRVX4MUvfjFe/OIX49xzz830Mx0Oh3jta1+L\nD33oQ+j1ejv+7id/8idx+PBhdDodfOUrX8HVV1+N//zP/8zsWGRhgTpNJWZHiUAq7uwo0zTR7/f9\nDZSqS2OB7jgONjc3/blZUYFUHu9FVsGHKOvTNA2tViuT1wiT/f6JzxQAA6kciMVqs9lEp9NBt9tF\nvV73O2OORiMYhgHLsgr9EIbUF+y8JhoEiKoDNrMohjIFhfPO5dRTT0Wr1cLv/d7v4eGHH8Z3vvMd\nvOIVr8B9992HK6+8EgcOHMBjjz2WybFZloVrr70W119/Pa6++updf7+2tuY3xnj5y18Oy7Lw9NNP\nZ3IsMjEzRZHEQE4RRMUp6xsOh6jX6+j3+wt9aeVR5pcGUdYnupep8IWd1TGEM4/NZlNaUw2ZRJmZ\nSp/pqps1U2iVMgWUv7hZVPHn3G9FsgW7+Z1xxhm48cYbceONN8LzPDzyyCM4/fTTU39Nz/Pwpje9\nCRdeeCHe/va3R/7MsWPHcMopp6BSqeCBBx6A53k46aSTUj8W2RhM0Q6iycRoNIJt27tStFE/bxgG\nDMNYej9JHt3axGsucqNL2mBDhW50y5hV8lbk8woS+3YMw4jdNGWZ16LFxd1vNa3bFamtSJmEWc0s\nJpPJjjlrtVqtUMFVkT6HVRHnMxF7fMMqlQrOPffcTI7rG9/4Bj7zmc/gOc95Dg4ePAgAeO9734vH\nH38cAHDTTTfhb/7mb/Bnf/ZnqNVq6HQ6+NznPpfJscjGYIp8ruv6JTNxvjxd18VwOASwemVQjuNg\nOBxC07TYDTZkWyZQDBOZx1qttivzKOtGm3UwGryeO51OpoFU0ves6IF41mZlCkS3K+63IllEcAVs\nf5cEr0fRhS1pMwtazqoFhaPRKDKYytJll102t+T65ptvxs033yzpiORhMEVTZ0fNWryJ0rZms5la\nK+w8M1NJLFrWV9QFsWmafsmA6B5UNmLfQ6PRgOd5XNwU3LRMgW3b/vdc2Rezq7Z4VNm0ZhbBElWO\nBKC44mamZLdGX2UMplbctNlR0xb+YhCtaZpTO9aV1SJzs/K0bPAW93yLGiQC0W3PNzc3C3s+FI37\nrUi2ad8h4j5blJEAZQnKy3IecfGhoFxqrwYpU+GyvnDpVvhmECxtGwwGqf+iqpyZEueeZG7Woq+l\nguD5DgYDJW5Cab9/0/aAqXCulK04+62AdEtlaTXNu3aiSlRd14Vt2xwJQJHifCcVaV9eGTCYWkFJ\nZ0cBPyr1yrK7WV7BxrzXTPvcZS3OFn0/VexOmDbHcbC1tbVU90mKR/UHCNP2W00mEziO4w8fL2Lz\nACoe7v+jZan+nVtGDKZWjJgdFZWNChILcfH03rbtQpS2JTXrJpR2WZ/qN7xFz7dIGTdAjT1gRXvP\nVoko+XNdF57nodFowLZtNg+QjBnBbbNKVGXs/ytLudiqXU+rdr55K9fKmGZyXReTycT/JZv1i1ap\nVOC6Lk6cOIFarSal1EulMj8Vy9yyVKTuhItSfc9bGa+xMpxTpVJBvV7f1TzAtm2YpqnU/hYqv2CJ\nKrAzuJpMJgDAZhYlV5YAt0zUWk1QJsJNJub9EopN+QD8Uq9VkmVJo8w9GHGDD1HW12q10Gq1Snnz\nFW3PK5XK3GCRWSOaJm7zALGQZQnW6pL1PR933tqqB/urlKlhsCUfg6mSi1vWJ7iuC13X/VkBMgOp\nvDNTZS9pDBOdGSeTyVKdGVUPPizLwnA4LHWwSPlIsr+F+60oa9OaWYisleu6iYP9VQpCimLeZ2IY\nxso9BM9buVeLKy44UyXOTVzM2qnX6+h2uzh+/HguX6R5vKZt2/5G8yzL+mQGHrNeKzxwuShPsZK8\nd57nwTAMGIZR+Db+ouyW1DZrfwv3W5FsweBKzNBjM4vyE3uCSR4GUyU0bXbUrJ8Xi04xaycPeX2J\nW5aVe0MCmbLI1MgIEJMcZzDDmkUb/2VFBbp8Alw+UcNaxXcz91uRbKs8zLpMpW/z7hUMpuRjMFUy\ns2ZHTft5kaEILzrzmLEi8zXFwsbzvB1zhrKUZ0lcVpka1RaAtm1jOByiXq+j1+slPj7VyxapmMT3\nsXhYFVWClVaWQFy/qv1uJlH0hwtFOP5ZmVTRzEIEIeL/SH3j8ZjBlGQMpkoiODsKQKwvvXmNB8q8\nqBQLbrG4kRFIyRb8/ESmxvM8JTM1aVGh7TlRHHFLsIJd2VRfnFOxRTWzMAzDX1sUOZNahOA2rnnn\nous6gynJGEyVgOd5sCwLjuPELusTLaJV20uSdQAnOhWKJzeO42T2WlHyCFDFXrhGo4F2u536DUXW\nOc16HdXbnhPNEydLEG5mQZQVEexXKhU0m01omja1U2CtVuN+K4WwzE8+rjgKLsnsKCDZPKG8u+ul\nTXTrcxzHL+sbj8elzb4B29lH27Zz3QuXtTLNBCvT01NaDvdbkQqCa4u4nSvZzCJb8+4T4/EY3W5X\n4hERg6mCSjo7Ckg+P6lMZX7BfTT9ft8/d9ld0mS9p67rwrZtAJC2HywPolQ1zZlgMj6j8GuIxUpZ\nft8oXdP2W9m2HbnfiovY/JX9wci0ZhaO48AwDHiep1SZatk/jyBmpuRjMFVASWdHFWl+UtoLynBZ\n3yrsownuB6vX65kHUuL6y/pmFXwdYPvpm2maypWqEmVtVpZALGSB7RLfInZl40OF4gkGV81mc2aZ\nahGvSVXE+d1gMCWfuqtqiiSyUXHL+oIZmaQlUEUv8wu2x56WnZF9jlmXMYb3g5XxSZz4XIHdHSiJ\nVlF4ISvmWoUXssEsQREU5TjLbNH7lWplqmXLTM1rjb5nzx6JR0MMpgoiaVlfsA32ohmZIpcdLdse\nu2ii9oONRqPCfn6zbG1tZdZMI0+zPqsi/y6SfOL+0Gq1drRgDzcOYFkgxbHs9TFrLACvyWTiBIXj\n8RinnXaapCMigMFUIQSfLsadHTUvI6OqZReNwexMnKYLZchMicCxVqvt2g8m69yyng8mPlcAfiv/\nrE7ku84AACAASURBVOQRuJimCV3X/QwDFxSUlqiSwFn7rdg4IB1ly4SkaVaZKq/J5Ym98SQPgymF\niS+Y8XiM8XiMwWAw97+xLAvD4RDNZnPpjEzRnoYXOYhc1CrMVQpm3QCUpiuhKH0RLd3b7ba/0BVP\na8MLDqJlxdlvFQzoWUa7umQ+jMu6mUVZgtu4mSl285OLwZSigrOjNE2b+6XmeV7qG/KLtGdq0bK+\nomam4sxVkt2pMIv3Mdj2vN/v4/jx46m/Rh7EdbC5uQlN0zAYDGBZlr+QBXYuKMQ+yWCAxUUuTZNk\n4Ri3cUDR9ltRemR/5mxmsRwGU/IxmFLQIrOjyrIhP2mwEdwbVuZZSkEqzlXK4himtT2XEfxm/Rpi\nr0C73Uar1Yp8/4ILimq1islkgmq16s91YUkgZSHcOIB7WyhvUc0sxEOmON+Fq5bV13Wd3fwkYzCl\nGPHkJdhkYlaAIRacYh9Jmjc21cv80ijrK1pmKslcJdU/v2lElnUymezKuslYuGX5GiL4tyzLb6KR\n5Ljq9frMRa5YUHCPAaUhr70tZSjJKso5uK6L4XCI9RPrGFkjdOod7BvsU7Zxk3jAnCTgD/63RRe3\nzI/BlFwMphQUzkZFLYrjlHmlcRwyy8TEa8YJACzLgq7raDQaS3/pFyHgkPF5LyOtwE3c2CuVCvr9\nfqGzrGHBvV/NZnOpc5u1yDVNE67rct8LpW7a3hbbtmFZFgCWXxXJQ48+hA1zA6gDjXYDWkPDhruB\nY+vHgCeBPfU9OOPUM/I+zJniNFgR16HYNlGGoGqW8XiMXq+X92GsFLVWZDTzF108kbBtG7qu+/tI\nVumGlXZZXx614EkDVFHWp2laqT9v0Twliyxr3sJ7v8bjcapBfHiRG7XHgCWBlLZZ1x1LUdXmui42\nzA209uzsjKppGlrd7T/b2NjA6e7peRzewqKCK1EOKB40ib+v1WoLNbPIU5zMFIf2ysdgqgCCe0WC\nQ1kbjUamXwJ5NaCYFmyIsj7P81Lr1qd6KdwyZZyqn5uQJEAuyjkFRZVmZn0ecfa9sCSQ0hZ3v1Wt\nVuN1l7PhcAjM6VPl1baz6Wtra3IOKgMiuKpUKuh0OjsC/vF4DKB82VTDMNgaXTIGUwUiu+23St38\ngmV9RR7WGvc9De4bSqs7Y5YWvVY8z8NwOFSqnX2aHRen7f1K+rrLHFOcksBgt7YyLCYof3Gvu7LO\nElL9oc/6iXU02rMrOxqtBp7eehr79++XdFTZm9bMIphNVbl7Zdy9ePwel4vBlGKifkls2/b/LjiU\ndRVk3a1PxUyH2DcEYKmyPhXPLWjRdvZFEM6iqnRji1MSqPJigoopyX6ropVeTaPyOYysEbTG7O8l\nTdOgW7qkI8rOtABkkWYWKn+mlB8GUwoLBhKVSkX6PpK8M1PBoKLoLd+DZr2nRd43lORaWXTYsOoB\nIvCjILEoWdSsSwJV/7woH9OCetu2/QHdpmlyEZuRTr2DDXdj5n3VdV1066szryhuM4s8S6TnZaZE\nto3kYjCloEql4m9YB7azE+L/L/s48vilFAOLh8Mhms1mpgvS4H60PNtuBwPnIg5djvveqd6VcFlJ\ngkQVb3hplwRyAUxxBYP64Pwg7vPLxr7BPhxbP+Y3m4hijkycuedMiUeVjUXv70UuVVXlOFZFuVYy\nJTGZTHYFEkV4Ip8WkZEqwl6hRYQ/x2BJWJkycGFF6Uq4yO9a0iCxKDc6lgQWU1FmHE0j7nmirHvW\nIlbVjmyqfwa9Xg94cs4P2UC3uzqZqXmiSlVFJlXWaADP8/gQS0EMphQjMhThQCLvkjsZXNfFeDyG\n67rYs2ePtMW2OM88MlNlaawByCtfVO2hQplnY4Ul7dZGlIZZi1iVO7Kp/H2uaRr2Nvdi43hgzpSm\nwXVdTMYTwAJOap6kzHupokrlR4PUgekPm4JBf9Zc11X6uisrBlOKEQuyqAVjmYMpsdgWi7Qyf4GL\nmuYsG2sAapT5pV2+qNpNosh73JYVtwRGBF0qZg+omIKL2GBHNlEeyKYB8Zx/1vn+w6D1E+sYWSN0\n6h3s27cPvV7P/30uOlkPS6c9bErzupx3LoZhoNWaXrpJ2WAwpaCoRXAeNwMZi3HRPto0TfR6PWia\nhq2trUxfM0x20KFiO/AslLl8MTjzLatguGiiSgKjsgcsCaR5kix+Z3VkU6VpgMpE2XW/39/1d2UI\npPIyrZlF1tflaDRiaWYOGEwVRBn3TEV163Ndt9QZOMdx4LqulHbgeQSJQrDteafTKdTiZd775nnb\ngywdxyl1MLwssVCwLGvHsEwOcKUsBRexjUZjbhOVrDKmZbtfF5kK+9fiXpfzmlnMOxfRAInkKs+j\n4pLLa88UkM1NYTKZ4MSJE6jX61hbWytV1iKKKHcbjUaoVCrodru5f7lnxTRNbG1tod1up36eeT9U\ncBwHm5ubALBUIJX0PPI+72WJhYTYGxjM5pmmCV3X/QHHeTxQofISGdNms4lOp4NOp4NareZnTEej\nEQzDgGVZcF039dcuMhWCkLIKX5fdbhf1eh2u68IwDOi6vtB1ORqN0G63Mzzy3Q4fPowrrrgCF110\nES6++GJ8+MMfjvy5W2+9Feeeey6e+9zn4sEHH5R6jFljZqpA8lhgpN2cQZT1TSaTyD00ZWy0Ecxk\ndLtdjEajzF4rSPZ7KcoXbdsuZcZmMplA13W02200m00uMpaQpKGArI3btBrC+1rEtcf9VpSnuJ1T\n5z1sGo/H0jNT9XodH/zgB3HJJZdgOBziec97Hl760pfiggsu8H/m7rvvxiOPPIKHH34Y3/rWt/DW\nt74V999/v9TjzBKDKQVNm9Rd9Ke1juNA1/VYXc/K8kQsWO4mGosU/XOMIjJv9Xodg8GgFJ+dkMUM\nMNopqqFA1AJXZklgGX9PaaeoFuzhfS2qzhGi+Iq4npjWzALAjjJp8dBSBGG6rkvfM7V//37s378f\nwHbL/QsuuABPPPHEjmDqrrvuwo033ggAuPTSS3H8+HEcO3YMp556qtRjzQqDqYKoVCqplyDEfd00\nFhXiqf68rmdlarQRNcA1ryHIWb6vk8kEk8kE9Xo98/JFGQ8Vgq8hs4lG0W72WZm2wBWBVRFmDFEx\npbnfqgzBeBnOoQyC16VlWX63PrEH9aqrroKmafh//+//Yf/+/XMHxmfp0UcfxYMPPohLL710x58f\nPXoUBw4c8P/36aefjiNHjjCYIrnyykwt+7rzyvpmvWZRF0izBriq0K48LcHPttFolO6prewmGmV6\n79IU1RVLVkkgP5N8qPL9H7f0atq1p8I5LKsM51CmcSviXMT3IgB8+ctfxje/+U187Wtfw1/+5V/6\npXRXXnklrrzySlxyySVSzn84HOK1r30tPvShD20PhY449qAyXFsCgykFleUCcxwHw+HQb72q6pdZ\nmgGOOOdqtTqz3E2VxcKigp0Y+/0+TNMs1VNM13WxtbW1I6uYpqhrrkzvX5bilgSu8p6Xon+/qCrJ\nfiv+PlPapl1TnU4HL3nJS/CSl7wEd9xxB4bDIc4++2zce++9eMMb3oCnnnoKV1xxBa688kpcc801\nmWSDLMvCtddei+uvvx5XX331rr8/7bTTcPjwYf9/HzlyBKeddlrqx5EXBlMFUbTMVNyyvjRfM29x\nGhTIXuBkkeUTGRvRmU3mOcloFmIYBjzPQ7/f35FVJPXMKgnknhfK0rxrT8yi43wrStu81ugnn3wy\nrrnmGlxzzTUAtkvs7r33Xtx777245JJLUg+mPM/Dm970Jlx44YV4+9vfHvkzr3rVq3Dbbbfhuuuu\nw/333489e/aUpsQPYDBVGEUJpmaVuKkqjVLGop3zIuYNqi1iABwUzLaJ8h4qlqiSQMdxYNs2LMsC\ngF3BFVEawteeruuo1Wo7HtCIwKoo115ZyuNWKVM7Ho93tUY/7bTTcMMNN+CGG27I5DW/8Y1v4DOf\n+Qye85zn4ODBgwCA9773vXj88ccBADfddBOuuuoq3H333TjnnHPQ7XbxiU98IpNjyQtXCwVRhGxN\nWmV9eZzroq+3yDnL3BOW1ns5b1Bt0W9UwWxbo9HwgyrZVummL0NwzwtLAkk20X2y2WxO3W8VbGZB\nNEuc+8NoNJLeze+yyy6L1SDttttuk3A0+WAwpSCVvlTjLsbTnMEjO5ha9FiXKWUskuA+sH6/n/t5\npn1tGIaxI9sm2s+qpAgPU1SXtCSQgS2laVqra8uydrW6ZnCVrlX6XRb3MpKLwVRBqFrmV4YSt0VK\nGZN2KFzm9fIUDJJFO9Yoss4pzdcR125eQ4aLcg2U1bySwHDXrDKUOxVF2Re/Udeeinv9yv45FE3c\nzFS4zI+yV7yV74pScQGeVbc+Fc9VCHexU32Bteh7GQwYixokzxK+doM3KFmzrEgt4TbYYp8LSwIp\na9MCe8dxYBgGAO71o3iYmcpHuVZIJaZaZkoMpE2jrC9vcQciW5aF4XC4dFmfysEi8KOAsVKpKBkw\nLvvepfU5UrlVKhVomuYPbxVlWSplDkhdy2R1goH9tP1WwWYWvPZmK0uGLW5mKmrGE2WLwZSCZv2y\nyP5SCC/8ZZT1qRZsiG5MhmEsVNaXp6Tv5aKBhswyv0UV+XOkfAUzByK4YpdAkiXufivR8CKtNUJZ\ngpBVMh6P0el08j6MlcNgqiBU+EKLO5B2WXk0oJj2esGyvsFgkMoiSbVgESh/oOF5HobDIVzXzWV/\nFJVLuCRQLG5ZEkhZm1USaJoms6YRyhIUqtrNjxhMFYrMltrB13Rdt1RlfXFZlgVd13MZTpumeYGb\n67rQdX3pQEO1AFFwHAdbW1uo1+vo9XpzP0dZwa6q7xclNy1zkFdJYFkWj0Ul+2FgMLBn1nS1GYaB\nZrOZ92GsHAZTCpp2E8wro2FZltRufXlnpoJZmqjhtGm/XpbmLajEfKW4gcair5OWpO9d3G6EskW9\nX1z8lsO0kkA2E4ivLMFgHucwLWsqMlfi7+NkTcvyOZRFnM9D7PUkuRhM0VSO42A8HqNSqWRa1heW\nZxlcWlmaIhDZxk6nU7onWWXvRlgUKpa0yjatmQBLAkmGvPZbqUJ8/5TtvKZZ9e/bvHCFoaioRYjM\nhYlYaIshpmX+IhLva1pZmrivJ0PUa2XRRESlRXNa7etVfCqr4jFRMqqVBNLqSLLfqlarKfOdTtvm\nfR78vPLDYKpAZCxYPc+DruuwbRtra2v+E36Z4rYqT4u4oWxtbWVS1qeS4HwlmdnGtMz7HRAB8TL7\n3FR8T1Q8JlrevJJAz/N2lGSxfIfSFLXfyrZtvyoF2C6V5vWnjjhlfrxfyMdgqkCyDqbEQrRWq/kL\nbbGBtazE/ijP8zAYDKSU9cXpHvjUiaegmzq6zS5OHpyMXq+30I0s+Fpi/1BZ5ysVrWyRTxEpbNZ8\noaT7XSg/Rc0gVyoV1Ot1P2uq6zo0TSt0SWpRPwsqFgZTBM/zYJqmP58guBDNo3xL1muK4FHcFPLe\nH/XQ/zyEDXMDbs1Fs9OE1tOw4W7gBz/8AbQnNOxt7sX5P35+4n9XZBezbHueZ5mfjNlnaePNneKY\nt9+FJYGUFXEt1ev1XYOrg/utRHDP6y97nufNfKjqui6zhzlRf9WxomTtmRJPnxzHiWy4UNZgKpjF\nqNVq2NrayvT1gqLOz3VdbJgbaO7ZmVHRNA3tXhsAsHF8I/GXpQiURVlfGb5og++dyORVKpWl9kcR\nqW7WfpdwSWDRs57zFo2Uvaj1R5L9VqqUm61SZmo0GinVtXaVMJgqkLSDjGDDhX6/vxJfOFFZDNd1\nc198DIdDuLXZ+8Tc2nbg0O/3Y/2bYs5ItVrF2tpaKT7f4DlYloXhcJhJ2WIeM92IkphVEmjbNoDt\nh0ZFKski9cwa1TKtBbvYb8URAOmad08aj8cc2JsTBlMFk8aif1ZZX1iZMlOi+UK1Ws21+ULU+T11\n4ik0O7P3+TQ7TTx14qm5wVTw8xU3u6zPVeZ1Iva5iRtHWRqGuK4L13WVeaJLxRIsCZxMJn4XVpZk\nybeKD2LCJanB4cFF3W9VNGKmIsnHYEpRWQ31dF0Xo9Foallf1GvmnbVJQ3B4a7PZ3PFeqnCOuqlD\n681+cqdpGvSRPvNnwmWbk8kk93NLk6jbN02zVHPARJZNEKUyXHTQojRN8x80TCvJCgZXREHL3DfE\nA6FZIwBkBfdlCmzjZKY6nY7EIyKBwVSBLLvoX6asT+YXUprBTZLmBDLPMXx+3WYXG+7G3M2l3eb0\nFH4w85ZH2WbWQZvjOBiNRgBQ+LJUcY0Hs4jtdtt/D6M2eQPlWhiQPLNKsiaTCQCwSyDtktZ1MGsE\nQFRwz+z8Yljmlx8GUwWy6PylJGV9Ua8pW1rBVHCm0qzmBLLPMer1Th6cjB/88Ad+s4ko5sjEyaec\nHPl30zJvsmZ2Zf0eivNrNpuYTCalKFsMZxErlQomk4lfDiN+Riw6gO0Nxpw7RMua1yUw75JAPjQo\ntzjBfbiZxaLKdC3NOxdd15mZygmDqYJJusBzXRe6rsN13YXLooq4GV/1mUrhz7HX60F7Yk6Zn62h\n1+vt+nfG4zEmk0lh2oInIfZHibbuZZl9FgxwRSAVFfQGFx22baPZbPoBFvchUBridmljSWB8Rbtf\n5i1qv5Vt29xvlZDoUEzylWvlVSJp7JkKlvWJhWgRLJMVCAYXSWYqyQwYo15D07bnSG0cD8yZ0rTt\n/UEjE5q9/ffBhYxoCw5Ambbgab6H4kGAGKisaRocxyn8HrDg/qhut5vo/ZqWURD7EFRsTUzFEjdr\nwD195ZZXQCi+t4L7/aZ9z61aMxXumVIXg6kCiRtkBMv60uh2JrtBw6Kvt8zMIdnnGPVa5//4+f45\nPHXiKegjHd1mFyefcvJ25ipwPpZlQdd1NBoNtNvtme1rZZxX2jez4IOATqdTiptluNx2NBotdV7T\n9iHYtr2rNbGMjo5UTqqXBFK5Jd1vFb7vr1KWcDQacc9UThhMFUichXEaZX2LvG7espw5lLZZxyb2\nd01rf552oKyi4EDlJPv70pT2NR/eH6VpGnR9dmfGpIIZhVmlMrVajYteWghLAilvSTOnZRHnfjQa\njXDyydH7qilbDKYKZtYvlMhWZFHWl0cwFeeJUnhPTdyyvjAVMlNx/pvggjzOjULmeS1bKhmn82IR\nAvuwqC6LWZ9DVKkMF72UNpYERitDNqQo5zAvcyq+C23bLsU1OK/Mj3Om8sFgSlFJ9kwFA4osshUq\ndLuLEtwzJPbUFMEi76fjONja2lqorX0RLFOiqTJVMqZsjU0yxCkJjJMdLcpCntQSlTk1DAOe5xV+\nv1Wc34nxeLyrSRXJwWCqQKKeaGdR1hfndbM2L8sRd89Q0teTJclrLVP2VoRMjtgfldZnqQLVyzHj\nNrIo2oKD1BG3JJANUygrlUrF//4K77cSQVaZRk2wNXp+GEwVSHhhHAwosuzWl2cwFZZ1Fk6GuJ9T\nkoHDKkh6nSwScMhsqLFMR8mk5Zh5mrXB2zAMANgVXJHaVHyAMis7GmyYIvb8Ub7Kkh30PM//zgpe\ng81ms3Rlqezmlx+1V2crbFb5QxkCikVkmYVTLYNT1rI3oWgBR1yu62Jra8tvJDKryyKQbMEiM5CM\nWnCwkUWxqP65TJstZFmWf48T12HRrrOyBCJlF7csVYXy57hlfuzmlw8GUwUifpG2trYAyNsnpEJm\nqqgzs6LMez/T3GejYvliVEOGMlBlf1TaohYcIrAKl2qVLegnOcINU0QjJZG9ZkkgLSpuYBtVliq+\n64pS/szW6PlhMFUgtm0D2N4oLnNvSZ5ZG1l7T1TITKXVmTAvca7HtAIOlZ78pnmNqnJO00QtOGzb\njizVKnq2UaVrbNXEvc44Qy07q379T9vzJ7KngNzy5zifh9hbTfIxmCqA4CIbQKmeek9TqVTgui4M\nwyhdKdisRiKe56WacVQhSATSbWEvQ9z3razlinFVKhXU6/WZZTLAdjZSxSe58xTteMsivHAMX2fT\nZqipUI5F5VSEjqgs88sPgylFiV/EcPvvEydO5HIseSzIRXMNGaVgeQYdwRLGTqdT2IXArKYhw+EQ\nrusWqoX9PHH3R62KadkE0zRL2TmL8hE1Q21aOVZeJYEqPMCibVll2NIaAxBXnPOYTCYrs4deNQym\nFCZKoprNpl/Wl9f+Jdd1pb2eaZqwbRvNZlPqUxbZw22B5dqeJ32tPATnYxV9r1tQGuWK89r/F53I\nJpimiU6ns6NMhtkESouqJYFFv57L/N2UtiRjALLcbxXsXEhyMZhSlGiLHS6JyntxnCVRMmXb9o50\nugx53DSGwyFs2y5E2/NFTCYTf+5FmoFinkGI6vOjVBZ3thUbDNAyWBJIQXncK8IlgWnst2Jwq7by\nreBKolKpYDAYRP553p31shDs8DYYDKDreqavFybzfRVZPrE/qixfkOI99DwP4/EYk8mksIFi1PUg\nHnDYtr2S+6PSNG22lW3bkY0syvI7QnIlKQlUtUMbFd+s/Vamafp/v0yAz2ArX8wHKmzWrCnZx5Hl\na5qmic3NTb+sL69yRhkmkwk2NzcBwD/XLOXRGn1ra8sPOIoYSEVxXRebm5uZzDgTVvlGKBYTrVYL\nnU4H7XYbmqb5g8lHoxFM04TjOKX8XiA5RBDfbDbR6XTQ7XZRr9f9Zkej0QiGYcCyrKVK28twjXJx\nnh2RoW+1Wuh2u36p+KzvuyQt3mX55V/+ZZx66ql49rOfHfn3X//61zEYDHDw4EEcPHgQv//7vy/t\n2GQrx0pnhZTpy0086bcsa1cGQ3YQkPW+MJGtMU0TvV7PbypSJq7rYjQa7djjlwXZ14ZK86PKsEib\nJyqbELX/QDzJ5R6B3Yq+EJZ1/MGMgciqp7Wvr8jvf5mo/rsQd7+V53n+/6vKg/Y3vvGNuOWWW3DD\nDTdM/ZlDhw7hrrvuknhU+WAwpbCoRWNZyvxEWZ/ohFbmBVG4I2Me55r1DUU8RRNPfMvCMIxM90cl\n+b1SeUGQJRklMmXE9yEZEcRHDahmSSDJErXfSlyDlmXBtu0dwZfYU+84jvTS88svvxyPPvrozJ9Z\nhQeAAIOpwilDMCUaE8x60p9HZiqL1xNtzxuNxo5sjazzy/pmH8wu1uv10pT1AfDbebOsTy1xG1lw\nwUvLUG1oq2xlWASX4RxEQxUxq69Wq/1/9t49Sq6yzPf/7l2XXbfu6iTdCSRpSGICTQRCN0RmVGRG\nUQhLGeacdUbk6OISNTggR50zjueMOuLycmRwXLiYA3p0UMYDukZdyxsBxBnkd0C5JRBFQwIS6dw6\n3Un1pW77/vuj8u7srt5VtWvXvrzvrvezlksqXVX7ffd+a+/neZ/n+T7WOvyHf/gHPPbYY7j00kvx\nxje+EYVCIerhLkIQBDz55JPYsmUL1qxZgzvuuAObN2+OeliBEB/Lh0M9dmGCTo1bw5Zj95t+UH2z\n91kioiFhPbyCPI5hGFBV1ZoXN8bppZWQha7rVpPzKGSxOfGjVYTUKSWQOPWsE5ffSxzmQWTP7ZtJ\nX/jCF7Br1y78+7//O+655x48++yzeMtb3oK3v/3tuOyyy7B169ZINzgnJiYwOTmJXC6HnTt34uqr\nr8a+ffsiG0+QxGsrJWbQELHx65jE8NZ1HYODg20dqSjw87wSiXdZljE4OOjoSIV5HYM4lqqqmJub\nQzqdtvpHxaF/C5mXKIpIp9O82SdjEIOXiNlks1kkEglomsaFLDi+QgzabDaLfD4PSZIgCIIVIVVV\nFYqi8LXGCYxkMok3vOEN+MQnPoG7774bf/mXf4n/+T//J+bm5nDTTTdheHgYV199Ne66666O6XhB\nMDAwYKX9b9u2Daqq4sSJE6GPIwx4ZIoxWHSmvBTwRzFPP45nl3gfHByMxY6YHXvErVN0kTXs9VGq\nqkZy7eK2XqLGKSWQRBK4kAWdsOh4NEdIq9WqFaHqh5RAWqFdfKIbOv0uarUaisUirrjiClxxxRUA\ngKmpKfziF7/Ao48+ilwuhxtvvDGMoVpMTU1h5cqVEAQBTz/9NEzTxPLly0MdQ1hwZ4oxWEp/M00T\n9Xod9XqdesPbjxsuqQXLZrPWLmW747EWmSIRNxJdbE5jYVXO3l73RealaVooc2HxfLGKUw2MpmlW\nvRWARUIWnGhh2Qgma81NSmCvoilE4GhmbgZVtYpcKofh4jAKhUJPTlucHJG40O56VKvVJeJPq1at\nwrXXXotrr702kPG85z3vwS9/+UvMzMxgdHQUt912m7V5sGPHDnz/+9/H3XffjWQyiVwuh+9+97uB\njIMGuDPF6YgXI7lXBTuWBCji0KS2EzRF3PxcG2SdkibZYc6LGyrRQgq7m4UsVFW16q3sdQr8enG8\n4hQhVVUVx48fx/TsNOp6HYVMAauWrepK8Gbvgb0oySUgBaSzaYhpESWjhKmZKeAIsExahrF1YwHP\njkMDTs5U0DzwwANt/37zzTfj5ptvDmk00RI/qy9G0FIzRXC7U0UazzUr2HUDK1EOuzHejcQ7S5Gp\nbiJuLKFpGhYWFqjoH8WJFqeoVa1WA4AlQhY8TYvTiXbPSkEQsH9yv+UEpQYaGRuz6iwOHzkM4Y8C\nVmRX4JwN57Rda4ZhoCSXkBnKLPp3URSRyTf+rTRbgmEYfbte4xRd6zSXKJwpzim4M8UYUdVMucGe\n1seagp2X80pTM9cg6EZ9EWDHAQaC7x/FYRvSbyiRSCCVSgWapsXpL1o5QYlEAlJGgmmYmD8xD1VV\n2661crkMdMqcTzXeNzg42PU44+SI9APkecaJBu5MMUZUBis5bqubq2EYqFQqMAzDl748NBvmfjiN\nYc/PS5omkTqnralyrymZzfVRfh8jKGgcU7/QSsiiubcVkV+P2gjlhjC9dHKCBFFAItuo2xwYGGjZ\nR22qNIVUpr03lc6mMTM348mZigNx+h3wyBTdcGeKYmi6CbQz5Ehj2lQqZclks4ZbQ9U0TZTLeFSQ\n8QAAIABJREFUZd+cxjDo9nrYr2cul+vq8zQb+1HWR7WC5vPFcaZdM1eSGmhXCaRhnXHoYWZuBuls\n+w04uxPUqo/abHkWak5tpAImRCTEBARx8VoTRRFVtRrkdDgh4OY5Ua1WsWrVqhBGw3GCO1OMQdPu\ndJCNaWmaJ8FPp5HG+QGALMvWDpckSV19lmajkVw7SZKoScmkYQyc3rE3czVN01IJJEIWoigukl/n\n1709cYgmtJtDVa1CTLeP9LdyguxrbcXgCpwQT8CECUM3oCoqIADJRBJiohFJNU0TuZS3aEUcrkPc\naHc9arUaj0xFCHemGCPqND9CJ5lsv48XNJ2O14uTETVuzqU9/Y12RcJu1wa5drw+ihM0JMWPrDN7\nJIH0trLLr9OUPssJh1wqh5JRanvtDcPo6AQNF4cxNTPVEJtINtaaaZjQjUaU1NANyHUZ61aug67r\nfenI95NDSJ5xnGig12LiOEKDM2WP0EQtk+03zTffIJ0MWiJTXhUJnaBlToD7+ignWOrnxqEXeyQB\nONVviDhXXMii/1jkBLVAqSkYHh5u+z2FQgE4cuq1IAgQEgLEROP+bZomjJqBXC6Her0O0zS5I88o\nbpxCXjMVLdyZohjaHqwkrS+MCE0UkalmSG8lURR9F2EIu59Rq3PppyIhTevVTweRw/ELJyELJ3EB\nnhIYX5qdIEfUk+9rgyiKWCYtQ2nW1mdKFGEYBpSaAqjAcG4Y2WwWwFJHnjj6To48eV6wvv76KTLF\n0/yihTtTjBFlrU29XodhGKGmgYV9MyTHC0P2PMooTpD1bmHQ7tyRyGkvfc44nKCxC1nYxQVIvRWA\nJSqBHDZo99xy4wQtk5a52gAaWzdmbRzNzM2gqlaRS+UwPDyMQqGw6DtaOfJOtX18rdGFGzuIS6NH\nC3emGCVMJ4PsZomiGJoKWhQ3c+Ko1mo11Ot1V72Vej1WFARV7xbWnNqtDZbqo2gVIeFEQyshi+be\nVslkMtZRq36IJnTjBHWCZE50I3/eSpHSXtsHNDIXeEogG1QqFe5MRQh3phiDFDiH9cAhxqkoipAk\nKZL0tDCPWalUAADFYjHwB0hYhrTdaCepi4lEIlb1br3URzlBo6ND45g4weBGyMIuv86NXfbw4gQF\nRXNtn6ZpqNfrVgoqgJYpgTQTF8fcbWSKp/lFB3emKCbKm0Cz8IIsy5GNJQw0TYNpmhBFEfl8PvBz\nH8W1VRQFlUoF2Ww2dMc4SHh9FCfutBOycDJ2OZxeIJHPTCbTMSUwzlFSlqjVah3r7DjBwZ0pBgl6\nh9pJeEFRlNB3xcPaibdH38LsQRTm+VQUBbquxyJ10UlZktdH0U1cdohpoVP9C3AqusWN3XCJi3gD\nwU1KIK1RUrJByjpu7p+KogT2bOd0hjtTlONkoAZptJLohZPwQtycKVI7pGkaBgcHUS6XAztWM2E9\naA3DgKqqME0zlNTFMGGpPsoNiqKgWq0uMkziYJDFYQ4042TsVqtVmKZpOVbNKoEcTjvaGe9uoqRx\nu4exAj/X0cGdKUbx28kgwguKojhGL+JWr2GvHSKiGmHPMehj6bqOhYUFCIKAVCoVihEVxvkzTdNy\nEINoGA2Es97JMey/PaLq5pROw6M7HDfY660SiYRl7DYLWbBW/8Khk25UAnmU1Btxsr3iCnemGMTv\nm5GbmpMompgGZdDSUDsU9DHJHHO5HAzDiFxlzy9IpA1ALOqjTNNEuVyGaZoYGBiAruuL/tacTkOM\nER5h4LjFydjVNG1Jbysivx61scs3DdiFtpTAOK2ldvOI0zxZhTtTlBN0mp/bfkpxiEzRFn0L4lj2\nOZJ+YLVazffjRAGpjyI766w7E+RapdNpS4XJ7kw1p9PU63VLLrufpLI5/uFk7GqaBl3XrfsET9Hq\njTgYtn49m3hKYHjEYd2xDHemGMQPo5/k0wfdT6kX/HRuSPQNoCOiEcRNr9Ucw4oqBumM2uujdF1n\n3rFXVRWqqlqOlJtzR8QESCogiTDQXgTOoReSAsxTtDjNBHGt3aQE+rlBFBcHIy7ziDPcmWKUXoxJ\nu9HtVpQgisiUX8d0q/jGcvQtrqp2zRL9yWQS9Xo9cOcwqLVgmiZkWUatVkMymUQqlfJ0rZojDPYd\nX14Xw/GCmxQtu/w6d9g5veA2JZCmFFRa0TTNiv5xooGffQbp5YaiqioqlUrXRjeLjobdcHWj+Bbm\nHP08Vr1ebztHFq8dEL/+UUQ9Utd1DA4OWml7ze/plBvvRKsdX6e6GNbPY1iw+Jvxk3YpWtxh5/hN\nu/XW7ymonSTeSX00Jzq4M0U5TjcML8axPa2PFSnpXpyAZsM1jo0s7VEbGubop9MWt0ibYRhYWFiw\nerd5jUa5Ob/2HV+SEkjU3IhRYo8wsH5uOeHg1mHv95TAOKRk0TCH5vVG6vu6SQmkYR5hUKvVuDMV\nMdyZYpBujVbDMFCpVGAYhmejm6Xohl32vBvDlaXIlL2xMpF2D+pYYRO3/lHEMZQkKdSm0AT7jq9T\nnQI3glvT7bkg0dSZuRlU1SpyqRyGi8MoFAqxigi2c9iJ2mZzipZb+sUA5rjHLvcP9F9KYKffRK1W\nQzabDXFEnGa4M8Uobo1jYsilUikUCgXPNxhWaqbskuCSJAU0smhxq8DIGk71UU6E2QOqV2hzDNvV\nKdgbvPZjKk2v7D2wFyW5BKSAdDYNMS2iZJQwNTMFHAGWScswtm4slLFEca+2O+wkisCVJzlB0JwS\n2EqVkqVNxF4gzxhOdHBnikHcPIi6rReikW4MWidJ8CCP1yu9pmrSqMDYy/mLY32U1/UY5s683Sgh\nEYbmVJq4qrn5GUUyDAMluYTMUGbRv4uiiEy+8W+l2ZLVKywMorpWbqMIXHmSXliLDjarUpL7GNBw\nNFiv7+t0PXjNVPRwZ4pyvNRMBVEvRHOqWNwMcSd6uaY0XzsgnvVRlUoFpml2XI/260KM0KiuVScj\n2DTNJSmBrOIminTmqjNdf1+5XAY67W2kGu8bHBzsbfCM4abXkL2Gj3VYc0Tihv0+pigKcrmc5VzR\n2qi6V3jNVPRwZ4pB2hlc9rQ+r4Xu3R4zKNz0R/Iz5S2sfkzkWG7PJ6mPSiaTvl7ToOjGmPCSBkez\nc6jrOhYWFpBKpaz+Ua2g/Tq2MoJZT91yG0UaNUZdf+fM3AzS2fbrN51NY2Zupu+cqWY69Roixq2u\n60ytKw5dkGcE2fRpTm22C/J4re8Li07PVJ7mFz3cmWIUJ2OSGKZB1gvRsutGe8qbWzqdT1IDls1m\nkclkWr6vHWE5H90Wmbupj4oKXq+3FCcjmMWmwW6jSJVKxfV1rKpViOn2cxZFEVW16nKU/YFTDZ8s\ny0tq+OIQDWUJWp7zQeC2vo+llEBi93Gigy4LhrOEVml+dkgKmKZpgRmmUdxQWhm0fqgTdnO8IOh0\nPv2oAaMVe9PoOKRlxsWx74ZumgbTFkV0G0U6Pn8cy5cvd/WduVQOJaPUdi0bhoFcihs87RAEwYpG\nSZLUMhrKkqHLoRen1GaySUST5L+byBR3pqIlPhZaH2E3+u0y4J0ksv06bpjF8c2GmF/qhDTTTc2N\nG6IQ1mh1Xfyoj6Ipzc9ey1YsFpl3DL3SrgcR0GgsTXaDoz5HbqNIFaXi+juHi8OYmpmy0gSdUGoK\nhoeHXX8nLUQp994qGkpz7Uucozos4eU6tFI7dZL8pylSWqvVsGzZsqiH0ddwZ4pBiDFJ0vqy2Swk\nSYr9DTzoNMawjXQnxyNuYgx2wkhDDROv/czsdLPewqzp64XmHkSk3s8wDCqaBruNIuXT7msQCoUC\ncKTDm9ST72MImuTenQxdJzlsLuvfO6ZpUuMoRIlTSmDYkVI3zwjeZyp6uDPFIGSHrlarhZoCFpWz\nEVZ9TdQRj7g5GwQWUxY7rQU/hE+iXm9hQQwSURSpaBrsNoo0OuhegEIURSyTlqE0a3M8RBGGYUCp\nKYDacDxYMlBplHu30yyH3byu4izrz+mM3xFCEvl0EykNYs11kkbnAhTumZ6exszMDM455xzMzs7i\nmWeeweDgIC6++GLP30m/VdPnNP+AdF1HpdJIPwm73iQKZ8owDMzPz0MUxcDTGMMmLGcxyv5ZQdVH\nRemE1Ot1pvu3RYnbNJogowtuo0jdGidj68acU+KGw0mJ8xuW5N5brSt7byt7NJS1a8GhD5pSArk0\nujt0XUcikcDPfvYzPPLII7j//vvx7W9/G1/84hexZcsWvOc978H111/vaYOIO1MMQdTCMpkMarVa\n7B8ImqbBMAxLyS5oRyqKSAGpj4pjj6ygUhajcqjtTq+fwif9TCtlrSCjC0FGkURRxODgYOTOhR/3\nMZbl3tv1tgo6PSsONVNxmEPYuG0l0e2ac3MtyOYexx3z8/N43eteh+PHj+Oll17CM888g2eeeQaP\nPPIIrr/+ek/3T+5MMYA9TapQKCCZTKJWq4V+wwvL2bCrowmCEOtcYL96ZLUjCicxbimL9sbQcYuQ\n0kK7psF+y2S7iSKROhxW6XWNRiX3HsRzrZ1ACq1CFpzeiNohdLvm/Ngo4mp+7iDneHh4GPv27cOX\nv/xlJJNJjI6O4oEHHsDQ0JDn7+bOFOUYhoGFhQUqIhdhGOV2JbtCoWClNIZBmM4iST3JZrOxcxZr\ntVqgMv1hYF8LQYqC9EPNlFfsO73tZLK9Ng2mJYpEK3GVe28WSGnVxJULWXD8ot2a65QS6MYp5E17\n3UHO69VXX40jR47gxRdfxN/8zd8AAFKpFM477zwA3jai2LR0+ghRFCFJEtLp9KILHLZMeRg0G60k\n7SdO2KW0yQM7zGMHuV4Mw7AM3iAd/zAjbUE24o3TbzcM4tI0mBY6SZ7HWe7djptU016cdhaJg21B\n8xy6SQl0Q9hpfjfeeCN+9rOfYeXKlfjNb37j+J5bb70VO3fuRC6Xw7e+9S2Mj4+HNr52mKaJXC6H\nm266CceOHcOqVatgmiY++tGPWu/xlOLt5yA5/kOaFzbfFKJI3QrqmCStb2FhAblcDrlczkq1iEI9\nMCh0Xcf8/DwAeJbS9kIYx9E0DfPz81ZaJuvGLFkH1WoVAwMDsUhVjBK/f1dkp1eSJOuekUwmoes6\nqtUqqtUqZFmGpmmx25Dxg70H9uKp/U/hxZkXUUqWoOZVlJIlvDjzIp7a/xT2HtjbEOpQO3wRg3Lv\n7SBqbWRDzy4yI8syKpUKarUaVFVt2aaArzdOt5BNIrLmiM2nKArq9XqjnlNRoOu64/oKW4Dihhtu\nwEMPPdTy7w8++CBefvll7N+/H1//+tfxoQ99KLSxtYM42Hv27MFnPvMZnH322fjBD34AQRBw2223\n4fHHH7fe1y08MsUATkZ+XJwpe6QmzkX9JMJh7wkWF2lse32ULMvU7ga6haxJIP6KmWEQxnropiaG\ndUe/V9xKngOIndx7t7QTsiANqZ16prF+D+RER3NKoKqqUFXV2nQGgCNHjuCJJ57A2972Nqxduxaq\nqiKV6iS96R+XXHIJDhw40PLvP/7xj3HdddcBAC6++GLMzs5iamoKq1atCmmEzui6jmQyiS9/+cv4\ni7/4C6tPHQC8/PLLWL9+Pd7ylrd4impyZ4oTGZ2anpLXYYXrg3IWiZhGoVAI9YZnJ4i0UKf+UbIs\n+/b9rQjS4SBrkhhPNBlFcXS0gsCpPqG5uWuUTYOjphvJ87jJvfdKK6fd3jONNLylOc2sE3G4z7B8\n/psh5R6kdrRWq+HnP/85Pv3pT2NkZATFYhEPPfQQLr30Uipqpw4dOoTR0VN9+tauXYuDBw9G7kyR\n9VCv17FhwwY8/vjjWLlyJYDGpnCxWPT83dyZYhTWI1NOkRpa8OsmbBfTKBaLSwwPlo3jVv2jWJ4T\nacRLpPjDcAw5wdOpuWvYTYOjplvJ87CFOogzQjut+gwpimI572H1GQqCuP8OWEUURZx33nn4zne+\nA03TsHv3bnzsYx/D7bffjne/+93YunUr3vGOd+Dtb387xsfHI1t3TtlUUUPG8KY3vQm7du3Ck08+\nifPOOw+PPPIIZFnGGWecseh93cCdKQaIU5qfUzTDzTHDikz5BRHTSKVSVg1YlPi5XoJUt4sCoq5Y\nq9VCjR6y7HiySjdNg+N6baKSPI87JCWQpBKR//ZLfZLTHXGJTLWbRzKZxEUXXYR8Po/HHnsMCwsL\n+OUvf4mf//zneO9734uZmRl88IMfxOc///lQx7xmzRpMTk5arw8ePIg1a9aEOgYnSJryrbfeiq98\n5SvIZrP46le/ilwuhzvvvNMSyeDOVB8RlSHWyzFbRTPaEZUIRS83Ybc9llg0pmnoH+XneeuXmj2O\nM+2U3AzDWKQUGBcDOK6S57RAImtu1Cd5HR/HTwYGBvDOd74T73znOwEAk5OTOHr0aOjjuOqqq3DX\nXXfhmmuuwa9//WsMDQ1FnuJHEEURf/zjH/H+978fN910EwzDQD6fR71e78n2484UxzW9GBKqqqJS\nqcQmmuGEaZqoVqtQVZXpHktOuI0osuQgkh5u7Wr24rK7yelMc9PgarVq1cA0Nw0mzV1ppNPvr18k\nz2nCKSLaXMdHU28rft+jBzfXotXfR0dHF9Uu+cV73vMe/PKXv8TMzAxGR0dx2223WZH9HTt24Mor\nr8SDDz6IjRs3Ip/P49577/V9DF4g5/K+++7DoUOHIElSIwp/8l7/uc99DsuXL/f03fGx9voMVtL8\n7ClUdpnZII/ZC16PR6Ju3TZXDmtuvZxHe+1X1I2j/ULTNCwsLCCTySCTyXDDgbMEYgAH1TQ4aFqN\np1AoAEc6fDhmkue00amOTxTFRT3TaFtbLMBK7V2vqKoa+sbtAw880PE9d911Vwgj6Q7yO9q6dSvO\nOuss6LoOWZaxc+dOKIrSU2YKd6YYwOlGyoIz5VcKFe2RDq81RCw8IGmr/bLjdfeUpCp6ce45/Utc\nmgaLoki15Hm/RUVa1fHpum6lHtnVJ4O+LrQ/b/uNTk4haSrPcYdpmrjiiisW/dsNN9yAt7zlLS17\nx7mBO1OMQns6la7rWFhYQCqV6qlBbdgP1W7Oa69RN/IdYeBlvRDFxW7qo8JYl17XRLfiJ0FD+2+Y\n05pmA9jef8getaJVfp0VyXPHMRbpGmMzvTqD9jo+e0Q07LVF25rtln5xymu1GrLZbNTDYAZBELBz\n506rQXI2m4WiKJiZmempDpw7UxzXuDX+/BQpoNXg9CPqRvPcaHI6/IAF8RM30DYeTgMWmwaHLXne\nLXsP7EVJtkXP0iJKRglTM1PAkUb0bGzdWNTDDJxu1hap++PEh05OIdnM5XSGnMuvfvWrqNfrUBQF\nqqpienoan/nMZ3qK8LFvJfUpgiD0FJL0SjtjLg4CDG4M6E7NhruBtsiUH/VRtBn89igpbamK3cDq\nuPsN3jS4dwzDQEkuITO0WCRDFEVLOKM0W4JhGNQ4p2HgtLZIHR+NQhac4OFpfu4hv4edO3f6/t3s\nWbt9CE01U63wKsDg5pg0GeeksasfwgW0Pej8qI8Ka05ulfa8pCpyOH7CmwZ3T7lcBjq1e0s13kdr\nZC0M2kn7EyGLbkVS4pIeF5d5dIJkAXHao6oq/vEf/xFDQ0PI5/PI5XLW/zKZDAYHB/H617/e8/dz\nZ4pRaBKg8NPBcHvMoGh1PCKPXK/XfW3sSoujGDenw369WIqS9sPDv5/ppmlwP0cWZuZnkM62r0FN\nZ9OYmZuhzpmKyohvlva3C1mwJpLCOQVP8/MHRVGwZ88eCIKA+fl51Go1qKoKRVFQLpcxNDSEJ554\nwvPvlw0Lg0MFzY5GUA5GlDg5U6ZpolwuwzAMXxu7hvnAbeck+lkfRUMk0V7PViwWPRsNYcwl6nPF\niRY3kYV+k8g2TRM1tQYx2/53K4oiqmo1pFGxh31tAYtFUhRFARDvdFMemeLYyefz+O53v9vxfbxp\nb4yhJc3Pjr22pheDtRNRz9Neb1MoFGJ1c2a5f1SrdeFnPVvQ0Dw2Tvi0iyyw1DTYD3LpHOaN+bb3\nJMMwkEtxI9ItboUs4ryuWKSTU8idKfdomgbTNPHHP/4RTz31FObn5601v379elx22WWev5s7U4wS\nZZofzb2HesV+XknqWzabRSaT6fDJ3o4VNM3HiuM1JOmm2WwWkiTFYk6c/qWVRDYrTYN7YXhwGDOl\nGUtswgmlpmB4eDjEUcWHVkIWpJaPZJ30g+POOtyZcgfp13bw4EF84QtfwIsvvohXX30Vb37zm/Hw\nww/jve99Ly677DLPojbcmWKYqCI2CwsLodXWROE0ElXCOEmD2wmyPioqlcl6vY5arRabdNMgYbF3\nD8d90+A4yGMXCgXgWIc3qSffRxksppfZHfdkMmk5Uiw77ixeByfc1EytWLEixBGxCTmPL730EqrV\nKn72s59h+/bt+OEPf4hf/OIX+MEPftDT98fLSuwjwr5JEAcDQKgORhTGOXl4BJ36FnZkyjCM2DiJ\n5NzZ5fj9rGezHyMsdF230i6DMlx47x730FzP1q5psKZpABr3MVZTt0RRxDJpGUqztrUqijAMA0pN\nAdTGWuXOv/+Ypmk57Z0cdy5kESxu7kHVapU37e0CVVWRzWZx5MgRVKtVyLKMw4cP4+DBgwC83/fZ\ntab6iKhrpux1KABie/MkD4tkMomBgQHmDJB2mKYJVVVDcRLDgjiHgiCgWCwyeb3Ib5ikKJJ6GcMw\nLMPFL2U33rsnvtijVqSflSAIVDcN7sTYujHnKOowj6KGiZMCJembRquQBc0bIV7gan69Q+4XZ555\nJi6//HKsXbsW4+PjeOtb34rBwUFcccUVPX0/d6YYJSxnyl43JEmSVcAXFmHNU5ZlVKtVpNPp0NIY\nwpobeeiJohi4kxjWnIhinyRJyGazVDzAu4WMmay9fD4PURShaZqVqmivk9F13Xq/l6gV791DF0Gl\nW9qFLFhsGmxPayKbP3w90kOnvmk0KVDStraDgDw7OO5Yu3Ytli9fjmXLluH222/Hs88+i6GhIWzc\nuBEAPGe3cGeKcYLKCyaS2bIsx7oOpTlNTFGUWO1qEWfYKbpBjLnpuWlU5AryUh4jxRHqd33Jbnsm\nk2G68JYYIrVazUpRJClaBKeIA4AlUSs3ReIzc+z27omKoIyxMNMtedPgcGG9Vqeb8bfqm+akQMlT\nArvHzbXgAhTuIBkXTz/9NO6//35ceeWVGBsbw+bNm305f9yZYpQgb9bEyAawRPaclia6fmAYBhYW\nFiCKopUmFmaNVpBza+4fRRSaCHtfbRhzRtKAlJMgFhrG3NFjRyEebtQrjK33ZsyFMadEIhG4gx/G\n9emmtQBZn0Q0pFt1t6pahZjmvXuiJsp0S940mBMkbhUog46Ksu7QdkOtVuPOlAvIvfSCCy7AK6+8\ngm984xswTRPbtm3Dn/3Zn2Hz5s092RR8m4ABWt0UgjD2NE3D/Py8VTfU/DCPizOlqirm5uaQTqdj\n2T+qXC5D0zQMDg5aUQtyHokxJw1JyBay1jUWRRHZQhbSkNRwtDw4lUE+HO1zYvl66bqO+fl5CIJg\nRZ68QCJW2WwW+XzeqreSZRmVSgX1en2RE51L5Tpe06B698Qp2tsr3aRbBg0xfkmUN5tt3A9UVUWl\nUrEEa3Rd59eQ0zXN9yiyEUQyJsjmmGEYfH054MYp5DVT7jFNEytWrMAHP/hB7Ny5E//0T/+EXbt2\nYXx8HHfeeScAWOn03cIjU4zg5FT46WiYpglZlq0fJjHM4oZ9nk7pi1H2fvIDe5PhVv2jyuUyjGQH\nozppUFM7QwRQksnkojmx+PC198JKJpOoVCq+fK99RxhwjloNZgdxpHQE2YHWNWa8d0/w0JpuyZsG\nc4DgojrtoqIkfZlHRbuH10y5RxAEHDt2DC+99BKOHj2KV155BQsLC7jkkktw4YUXWu/xAnemGMcP\ng5IU8+u63lFemuXIlJt5RtHXyi/a9Y+yz2t6bhpSrn1/KSknYXpuumtjzu/zZ3c+7I2TWXzQNvfC\nctrt92tezT2JdF2HIAhQD6kQkg2jRkyIS42WAHr3sHitgoSVdMt+bhrsFfJ75ueiM/b1RdpckHTT\nXoUs4pLmx2um/IOkTT/22GP4+te/jmw2i7e97W24++67sWrVKut9XjNFuDPFMH7cLOyy527Sp1h1\nNrqdZxj4dS6b66M69Y+qyBWIhc7GXKXqT9TEC50iiGHg5/UJqheWG+xGy2nF03CifgKKqCCRTkBV\nVJgwoSkakkYSKzIreJF4wORSOZSMUtvz3Eu6ZVD3505Ng+0Kgb2sobgYwhz3tIuK+r2+4oau60z3\njAwLsmY2bdqE73znOzjttNOsvxmGYa3BV155BaOjo11nZ/ErwDC9GnvNsuc0PsD8MGi7mSdrzqJh\nGFajV7f9o/JS3pUxl5eiSR3oJlJKO6R+TRAEKvp7NffuqSgVSAkJy1cstyJ/ROGNp3IFw3BxGFMz\nU5bYhBO9plsGfd3aNQ0OU2iA4z80PP9apS27XV9xccjdXAviBHDcMT4+DqDhhJKIJ2lJkkwm8alP\nfQp33HEHVq9e3dX3cmeKEfysmeo2kuHHMb3Sy/Fol3e31/54uRm6qY+yH4ucx5HiCI4eO4psoXXX\ndLkqY2TlSNdj6nV9EIXFThFEFpzebq5PmLTr3eOUykVLz5i4UCgUgCMd3hRAumWQOEWtSH870jTY\nvo44dEPb79zN+opr1KrdtSDpkRz3kJT35k1acp4VRfGkGcCdqT6j151yFoxYYHHExq30NMDO/NrV\nR3WiUChAPNwhzU8TQzfmNE3DwsICMpkMMpkMdQ/0bujl+rQijLXpVGvllGrDo1beEcVG64HSrK3P\nlCjCMAwoNQVQG32mWDUK7VGr5qbBiqIAoLtpcC/EJSJCM07rq1nen/ye+uV69MMc/cA0zZaZLuQc\n1ut1Txvv3JlimG6NK1LMz5Kx6sWA1DQN5XKZuoiAE2R+bsdomibq9TpkWe4qqmg/j3bBg5fQAAAg\nAElEQVRjzuozdfLhI1dliJoYujEny7KlSkSLkqSXtddNrRftjrsbhUAetfJGc7plVa0il8pheHiY\n+qbZ3SII7poGcwed4wWn+xRx2iuVCtNCKf3iDIaFIAh47rnncMYZZ2Bk5FTmDdnEFUWRO1P9iFtj\njBjg9Xq9Z2M1KgPQ7U2FGOVeIwI0G7ik11I39VGtGFt/ypibnptGpVpBXspjZOVIT8Zct+fPqzgD\njdeJzIX0wmK51suJVlErLpvtjXbplnHFjTw2AKt+ga+j8DFNk2lnnjhPACwVSrtQStxSTvlvxB1E\nze/WW2/F61//evzt3/4tNm3aBAC45ZZb8NnPfhZnnnmmtT66hTtTjOD0g3FjUBID3DAMXww8QRA8\nNXPt5XhusBvl3daBRYlbp8CP+pvm40RtzBFnDgAV4gy90Jw+G/cHnBvZbGKw0Ob0cuihWR7bMAzU\najUe/eT0BNl8bSeUwkLKaadNZEVRqKsFpx1iK37xi1/Ejh07cPHFF2Pfvn3WeXz44Yc9fS+71gun\nI5qmYW5uzjKaWd0p7+RwENEC4jD24kjRGPFQFAXz8/PIZDLI5/OebvhhPSS6cQ7n5+eRTCYxMDDA\ntCOlaZo1l0KhQN0DOQxIxCqbzVrRbxIRJ2k3qqpS99vi0ANR1QLguI6q1Srq9TrV64inZdENuU9l\nMhnkcjmr3EFVVVQqFUuYy6kHII2QulxOZ8jvslKp4Dvf+Q4uueQSfOITn8Bzzz0HWZaRzbYW5HID\nG9v3HEfaGa69prt5OWYUkDowSZKQzWZ9eZDRolZoT89kKdrWCb/EGYK+Tm7WehBCE6zTHLWqVquW\n9CyPNnDcwpsGR0O/OIStUk6dUpejSgnslHJZq9W4M+USsqbXrl2LSqWCG264AZs2bcItt9yCyclJ\n7kz1C63S/JpT7oJOd4vCmXI6pr3Q30/RAloeIvb6qG7UCFtBgxPsp3MY9XXyYy72a0LSBKdOTGGu\nOoeCVMBwMR5iBM2pXLzWiuMFt0qTcamF4XjHi0Po1nmnKSWQbJhz3POVr3wF+XwepmnizW9+M37y\nk5/gX/7lX6w+i17hzhTDNBvIuq6jXC5baX1xeaA0zzOMpq5h7c45OTm09idyQyunzX7N/HAOo8Tv\nuex9dS9KckNZMSWlYOQNlFDC1MwUcKQhkz22bsyn0UdLN7VWPNrgjag3TcKg16auHE4nnHpbaZq2\npLcV2QQKYo11skO4M9U9Z511FoBTG7LDw8P4+Mc/3vP3cmcqJoQlex51hIM4jJ2aunol6ocuSRvL\nZrM975TYifK6BX3NwsRtU+Fuvq8klyANSdZrojqUyTeuf2m2BMMwmD5vreAKgcHQb+fKjeEbhoJb\nHBzZOKT5+a1I6JQSSHqnERVK+xoL6/yRdiKc6OHOFMOQNL9arYZ6vd6xr41fx4wqzY84jNlsFpIk\nBe4whhmZsqeNhXEdg4acv6CuWRjrsPkYpH+ZJEm+bVhUKhUYyQ7qmCmgXC5bqotxMHac4FErjh9r\nu53hG4aCG1+X8ae5dxpZY6R3ml/3qk6/B14zRQ/cmWKEVj8oXdcBgPnUqXaQ+ihVVWPhaDTjd32U\nE2Gq+RHq9bqr5rUsQCKGfjcVPj5/HNKK9sIV6WwaM3MzfdWPCOBRK44/tGoaHGa6Fie+kDVDngth\n1vNxNT964M4Uo2iahkqlAgAYGBigTvraL8jDL0hHo5mw51itVpFOpwOvjwpzTkHXtIUFEXRRFMV3\nQRdBEFBVq8gK7VWERFFEVa36dlwW4VErjh/Yo1ZEdr25aXAU6VqdIAI1M3MzqKpV5FK5wARq4hD5\njnIOftbz8cgUO3BnikGI7Hkmk4GiKKHeNMJ0NIgQgyAIyGQysYu8kd476XQ6tLznoB8yRF3SNM1A\n66PCaB5NUktJI94g1l8ulYNu6G0dTsMwkEvxB6YdHrXi+EGz0mSv6VpBPBv3HmgI1CDViFKLaREl\nI54CNXHEqZ7PKTLqZSOI10zRQ7ys05hD0sHq9ToGBwetnbUwCcuZIo1qs9ls6AZR0HM0TRO1Wg2V\nSgWpVCqU/lFhnD/SvBYAcyqEzZBdRACBKmOuGFwBuSa3fY9SUzBcHA7k+KxiGAbm5+fxh8k/4MVX\nX8RrR16zGi9ms1kkEgkrek8ii6w04uREA2kanE6ne2oa7Od9jwjUZIYyyORPbSgSgZrMUKahBBrw\nxhJr0BpdI5FRkomSz+eRSqVgGIbjGnMTmQrbmXrooYcwNjaGTZs24Utf+tKSvz/22GMoFosYHx/H\n+Pg4Pve5z4U6vqjgkSlGIMaDXUWMpL/FCeJo2NOqNE2LzTyJQ2wYBorFopVawjokWprP51GpVKh8\nkLlF0zQsLCyEUkORz+chTndw1FSgUCgENgbWcLtTz6NW7EGTEUxD0+ByuQx0KjdtEqjpFZquQdxp\nFRklawxobCy3WmPVarXnZrPdoOs6brnlFjz66KNYs2YNtm7diquuugrnnHPOovddeuml+PGPfxza\nuGiAO1OMQFLd0um09YOKSlkPCOaGS/LCgaXRgDDnGdR5JRLhyWQShUJh0bkMgyBUCp2c32q1GrrS\nnl/YnUJiPAWJKIpYJi3D7Oxso89UpmE5GYYBpaYAasM5iFuKq1fsO/V2nKTkifHBa604fuCmaTDg\n7/18Zm4G6Wx7wZt+FaiJG81CFoZhoFpt1MqSNZZIJPDDH/4Qb3zjG7F+/XpL4Cksnn76aWzcuBHr\n1q0DAFxzzTX40Y9+tMSZisvmdzdwZ4oRRFGEJDmrfoW9kxSEUU5kp0mKhf27ozBw/L4Z2PtH2SXC\nWTbe7CqErDeJdnIKSSQjaM5edzaAxu7yVGkKc5U5FKQChoeDKTBnmV536rupteJwWtFKZEBVVcsI\n9qNpcFWtQky3//1zgZqlxCG6RsZP7D6yrh599FF88pOfxNDQEM466yyMjIzg4osvDsWpOnToEEZH\nR63Xa9euxVNPPbVk3E8++SS2bNmCNWvW4I477sDmzZsDH1vU8CcGIzjdGFi/WRDs0QAn2emwI3B+\nR2469Y9icReHiIOkUinm66NaOYVh9bICGgbR4OAgCoUCFEXhDlQL/Nyp7xS1AhrN0AHwqBWnLcRJ\nJwIDqVTKl6bBuVQOJaPU9jN+CtSw+CzqF0RRRKFQwL333gtd17Fnzx586Utfwve+9z3cdttt2Lp1\nKy6//HJcfvnlOP/88yNrsTIxMYHJyUnkcjns3LkTV199Nfbt2+f7WGiDP7EZJ8omur1imiYqlQpq\ntZolqEEDfs6vXC5DURQUi0VHR4pFYQ1VVTE/P49MJoN8Pr9kDmGtST+Ooes65ufnIYoiBgYGqHBi\n2q2JKH7vNFFVqx2vkdedehKxIuID5Fx3Iz5AA3HYlWcZIjIgSZIlMpBMJqHruiU8JMuyq1rg4eJw\nI923DUEI1LC+fuLwG2g3h0QigfHxcRSLRdx///04fPgwPvrRj2JychJ/9Vd/hdWrV+O6667zXZhk\nzZo1mJyctF5PTk5i7dq1i94zMDBgybVv27YNqqrixIkTvo6DRnhkiiGcDClWnSlSPySKIorFYkcD\nkjW1IjI/u2BIK2g3zghuomxh4ceDUlVVlMvlJamXHP/xa42HtVNvr19IJBK81orjmV6aBhcKBeBI\nhwNwgZq+hdRMDQwM4F3vehfe9a53AQBeffVVPPPMM75vDl500UXYv38/Dhw4gNWrV+N73/seHnjg\ngUXvmZqawsqVKyEIAp5++mmYponly5f7Og4a4c4UJ3SIEZvJZJDJZDoaIlGk+fVyvFb1Ua2OFRa9\nzItEEePQiBcA6vW69SCK0insB/xc48PFYUzNTFliE04oNQXDw/7u1PO+VuHAekSh0/2126bBRKCm\nNGtTrxRFLlDTB7j5LVQqFcemvevXr8f69et9H1MymcRdd92Fyy+/HLquY/v27TjnnHPwta99DQCw\nY8cOfP/738fdd9+NZDKJXC6H7373u76Pg0a4M8U4LEWmaIpsBEFc52cYBhYWFlxF2QC6U9FM00S1\nWoWqqh2dQpbSFfsFGnbquUIgpx3dXG83TYM3rN4AQRBQrVZxfP44qmoVuVQuEIEa1p1Z4NT9lPV5\nuKFWqzk6U0Gybds2bNu2bdG/7dixw/rvm2++GTfffHOoY6IB7kwxDivOVC+RDRYiU/b5FYtF1w+4\nMOfm5Vik55LbKGJYeJlLO+n9qKDlfHaLcPw4xH37oJ93HhBiihGNO/U8asXxg2ZpbPtaUlUVyWQS\nq0dW87XUJ7hxbE3TZD5LJC5wZ4ohWhmQtO9sd1M/xCJxnV8nlcV20LYmWVIfpHV3WJicRPKnP0Xy\npz9F4oknIBgGtDe+EbWHHgp1HGPrxizHeGZuJtCd+m5xilrZm3DyqBXHLTQ0DebQD7/udMCdKcaJ\n4ofUTVSgm/ohP47nB2HOj8aUuG5S4Zyg7eZuF5rIZFrX2tACTedPfOklJH/yEyR/8hMkdu9e8vfE\nM88ApgmEPGYiJU97o1JRFB0jDTxqxekWN02DyXryuqFA60ZON8RhDkDneZC0UA4dcGeKcWhN83Nq\nghrk8fzGzfxYq49ycx5pTIUDTo1rem4aFbmCTCKDXCrXNhJhmiZkWfYsNBHVbytyNA2ZG25A8vHH\nIZRKbd9qnnlm6I5UWPh97XnUKv6YphnKPbNV02DiXJGoVa9Ngzn0w68tHXBniiFaNe6lbXfCMAxU\nKpUlTVBZwU2esl/KdkFcv2bHIy/lMVIc6XgcTdNQLpeRTqeRzWY936T9ntPeV/eiJJdgJA1IOQli\nQURJKeHA8QOYLE9imbQMY+vHFn2GRNc0TaNefZC236/06U8j9aMfuXqvsXYtoOsAxee3F4I0VHjU\nailxiSqETXPUijjqvTYNZpG4rCE384jDPOMCd6ZiAE2RKb8McrfHC4J2x6O9PsrR8TBKOHrsKOrz\ndYzkR3D+2ecv+RxJV8zlcpAkKYKRO2MYBkpyCdLQ4jGJoohMPgOpIKE0W4JhGJaRQJxJQRB6ukZE\nxbDZKfWzLofGtFBjdNT1e5OPPYbCaafB2LgRxllnwdi0CcbZZzf+e+NGIJ8PcKTxgUetOH5hl18H\nYCkEkt5WABalBNrXUlwckX6Atk24foc7U4xDU80UESygzSD3iyCavPppHLdzPLKFLEzRRKm82PEg\n6YqyLPecjhkE5XIZRnJpw2b7eTOSDedpcHDQN2d+76t7cax8DLIpY9nwskVOqXhYdIyGxQX1Qx+C\nMDuL9Je/DOGk8dUOQZaRePFFJF58ccnfjNFRSCcdLYyNWY6WOTIS2/RAP+glasUNYo6dbpoGcwOd\nHjr9jhVF6VoYihMcdFlOnK6hIc3PLlgQhEEedWSKlfqoVo4HQRCERY6HaZqNzxiGr+mYfl6v6blp\nSLn2jrmUkzA9N41MJuNLdI04pdllWaAO67wQpxTAkmiYX5CIRNTpOMr/+B9Q3/1uZN//fiSefbbl\n+4zlyyGeONHy7+LkJNKTk8B//MeifzeHhhZFsfSTUS1z/XqAMoc+arqNWnGig3ZHtlPTYDJ+cg+i\neS6toP0a+AVR2uXQAX9qMUSrminDaG1ABzUOcszmlKogHuZROox+1kc5EbrjkW04Hvl8nup0RUJF\nrkAstF9TgiDgxPwJLC8s98XZ7eSUAoujYX5BenoJgkCF9LG5YQOqDz+M9Je+hPQdd0BwuM9Unn8e\nACDu3w9x377G/7/0UuO///AHCLru+N3C7CwSzzzTUAO0HzOVgvG61zXSBO3/27QJGBhwNW5VVXHo\ntddw6Pnnoc/MIDE8jDUXXIA1Z5xB7UZIN3SKWpF+Rf1iVHK809w0WFEUq68VaRrM00ujoZOYSbVa\nRTabDXFEnHZwZyoGRFUzRdLewmroGpZxQOZHe31UM24cD1EUMV+dx/z8vK/pikGRl/IoGSXHhwqR\nhq1UKigKRd+cXeKUmkbr3xWJhvnlTNlr1ggkAmGXPg5dDjeVgvLJT0J/61uR+cAHIE5OnhrfqlXA\n0FDjv7duhbF16+LPKgrEV1+F9tvfIvXKK0i98krDydq3D8LCguPhBFVFYu9eJPbuXfI3Y/XqRiRr\n06ZFjpZ5+ulWyuD/d//9SO3bh1FZxptzOaQSCajHjuHgs8/iOUmCetZZuOTaa306OdHjFLUi66VS\nqXBjmOMaQRAgiiJM00Qmk2FWFKVfNhFISQWHDrgzxThR3DTsjoaXhq7dEsUcDcMIxeHwMzLVzvEg\nKIoCSZUCTVf0c04jxREcPXbUSq87dRAAJlCtVCHXZKw7Y51vUUPilOqGc1QFaDillWrFl+PV63Ur\nRTaRSEBRlCVF5PaGnVHsGOtvfCMqTzyBzMc+htT3v9/4tze9qf2H0mkYZ58N5cwzoScS0Ml6M00I\nR482HCsSxSIRrcOHW36dePhw4+/NKYMDAzA2bYK8cSMyhw7hklWrYJ52GsyT5y6VSGD9wADWA3h8\n3z6oqhqLCJUTJJpJolesGcP9YgizAG8aTDfcmaIL7kwxTtgpcPZUgGKxGJrkdFhpK2R+hmFgYGCA\nKaOrpeOBUw5wtVLFeWeex8y8CoUCxMNLnUP9ZPpYIplAPpnHgMsUMDcQp7Tdb8swDOSl3vLVSTG4\naZooFovWrrATRPpYVVVr86LZSCbOVWC/kaEh1L/5TajvfjcSe/ZAve46b98jCDBPPx366adDv/TS\nxX9bWDiVMmj/3yuvQFBV569bWEBi1y5M7dqF9QBSAExBgPaud8HYvHnRe9fKMg699hrWve513sbO\nEFwhMHxYdwbbjT+MpsGcU3RaS7xmii64M8UQUfeZItGo5l3zuEBSxjRNsx4aQePn9WvleBiGgVq1\nUVycNtMoFou+HK8dfs1JFBvKeaXZU3Lvuq6jUqlArsmQTAnLMst8fXgTp1TKtq4/k6syRlaOeD6G\nvTlyLpfravzk99dsJJM6h+bog6/GnSBAv/xy6Jdf7t932hkYgDExAWNiYvG/qyqEAwcg7t+PBIlm\n7dkD8eWXIdRqAIBJAH9KhmmaSPzqV0ucqdFcDv/v+ef7wplqhve14vgFzU2DWXdo3cIjU3TBnakY\nEIYzRWo6stksRFG0HsBhEbTTaK+PKhQKlqHLEk6Oh2mYKFfKMFUT0IDlmeWB7xr6fa3G1o9ZPZ8O\nHjuI2cos1gyuQSabwejoqO/zaeWU2hE1EYVCwdP367qOhYUFS02r1we/k5FM1LmA1j1lmME0IRw5\ngsTvfgdx1y4kdu9G4vnnIczOLnqbhkZUiiBMT0OYnm7IsJ8klUhAn5kJZ9wUw6NWHD/hTYP9p9Oz\noVarcWeKIrgzxThhpL01y4Jrmha5HLufNPePClMdkVw/v3bTiONRLpdx6NghnFg4gdMHT8fq01cz\n3UeERGPWrlyLcwbOgSAIKJXa14d5hTilM7MzqGt15PN5iKLYKO6vyhC1xt+9HJusNSLfPj8/39Xn\nOzmqzepc7XrK0GrUCIcPI7F7t+U4ibt3Qzx+vOPnkgAUSUJKliGgUVYnnDixyJlSdR2J4eHAxs4q\nPGrFAfx5DvXSNNgP+ikyxdP86IE7UwwRdpofUYSy13QEfcxWBHHMVv2jaOjd1QvEoD59+HRsWrfJ\nSsWo1+tWrVHQx/fTISVRKbuqYtDXZ2z9GDRNw+HDh6HqKirVCvJSHiMrRxqRKw+OSL1eR61WC22t\nOfWUIUYNLVErYXr6VLSJOE5Hj7r6rLlsGfSJCejj4zAmJrBckjB54414nSwDAIwVK2Bs2LDoM5PV\nKtZccIHv86CJXtcTj1p5p18M+W7opmmw72nJDNNpLVUqFV9rhTm9wZ0pxgnKGNM0DeVyGalUCrlc\nLvIbnN/zbNc/KqomwX6cY7sDHFTfrzAhvZdaye8HabyIooiBgQEsW7asp++xN7UOoleZW9wYNYGm\n4pw4schpSuzeDfHgQVcfNYtF6Bdc0HCcxsehj4/DPPNMSxIdpokN73sfnp2bw+vQ6Fel/af/BDTV\nPR6UJFx4xhk+T4w+/PxNhBm14s5IvOnUNBgISUwnBtTrdZx22mlRD4NzEu5McZYgy7JV3ChJS4vw\nWY/csNY/yi2kFqeVA8zadSPr0El+n5VrRqtz22zUtCog9yx7PDeHxAsvQNy9G6lnn0XqhReQOHDA\n1UfNfB76BRdYTpM+Pg5zwwagzblL3XMPMj/+MXQAjwNY9ed/jjVDQ0ihkdo3Wa3i4Mk+U6woWdII\nj1rFm06NYv2mOS2ZRM97aRoc9hyCwo2aH2/aSw/cmWIcYiD7saNnmiZqtRoURcHAwICVHtbqmGHi\n1zGb66PanbOwmwT3gl0gJJPJ+DQyb/Q6H7frkHY6Obc00aqAvFn22DH6UKkgsWdPI12P1Dm9/LKr\n45qZDIzzz7ecJmNiAsamTUAX0Tvx6achffKTAIA/B1C58Ub84cMfxv97/nnoMzNIDA9jzQUX4MIz\nzuCOlM/wWiuOX5AUP76e3EFSxjl0wKaV0qe0qpnyAyJaIAiC6x10llIyTNOELMtLalacYGVOQOu6\nLydYiEyZpolyuew6khPkGuzlfNmd9qid225p1zBYnp2FtHcvpN/8phFtev55iC+9BMFFjZyZSsE4\n91zoExONqNPEBIyxMaAXZ/n4cWSvv97qQaWPj8P40pewTpL6Uv48SnjUiq1nIu14bRoch2vg5rnD\npdHpgjtTMaDXmhtSH5VOp5HNZjt+TySF6j0Ytu3qozodj+bIlJd50QxJv0wmk64iObQ+MEl6Yifn\nFqDcwVUUiC++iJS9xul3v4OgaR0/aiYSMDZvhj4xAfncc2FMTEA8/3zAIW3YM4aB7Ac+YNVdmUND\nqN13n7/H4HjGTdSK18bQBbX3IrhvGkzzHLqlU5ofd6bogTtTjOGn8WWP1jjVpbgZR1gPQa/zjmt9\nlJPCnRvCeNB4uVbdpF8GDYnSHps9hqMzR3F65XSMFDur+NnTE5lzbjUN4t69SOza1XCcdu2C+OKL\nEE5KGbfDFEXomzZB2bKlUes0MQFs2QLhpENMah+6ub+4IX3HHUg++qj1uva1rzVEKTjU0Spq1Vwb\nEydDmFVYeEa2axpsGAZkWYau68z213NjWxG7jUMH3JmKAV6MVz+iGrQ/+IiB3koJrh1hRgy6PZbX\nedH6QGknNBE2e1/di5LcaHqczqah5TWUEiUcPXYU4uFGf6mx9WNLPtdtemKk6DrE/fsXS5Lv2QPB\nZSNuY+PGRo3TxASMiQno550HFAqLlLl0XQeq1UWF5X6SeOwxpL/wBeu1/LGPQd+2zddjcIKjVdRK\nOxn1NE2TR604rrFHrSqVihW9inPTYN5nii64MxUDujXG/YjWhP2A62aO3dRHsQZNjkc73FyrXiM5\nfju8hmGgJJcgDUnW+MhxsoWGalJptgTDMBY9kO1RwkKhEOhvo+s5GwaEP/xhsST5Cy9AKJfdfXzd\nulO9nMbHoW/ZAhSLLcfm1DDY/v9+GDTCkSPIbN9u1Wlpb34zlJMCFBz2aF43ZG30ougWBbRvLvYL\nUTcN9gM3kSme5kcX3JmKAd0YWL1Ea7we0y/cGuh+1BHRFpnyo1dRWHNys6ZolAwvl8swkqeEFJzm\nYSQbKYCDg4MAOvfBChXThPDaa6dS9XbvRuL55yHMzbn6uLF27aI+TvoFFwArVngait2gIWtOFMXe\nDRpVReb66yFOTzfGvHIl6v/yL72JWHCogvRDA9istaJxTG6Ji3iDfQ5xbRpcr9e5M0UR/AnEGL2I\nFbhVfevmO8PCzbz9ro+iZafRi9IizdAqGT49Nw0p1168QMpJmJ6bxuDgoCVH30uU0LODa5oQDh9u\nRJuIHPnu3RBPnHD1cWPVqkaKHpEkHx+HuXJl9+NwiZNBo2la12k40mc/i+SvfgWgUatVv/demLxx\nZWxxW2tFe9SKQwesNA12u3HMui0QJ7gzFQM6GWSknsMwDN8K46NI8zPayC/7FXGzHy9MWl2/bpUW\n2xFmZKrVcfyUDPd7PhW5ArHQ/uEkiiIqlQpqtRpkWQ6kD5ZjC4RjxyDu2oXcM88g9cILSD7/PMRj\nx1x9n7F8ueU4kf83Tz8diMhQaCW93qlhcPJnP0P6zjut71E+9Snol1wSyRxoJs5GFlcI5PhJEE2D\n/RxbO+IQRYwT3JmKAe2MSnsUwM96DloknYOqjwo7zc8JEvnI5XKQYiD3XK/XW14nEn2bnptGRa4g\nL+VdKej5SV7Ko2SUFh9PWPzQ0nUdST1p1XkFMrbjxxfXOO3eDfHQIVcfNYvFRQ1w9fFxmKOjkTlO\nbnDTMDg1OYnCTTdZn9He8Q4oH/1ohKPmBEE3BiJtUas4GLf9PAeWmgbTYHtxFsOdKcZo1bjX6cdF\njPEgGoeG7Uw5HS9OfZbscyMpmUFFPsKmU72XXUFPykkQCyJKRmcFPb8ZKY7g6LGjlthEM4ZhYPb4\nLM4dOdc3mX1hbg6J3/wGid/+FsKuXRCeew6ZAwdcfdYsFBpS5KTGaXwc5oYNVDtOnXCMWlUqyN9w\ng1X7pY+OonLPPQ3jJ8rBcqiCR604fuK1abAfuHEIWarv6gfYttI4jthV0uJgjANLnamg+0dFFZkK\nUmI7ijQ/e71XsVhccp2aFfQIoii2VdBrPo4fFAoFiIedz7eu6ajWqkgYCaxcudLbeiuXITz/PMRd\nuyA8+yyEXbuw7OWXXX3UzGZhnH8+5PPPhzE+DmHrVhgbNwIMbyC4QRRFZD/9aaT27AEAmKkUFr7x\nDdSzWaBa5QYyxxHaolaccAjy+ea2aXBY8us8OkUX7FvZHEfjFUCgYgVRpvn5XR9FA+TmTBzEoCW2\nw4CkmLar92pW0HOiWUEvKESxEQUrzZ6KkgGNCO/87DyyYhari6vdRUBrNQgvvABh1y6Izz3XiDrt\n3QvBTWFxOg3j3HMbkuQTEzDGx2GcfTaQTKJeryORSMRK7r8dye99D+lvftN6LckKr/kAACAASURB\nVH/xi0j86Z8iDywxkGlW5SL35Zm5GVTVKnKpHIaLw6GmsfYzPGrljjik+QHB1zy3axpsj1p5lV/v\ndB3icp3iBHemYgBxbPwUK3B7zLAgAhTt6m78Pl6YkSld1zE/P49sNgtJkgK5dmHOyTRNzM/Pd6z3\n6lZBL2jG1o9Zhu+x2WOQKzKyShZnj56NZcuWORu+sgzhZJqe+NxzEJ57DsLvfgdB1zsez0wmoW/e\nDOGii2CcbIIrb9oEIQY1cr0i7t2LzH/7b9Zr9T//Z6gf+MCpvzsYyHZVLlp6yew90EhjRQpIZ9MQ\n04001qmZKeAIGmms64JPY+U0CCpqxQ3c/qVV3WdQTYNlWfa9dIPTG9yZYoxWNVOqqkKWZeqbuXqF\n3KBkWWa+PsoOcYI1TcPAwADzEQciCGKapqv5uFbQq1ZaHs9vRFHEwMAAEokElheWL56HqkL4/e8h\nPPtsI11v1y4Iv/kNBFXt+L2mKMI85xyYExMwLrwQ5sQEKhs3Qshmkc1mT83nZB8mJ2gRfgmcchmZ\n970PQrUKANA3bUL9q19tWQ/WqmFwUMaMW0gaa2ZoseEjiiIy+ca/tUpj5YQDj1rFBxocWj+aBnea\nB2/YSx/cmWIc0zShKAp0XQ+1PipMo84wDFRPGlVB1Ec5Ecb8iDCDrutIp9OhOVJBPXCIIIimaQDg\naj6OCnpNGIaBvJRf8u9BrQOrzsswkNq3D6mXXkLy+ecbjtMLL0A4aWR1/J6zzoI5MQHzZNTJ3LIF\nyDfN4+S65tgwTWRuvRWJl15qvMxmUf/XfwUGBlx93KmXjN2Ysf89aAO5XC4DnX4GKYSSxsoCURvD\n/Vxr1RebNBEQRNNgIiwWJg899BA+8pGPQNd1vP/978ff/d3fLXnPrbfeip07dyKXy+Fb3/oWxsfH\nQx1jlHBnimGI0Wea5qL83TDo1PfJL0h9lCRJkGU5Ng8vuzCDJEmhCUMERXNj4dnZWVef66SgBwBy\nVcbIyhG/huqMYUB45RWYzzwD46mnMLRnD5J79kCoOEfEmjE3bLCiTcbEBMzxcYAbx55IffObSH3/\n+9br+le+AmPzZs/f51fDYC/MzM0gnW2fKZDOpjEzN0OFM8VruxbTTdQqLsTlGUsjbpsGE0GLVtRq\ntVAjU7qu45ZbbsGjjz6KNWvWYOvWrbjqqqtwzjnnWO958MEH8fLLL2P//v146qmn8KEPfQi//vWv\nQxtj1HBnilHsIgyiKFrh47hg7x+Vz+eRSCRCnWOQkanm2jZZlqG7qK+hleb5dEM7BT2CqIkoFAq9\nDHExpgkcONBI03vuuUad0+7dEObnAQCdqpXM0dHFjtPEBLB8eQ/DWbrOot6hjwpx1y5In/iE9Vq5\n/npo117r2/d30zDYj99/Va1CTHdOY62q0UcoeW1Xe+xRK3vEk0St7L3o4ha1YgXW7putmgaTyJWu\n64sUAsncqtUq8s1ZDgHy9NNPY+PGjVi3bh0A4JprrsGPfvSjRc7Uj3/8Y1x33XUAgIsvvhizs7OY\nmprCqlWrQhtnlHBnikGICAOpj1IUJfQQfZDOhlP/KMMwIhG88BtZlq0bYRS1beS6+fXAcWos3M11\nclLQE0WxUR9XlSFqjb877Yq7WoOmCRw8eMpxInVOJ064Gp++ciXMiy4CLroI5oUXwhgfB1audD2/\nTjTPgaR59GXKTamE7HXXQTi5aaKffz7k228P9JDtGgYDjd8rMXa8/GZyqZyrNNZcyr9dZi+/b17b\n1R1ODV4VRYGmaczWWrHmiMQN+5rSdd2655BI6N///d+jUqngsssuw9DQUKiRqUOHDmF0dNR6vXbt\nWjz11FMd33Pw4EHuTHHoRFGUJSIMUdwAgzL4DMPAwsICRFEMrT4qDNr1/mLReCaNhev1estaPbcP\nZ7uC3vTcNCrVCvJSHiMrR7pPLzp61HKchF27Gv89NeVuTsPDVsTJvPBCGBMTmMvnkc/nY9GrjWoM\nA9kdOyD+8Y8AALNYRO2++4AQFauao1blchmiKC5q0tltvcxwcRhTM1OWQ+KEUlMwPDzs2zy8wGu7\neoOsHcMwkMlklkSt4lxrRRNxcgib6/duvfVWPPLII/i3f/s3/OpXv8KyZcuQz+dxxRVX4KKLLgo0\n1bQbRUsvn4sD3EJgjHQ6vcTJYNEYd6Jd/6gopNj9Op5hGKhUKoE04u0WP+ZljxwWi0XHZrqOKAow\nO+sY2SHOczeGmnD8OBK//S0Se/accpwOHXI3h6Ghhgz5uedC3bIF0pveBOHMM5eqxc3NuR4Pxzvp\nO+9E8qGHrNf1//2/YW7YEOGIGqRSKYii6FnlrVAoAEc6HESFv2msHmCttotmnKJWXCGQ0w1OTuGG\nDRtw00034aabbsIPf/hDPPnkk6hUKvjABz6Aw4cP4+1vfzuuuOIKvOMd78Dpp5/u63jWrFmDyclJ\n6/Xk5CTWrl3b9j0HDx7EmjVrfB0HzXBnijGcdrWicKb8PGZzfVS79DfWdp5I49pUKoVcLtdS2p4V\nZ5hEDhOJRFeRQ/Hhh5Hcvh04cQLat78N47/8l+4OPDt7ymE62c9JOhnF6IRZKMAcH4dx0UVWnZN+\n5pkoVypIJpMtrwvA1rVhlcQTTyD92c9ar5UPfxjau94V4YhOQdZFJ5W3Vopc9jRWqxbpZBqrUlMA\nFS3TWMOEltou1u7vdlrdJzrVWtEStWL53PcbiqLg/PPPx80334zbb78dBw8exMMPP4yf/vSn+MhH\nPoLHHnsMW7Zs8e14F110Efbv348DBw5g9erV+N73vocHHnhg0Xuuuuoq3HXXXbjmmmvw61//GkND\nQ32T4gdwZyoWsOxMEXlwTdPa9o8K+ybvx/xIPVE2m6WmwV4v8yJCE5IkLYkctjqOYJpIfOELSHz+\n8xBOHjdxzz3tnamFBQjPP784Xe/ll12N0cxmYV5wwaJ0PXPTJsBmrGqahoWFhUAbJHdDPztrwtQU\nMtdfbzU41v7kTyB/5jPRDsoF3TQMHls35qySN0yPSl4UtV1+QosKYad7CY9aBUtcHMJO86hUKigW\ni9brtWvXYvv27di+fTs0TfN9zSeTSdx11124/PLLoes6tm/fjnPOOQdf+9rXAAA7duzAlVdeiQcf\nfBAbN25EPp/Hvffe6+sYaIc7U5zI6LY+ym/xhKCw1xMVCoWO/ZZYiH54Es4olZDcvh0JW/oWAAgv\nvADoOpBIANUqhD17Gop6Jx0n4aWXLMerHWY6Df288yCQPk4XXghzbAxoU98UtQBIM92uZRbWimt0\nHZnt2yGerGkzhodR/9a3AMYaV7ttGFwoFKhNkWOltssJllUIWYlaceiiXq9j9erVjn8Lqr5327Zt\n2LZt26J/27Fjx6LXd911VyDHZgHuTMUAFiNT7eqjaMDr/JyUCFmmnXBGO5K//S2kD34Q4quvLvmb\nUC4jee21EP7wBwi/+50VlWg7jmQS5rnnNtL0LrwQ5oUXorJuHQRJciXH7nUenOBIf/7zSD7+OADA\nFATUv/lNmC0MBFagqWFwN7BS29VMnFQIo45axWGThoXNVjd0uhbVajVUNT9OZ7hFwRjtbhRh3kh6\ncaaapd3DOGYYeK0nCnNe3RzLNE2rKXQ3whni//2/WPHXfw3hpLy0AaAMYDoFVJJAXgNGfvQjFAA4\nnSFTFGFu3nzKcZqYgHneeUuV3aru6jeaHdxujCra1xyrJB5+GNIdd1ivlU98Avqf/3mEIwqGKBsG\ndwMrtV3N0KRC6Pd9IoqoVRwckbjQ7lqE3WeK0xnuTMUA8qOjfVfGbX1UK2h1OgD6I23dous6yuUy\nEokECoWCu/kYBpJXXonEY49Z//R7CTiRA8wUIImAKAAnTOCIAQgqsKwKjK07e5EcubllC+DTg8Kr\ng8sJDuG115D94Aet19pb3wrl4x+PcETh0E3D4ChSulio7WqGNhXCoK5Z1FErTni4sTtqtRqPTFEG\nd6YYxMnQp12gIa79o4De63BocxK9OobiffctcqQMNByp5oCSKACZNadB+9QncWzVOqwff6tnQ63d\nXLoRzOAEi3WdFKXRmLdUAgAYq1ej/o1vNOrn+ox2DYMNw7AMY68Ng72OqdsWBX7S7YYgLSqEYcNr\nrZyhfUO5G3hkii24MxUTokpHcnPz8itqQ5vTQSJtqqrGoj4K6M0xNM4+GyZOpe6V0YhIOXLiBMzz\nt8CoK55TcNpdI6KkmMvlIElS198dFv2WRij9/d8j8dxzABp1cLVvfxsmhaIGYdMqauWlYXCcDMpO\nsK5C6Ad+Ra36ad2wDo9M0Qd9cXuOJ6JoauuGer2OcrmMfD6PbDbb082aJmeKRNoMw+jZkaJhXsQx\nrNVqGBwc9KZ096d/CuWXv4R2ww1Q3vAGHMsmIbW4wwiKAuHAq5ByEqbnprs/VguI0ESlUsHAwEDP\njlQUzo6u6zAMI9RjBgn5zSd/8AOkT0rpAoD82c/CuPjiqIZFNSRilc1mrY0NohJarVZRr9ehaVpf\nOeJODBeHGzVdbVBqCoaLwTvstFwLErWSJAm5XA7ZbBaiKEJVVVQqFVSrVSiKAl3XqRmzX8TBIXQz\nBx6Zog8emWKQdgZxFONw+uHHMWpDIOlj6XS6ZweRBrwKTThy8cXQL74Y8/PzmPnDb4ADL8B4+mmI\nTz8D8ZVXFr831Shyr1QrPY3d/t+91ORFDXEEZVmGaZqR19D4SeLll5H58Iet1+pVV0G9+eYIR8QO\n3TYM7idoUyGk7fx3E7WKm2MVZ7iaH31wZyomRHETb+XUkSJmQRBQLBZ9GxsNEZwg0seiTPUiQhPJ\nZBK5XM7XdZQbHMbCG94A8U/+BAYAzByH+OwzwO/3Aps3wzzzDBiGgbzkbYfNPlb7mmOxJs/u0OZy\nOZimadVB2GtomNx5rVYxcOONEMplAICxYQPq//zPAGvzoIRODYPJv7HugLuBVRXCqGhXa6XrOgRB\ngKIofVdrRRNu7vH1ep07U5TBnamYQEvtRdxU7QgkxUaWZab7FNnXCblW2WwWmWaVCB8YLg5jpjSD\nbOFkH6jhFTCuuAK44grrPXJVxsjKkZ6Oo+s6FhYWmI0UmqaJ+fl5SzlR0zSrL469hkbTNKtnUa1W\nWxSNoHbOpon8xz+O5O9/33iZyaB2331AsRjxwOKBU8NgkgJIjGIapNfd4PX5xaIKIQ00R63Ipg15\n1gHsKQQyudnkgX6ZJ0uwaRFylkBD416v/aO8Hi9I7HLzAPxLg2tDmDdIcq0KhQJSqU6NWrpHEATk\n83mI0x2UtjSxpxQcwzAwPz8fmNBE0GvOMAyoqopMJtPWESTRCEEQoGkaUqnUomgEMXhoM3pS//qv\nyHz3u9Zr+Y47YJx/foQjii9ExEIQBEiSBFEUmWgY3IyXcUWtQhgHBEGAKIqQJMlRIdC+dnjUKjjc\n2gH8/NMFd6YYhJYfETE0w6qPikoMoFKpBJIGRwj7epKanKDriuwpOEbSgJSTrBQcuSpD1MSeUnDI\ng35gYCAQhzBo7EZKNykbTtEIYjBT1Qh2zx5If/M31mv1v/5XqO97X2Tj6TdYaRgcF0idI6vYjfhW\ntVbkngvQGbXqh4hNP8yRRbgzFROiSvMjKUd+10fRwsLCArLZLCRJCnRu7cQ8/IJEQQAEGmGzM7b+\nVArO9Nw0KtUK8lIeIytHPKfg2J13Yix6YdG45JPjKnofVzeQyGAmk4GmaZ6/xx5tsO8mR94Idm4O\n2fe9D4IsAwC0zZtR//KXeZ1URNDeMJhDN80bODxqFRw8MsUm3JmKCVE4U0R9LKz6qLDmaJom5JNG\nIO19itxC6orIQzFoZ8F+rfxMwbELNWSzWc+OyN5X96Ik2yJmBRElo4Sjx45CPNyImI2tH+t5vM2Q\n34yiKBgcHLR2e/2iORrhpd9Mz5gmMn/91xBffbXxMp/Hwje/iSQvmKYGGhsGc9iA1ahVnKChPp6z\nGO5MxYSwnSlZlqHrOiRJQjabDe24QWOX1yaORxgEef3sCoSkwJhFmpUHVVX1NBfDMFCSS5CGFjvJ\noihaYhml2ZLV68mv8+UkQa/r+pL3EMOEGLxeHd9uJLX9dK5T//zPSP3kJ9br8p13Qt+4kT9sKMXP\nhsEcdvGapkhT1CoOKXCd5sB6Omlc4c83BmnXwTxomlOswuzlIwhCoM1Mm+W15+bmmHU8gFMRNrvQ\nBBEsCBq/nUO78mCvKZflchlGsv06MpKG5bj5AWnyTBT77OMn58kuaZ1MJhelYgENZ6+Xc9pJUtsP\nEQvxqacgffrT1mtlxw4oV18NMPw7Yo1eDcrmqFUk0U0GiYMh3ys8ahU89Xo9EPVdTm9wZyomhHFT\nanY2wjLMCUFGb0gjXkmSrJTFMG/0fs+tVQPboB3SIJBl2er47odK5PTcNKRc+9RNKSdhem4ap684\nvefjOa0tgl01kqT7NUcJiEFCnCvymqhveSEIEQthZgbZ666DcHIe+kUXQf785z2Nj0MH3TYM7uWe\nyZ2R+BF21CoOa6jTHEiWCYcuuDMVE4JO8yMGob2XDy29rXqllbHO6vxYb2BLsNcXtert5eX6VOQK\nxEIHyXZRRKVa6fq7m3HT5JkYGE7GKHFkEokE6vU6DMOwhCaIA0Scql4cK7uIhac0L11HZvt2iIcP\nN+a0bBlq3/42kE4DiuJpXBz6CCO6yYmGoB0RHrXyh2q1GqvSirjAnSkGcbrJBGn4t4sMhOlsBBG9\n6WSsh4kfc3Nyeu2E5SD2ehyn+iKnY3ghL+VRMkptnQ/DMJCX8j3No1MvL7JTSxQxk8kkUqnUknGR\nJpqapiGfzy+pbbEbJQAsQ8Src+UlzSt9++1I/sd/WN9R+z//B+boqKfjc9iAFYl+Dp3QVGvFEqSX\nJ4cuuDPFaUmn/lFRKQj6gWEYqFQqHY31sJsE94KbKAgLtKsv8oOR4giOHjtqiU04IVdljKwc8fT9\nbvquEeMTAAYGBqBpmhUJIop8RBiiVqvBNM1GE2TbOrVHo5rTAYGGY92rY+UmzSvz+ONI/6//ZX1G\n/u//Hfo73uHpeBw2cSvRH+eoVRxSzKLCj6gVeVazfg06CUxUq1We5kch3JmKCX4b/s2pYq2cjTDr\nb/y6SRKZ8FQqFVgjXi94vX4kclGv1ztG2GiZayva1Rc54eWcFQoFiIc7pPlpIgqFgiWR7xY3ETVi\nKJCHJjEiiBFqT50yDAOCIHQ8F/Z0QOBU1MowDOu/yd97iRI0p3kZr72Gwk03QTh5HZRLLkH17/4O\nCW5Y9jW8YTB70JTSzqNWreE1U3TCnamY4Kcz1SlVLIhjusGP43UTvWEhMmWaJiqVCnRdR7FYdGWY\n0JrmR66NW6EJz4pzYqOPVGnW1mdKFGEYBuSqDFFr/L1bI49E1Ih0e6vdU+JIOdVIESNCEAQoioJ0\nOg1RFKGqKmq1GhKJhBW1aqek2Ry1sjtVdnXAnqJWmoaB978f4vHjjeOcdhoW7rkHmq7DqFSsMdJk\npHHCp5X0enPUijtV0UOjU+I2ahWmsnCQdIpw1mo17kxRCHemGCTImim/ldNowR69aVXDEjXdXj97\nOhzrQhP1eh2yLIdWuza2fsyKvk7PTaNSrSAv5TGycqQRuTpp2LmNvmqahoWFhbYNrO2Kfe0MR03T\nUK1WkclkrN+gJEmLdmdJOiCps2qXOuWUDmiPVnkVsZD+4R+QeOqpxtwSCdTvvRfp0VGksbhXEfl+\nYlT3204yZzGtGgYrimLdC/xsGEx+5zNzM6iqVeRSOQwXhxf9zjns0C5qBcDadIrrvYbXTNEJd6Y4\nANzVeTTDSmTKHr1xO7dejueF/5+9c4+ypK7u/bfqPPs8umfGHpgBVB4mDhIUxNeV5UW5jgEGdGJQ\nEBBRHBAUYsBrdBl8RQFXJESiiBEMKkZRliCCxNdSbkIUjG+jRCWihGFgGnq6z6tOPe8fPbvm19X1\nPPWrql/Vqc9aWWa6D11Vp177+9t7f3fUB37Ucjh2O2kdU5jtOM9NmsGNLMuYnZ3F7OxsrL8TJqNG\nJXdB9tGqqkJRFLRarTWi0q10ispeDMOwhZXfEF62HLBWq60xsQibtarefjvqH/3ovv1+z3tgHHvs\nqu1QwDwej20RV84qKmFhs1bVatUWUrwGBt//4P1YHC8CNaA+U4dcl7FoLuLRhUeBR4D1jfXYcvAW\nLsdS9kylD5u1qlarGA6HqNVquXYILK3R80kppgpCnCA5TH8U721OwiTbMwwD/X4/F9mbsMcWtRwu\nC8J8z3Et3LO2rg/Tq0aiJ0hI0YBlTdNWOfZ54VY6RQEErcyy7oBRslasiQUNEWaFlfTAA2heeKH9\nN/QTT4R68cW++yrLMhqNxipzArdZRWWmYLpxLhjEGRhsmiYWx4torls94FSWZTTbKz9b3LMI0zTL\n6w75F4PUg1r0XqvhcIj169dnvRslDkoxVRAmDSzD9kflEU3T0O/3fUuv/BAtM8XDyj1rAUKQCUhe\nrzuvocjOz1Dmx+/FTefVNM01jn1hIWMI1sRC0zQMh0NYlmVnrPxKp8KYWEiKgtmzz4a0vLzymac+\nFaPrrgMiLMA4+x+oFHA4HNr9MySs8nZdpEFQ2Vreg2KCLecKEuFuCxX9fh8IquaurXwubna6RDx4\nOARmQdD9qyhKWeYnIKWYyiF+N1qUF2nc/iiRM1M04ydu9ibN42O3taqfZzxAq95Cq9rCzMxMaKOJ\nLPE7V3mycHc7jjAZNTfHPjdM07RFRLvd5vJCd/YUUNaK7nf6ndtMKxZn1sowDDTf8Q5Ufv7zlWOs\n1zG48UaYc3OY9Gr0cn2j0kAKdHj1z+SdMGVrB80flPVucscvMPYaGLywtID6jP+zvz5Tx8LSQimm\npoCiOARSVUqJWJRiqiBEufEn6Y/y2mYWWQ4/wcjr2IDsMlP3/24lYCKnOcwATwyegK7qaFVa2LBn\nA7YcwqfOP22CBtlGIYvrj8pG4zj2sX+LavwbjUYiL2+2HJBMLDRNc51pRUEom/kYqAO0623Mz81j\n7rbb0PjsZ+2/PbriCmjPfCawN6gl8RVnppWb6xuv/pm8E7Zs7QDzgCx2LzZRFgLdFgycA4OXhkuQ\nZv3/nizLGGpDHruf+4zgNO2/yFmr0s0vn5RiKqe4BZL0M78bcdL+KBEIUyPP89jCOrnxgoKCxfEi\nGutWMjaGbmAwHKBRb6Db7UKSpFh1/lkK4KCyONEhx76ZmRlP8RPHsS8NKIBwm2llWRb+++H/xrKx\njEqzgmarCbm9kvnYde+/o/nev8CTGsDhY0B/9auB889Hc+89QuWArIkFe44nueacrm/O/hlnJqLo\nhC1bGwwG6Ha7qeyTCLAinC0HbFabeHz4OCrVCipyBXJFXiPCTdNEq1YGptNOnrJWpZgSk1JMFYig\nQJl3f1QWgbmXYMx77xcdV7/fh1ldEXDk7DYzM7Mqi2NWTeHr/NlrgxW53W43VwKeSMuxzysrlISN\nMxtANJtN6LqOJX0JtU5tRbSMlRXBoowxd8UHIMsqnmgB+sFPh/oP/wDsPUa/mVb0M1ooiJO1Yvtn\n3DIRRR8CG7Zs7fHlx7Fp06aU9ko8KNt64MYDsbh7EfVa3e4htEwLcmWlL68iV6COVMzPz2e9y5kj\nQh9tXHhl1rLMWoU5D9SaUSIWpZgqEH7iJon5UaKYGSTVg5P28VmWhd1Lu1GfqUNRlBVnt1Yblerq\nLE6j1cDupd0Tiam0j4mMJmq1mmdZXBzSOBZd16HreuKOfXZ5Z81Ec2ZfVuiR3Y9A3rkySDjJ8s7h\ncIhqq4qZmZlVAUT9iisg/+EhAIDZbWDhuusw2+m4/g2nsKL5QZVKxc4skbsfj3JANhPhHAJbNBOL\noTaEXPf/zniWreWdTqcD6RFpJSNVkVFDDZZpwTANmIYJTdWg9lTUNtcCTWKmhWk/fjeyyFr5/Y3h\ncFhmpgSkFFM5JWxQzPYQJTUQNc1aa/a4ebjbiQJ9fwNlgLE8hmVZns5usixjMBykvYuRMU0Ty8vL\nmJmZQbPZDP4PIpL0NUfixzRNrFu3zvVc8HLs8+uHabVXXpxJ2zgvLC2gObOyfQogGl+5DbX/9//s\nz+h/+Vb8rtPA0waDwJlWVJJHmVW3mVaWZdmru3HE1TSYWLRqLSyai77fU1m2tg9ZXlmAWNzDGHbI\nMmTI0Mc6JFXC/t39Icty7GtFhEXFkuRJOmsVJpYqh/aKSX6jz5I1OAVW0v1RWQYmVBJnWVZivV9Z\nZKYszYLVsNBqe2dxTNNEuzHZwzStY6JMQbfbjW00kQV071iW5SkYeDr29ft9mDX//jyzlmx550Ad\nQG7vO07pV79E9R/2DebVt29H/eWnQOqviBe/mVZupYxBM610XecirMKYWHjZaYvM/Nw8Hl141Dab\ncEMdqThgNp8GFEmw5eAt7lby82tLZ3kYnuTpeioaWRhoeBmhhLXvnwQycCoRi1JMFQg2UE6rhyiM\n6QXv7YVxVMsbpmlCVVVsnt+M3nLP95jGwzE27rcxxb0LD2VgxuMxKpVKKkKK9/XHliZWq1Woquq6\nTZ6OfWxWyIvmTDNRG+d2vb0v87G0B7W/vgzSXjMN84//GPrFF8E0Tcw15nxnWtEzwa0njAgz04p+\nH2ehxM3Ews9Om6DnqEjPlk6nAzwS8CENaM/nc9U6qfeILMuYnZ0NvG+CDE9EnEnEi7w7+YmAcyHH\n7XkTdA2FzUyJPlJkGinFVIGgICaJ/ihRsCwLg8HA11GNF2llcRRFgaKsNPuvW7cODzzxgO/nZV2O\nvTKVxMuTzRa22237BZIUSZx7GvRMpYmqqq65BqhmPiiDEsWxz5kVckOWZQxGyZV3zs/N45Hdj6DV\naqL2gQ9AfvRRAIDV7UD94AeAegPKYIj5jfsa9tmVWdM0MRqN7JLHwWAw8Uwr1hmQhBVlB3iYWHjZ\naYscLHuVrZmmCXWkAtrKnKmiGnCkidPwJGhgcEn2iCYIk8xaZXWPP/HEdArIqwAAIABJREFUEzjt\ntNPw+9//HgcffDC++MUvYt26dWs+d/DBB9uuvbVaDffdd18Ge5supZjKKV6rGlT7nVYPUVqCgz22\npHpwvLab5N+mfrZWqwVN01YFTDRnigKm8XAMWZdjBUxJvWwoW1ipVNDpdOwAOE+4LUI4v6+ojn1O\nJ0YvVmWFPDBNE+16clmHTqcDeaeMyk03ofK979s/197118DmldIxWXMX8nQtk2MjPReCZlq5QcKK\nBJqzHDAtEwvalkjGBEFla5IkYTAYCLO/RcCvT4bNONDvyu++xEnYrJUsy4ExR5bX15VXXomtW7fi\n7W9/Oz70oQ/hyiuvxJVXXrnmc5Ik4bvf/S42bNiQwV5mQymmCgI1XSfVH+VFGmKKslGGYdiBWBok\n+dCigAgAZmdn7dlEALDlkH0B0+6l3RgMB2g32ti438ZELLLjQvOXms0mms1m7oIJy7KgKArG4zE3\nxz5VVV0d+7yws0Jtb/MAZaSsygrxRpZlPOlnv0X/mn+EXgUaMmCeeQb0F74QymAIWXMX8qZp2lko\n9vxTAOo104rNWvkJK2BtOSBbhkWf42liQeVdIpZ4+ZWtlUYIyeOWcaDn92AwyKVNfykC08Ura6Xr\nul0q75a1yvr+vv3223H33XcDAF73utfhxS9+sauYArLf17QpxVQBoP4oqvfOywM8DE4TDRIgaZCU\nUHSzC3duK2yd/yTw7HPzKilNK2MZ91hYoe61CDGJY19U0UtZIT+8skLceOQRPOuv3g3rCaAPYNcL\nno3Fs96M9cYs5je6z7oyDAODwQCNRsO3jp8NHprNJkzThKZpq0wsWHfAoKwVsNbEgq4DHsKKxFu7\n3baDZbfynCI9a0uiQ9eKJEnQdR2tVmsqbPpFhIyA8gabtZJlGaqqolar2QtP99xzD7761a/iZS97\nGY477rhMhe+jjz6K/fffHwCw//7749G9peBOJEnCS1/6UlQqFZx//vnYsWNHmruZCaWYyjlsMMtm\nN9IiyaCZRGKj0bBXvNN22OONsycnr4TJ5oiOU6j7ufFpmuablSDHPkmSPB37/FhV3klzpvaWdyoj\nxTMrxA1dR+OccyA99hgkAN2NG1G76Ys4aPNmz/+EhFDYUkYWWZZtAUYldrqu2yVqlLEKKgcEVrJG\nbAkg23MVtxyQtuNX4uVlYlEyfTgznE6b/jxmrUrSgwQhm7V6+tOfjl/84hf4+Mc/jvPOOw/z8/P4\nu7/7O5x44onYsmUL92fO1q1bsWvXrjU//+AHP7jq334VGvfccw82b96M3bt3Y+vWrdiyZQte9KIX\ncd1P0chfBFRiMxwOV81YovKXNElK3GSd8eC9LSr/IltTZ/CZp+MKk80RHcoO+rld0ndUrVbtwJmy\nJ2zjOTn2OcvcosKWdy4sLWAwGqBdb3tmhXhSe9/7UPm3fwMAWLKM8Y03wvIRUm7W55PCBqBs1kpR\nFLu0N2imFf2czVolNdMqrIlFHu+LLMlzqZnbvjv7ZNys10XJWuX5uyeKcAxOJEnCU5/6VFxyySW4\n5JJLsLi4iO3bt+O//uu/8Pd///eQZRknnngiTjzxRBx//PFcKhe++c1vev5u//33x65du7Bp0yY8\n8sgj2G+//Vw/t3nvu2Pjxo34sz/7M9x3332FF1Pl0z6njEYj6LqO2dlZO5jJe9YG2NfIPhqN0O12\nC+FGSMc0Ho8xOzuby7lLBA3iBeArpNIu84uCpmlYXl5Gs9n0tNZnHftarRa63a6dcRqPx1heXsZg\nMMBoNOI6goDKOw998qE48rAjceiTD01csFa+9jXU/u7v7H9rl10G88Uvdv0sm5Fst9vcM5IUgDab\nTXQ6HXtOmaZp6PV66Pf7tsjyO+9U8kw9W5TlYsWPrut2RivOvtbrdbRaLVtYkosjLXZlschVIh50\nTc7MzKDdbttlsbRwqCgKNE0rr5UpJkgQ1mo1zM/P4xOf+AR+//vf484778Rhhx2Gj3zkI9i8eTOu\nv/76RPfv5S9/OT796U8DAD796U9j+/btaz4zHA7R6/UArPQQfuMb38CRRx6Z6H6JQJmZyilUWsPe\neFmIKZ7bpEZ2v0G8ecrgAOFLyfIghNOaXZYkFLi4ZQcJN8c+t1VmRVHsGVQUBLGDa/OA9OCDqDP1\n7MbLXgb9bW9z/SzbE9Zut1PJvFCJnddMK7dModvfANxnWrEmFvT7SY9rmucUlUQjTNYq6sDgkuIz\nHA7Raq2YFEmShCOOOAJHHHEE3va2t6HX62E8Hie6/Xe84x149atfjRtuuMG2RgeAnTt3YseOHbjz\nzjuxa9cuvPKVrwSwEjOceeaZeNnLXpbofolAKaZyitcDNq9iys2UIcntRWHS8gFRxcck36GqqhgM\nBmi1WrkcGEhCgC2LdftMWMc+ymxQ+d0kQX7mjMeon3UWpD17AADmQQdhfP31gIcJB/UzTdITxgMv\nFzUSyHFmWrGDgqnXite+NhqN0sSixJeshXgRSuSm4RhYMeWk2+2i2+0mtWsAgA0bNuBb3/rWmp8f\ncMABuPPOOwEAhx56KH7yk58kuh8iUoqpApHXB4mogXqc7zPqMYmamWJ7vaIYTaR5PEHbScKxzzCM\nVX1MQUF+UM9PFtT+6q9Q+fGPAQBWrQb1ppuAJz1pzee8rM+zhF3ZJxOLODOtgH3ugKZprso4liYW\nJUHwfNaxQjzMwODyepkeRqORp5gqyZZSTBWIvJX5Uf+Foii+ZVfO7cXpc0ga9phEdbkLe86o14t6\n89Ka7xWFoECCyiypF8krm0t9LUFCirIzNCDVbX/YIJ+EFQXOFARlXQ5Yuflm1D75Sfvf2hVXwHzu\nc9d8jrU+r9frwgZuksRvphVlBShoSWKmlZv4JhMLElZCZzVL1pDEuSKxVArxYIqSmfJ7rvhlpkqy\nRbxIr2Ri8iSm2GzB3NycUCv2LHR8YR7SzgxIFPEhWmYqbK9XEFm+4MI69pGQ8lvlnTQ7w6PnhzfS\n/fejftFF9r/1V74S+pvetOZzcazPs4QVK1FmWvkNXHbOtAKwKosZd6YVr96ZPAeUed73tEjKTVKk\nd0+JN1TtUiIepZjKKSK9dKI+iA3DQL/fR6VSiRyoiyY6CF7iIw2CvsMwIiTMNrKE5nn5lVmyjn1+\ngQe5swUNpg0iTM9P4uWAgwEaZ50FaTAAAJh/9EdQP/YxwHG+eFqfZ02YmVbVahWapq0p32T/BuBu\nYkHnkYRR3HLAIplYsFb/Q22IVq2F+bnkrf6nAVaIs+WAkw4MzsP1VHSCFhRGoxHa7XaKe1QSlny/\nJUtWkVVmKgoU5DabzYn6L9I+xjDb42k0kfXqbN6GCrudnyDHvrBGE0By2Rm/ckBFUeyMBNdyQMtC\n/aKLIP/qVyv/nJnB+KabgNlZ5iPe2ZkiQL1UzplWw+EQAGxr8yBB62ZiQcIniXLAoN4ZXsKEp/i5\n/8H7sTheBGpAfaYOuS5j0VzEowuPAo8A6xvrseXgLVz2uyR4YDBbDlhEIZv1uzMNyjI/cSnFVIEQ\nvcxPURR7ZSUv86OCjo+MJuIekwgvATo/YfvXgohSIskD1rHPq8wyqmMfzVNKWlSkUQ5Y/dSnUL35\nZvvf6tVXw/qTP7H/zVqfT0PmgISOruuo1WpoNBr29x6lv42EVbVa9SwHjGtiEdQ7w2bFJn0H8BQ/\npmlicbyI5rrVCzKyLKPZXvnZ4p5FmKZZiOtMtEA+TPlo6SYpHnHc/EqypRRTBUJUMUVGBpqmxTYy\nEKXMjx1eystoIi3x4fwOeZ6frKB+NdM0uTj2KYqyyvo8TdiMBIBVQdCk5YDSj3+MGjM/Sn/d62C8\n9rX2v+kaAJCZ9XnauPXBsSVTSc60StLEAoCduQorvnmLn36/DwStx9RWPjfLZEZLksGrfHQ8Htvv\nAhLiebz3RYgJ0mA0GmF+fj7r3ShxoRRTOcXvgSfSA9HZS8QjMM26zC+M1XZesCwL/X4ffoOSRUaS\nJBiGgeFwiEqlgm63G9uxj0SFl2Nf2nhZgCuKEs4CfHFxpU9qb6BtHnkk1Kuusn8tovV50rAuhW59\ncGEE7SQzrdisFT2neZpY1Go1+16IYmLBW/wsLC2gPuOfqa/P1LGwtFCKqZRxXts0gJyeA3keGJyn\nfXUjKLahkvMS8SjFVI5xBvpZPEj8MkVJDK3N+mFpmiZ6vd5E5hlBpJV1o+2QEUi1WvUdlBx3O0lC\npWmNRiMzx740oVIvZ/aEtQAncSVJ0kqf1PnnQ37wQQCANTu70ie194WcF+tznpChSLPZDF2ay2um\nFf0tdqYV23MVtxwQWNs7E8bEgrf4GWpDyHX/Y5BlGUNtaP87yBa6JBmo5I+um7ybnuSdoDK/0oBC\nTEoxVTDS7lMB3FdTkhrEm6UBha7r6PV6E5tniIRhGPYqV6PRyOWxUEDbaDQ868gncezLi6gIkz1p\nX3stqnsn0wOAet11sJ72NACTiYq8Q8Izjkuhm6CddKaVsxyQ/Xv0+yRMLJxW2v1xP7L48aNVa2HR\nXPTdb9M00aoVo/9DpGqQSWAz9nkcGJz37z8sZc+UuJRiqmBkITZYWBMAUYfWTgIFqEmaZ6R17ihY\n63Q6uQ2iySyDFRMsIjj2pY0ze2LefTdm/uZv7N8rF1wAdds2VPZmVopifR6W8XjM3VCEDT6jzLRy\n4lcOCKwIXx7CyikEyUpbNmT0hj3UqrWV7chr75ko4md+bh6PLjxq91u5oY7Usv9DYIJMT4ByYDBv\nSmv0/DIdb9GSxGAFQBr9N1kYUIzHYxiGkXtxSELXMAw7A5MkSZwrp2MfvdSdnxHRsS9NpMceQ/vc\ncyHtNTzQn/c8DN79buh73foAoNlsFuqYvSC7d03TEjcUCTPTqlarhS4HBNbOtCITi7gW12w54JM3\nPRlLjy0BVUDVVFimtfL3K/tKwKKIn06nAzwS8CFt7+dKcoGb6QmPgcElK4R5V5aZKXHJb2RY4hqs\nZlUGl3T/jXN7acCWiKVlzpDUsbFud/V6PZcvuzBiPYqQytKxL1EMA43Xvx7yrl0AAGt+HtpnP4tm\nt2uXotXrdTs7FdZMIY+wdu/tdjvV42PFCpu1UhQFhmGEdmV0m2nl5Q44ablTt9uFvEtGrV5DDTVY\npgXDXPn7mqpBkiXoQx2tVivUNmRZxvrGeizuYazWZRmmaUIdqYC2YrVetOstr0S9bljTEx4Dg+NS\npDK/smcqn5RiqmBkkbmxLAvLy8u57r9xQuJQkiQ0Go1UXvpJfW+saUa324WiKKkKUh6wx+B02WMz\no2GMJkR07ONJ7fLLUbn7bgCAJUkY33ADzAMPtI+ZdTxkeyKimCnkAZHs3tngE4BtZT7pTCv6G2yG\nwPmzKM8sN/FDgfBYG8MYGZirzWE8HgMIV9615eAt7kOA592HAOc5IM7zvvPAaXoybQOD06Is8xOX\nUkwVjLQzN/Ry5TXoNcq2k3p5aZqGfr+PmZkZuxE8LXifO3JUbDQaqZtm8NqW3zGwoqAojn1xkL/x\nDdSuvNL+t/7Od0I//ngM9maN3b4/p/Ob00xhlTtgTjBNE8PhELIsc3MS5UnQkOYw3ztbDlir1ezz\nVqlUJppp5Sl+Nu4TP1HLu2RZxuzsbGl/PkW4LRz4DQzmcW8WQcyGOYYyMyUupZgqmQh21hKA1HqJ\nkn5gOo0maGU7DXgfGzkqOk0zJEmy+2ZEJ4wrJGVXAPgGjEW3AZceegiNN77R/rfxkpdA+b//F4O9\n4wmCssZeZgqqqkaarZQ1NHesVqvlIlMexpUx6Hs3TROj0cg+Zsuy1phYsMOqvf5OkPgRrbyrhA9J\nipGggcFOh8ASb8bjcW5No4pOKaZyjNuDJ43MFJVc0Yt3cXEx0e05ScL+3WlsQKtqaZdN8tgW9QMp\nipKpaUbc744c+7yynhQwappmB6ReFMWxzxNVRf21r4X0+OMAAPOAAzC8/noMFGVi63M3MwXRywGL\nYPfudGUM+t7dBhDT+fAzsUhiphVb3kWBsmjXSEl2OBcO3LJWeR0YHJewMY3IC1nTTCmmCkbSwb9b\nyVUS4sYP3sdIpV9JuhCGgVe5A2UM5+bmcvngpV4XTdNWCVvnZ0zTRK1Ws5v6vcqjyBK7yDbgtXe9\nC5Uf/AAAYFUqGNxwAwatFrdjzkM5YBEFc9D3LssyDMNAs9n0nefn7LUiYUVZAhI+ca3XvfrCRJ5R\nxINy4PBkeGWtog4MLkKZXxim4RjzSjEjiykmSTHlNWspC9MLXhiGgV6vh1qt5upCmHZJXJzvkfod\nyH3Q68Er8vmK6thHL1vAvTyKPls4xz6Gype/jNq119r/Hr3nPRgcdVRidu8ilgOqqlr4uVnO7308\nHkNRFMiyDEVRoGkat5lW9Jk454/6woByRpHoiCBG2Os7aGBwEZ/lQeeAKjFKxKSYb50pIa2Hn2iD\neHmJAdZootn0Hi6ZFnHOJ4nCer0uTMN91PNE5aN+9vp+RhNseRSbbaRMVxi3tLwh/eY3qF94of1v\n9aST0NuxI1XxmGU5IJngqKpauFlhfrDz0WjRwG2mFf1fGBMLwD1rxf4+TtYqaEZRXvo4S5KHnu1h\nxbgIYjAtpuU480YppgpGFiVwImc6vAjqxyHy0DNFotDPpIFFxPMVxnUwqmNfpVLBzMwMAKxxS6MA\nP9dNz8MhGmeeCanXAwAYT30qlj/yEXQY6/O0SbMcsNCzwnygslVWPLLfO5stZLO0cWdaAeFMLILw\nMrFgM22liUUJS5AYp/dB1JEAIhFGEJb3griUYqpg8CxLCyqBY7eZxaDgSaAsha7rnv04WTHJgzKs\nKBQZL9dBlqiOfU73OueL2FkOGCbQFI36JZdA/s//BABYjQaWP/UpzGzeLMwLN6gckCy9aYU5CnQf\nW5ZVyFlhboQVj169S6x1Oo+ZVrxNLDRNs+//SfpmsiTvmZE87b+bGFcUZdU4hCKKcVrIKBGTUkwV\nDF7CJowldVZMeoxhe4p4bGtSwm4rjEmDF2kdU9B2qERrNBp5lo+y/VFBTetkQODn5Ma+iKkc0Dk8\nNUzfSdZUPv1pVD/7WfvfwyuvRP35zxd2f4HgckAK8IOCZjZo8lvkKRJUam2aJtrtduSBvLxnWpGo\nYk0DeJpYVKvVNffnNPTNlESHrjf22szjwOAgQTscDu1KixLxKMVUjkkiiGBttcNmO0QsG3MiYk+R\nk7Dfoyjug3EIkyGMIqQmdexzBppufSdhAvw0kX72M9QvucT+t3r66ZB27AAE2b8whCkHpO+e/d6L\nPnTZDbpXAKDdbsc6Zqc19SQzrYBwJhZxhRVtpzSxKAmLW1Y26YHBaTEajdBqtbLejRIPSjFVMOKW\nwE1iqy16mV+cLJtoQtEwDPT7fV+TBpFw++7IsQ+AZ4YwrJDi2Tfj1XdCJSReAX6qLC2hcdZZkPaW\nQBmHHw79mmtyJaSceJUDOrOFsixjNBqtmqdUdOiZLMtyIotAUWdaueFnYsGWBcbNDIQxsWBnFJWE\nQ6T326R4WdPnaWBw0HkYDoelmBKYUkwVjEmDfwrSK5VK6BI40Zkky+YkTTEV1O/Gy30wzTI/J2HE\nYFijiST7Zrz6TtzKAVPru7Ms1C+4APIDD6z8s9OB+s//DLTb6Ww/JdzKAVVVha7r9j3CZj6KStpZ\nuEmzhU7cTCwoiCVh5WZiEaVvx9k3k/Xw1zz1HHmR9/0PwpmVzfqa8dpHL0oxJTalmCoYkwTKFKQ3\nm82JXtoiZqbYLJtoRhOT4DXjK0/ouo5er4eZmZlV5hAsURz70uybcSsHnKTfJw6Vj30M1a98xf63\n+rGPwfrjP05kW6JA97phGPZ5niTAzxteRippETZbGHamVbVadS0HZE0s4sBr+GvJ9JC3a6YUU2JT\niqkcw+MGJze4OEG6aGJqEqOJSbfFE7dtsTO+eInCLAwo0nDsS4swK/i87L/tbX7/+6i/6132v7U3\nvQnGqady+dsi42YDHibAz/PiCV3ffkYqaeOWLeQ104r+Hv0vDxML2pfSxGI6iJsZZK+ZrAYGe5Uq\nEhSnlYhJKaYKRthAOY4bnMjQvCKRjSbCQr1FeTeaGI1GUBQlNce+NPFawSf777AN/X6Yjz2Gmde+\nFtJeoWkccwy0yy/neRjCEaYXLkyAL5p5SBC6rtuuXaKOOvDqLZx0ppVpmhiPx/bnKYNFgioNE4s8\nGhLwogglijyhd5BoxifU910iJqWYKhhhxBSbuZmbm4v9MBAlM5WEnXtWmSnTNNHr9VCpVBLpB0rj\nmNhMk5ehSRQhpaoqFEWJ7NiXJkH232Ea+lkMTUP9DW9AZedOAIC1fj3Um24CCmzAMIkNeFjzEJGz\nEbRQIPL17cSrtzDsTCvqC6vVanaWmS0BZHuuSFTxNrFws9GOmlUuBUm2JPn9p2V8EnQMpZuf2OTj\niV3iituNFxQoJ5G5CTJO4I1ze7SKPR6PPbMfeYJ6iybtYRMB0zShqioAeAr2SRz72HIv0XErB6SA\nOUw5oK7rkD74QTS+8x37Z+Prr4f1lKekeRipwsMGPIp5iCjZCLdyxjwSZaYVCSmnOyMFpKyJRZIz\nrfxstLM2JCgRC6fxCS2YkUNgktbrZZmf2OQ76izxxG2VQ+RBvJPiNJrgveqcdmaK5mHl2WiCjoFW\nkXk59kUdVpoElNVdWFrAQB2gXW9jfm4+0Jbd6STlNt+HDfBVVYX5jW9g/Yc/bP8N7W1vg3nCCYkf\nY1Yk5V4n8iwxGlytaVpsa3/RCLrmAdiLDX6EmWlFn4lbDpgnQwJelFm1yXEumMUZGBxmaO9+++3H\n+xBKOFGKqZzjDPa9AlcyMUgic5NVmR9bCpe0nXvSLxwKqkzTxOzsbKLZtSTPF2vfDsC2QmYR1bEv\niPt/dz8Wx4swayaaM03IbRmL5iIe2f0I5J0y1jfWY8shW0L9LXa+j7M0SpIkSDt3YuOb3wxp73ky\n/vf/hnbZZUkeXqakZSriVw5oGIYtaNMoB3RmXIskpNyga75SqdjnmvpCw5bA+s20Yq3X6fc8TCxY\nEV7OtBITEQRhmExnnKwV9VKWiEn5FCggbLBMLytd1xML0tMWU8DKg2p5eRn1en3icqAwpPGApuwa\nrbDmtUxxPB6j3++j3W7bmQU3d0Jy7vJ7obDzqEQwEjFNE4vjRTTXNdFqt1aVIrXaLTTXNVeE1gTl\nrpQ5sU0HNA0bLrgA8sLCyrb32w+DT34SVo7Lv/ygLFHaZa0U/DSbTXQ6HXuhSdM09Ho99Pt9jMdj\nW/jzhBa4DMMoXEbKDyr5a7VamJmZQavVQrfbtYPE0WiEXq+H4XAIVVUDv3fKJDUaDdTrdTtQJWGl\nadqqLNYkUClhvV5Hq9VCu91GtVqFYRgYDod25pyyZiUlwL5rc2ZmZlWlCWVmFUWBpmmrYrWgzFRW\nZX5f+tKXcMQRR6BSqeBHP/qR5+f+5V/+BVu2bMEf/dEf4UMf+lCKe5g9+YzaSgKh1f+gAak8t5cW\ntIrf6XRyWwpHsGYg7XbbLn9JEroOeK3mhelZi2I0QY5mojj2AUC/34dZ8w/IzNrKuZydnY3899ly\nxg1XXYXaffet/FyW0b/+eijr1sFYXg7tlJYXqI9JBPe6tMoBafGE7vmsFwrSwstAxssRc9KZVsC+\nckDKDgCrZ1rFNbFwlnZR5UccE4usECGrExfRj8FZ8uqWtaJryev9mGXP1JFHHolbb70V559/vudn\nDMPAW97yFnzrW9/CgQceiOc+97l4+ctfjsMPPzzFPc2OUkwVEEmSVgUpzWYz8e2lAVuuSA2gaUAZ\nFt7H6TQDyePKpl/PGn1vRXDsW1haQHPG/z5qzjSxsLQQWUyx5Yzdb38b9Y98xP6d9p73oPp//g86\nyIeRQhREPddAcDngpKKWzjU9v3q9XuT+uzxC5zqMwYaf5T2AVaWYYcoBa7Va4iYWADAzM7PKRrs0\nsSjxwq0/jxYkgX39eZqm2VnbLIf2btkSXL5+33334WlPexoOPvhgAMDpp5+Or3zlK6WYKskHzlIq\nCl5HoxE6nU4qq71plPmxM5darZb90EmDJI4vazMQHgIx7HDksI591IgvoqPZQB1AbvsHXLIsYzAa\nRPq7VCpUq9XQfPhhNN70pn2/O/FE6Jdcsurvi2qkEAXRz7WTMO6AfvbfBGsD/rudv8MedQ+X/jvR\nieNU6CVqJ51pBbibWBiGwW2mlZ+JRRbziUrEhp7dAGzhpOs69uzZg6OPPhpHHXUUXvayl2E8Hgtt\njf7www/jyU9+sv3vgw46CPfee2+Ge5QupZgqEJQlIOezNMtmkhRTVK5IM5eS6GFICwok3cRuFr1n\nk0KOfUEW+7RK6xc8TDJXKG3a9TYWzUXffTNNE+16+DKMVeWMponma18LaWlp5W895SkY/+M/Ah7b\nCztXqVarCRW0FcF0wU/UAu6ZEzLYaDQaqNVq2KPuQXNdc83fbbVXgqXFPSv9d3n8fgjeToVeojbs\nTCvCz8SC/iZtK8w+ez2znSYWSc0niovoJXJB0PdflGOQpJWBwfPz8/jFL36B73znO/j617+Or33t\na7j77rvxile8AieddBKOO+44rguxW7duxa5du9b8/PLLL8cpp5wS+N/n+fvnQSmmCgLrbJf2qleS\n2yJ3uCxnLvESOdQXQ2Ygoq/Ie8E69nmVkNILWpZlDIfDVcE/G+iwJW4i94/Mz83jkd2P2MGuG8pI\nwfzG+cC/Vf3wh1H9+Mcx2rYNMx/8IGr1OmoXXQT5pz8FAFj1OtTPfQ7YsCHUvrkFmV49J1lec+wM\nKd6DqLMiTOaErO5nZmZQr9exvLycaP+dCJBoNgwjMdEcZaaV37XmzFqxzoDUbxUma+W3jSznE5Xk\nB+d5n5ubw/bt27F9+3acdtppePvb34577rkH73vf+/CLX/wCL37xi3HSSSfhpJNOWpUVmoRvfvOb\nsf77Aw88EA899JD974ceeggHHXRQrL+ZJ0oxVQCo96bRaKDZbKI28/JOAAAgAElEQVTf76e6/aQy\nKhSQOGcu5SmDQ4QpiUvzuCbdFp0TvxJSChSowd4t0CFRNR6PE7fD5kGn04G8M6DMT5PR6XT8/1Cv\nh9r73w/JMNC+4QaY//Ef0F79atQ+9Sn7I9qHPgTz2c+eeF/dek4owA9rQc0bVjSL4M6YBG6idjwe\n28OrKSPx6BOPotH0X1GetP9OBJyZ5jTOtbPB322OG5u18oKEFQ0VdisHTMrEwm0+UV5MLEriESY7\nOBqN8IIXvAAvfvGL8a53vQuPP/64nbH6zne+gy984Qup7asbz3nOc/Cb3/wGDz74IA444ADcfPPN\n+PznP5/KPolAKaZyDmtHTYIjq7lPvGCNJtwyOHk7PiqJq9VqQsxLmoQws8q8jCbYQIc+Mx6P7T4C\nEloiO9TJ8kofy+IeZs6ULMM0TSgjBbK28nu//bcsC/p//AdazOwt+ac/RX1vRgoA9Fe9CvqOHdz2\n2xm0UZA5Go0ird7HIalhvKJDIpZ6hagk7fHlx6G1V673asVd1E7SfycCbPYxy0wzO8fNbUEhTH9h\n2JlWcY/RTYSzYpB+R/co7++0CGV+ed7/sKiqumoB80lPehLOOOMMnHHGGYlv+9Zbb8XFF1+MhYUF\nbNu2DUcffTTuuusu7Ny5Ezt27MCdd96JarWKj370o/jTP/1TGIaBc889d2rMJwBAsvK2xF+yCsp2\nsMHtYDCw56ekgWVZWFxcxPr162M/1FijCa86e9M0sbS0hPXr18faVliWl5cntm52K4mjLNXupd0Y\njAdoN9rYOLcR7XbbPq6kXw5LS0v2vJQgWMe+brfrek4mdeyTZdkOdKi3SoSSNC/o3EV1YKMgs/nJ\nT6L7rne5f2b9eox+/nMgpeuaStIoyA+7eh8FtlcoC6OVrPAzXXjgDw/gcfnxfcG5wfTPVCuQpRWR\nvt5Yj0OffGhGRxAdek6InH1kFxRoxg9d91EWc9isFf2tRqPBxcTCa39JvPE2saB5Xnm9P8maPivb\ncB6EOYYTTzwR//qv/yrkfVVSZqZyT7PZtB+yLGlnbngQdi5WXjJTbiVx9//u/pXhrlUTjVYDcmfF\nxWvXY7sg6zJkRcbz1j+P9yFMDIkHWZY9yxPDCilqSFdVdVWQ6Wzmz7okzQ/6HqKUX7Elbs3/+i/P\nz0mLi2i86lVQP/MZWAccwGN3fUm6HFDEeWFJwxpseAnsjes2YtfuXXb/nWmZMHRjX/9MRYamaDh0\n06G5WXXPS/aRzZLHnWkF7DPBaDb3ZapJJPMqB3Rm9UU0sciSvNwjfoQ5hjLvITalmMo5Xr03WexH\nnIdaGFMDJ6I+RL3KFE3TxOJ4EY11q1cAZVnGTGfFEnX3H3bbc2ySJIxADOPYRyundC7COPZ5BZki\nlKTxhrU+bzQaqDAlfW5Uvvc9NI47Dsp996WWoQLcv3sKMKnHLWi2D4vIM6SSIqwrpbP/TpZkyDXG\nTts0oC1rkGXZLg+O8t2nDWv5Lnrvo5M4M63o/nBe486ZVrquAwC3mVa8TSxEfY+W7KMUUuIzHW+5\nKSNvBg2KokSai5X2gz/K98mWKTqH2Pb7fZhVfxcvq77y369bty7WPseFxK3fHKywQooyM2RIEeb8\nOVeQ3RrKJxmamiZrMjOqCumXvwz87+SdOyH/7Gcwjzsuhb1cS5hmfr/vPs5cobwSpVcoTP/dptlN\nmJ2dXWVMIOJ1X6QyzjDOjPTd67ruOYQ4aKYVOyoiCRML6kVls1alWBKbMII2iX65En6UYqqASJJk\nP7jT3GZUAUcBiKZpka3C42bCohLm2ILKFHcv7Uaj5R9wNGYa2L1nd6ZiKqpjn19A4MzMTHq+nA3l\n1OsTZb5MmtCqNdtrJ/3qV5A0LfC/1V/1Kpj/638lvYuhYb97v9k+kiRhPB77lrgVkUl6hbYcsmV1\n/91ob//dxtX9d2G/+yyuexJSRSzjdDOFYL97AHZ2yO89FDTTikr045bpsfvLXis0e441sSjafVlm\n1kpEoBRTJVyIKqacVuEiP+DDPKh1XUev1/OdhzUYDyB3Auy1ZRkDNXkXL7fzFeSiSJ8JazSRVM+M\nJEmeQ1PDOnUliVdmRv7JT3z/O33bNuh/9Vcwjzkm6V2cGK/ZPjQsXJIkoXtmeBOnVyhq/13QXKU0\nywHp3p7UmCdv0HdPCzmUuYpaguw208rpDsjDxIL2F1htYkFCkDWxKMVI9gSdA8MwhI6RSkoxlXu8\neqZELvML04sTRJrHGLQtr3lYTtqNNhbNxUDXt1bNezBsUtDqummanuJ2Ese+pIMtr9KcLPqsgswH\nKl/6kut/p2/fDu3tb4f1rGclun+8IeFKtt80n0dVVYxGo1XBfREDAbbErV6vpxqQuhkTpFUO6NUr\nVGTIPEfTtDWOpnFnWgH7ygHZbFVaJhZ03Zqmmcv7dBrE4GAwQKuVflxQEp7peBJOGVmIqbDbVFXV\nfjDEqbEXQTBS8Dwejz1nL7FsnNuIXY/tss0m3FBHKubn53nv6hrY7880TfR6PVQqFXS73UQc+9KA\nLXVhhZWqqpGCnEmgklWy9Hdd5HjssX2fB2CceuqKiDriCK77kiZemRm2zMjpklaEPiqRnAq9Sryo\nf4ZELo9ywGk1FqFFEjdjEd4zrWq12hoTC15ZK6eJhWmaUBRlleMo6w5YdJEiCkGCMO/W79PAdDwN\npwwRxRQF2VGMJkTBqySOZi+FLVN0uni5bkuTUn1o6rqOfr+fmmNfmoSx/uYRYLKBiJ+lv/b3fw/p\n9a+HtXEj1E98ItciCtiXmanX62v64ZwlaaKVYsZB9BK3pMoBp9VYRFEUGIbh69BIhHEkDZOtDTKx\noLIvHuWArAsgCbfSxEIs6HlTIi6lmCpJHFq113U9stGEF1lmpthMjtfsJTdWuXjRnKm9Ll7j4Riy\nvvL7NESIJEm2OURYx76g8kQKlMM69qWJl/V33AAzii20+cIXQvGZM5UnomRmwpRisiYWIpO3zEwY\nZ8agbC1b4ibCIklaOK3uo16bTkdSv2xtmJlWfiYWccoB2UUy2t88mVgUocwv6BjoPV0iLuK/DUp8\nEaVnymubTqOJPD70WHdEyuQ0Go2JGu1ZF6/dS7sxGA7QbrSxcb+N6HQ6tq160lBQ1e12PVfXnS9q\nL/IysJNw6yFgLZDD9vqQoCiCLXQU3JwKw+JVikl/M8lSzLgUITPj5YrpNag5qMStqESxug+LX7YW\n8J9p5fw7ThMLyijRwhcP6/UoJhaiP/PzDvVkl4hLKaYKiChiKkwJGc/tJQ2vfi8/F680TBJGoxEM\nw0Cz2XQNhidx7MuroPCyQHauHjuD+ziCIs/wzsyEKcXMusyoqJkZpyumc1BztVq1S8ymVUj5le3G\nwStbG9VAhIQVe66c5YBJmVjoum6bWNA9msVg6aJkpvzODxm+lIhLKaYKiAjmDLyEhxdpHyO9OMIY\nTcQlqeNiBwp7uY+J6NiXJm6rx87g3rIs22AjD6VePGAFRVKZmTD9Jmk5MxLTkplxKwekElhagBE1\nY8iTSWaGxcVrQcc5TyxoUcGvHJA1saDf0+ejihG3/WXLR0sTC/6Ubn7iMx2RQIER5UFF4oaCD0VR\nUhEeSUOBM1mGJ13ek9T5ZPu8Op2OXarBkgfHvjRxBvfkjkbfj6qqdpAvyn2YBM7ekbR6+pz9Js6V\n+6SD+zAOjUWEnuFkqAIgsBywCGQhpNzwMhDhOdMK4De7iLbDLoKUJhbRCOPmV4opscl3pFviSlZl\nftQ7YxgG5ubmEg260jhG6m2iGvS0RAPv43Lr83J+f1Ed+wzDKFTJUxg0TYMkSeh2u7a4SmOuT5Yk\n0TsyCc5yQLfgnoczIyG6oUpSsM6UrKDgEdyLjKh9n14GIlHHPXjNtNJ13f5fKjXjVQ7ozO4nZWIR\nVCJXBMqeKfEpxVQBcAbG9CJIs5aYMji1Wi23RhMs7GDhSqWC8XicynZ5f29hyi0nceybppV6NsBk\nA2u3uT5RXLpExyuwzhqvXp+4zoyEqIF10oQ5bh7ugKIRxZEza3jOtJIkCYqioF6v271QPE0saFGO\nNbHQdd0uIWUt2fP8nORB0ALqcDjE5s2bU9qbkkkoxVRBIYGVxgOKrZVOaxU3ycyUpmno9/u2ANE0\nLZHtJI2iKIFzvYrq2MeLMMddxJlKeQkwwwT3UTKGeTlu3kx63EHBvejlgFR9kEcDnTA9hl6upF7H\n7WZioes6F3dA5/7SItR4PI5lYlEEAwrAfyGVzI5KxKUUUyWxoMwHBZJpPdSSElNuAiTNskke26LS\nLE3TfPu8WCFVZMe+SZnkuL1cuvJUEkXDePN4vtng3s2Zkc2aOL//PB93HHgdt4gGIn4U6Xy79Rh6\nzbSi94PbcYeZaUW/jyusShOL8AyHQ3Q6nax3o8SHUkwVlKQFAPXOkMMdldrklbACRHRYx77Z2VnX\nFx6JXjpfflmTabUA53HcbMDACquo/Q5pQgKyCOc7zFwfuvap9CjMEOIiEWX4chS8DEREufZJSBX1\nfPtd+1TCJ8ty4AJo0Ewr+kzcrFWQiUXRZ1qVQ3vzTymmCoCbcEpSTLkF7FQekBZkeMGDIAGSl8wU\nOfZVq1XP+ShUXkFOXV4rx8BK1jHvQ0ongYaz8pqlRPjNVKKVWJ4mClHhPUNKJLwyhoqi2EEh9Y5M\nC2kKZ5HmiRVpwSAM9P3KsgxVVe1sVB5mWtXrdVvAkasu6w4YRhAWgdLNT3ym580xZSQlAAzDQL/f\nty226SGWhYMgD+h4/ARIHnBz7HPiNJqgl5bbyjH9961Wa2qEVBqzlAi3kiieJgpRIQE5DcKZzRiq\nqorRaGQHbTQ+gA3uiwhlXrMQzlmWA06bkCIoEzczM7MqE8ea55AdfpyZVmxWiT4X18SC7lU2y2YY\nhr0IRdvOczlgaY2ef0oxVRIaXdfR6/XQbDYzNyHgId7IaGJmZsa36TrtzFTUjBv1rbXbbc+SlSDH\nPlo5rtfrdimILMsYDAaBvSZFIItZSgS7EkuZQ3amEgWWtVqN+3fPDqWdJqt7ch8dj8fodDp2UFgU\nAxE/KAMpgnBOsxwwSwGZJX4CMqmZVmzWioQCj3JANxOL0WhkXzOTmlhkSZjYouyZEp/peaIUGC8L\nW54CgAI7r4A97cxU3O0FHU8eoEzKaDTyHZBML7VJHPumIbgUaaaQW2O2WyM5j+CSFZDTZHXvJyCd\n5YCimyhERfQMZFLlgKWQCs7EeTljTjLTCljJWrElgGzPFa9yQLoOyOnOzcSC7lXR79eyZyrfTM9T\nZcrgJW6cRhNeL6K8lPmFPR4WEXumyDBD13VPwwxauSMh5fewZp2t6vX6qvLNvLvT+SG65btbIzmP\n4FIkAZkmUTKQopsoRIEtYc1LBpJXOaBImbg0iVvSyHOmFZu1cpYD8phpRdtwmljQ9QLk28RiNBqV\nQ3sFpxRTBYWXxXaQM1xWTHJ8cY9HlEZXOg4A6Ha7no59YYVUWOc6L3e6SWf6ZE3erJF5BZeiC8ik\noAUIABMJSJFMFKLAZuLSLmHlRZCw9epzEz0TlxQkpHhl4sI8e7xmWrH4lQPSftNnwl6nbu9lt9Jp\nPxOLLAkTV+i6PlU9fnmkFFMlrkQ1ZhC9zI9tLo9a0pRmYBR0XGHOS1ghxfaNTPLSZYNLv7kmIgYx\nebd8dwaXYYfVkoCs1+tTN5R2OBxClmXMzMzEPu4sTRSiUNRSziBhyzqSei04FZWkSxrdhK3Xs9+v\nx9ZvphVrYkG/T9LEgsSVqD3BoizklnhTiqkCwLtnKqwxA6/tJU0Yp7sg6PiyfKCRAYjfeWGNJoKE\nFE/jAb+5JqKt2hfRAjxoWC2ZVyiKUtjZOl4knYmjjNfC0gIG6gDNShPr2uvsQD+rjG3cTFxecBO2\nZHlP13xSBi6ikUVvWJh5bmGcSd1mWrGDglnHPvrcJDGHm4kFLURRyWGa76qs44oSPhQjkihZw6Ti\nRlEUjEYjdDqdiVbs03owhD2+ME53IuF1XDwc+9jPUZCVxGp1UBN/2rbfRJrW51niFtyoqgpd1yFJ\nkn0+RBC2SZN0Kef9v7sfi+NFmDUTzZkm5LaMZXMZjy0/BlmTsa6+DocddNga6+mknTGpJ45XJi5P\naJoGy7LQ7Xbtf+clYx4HEUw2vHpsJ51pBewrB3QKK3axcNLr28/wR1EU+3dZlq6XYisflGKqoEhS\nNIttCrA1TfM0NAjankhQ5kVRlNBGE35klXmj4xiPx4k59iXJpOVovMnS+jxL6DlgGAZarRZkWS6U\ngYgf1DeSVCbONE0sjhfRXNdc9XNZltFqrzhv7dmzxx4+mtY8MSpppN7Gop1XL+hZaRjGqns8qByw\nCM6kYUw2TNNEv9+3M6jtehvzc/OJGZJ4CRVaWAhbscCWA9ZqtVUmFrqu28fPy8SCnhVpmViEFUt5\nvj6ngVJMldgPWQCxjCbSLIXzEze0KmsYBubm5nIVOLPH5XTsi2s04eXYlyZhytF4u6NNs3OdWybO\naSCSR3e6INLoiev3+zBr/gtWZm3l2To7O+vaFM97YYEWS2q12lT1xDkXS7xK38OYKOStHDCMkHLL\noC6ai3hk9yOQd8pY31iPLYdsSXQ/ec+0onLORqNhD+8F3MsBJ0EkEwtRWyhK9lGKqQIQp2fKMAz0\nej3UarVQRhNBZG0hTsJQkiQ7gElye0kR5jiScOxLkzC233HLoabZuS4oE+ds4tc0bc2MljwOak6r\nJ25haQHNmabvZ5ozTSwsLWB2dnbVz9lVe6+Fhajff97cKXkxSW9YFBMFkcsBw2akgjKoi3sWYZpm\naoso7PcPeM+08vr+6Vp3Zp1ZEws6p3Sv8ZhpRSYWrEkG+7yk7UR5XgYtQGuaVpje3iJTnqGCEib4\nZ40mmk3/oCDsNrOEhGG9Xs9tnwCVZS0vL/sK3ChCiuyBRTZccFs1jlsOJUImLgsmDS7dVo3ZJvI8\nlEOlaYU9UAeQ2/4BmizLGIwGgX8ryMAlqBzNK7gsOuy1HmcxMO73nwVhr/WoGdQsiDLTihbI3K51\nNxMLEj3Ub8Uja+U204oyZXQ8vEwshsNhOWMqB4gZWZVwwa8MbjwexzKacCPN7A09oGhVhwwaWq1W\nIquyaR2bruuwLMtX4Gbl2JcWbuUVbBMzCSu/chwRM3FpwMMC3G3VnhqyDcMI9f2nTRZDadv1NhbN\nxcAexXY9WiDk1cSvKApM01xTjpZ0b5ioJGWyEfb7z9KUgIRUmGs9TgY1C/zKMamUj55BfpDgqVar\nrjOtyMQiykwrr/2l68GZZQ5jYhEUV9Dg5RKxKcVUAfAq83PD2YfDe/U2i9reuA6EokBiAUAoIRXG\nsc+yrFzPl/FzWxqNRq59PkW0Pg9DEv0yQd9/Un1uUfAyHkia+bl5PLL7EbtUyg1lpGB+4/zE2wj6\n/qlXZNqEVFomG2Gv/zRnFCmKEmnRgGcGNW1YoVKr1dDv922RRXMjw5TDhp1pxStrFdXEwu+6IYfG\nLPjSl76E9773vbj//vvxgx/8AM9+9rNdP3fwwQfb8WStVsN9992X8p5mz/REGlOGWyYlqX4idptp\nQ0YTSQhDliQzU6xjX6fTsc1AnER17KtUKlz64EQiqM+KyiSnTUil1S8Tps8t7RkttGiQtrlIp9OB\nvDMgSNVkdDodbttkv39VVe0FhfF4DFVVhSxH402WfZBZlgM6DWXCBvxJZVDThJ5vMzMzq4QKr5lW\nbNaKKj7SMLGgn/vta5ZlfkceeSRuvfVWnH/++b6fkyQJ3/3ud7Fhw4aU9kw8pifamDKcwT8Nrk2y\nnyjNMj9K1ZummesJ96zzIAlc53c4iWNfvV4vvJsXWw5CK9V0XVA5YNEDSyC7kkavPre05omxZV5Z\nLBrI8ooL2uIexiVtb6ZIGSmQtZXfJ/Fsouxrp9NBpVLxdKcrmu29SG6FfuWAbDksj3LASYUUkE4G\nNUlYIcU+39y+/0ncMdmsFTvTiu254lUO6GZioaqqvSjkZmIxHA4zy0xt2RLe4XHaHQdLMVVg6OJO\nup+ISEtMkdEEAHt2TtIkcWxumcI4QooC2Wkr+SHnOkmS7EGdbn0ORQssAXFKGr3cuZKaJyaKS+OW\nQ7asnt8z2ju/Z2Ny83vcjAe8+tyKZHtP37OIboVJlgOyva+TlLFmkUHlhZeQcuLljhlnphWwrxyQ\nXayg3/MysaAFwEqlYptYfOADH8Dy8jJOOOEE1Ov1zMRUWCRJwktf+lJUKhWcf/752LFjR9a7lDql\nmCoAXj1TFGTyGlwrAqwD4Xg8Tm27vMVUkPMgbatIjn1J4BVUOwObogWWlmVBVdXUnOuiEmae2KS2\n0yJlJ4CVoGh2djbx5v0oJhtO2/usyzHjkjfbd17lgGw/4KS9r1lmUOMQVki5wXumFbC2HBBYqfiJ\nK6wsy7J7v2jA9xve8AbceeeduPbaa/GTn/wET37yk7Fp0yZs27YNhxxyyETb8WLr1q3YtWvXmp9f\nfvnlOOWUU0L9jXvuuQebN2/G7t27sXXrVmzZsgUvetGLuO6n6EjWtOfmCoJTWJimiT179qBSqdil\nIElDfTo8bNbdoFVuMppYWlpCq9VKpbSJ57EFWdI/8cQTWLdu3ar67TCOfa1WS7igOkkmsT5n5ylp\nmjbRPJ+sibtSnSVsYKlpWuQ+k7wF1bxgg+o42Xg2sCTnUNGztkWyfWfdSXVdh2EYnlnbMIOIo7Aq\ng6ruzaDOJZdBjUMcIRXmb9MzSNf1wJlWXrAmFmwYHXWmFTn+eR3n5z73Odx7772wLAtf+9rXsHHj\nRpx88snYtm0bXvjCF6ayePqSl7wEV111lacBBcv73vc+dDodXHrppYnvl0hMzxJ2wWEzJ6Zp2mVw\nafYTJVXmRy8VVVVXGU2k+eLndWxOQegF6y7khbP5XrQXYpJMagctSVLu5smw5N2l0dnnEKXPh875\ntNnd8wyq0y7HjEvRznmYckA6P+PxmKuxSloZ1LgkKaSAaDOtomStnHOt6DNBWasgAwpd1/HCF74Q\nO3bsgGma+MEPfoA77rgDb33rW/H73/8eDzzwANatWzfhtxEer/hnOBzCMAx0u10MBgN84xvfwHve\n857E90c0ysxUQaAmRjKaaDQaGI1GWL9+fWoB13A4hCRJXGciWJaFfr9vB4/sQ6nX69lZiaSJe2ys\nIOx0Op6rSWw/mF8pDo95QnkliT4hdsVY0zQhV+yTmqsjCuyKPa0Y0/dvGIZtETxNZay8htKG3ZZI\nWduiCakg2MBe0zQA+4Zli/IMSpqkhZQfbF+UrusTzxRjTSxIVAHwNLEYjUa+c7Ouu+46HHjggTjj\njDPW/O7RRx/F/vvvH+Eoo3Hrrbfi4osvxsLCAubm5nD00Ufjrrvuws6dO7Fjxw7ceeed+O///m+8\n8pWvBLByz5555pl45zvfmdg+iUoppgoC9U8MBgO0223U63UsLi5ibm4utRVGWl3m1SxJGbZKpeK6\nOpemmIpzbKxjn1emkDWaAFavWDqd0ahnZBoc+1ioZ0RV1cT7hFhh5VeKkxaiGC6khTOwB2BnFPNS\njhmXLMWzWzlg0u6MLJSpmVbxbFkWms2mHdiL8AxKGtHEM/sOpt6oSRYXWBMLer8D+7JWiqKg0Wh4\nvs+uvvpqPPOZz8T27du5HFdJMkzPU6rAeBlNpGlVTttjHxZx0HUdvV4PzWbTM3hM+/gmIcxsLzfH\nPprczpZCsUN9RWm+Twu21CmNGn9nAz8JKx4GClGZpDcs71A5ID1PyKGOnScjcjlmXLIWz27zcagU\nKulywGkXUgDsxUM6fq9ywDz1evohmpAC/E1EAH4zrej+8ioHzHLOVEl4pudJNQXMzs6uuhnzIDbc\nICt3yrB5kebxTSIUgxz7gHDW5+y09NFoZM+oWF5eLoQzXRBuQUaaBPVZJemMNmlvWN5hTTbYbK5z\nng9bilOr1XIfVALiuRUmafvthEp4RXSoTJKgck5egb2IiCiknCQx04od6QHA7rVylgNmOWeqJDyl\nmCoAkiSh1WpxywrF2Y844oYCqPF4nHsrd3Ls85vtRStUYRz7WEtkCjKczbOUzaIV+yKQ9Qq9kzgG\nClHJahhv1jizkOz3GBTY531xIQ9uhbxsv524zc+aBqKWc7oF9mllDXmTByHlhMdMK3qnG4Zhm0c5\nDSwoNiDn3xKxyW+0WhJIFmV+k26P7StyZtiS2F5UomwrjGMfK6QmdexjX6psj0MaGZM0oMBS1N4w\nthTKrRwzTlAzzYFllCykW2Cf13lKebQA9wrso2YNqRdSRJvuJInbF+e1uEALPCKXA+ZRSLkxyUwr\nWhxl3+mUjaK+aMuysHv3bnz729/GBRdckOUhloSgFFMFIa89RcC+viKybhXpgU+E+S69LNydUL10\nkGUq69gX5OTlFdjTAz1vZSB5LG8LM6g2KGMSZTBr0YjrUOm1uJCHe6AIgaVbYB/Ua8he79M23oGE\nFM0v5GV/7hbY04KcKPdAEa53N5yjB9wGxlNpv9/zXZZlPPHEEzj77LPxmc98Bs997nPTPIySCSjd\n/AoCOf6w9Pt9u+4+DeilGWWOBVm5+/UVecHbPdAPckvsdruuv6cXo99DMkx/FMEzK0PCipzp6IUq\nao9JEtbnWcJmTHRd98yYsOVtcQaz5pGkyzmd94BIpVDTYLjgdg/QCrxhGFO7cMBTSPlB7x4R7oGi\nCqkgKOtO1z9bEksLEcSePXtw2mmn4X3vex+OP/74DPe6JCzFfHKXZELUTBgZTfj1FQVtL60+Mb9j\nYy3cu93uxEYTBO+sjF/GRKQekzStz9MkbMaEStOyMNnIkjT6hMJkDdNyZ2Qp2sKBF857gPpL6Hmo\nKMrUzFPKog/Ur88nzXLAaRVSwMq9bpqmHSPQAs/CwgKe97zn4UUvehFOOOEEHHvssXjLW96Cyy67\nrBRSOaK4T+8SYcv8KGgejUa+fUV5gJdjH5F0cOXXY8IaWAKf5rEAACAASURBVKRdX09ZmaKvUjvL\nQAzDsEtAAKBarULTNGGzhrzJopwzKQOFqExrXxywko2jcRE0eoAthRJlgYc3ojg1ZlEOOM1Cil0k\npGuavt9Nmzbh+9//Pu666y7cdtttuOSSS3DwwQfjhz/8ITZv3ow/+ZM/mYp3Qd4py/wKAq1ysAyH\nQ0iSlJoTDAmLdevWeX6GTXWzznSTwPaWJA0FW3Nzc/bPknLsa7VaqQdX7AuVAp20gsogW+AiYxgG\nhsOhvWrPDkoN22eVV0RzK6R7gB2WzdOdkd3ONPcJ+d3rYUti84goQsqPpMoBp11IjcfjwEXCwWCA\n008/HRdeeCG63S7uuOMOfPWrX4Vpmjj55JNx8skn4yUveQmazWaKe18SllJMFQQ3MZVmTxGw8rJY\nWlrC+vXrPX9PA2ydlseTkKWYUhQlMLMWxbFPpF4ZdkgnBZVJNS5TgFGpVCYyHcgzFGC4lbd5BZUi\nunJNQh7K29h7gFdQyc7PKoWU/zXMLvDoui6UgUJUWCGVp2CYLQfUdX2i6oVSSAULqeFwiDPOOAPn\nnXceTj31VPvnlmXhV7/6Fe644w7ccccd2Lx5M26++eY0dr0kIqWYKgiiiynKWtVqNW7ZhyBTCJ7Q\n/s/NzdmOfd1uN5Rjn9+xxnUwS4OkDCxEtz5PkihZGa+gMo2sYRLksbyNStHoPpikx0S0RZM0iWsB\nDohtIuIHLSKKPDssDG7PoaDMLQkpkRdNkoIWjIKE1Gg0wllnnYVzzjkHp512mu/fNE1T6Gt9mpmu\nq7vAeFmjpznI16tHi8rhZmZmuK7Kpd0TRgP0LMvynIUV1bGPSrxEFhNJGFjk0fqcF1GzMmyfFZs1\njDrLJ2vybPsuSZJrj0nYPivnvDiRzxNveDnXiWCgEJU8DGEOi1u/p3OuHnsOSiGlBGafx+MxXve6\n1+HMM88MFFIAcvXMnDam6wqfMrIyoKD+ICBcOVwesCzLPi6vEsUsHfvSgoeBRR5KvJKAh1th0Cwf\nUZv32axM3svbnDPdgsRt1EHERSIp5zovA4XBYAAAQpQD5nEIcxRYcctmbsmV1DRNNJvN3GSfecEK\nKb9jV1UVr3/963HqqafizDPPTHEPS5JgeiKZKSRtMcW+tMIOsI27vTSOT9d19Ho9AN7BkEiOfWnh\nZfnttVpvWZZdmpmnEi8esL0yPLMysizbq97OgCZLd0aWIouJMINqTdNEpVKZOnOVtAwXvMQtZUxY\nYZWWiC+6kHLCZm7JFbBWq9nP+ySMXEQkrJDSNA3nnnsutm3bhte97nWF/k6mhfxGciVCQitSVNLi\nVQ7Ha1tJiyl2FhaJBCdRHfuKNkcJ8A5oqG+PStSKbn3uBlvixcN4xYu4pWhJwKNXJk+w4pYCapop\nQ0PUsxa3aZBVeZubuE17pti0CSkWKrtst9uhywGLAmWng97tuq5jx44dOP744/HGN76x0M+BaaIU\nUwXBq2cqizI/3kYTWcGWKFarVQwGg1UljMBkjn1FFxNsQNNsNu3eMOrfUxQlFz0+PGDFRJr3Qxhx\nm/RKcRbDSUWBFpTIXAVAKrN8RECkPqG0Z4pNs3OdV49UUDlgEazv6dkaRkhdcMEFOPbYY3HhhRfm\n9nhL1lKKqQKTtpgih596vZ5K4JjU8VEmQdM03xJF1rHPTxxRYCVJUuHKnIIwTdNeEe50Oqv6rETu\n8eGBKGLCKW6dZVBJuKLlxVwlCbzERFDzfh6c6YIQOSvDliV7LTDEWeQphVSw2YRX9jzNRR7ehBVS\nhmHgoosuwtFHH42LL744N8dXEo5STBWYNMUUBQVU5pLXB4WfYx/7fUZ17Ms6oM4CN+tz58t0EgOL\nPCDS6rwTrz4rXmVQIh970oQ1lvFzyEyjFC0J8iQmvBYYnOcg7CJPno6dN5O69nm5A6qqmptyQLpe\nWq2W771qmib+8i//Elu2bMGll16a63dbiTulmCqJBWs00e127RKWNOAtFk3TRK/XQ7Va9cyskatf\nkR37eBDm2KMaWOSFPJ13N3EbpwyqDCqjH7ufQ2ZeyqDyft6dCwxRzsE0W4CzYiLusTvLAUW/D8Ie\nu2maeNvb3oanPOUpeMc73iHEvpfwZ7ru/AKTRc8U9YMYhrEqi5N2n5azj2kSdF23Byt6ZZDYuV1h\nHfvyGlzEYZJjF6HHhwc8g4u0cZZB0Upx2HOQ52OPC69jd1tgiHIOsqBo5z3KOaCfF+XYo5DkeRf9\nPgh73k3TxDvf+U7Mz8/jsssuE+aeLeGPZGXhUFCSCOPxeNW/LcvC4uIiNmzYwH1blMWpVCqr+oB6\nvR4ajUZqK/JPPPEE1q9fH+shRY597Xbbc78ty8LS0hJkWbYf8l6Zq6I69gWRlPU5vUg1TYNhGPaL\nVDQDi/F4XFjbd7YMij0H1OMT1hK4iKQ16iDoHGRBUcY8hMV5DgDYZcyilqIlQZYCms4BZdHTLgcM\nm4k0TRPvfve7UavVcMUVV0zV9TGNlGKqQKiquiorRGIqrthw4pfFIfvftHolFhcXMTc3N9GDioTP\naDRCt9v1fDBSyQH1SdGD3BnMsI59rVZrqh6e7BylJIeysv0lWbxI3aDrSNO03A+kDYPzHFAGvNVq\nTV0WNisBzfa6aZqGSqWSer/hNAtocmVke97YbEreez79ECkTyZYDsucgqXLAsELKsiy8//3vh6qq\nuOqqqwr/Tigpy/wKTRIPc3bukpdgyoM+J8c+XddDO/bRw5N6G5yN+6ZpQpblqXPsS2uOEuDfX5KF\ngQUroKdBSAH7zkGtVsNoNIKu6/b/ryiKcL0NScAK6CxGHfDudYtKkbOwQZCI7HQ69rGzPZ9Ftr4X\nSUgB6ZYDRhFSV1xxBQaDAa655pqpeCeUlJmpQuHMTAHxMjcslHlQFMU3izMYDGyHpDTYs2cPut1u\npBc669jnFQiRyURYxz4KYqh/axpWKIF9tu9ZD2VlgxlN01IJKElEAsj9TLWoOEUkXftsSWZRA8q0\nsrCTQM8tWugxTZN7fwlbxizSsadB2GycV2lynq3vRRNSQfAsBwxrsGJZFq666io8/PDD+PjHP57b\nc10SnVJMFQhN02yDBGISseGENZpgV+PcoHlKMzMzE28vCktLS6umrQdhGAb6/X6gY19YIUUPWdYJ\nKu2gPitEnSXEBpQU1PMOKEURkVkQVkTmpdctCm4iUmR4BpTTVs7qZNKyRioDzLIkMy55E1JO4pQD\nRhFS11xzDX7zm9/gk5/85NRlbKedUkwVCDcxFVVsODFNE/1+H5IkhSrhYoOsNIhyfLquo9frYWZm\nxjP4jyKkglzr0gjqsyJP9t9ejfuTBvWiisg0mFREOvusos7xEYG8ZyK9AsowQb3I2bg0mKSskd6d\nC0sLGKgDtOttPGn2SavcSgHY50DUxba8Cyknbhl0r4HNVHUSRkhde+21+PnPf45/+qd/KoXUFFKK\nqQLBW0wZhoFer4d6vR46cKJa5bTE1PLycigL7rCOfYZh2KV6Xsc7qWOfc6WeRFXeVurp5ZpH2/e4\nBhZ5EpG8MU0Tg8EgtoiME9RnBWXni5KJZDPouq77lmTmLRvHGxJSUXrj7v/d/VgcL8KsmWjONCHL\nMkzThDJSIGsy1jfW4+kHP31V5pB9J4hSDlg0IeWGM3tLCz2yLId6z1mWheuvvx733nsvPvOZzxT2\neyrxpzzrBWfSWVOapqHf7/saTXhtzynoksbv+ML2elGAB8D3JUaBBZU8RnnhsUMJ2aB+NBrloqY+\nKevzNIljYJFnERkXWqGlctY4eA1rZhv3RVqpL2JJJzvXjTLouq5jPB7bWVf6vaIoUyukFEWJbDJi\nmiYWx4torlvdNyzLMlrtlUXGxT2LsCzLfifQf8e+Eyiop1K0tJkGIQW4D2xWVdVe6KH/dXseWZaF\nG2+8Effccw8+97nPFfp7KvGnPPMFgtfgXkVRMBqN0Ol0IgeNSQ8KdtueF6xjn58JB+vYF/T3yGgi\nrmudM6h3OgOKVgLFlvlk4V6WBF5BvZsjmqZpUzVPhyXJbJxbUE/fNZknZJm9pWwcDZMuopigQNFr\noYecA03TzOUCyiTE6Q/r9/swa/4LimZtpQRwdnbW/pnbQk+aDo0s0yKknEiSBFmWYRgGms0mKpXK\nKnfAv/mbv8ExxxyDE044AXNzc7jpppvw7W9/G1/4whemboGtZDXTc5dMMWHFDYkPTdN87cJFwku8\nsb1es7Ozsfujkgyq3GyOKVsiQglUmtbnWcEG9WxPA5U3AbBfrtNEmtk4NqgHVve6UfY2zZlilI2r\n1+upuZOKAA0m1zTN/r7ZoL7o1vdxjTYWlhbQnPG/XpozTSwsLawSUyzsc7/ZbCZq+e2E7re8Vh/E\nge55duGI3gm6ruOwww7D5z//efzFX/wFtmzZguFwiC9+8YtTV/JdspayZ6pAUN01S9ghuiQW/OzC\nw0BlYN1ud6L/Pipux5e0Y19aiOAMWMQSp7BQNk7TNNTrdfv+KoIrXRjIYEWE1Wlnn1XSM8V4ljXm\nDa/+MK/G/SIY6hA8jDZ+/sDPobf1wM9VB1UcediRkf8+T4dGJ6WQGoTKwP/zP/8zbrnlFhx44IG4\n6667MDs7i1NOOQUnn3wyjj322MyflyXpU57xghOm7C6M+OC5PZ44t8c69nmtJkcRUln2yfhlS9II\nZKbZtY7NxnW7XfvYvfoaRCrJ5IFoQ1n9SjIBvo5o024yMhwO7VmB7HfpfB6RsKI+qzz0ffpBQsow\njFiOhe16G4vmou9/b5om2vX2RH/frcfHWckwSeZwmoUULSaHuedvu+023HLLLbj11lsxMzMD0zTx\nox/9CHfccQcuueQSPPjgg3jVq16F6667LqW9LxGBMjNVIOjlxhI094mMJvzERxTogexVvsAbdgWV\nXuq8HPtENltI2hmwDCiDs3FpZ0vSIG+zhHiPH5hmk5E4pcxus5RYYSX6vcDTsXB5eRk/3/1z22zC\njeFgiCM3Hsn1PRknczjtQqrf74fKQt9xxx24/vrrceutt6LddhfDDz/8MH75y19i69atSexuiaCU\nYqpAeIkpwH3uUxjxERWqrZ+bm+Py94Kg45Mkybav5eHYl6eZKm5233FWiMuAMnpAKUJJZlzYgLLV\nagl/3bvhVgIV9l6Y1qZ7gJ/tPbDvOUvPJNHvBd7W76Zp4t5f37vGzY9F2aPg+X/8/ETvMa+h2c57\noRRS4YTU17/+dXz0ox/FbbfdllobQ0l+mK43xhTiVnZHLw9VVbkbTaRd5gfAHn44OzvLxbGPBFpe\nzBZ4OgOKVt6VJnH6ZLIuyYwLe93n2QLbWQLlvBe8MofUH1Ze9/H7w5zmCSLfC0nM0JLllTlSi3v8\n50wlvVjBOjSy94KiKHYWXZIkKIqCTqczddc9LSCEue6//e1v45prrimFVIknZWaqQLBT1Qm2BhxY\neXn0+/3YRhNe0KDfdevWcf27bpimieXlZQDA3Nyc0I59WRBlOGresnG8SbKskS1DE9HAomgDad3w\ny5bQXJlpFlJplfMmaZ4QFXYBIW6vsBuU9VhYWsBAHaBdb2N+bj7z0RKURafYgO2zEkHgpgG96+v1\neqCQuvvuu3HFFVfgK1/5CtavX5/SHpbkjVJMFQg3MUX9D51OB6ZpotfroVKpJLb6bJomlpaWEn/o\nkGiTZRmyLKPT6az5TBQhxa7O1uv1wr1Q/MrQaNK7ZVm5zkpMSpqudc6SzKwNLIq2gBAGei6oqrqq\nt6Rer09NMAmkL6ScZNlzmLSQEh32mUeDaYPKAYsCW9Ia1Cf+b//2b3j/+9+P22+/HRs2bEhpDyfn\noYcewtlnn43HHnsMkiThvPPOw8UXX7zqM9/97nfxile8AoceeigA4M///M/x13/911nsbqEoy/ym\nAHppUW1wkkFTGmV+rGmGJElrBCSQH8e+tAiaoyRJ0lTN0iHSLmt0G8yZ1UyxaXVrpMGc9P+3Wi0Y\nhlEYV7owUCY2y2eel0MjuWgmlS0phdTaklavgc1+pbF5JIqQ+t73vof3vve9uRFSwIqr6dVXX42j\njjoK/X4fxxxzDLZu3YrDDz981eeOO+443H777RntZTEpxVTBkSTJzkjxNJoIgtzyeEMBT6fTQa1W\nw3g8dt12VMe+aWo6p+GoAOwZSpIkQVVVjEYj7s6AIsKWNWZVduNn9510037WWYksYftkqC+yWq16\nBpOs1XQREEFIOWEXe1iHRnre83omTUNJqx9BvYFuiz3swGaRjUSCiCKkfvCDH+Cyyy7Drbfeivn5\n+ZT2MD6bNm3Cpk2bAKz0fB9++OHYuXPnGjFVFqTxZzqixynB+XAjsWAYBmZnZ1MRC0k9YCn4pYHA\ndCzOTNgkjn1Z17BngdcgYmcwWcRVemfTuQjHlaaBhYjBdFoEGW0EBZOTzvARhTw4FtJiDwX7vGa7\nlUIqmsmKl5EI9VrladHN6Vbpx49+9CO84x3vwJe//GXsv//+Ke0hfx588EH8+Mc/xvOf//xVP5ck\nCf/+7/+OZz3rWTjwwAPx4Q9/GM94xjMy2sviIObTtCQ29OJga9HTggQOrwcsHQuJwml07OOJX1kj\nT2dAEcmDax0bTLJBDI8ytDwE00kRNZh2BpNkNU0CN29N+2n2BvIkTGlskMAthVQ8t8qwAlfEDC49\n8yn77Hfuf/azn+HSSy/Fl7/8ZWzevDnFveRLv9/Hqaeeio985CNr+smf/exn46GHHkKr1cJdd92F\n7du349e//nVGe1ocSgOKAkGZKHIRoj6Y4XCY2twnAFhcXMTc3ByXgJs9Fjfhw87IiOLYV6lUpvKl\nSj1CUQOqKM6AolIEs4U4BhbTbHvP+9yHneEjCkW0fg87pJaGcNPiRB7v+zgkfe7d3g2ilAOSiA5z\n7v/zP/8Tb37zm3HLLbfgKU95Sop7yRdN03DyySfjxBNPxFvf+tbAzx9yyCH44Q9/mJu+MFHJz/JU\nSSjIaKJer2NmZgamaaZeH8vLhIIc++hYvB6EpmnCMIzAoL7ojn1+xC1rzLK/hwd07skKV8R9DMMk\nBhaWZdmunkUKpsPCcyAtwc7w4VWGlhRFFdHO0lgSVmwGt1qtYjwe29nFvN73k5KGiHZ7N7AZ3Kzm\nikURUr/61a9w4YUX4uabb861kLIsC+eeey6e8YxneAqpRx99FPvttx8kScJ9990Hy7JKIcWBUkwV\nCMuy0Ov10Gq17LrgLIbo8tgmOfaxx+KENZjo9/v2A93toT0Njn1e8O4RSrO/hwdJzpDKkjACt1qt\n2tkTUfrD0oT3QFo3RHJodKIoij0ao+jn3ilwqb8HWLkOVFUVsgwtKbLIRnq9G1RVXSVwk15oiCKk\nfv3rX+OCCy7A5z//edsuPK/cc889uOmmm/DMZz4TRx99NADg8ssvxx/+8AcAwPnnn49bbrkFH//4\nx1GtVtFqtfCFL3why10uDGWZX8EYjUarHlKWZWFxcTHVlYelpSW02+2J6/Kdjn1uOB372P4eGgZJ\nAT0FNnnrFeABlbik1SvgLH/Kukl5GkW00w0NgO9CQ1HJ2rGQFbi6rqfaZ+XMRhZdSDlhs5H1en3V\ncykPmfS4iFjW6VUqztvQJUp/3AMPPIA3vOENuOmmm/D0pz+dy/ZLppNSTBUMVVXXuNstLi5i/fr1\nqb00lpeXJwpeKYOiqiq63a7nSyDIsY+EFT20AdilfdMUVGTdI+Ts70m7rySvDfc8YI02ms1mrvp7\neCCaYyErcHVdT3ShgS3pnXYh5bTAZs+DX59VnhFRSDlxW2jgcR6iCKkHH3wQ55xzDm688cbSza4k\nNqWYKhhOMQUATzzxRKpiqtfr2eIlLPQQpNkvvBz7TNNEo9GwM1ayLAvrOsQTL+vzrGAzh5qmJdpX\nwq7Kt1qtQp9nN/yykXEMLPJCHrKRbgsNPMqfnCW9RRAHUSDDorDPPVbg8jwPWZEHIeUGD0MXeudL\nkhQopP7nf/4HZ511Fm644QYceeSRvA6jZIopxVTBcBNTPN31whBVTNFQ4Uql4hkA0IpiHMc+dm4M\nlXvkzZEuDKIHk0k6A5ar8uHNForg0Ogkj9lIXudh2oVU3P44Z6k4jRTJy/2QVyHlxG3hLeg8RBFS\nO3fuxJlnnolPfOITOOqoo5I8lJIpohRTBUPTNJimuepne/bs8S2b4w2ZQYR5oYVx7IsipMK6trFl\nBkWqo5/U+jwreJ4HtrSt1Wrl9hxOSpxg0nkegH19Vnm5H4rgWjfpeSivfb79cXm7H4oipJyE6TuM\ncu3v2rULr3nNa3DttdfimGOOSeswSqaAUkwVDBHEFOui40dYx76wQooyMlFfqG519CK/ON0oQmlb\nnH6GtI02RIOnY2Ee+0oURYGqqoUKJp19VqZpup6HKKvyRSRpo5E0+90moahCyonbeahWq3ZsEJSN\nfeyxx/Ca17wGV199NV7wghekuOcl00AppgqGm5iK664XFbYB1AtFUTAajSI59vk9KHlmZNiVMK8A\nRiTY8p5Wq1WY0rawzoBZG21kTdJlnaywEs3AYprKOr36e1RVndoh5Fk4NorUd1iEbOykGIaB4XAI\ny7JgWZZ9HiqVCmRZXnUuFhYWcPrpp+Nv//Zvceyxx2a41yVFpRRTBcNNTE3qrjcp7CqpE16Ofezn\nKJhKIiPjFUiKsCIJ7DPukCSp0OU9Xs6AkiRhNBoJY7SRNmn3CIkUSBZ1ESEMlmVBVVWMx2NYlmUb\n6+Slv4cHIjg2pmX37cY0Cym69y3LQqvVAgB7keEnP/kJ3vjGN+KEE07Atm3bcMQRR+C1r30tPvjB\nD+K4447LeM9LikoppgoGpb9ZJnHXi4PzIUdYloV+vw/Lsrg69tG2kg6msrb6dtufaczIUIOyqqow\nDMMemppXB65JyTqYytLAYtrNFpxzlNhFn6L0f/ohgpByQpUUdE8kOVeM7v1pGMbsxCmknN+raZr4\n6U9/ijvuuAN33XUXfvvb3+J5z3seduzYgRNPPBHr1q3LaM9LikwppgqGKGKKghwiCce+LHtk0rT6\ndiOuc1XeoYwMZT+L5EgXhIilbWk27E+72cK0z1ESUUi5wcPu241SSIVbRFleXsbpp5+O8847D/1+\nH1/96ldx99134znPeQ5e/vKX45RTTsFhhx2W4t6XFJlSTBUMNzEVxV2PB4qiwDAMW0zpum7P/vDK\noCTh2JcWzhV61lI3iYyB6NbnSeOVkSmqQyNLHkrbkgzoowzlLCJRF1FE7nebBBJSeXErJbzKY6PO\nOyyFVDgh1ev18JrXvAaXXnoptm3bZv98OBziW9/6Fm6//XbccccdeOUrX4lrr702jd0vKTilmCoY\ntBrGEtZdjxfkKtfpdKCqKgaDATfHPp6uZUngFtDzzJTkcY4OL6JkZIq4Qp/XjAyvgH5ay1qJuGYL\nXtn0vAwwp0WkvD/73OYdhln0mXYhxS7S+t37g8EAp59+Oi666CJs377d83OmaWLPnj3YsGFDErtc\nMmWUYqpguIkpP0OIJKDG6FqtxtWxL29CwmtGxqQzlPJufR6HuBmZsM6AolKUjMykBhZRhhEXEd6L\nSF4DzNMwTpiEoggpJ2EXfUohFU5IDYdDnHHGGTjvvPNw6qmnpriXJdNOKaYKhghiajweYzQaAQA3\nx768C4k4mZI8lHYlCW/HQtGMRIIoakYmrIHFtPcHJt0j5GacIFIWt6hCyg03+3tg5RrodrtCPp+S\nJIqQUhQFZ555Js455xycdtppKe5lSUkppgqHm5jyctdLAsuy0Ov1YBgG5ubmuDj2FVFIuGVK3IKX\nabE+9yJpIZG1kUgQovUHJoWXgYUsy7bRiIhlvUmTRX9kUsYJkzAtA2ndoHcf3Q+VSsU+F0U112GJ\nIqTG4zHOPvtsnHbaaTjrrLNS3MuSkhVKMVUwaGWLxWkIkeS2e70eZFmGYRiuFqR5cuxLC7fVSCoF\nHA6HhctIhCVtIZGl1bcbWQwkFQF6RlA2GoDnYkORESEjk+VcsWkWUsCKQFBV1RYSablligBbjRLU\nH6uqKs455xy84hWvwDnnnJOb7+Khhx7C2WefjcceewySJOG8887DxRdfvOZzF198Me666y60Wi3c\neOONOProozPY25Igip0zLwEASJKEpDUz69hXrVbtRnmWPDv2JYksy3YJEwUv7AwlWZbtnrJpIQuj\nEVY8sZkSygym6QyYF/vnJJAkyb4PKJDSNA3j8dheXBC5LJMHovSH0gy3er2+arFhPB4n2mdVCql9\nQoqucZpX1Ww27QU4RVFgmqb9u7z0gAYRVkhpmoZzzz0XJ510Uq6EFLAihq+++mocddRR6Pf7OOaY\nY7B161Ycfvjh9me+9rWv4be//S1+85vf4N5778UFF1yA73//+xnudYkXpZgqiQ059rXbbdTrddtQ\ngqVIjn1JQhkQ0zTtbBy9NEUrQUsKEazfSTw5gxcqmU2yp0SEjESWuAkJ52IDfUdFvCdEFRJeiw10\nT/AaUJv1MOqscRNSLJIkoVKp2N+N855ghVUe7wlFUUIJKV3Xcd555+H444/Hjh07ciWkAGDTpk3Y\ntGkTAKDT6eDwww/Hzp07V4mp22+/Hf+fvXePi6pe2/+vmUFAjorHRL6K5RYqS9lp2yxTFEkFZrBS\nUCtPRWWa2U4z26UdLNtm+1Hb6S6fLMtDDCcVJE3D0kLTLDt4emKrSKKpiMDAHNas3x/+1rQYZmAW\nzKzT3O/Xa792MOPwmVmz1rqvz33f1/3II48AAO68805cvXoVFy5cQLdu3SRZM+Ee/7tT+yG+ykxx\nqfj6+nqEh4c7Ah/nv6dmxz5v4+r9c8GLq11htdXPy/H484OX4OBgR08JlynxpjMgBZLNv39PMiVK\nPieUcvz5mw0AvHZO+LNrHdCykHKFVNlDX+CpkGIYBk888QTuuusuPPnkk7J/Xy1x+vRpHDlyBHfe\neWej31dUVCAmJsbxc8+ePXHu3DkSUzJEHtEK4TVc2+o2KQAAIABJREFUXVR8Iaa4mTc2mw0RERFe\ndeyTeyDhC1p6/3IqQfMFSjr+nLBylSlpbQka//37YyDZmvfv7pwwmUxtGkMgFVwgqcTj39w54Wn2\nUMnv3xu0Rkg5I1b20Bd4WtrHMAxmz56NAQMGYM6cObJ7H0Kpra3FAw88gP/5n/9BWFhYk8edYzel\nv1+1QmLKT/CmmGJZFrW1tWBZ1qVdKyfeWuPY15YbiVIR+v5bKkFTWhCp5OPvvCvMNeoLCSKFDCNW\nI954//xzgj+GgN9TIlcDCyHN9kpAaPZQbe+/NXiakRFCS9lDOfUeeiok7XY7nnnmGfzlL3/B3//+\nd9mdy0KxWq24//77MWXKFJcDhqOjo1FeXu74+dy5c4iOjhZziYSHkJjyA7x5wWEYBrW1tQgICHBr\n1c0JN879yVPHvpbsT9UIl+ED0Kr376oETSlBJND29y8nNBqN4BI0vpAMCwtT9PtvDb54/656SuRq\nYKF2Ie1J9pA7V/w1I+ULIeUKT7KHXDmgmHha2mm32/Hcc88hJiYGCxcuVPy1kmVZzJgxAzfffDPm\nzp3r8jlpaWlYvXo1MjIyUFpaig4dOlCJn0wha3QVYjabG/3MMAxqampcWpULwWazoaamBsHBwW6t\nurldYZPJ1OLcHoZhHPX1anfsc4WvZyjxhwRzs6zk5PjkL9b3zjOU+DvGnNDyxxlifCEt1vuX0urb\nGeeMrD8df+6c4MZ2AJDd9UkMxBJSzcGJWe68ELNsXIiQeuGFFxAeHo7XXntNFd+Pffv2YdiwYbjt\nttsc72fp0qU4e/YsACArKwsA8NRTT6G4uBihoaH48MMPkZCQINmaCfeQmFIhzmLKbrejuroaHTt2\nbPVrOjv2ucLZsQ+A27k9XCDlj459wJ/W70FBQQgMDPT5zcE5iJR6d54Tkv4mpLlzxGKxwGKxAPDP\nGUpyGEYt5VwxTkhxw9T95bhz8AeycsPknWftKdmRzhPkIKSc4UQud1740rmUMxvyREi9/PLL0Ol0\nePPNN2XzWREEHxJTKsRisTRx06uqqkJUVJTg1+Jueg0NDY0c+1w9rznHPv7uPD+IDAoKUqzzVmvh\nSiukEpJcb49Uu/N8IRkUFOTzvyc3+EKyXbt2jsBFjtlDXyDHjCT/+mSz2XzaeyhFRk5OtJSRcxa5\nWq22kbBSw+clRyHlCncD5du6Ceep/T/Lsnj11VfR0NCAFStWyPqzIvwbElMqxJ2Y6tixo6AbEd+x\nLywszGuOfWazGe3bt3fsgCnRNKG1yM3621Xg4svaeX8eRgs0LyTllj30Bb4ubfUGfAMLm83m1d5D\nLiMnJyEpJkJLG92VyCr5XqEUIeUM32CnLSJXiJB68803UVVVhZUrVyrqsyL8DxJTKsRZTAHAlStX\nBIkpu92O2tpaaDSaZhvDW+PYFxIS4rgw8gMXrqxAjcKKE5KcY5Ecrb9dBS7eLHuSm5AUGyHDqPmB\nS0u9h0pBqaWdzr2HbbG/JyHV+h4xV/cKuRvsOKNUIeVMa0WuECH19ttvo6KiAu+9956iPyvCPyAx\npUJciamqqipERkZ6dFHy1LGP3x/liWOfJ/0R/FIbJbjReYI7ISlnvFn2xLIsLBaLIoaR+gqutLM1\nGTkpe3u8hVpKO1tbIquEjJwv8UVpo69K0HyBmu3f3WVyncuVuWugJ0Jq5cqVOHXqFN5//32/vF8Q\nyoPElAqxWq2w2+2NfldVVdXscF0OzrGvffv2CA4OdvkcIUKKc+xrTRDhyo1OacJKDf0R7rKHngx/\nVLv1syd4MyOnxLInIRk5JeGpyFVqRs5biHENdJfJlcLq29Xa1CqkXOGqXFmj0TgGMrckpNasWYMf\nfvgB69evl/zYEYSnkJhSIa7E1NWrVxEeHt7sxak1jn3N3Ri5IMobu9HuSm3k3Kiv1t1ovttTc9lD\nf7Z+5uB6BH2RkVNC2ZO/9Mi5y+TqdDo0NDQgMDDQ7eaUmpFiM0lKq29Xa/EnIeUMt5nGmU5xPbmu\nsuosy2LdunUoLS3Fxx9/7Jel4IRyITGlQlyJqerqaoSGhrq8QHEXPG7eQ2sd+/hwu/G+CKKU0Kgv\ntvW5VDTXT+JpaacakSIjxxe5cnAG5Mp6/K1HjuzvryOHHjExrb5d/W1/FlJA42uATqdrtOEwdepU\ndO/eHSkpKRg+fDi2bNmCkpISfPrpp6reeCHUCYkpFeJKTF27ds2lsOFueAzDIDw83O0FX6hjn1hG\nC1LbfLtCrWVNLcGJXIvFAoZhoNFoEBQUpGjThNYghx45qTccPG00VyvcZkpwcDACAgIU09vjLeQg\npFzhLTORliAh1fJmyrFjx7B9+3YUFRXh2LFjiIiIwKuvvoq0tDR06tRJghUTROshMaVCbDabY6o8\nx7Vr15oE92I59okFv4dBKgc0f3es44JIrqRGTW50niDHHjmxnQF9WdqoBJrbTJHj5o+3kauQcsZ5\nw8FbfVYkpP48Bzy5D27evBkFBQVISUnBjh07sHv3bgwYMAB6vR5paWm46aabRFo1QbQeElMqxJWY\nqqmpcZScAdeD3pqaGgQGBrq94Qnpj+JuoHIp62pu8KMvAjwlWJ/7GndBpBrc6DxBCUGkL48FBZHC\nesTUeF5wzq06nU5RfaLujgUnrDx9H3QOCBNSRqMRW7ZsQU5OjqOnsL6+Hnv27MHWrVuxbds2dOjQ\nAV999RU6d+4sxvIJolWQmFIhrsRUbW2tw03KarWitrbWa459cjda8PX8JC4jxzCM395APbX+dncs\nhAYtckPu54ArvOkMSK6NbesR8+YoAqlQ4jngCld9Vp64l9I5IExIFRQU4KOPPkJeXh7at2/v8jl2\nux0//PADBg4cqNjvE+EfkJhSIdyNgE9dXZ3jpmwymWTp2CcG3raWlmNZl9hwZV1Cg0h3QYuSAkhA\nHWYjbXEGJNdG75ptuJvbI2cDCzXbvzsbu7hykiUhJUxIbd++He+//z7y8/MRGhoq0goJwneQmFIh\nrsRUbW2tI3j1lmNfWwaRygF385M8Dea5AEKn08m2rMuX8EtaOLemtryW3G2+XaFWsxFPnQFpM8H3\nZhtyH06rZiHljKs+q4CAANjtdr+uTBBS3vr5559j1apVKCgoQHh4uEgrJAjfQmJKhTiLKZZlUV1d\nDZZlERkZ6RXHPovForomc37GqqXSDi4bERgYqPoAwhW+NhtxNbBZSptvV/jLDCV3zoA6nQ719fWy\n7hHzNWK7FsptOC1fSPnbHC3uWJjNZtjt9mZnKKkZIdfB3bt34+2330ZBQQEiIyNFWiFB+B4SUyqE\nL6Y4xz673Y527dq5TakLdexT+y5cc4NpGYZRZTbCU8TORkht8+0Kf3VtdHaj02g0CAwMRGBgoGqv\nBe6Q2rVQagML7t6ilBJvb8OV9jEMg5CQkEYZRE/7rJQOt6noiZDau3cv3njjDRQUFKBjx44irbDt\nTJ8+HYWFhejatSt++umnJo+XlJRAr9ejT58+AID7778fL774otjLJCSGxJQK4S7qfMc+jUbj6Gng\nI9Sxzx9LepyzJAAcAYS/fAYcnFuXVNkIOVhLSx1ESw3faICzv1eLG50nyNGxTWwDC36foL8LKec+\nQXc9b3LLrLcVIUJq3759eOWVV1BQUKC4GVJff/01wsLC8PDDD7sVUytWrMDWrVslWB0hF/xnS9XP\n4Bz7QkJCEBQUhIaGhibPUZNjny/RarUIDAx0BCxBQUFgGAbXrl1z2YysVuTQG8HPhPB35s1ms6PM\nxlclT/wgOiwsTBZBtNi4CqL554bVanWMSGiLsYtckavRAPd5BwQENArmGxoavG5gwR9I7K+ZeXdC\nCrh+LHQ6neMaxM+s19fXNxJWcvn+CEWIkCotLcWSJUuQn5+vOCEFAPfccw9Onz7d7HMoJ0GQmFIh\nFosFtbW1CAsLc1zoNBpNoxNezY593oYfQIWHhztugPwsiVpuku6Q4040PxPCCSubzeYI5r1tfy/H\nIFpMmgui+cF8cHCwI5ivr69XjJlISzgH0XL9DrgK5q1WKywWC0wmU5vKZElINS+kXMFtxrnbAOLf\nM5RwbvC/Ay0JqUOHDuHFF19EXl4eunTpItIKxUWj0eCbb77B7bffjujoaCxfvhw333yz1MsiRIbE\nlApp164dIiIiGu3O88WUPzn2tRV+aWNYWFijz8pdlqShoUGS8jNfoYTvAF88BQcHezVLwn0HWJZt\n8h3wF4Q0mfODee5Y2Gw2mM1mmEwmWZqJtISS7d+1Wq1jE4RvYFFfXy/IwIKElHAh5YzzBhD/OgVA\n9qMhhHwHjhw5ggULFiA3NxfdunUTaYXik5CQgPLycoSEhGDHjh0wGAw4efKk1MsiRIZ6plQI57bH\nhwuIw8PD/dqxTwit7Q9ybgz3dfmZL1G60UJb7e9ZlnUIMn/qE+TjTTEtRzORluCEFMuyqvoO8LO5\nLQ0z9xfnSnd4Q0i19Ppyny0mREgdPXoUTz/9NHJzcxEdHS3SCn3H6dOnkZqa6rJnypnY2FgcPnwY\nUVFRIqyMkAvKi46IVsPdPD0xmuBKmvy9N6Q11ufN7T4qpUlfLWLaXZbEk14Sf+4T5PC2mHYueXKV\nJZFTNlfNpjvusrlcFpZ/DZN7ZtqX+FpIAb4tzfQG3LXQEyH166+/Ys6cOcjOzlaFkGqJCxcuoGvX\nrtBoNDh48CBYliUh5YeQmPIDuOQjwzCor69v9qLcXFmbv+DNQazOvSSuhBWXsZLLZ61mMc0FLEFB\nQY6AhSs/45uJcBkpfxhE6g5fz1BqzkxEDpsO3HfAH+ZouTOw4EobuePPlYb7C2IIKVe0VJopZp8V\n3wK/pfvh8ePH8cQTT2DLli3o1auXT9clFpmZmdi7dy8uXbqEmJgYLFmyBFarFQCQlZUFo9GI9957\nDwEBAQgJCcHmzZslXjEhBVTmp1LMZjOAxkYTAJotsaGdePHK2riMFXc8fG1lLGRd3M600npD2oJz\n+RkABAQEoH379qoSk54ipf07P5vLlZ+J7QzoT0LKHfxNJX5JoNRZErGQSki1tCbn0kxfnhtCZomd\nOnUKM2fOxMaNG9G3b1+vroMg5A6JKZViNpubNZrg7wRbrVbodDqH7bc/7sRLWdbW1r4eb66DAkib\nIyMFwHFuyK38zFfIbYaSq3PD170ktKn0Z5+c86YSP0vCPzeU2A/aHEowHPH1ucGdB1ype3OUlZVh\n2rRp+OSTT9CvX782/V2CUCIkplSK2Wx2DG9sqUfKYrE4ygcYhvGr4BGQn+01P2MlViMyBZCujRZc\nmYnwd4LVBH8nPiQkRPLzwBX8c4NhGK87A8phlprUuBNSzrgzsJBb2bJQlCCkXOE8XL4tGUQhQur0\n6dOYOnUq1q9fT5bghN9CYkqFnDlzBps3b0ZaWhr+3//7f25vBlzwZLVaHTdOd050ahVWcm8wd75B\ncsfCm8KKP0MqMDBQdp+BGHhS3umq/Ezqvh5vocQA0tvOgEICSLXiqZByhn9ucJt4cihbFooSzwNX\nOJ8bQjKI/A2F4ODgZp977tw5TJkyBevWrUP//v29+RYIQlGQmFIhtbW1yM7ORl5eHq5evYr77rsP\ner0evXv3dtwcrFYr/v73v6Nbt254/vnn3ZpRuLPOVcOufGutz6WCb53LDx7bsivvTbMNJdLa8k65\n9ry1BrlvKHiCu/IzTzeB5DiUWmy8ZTiiBJtvV6hFSDkjJIMoREj9/vvvmDRpEtauXYuBAwf6+m0Q\nhKwhMaVyqqursW3bNuTm5uLChQsYPXo0Ro8ejZdffhlmsxkbN25Ex44dW3wdte3Kt8X6XA54Y1de\nCcN4fYm3yjul6OvxFmrsk3POrrd0rfL3YbSAb50b3W0CycnAQq1Cyhl3m0DcseCGarckpCorK5GZ\nmYl3330Xd9xxh0irJwj5QmLKj6ipqcEnn3yCF198Ef369cOIESOQnp6O+Ph4QTcPpQsrtWVjWrMr\nL6VbmxzgB0/e7g8SozTTG/hDn1xLzoAMw6jqWtAafG2Bz0eOBhb+IqRc4dyDyM2Ba+7ecfHiRWRm\nZmLFihUYMmSIyCsmCHlCYsqP+OGHH5CamoqnnnoKTz31FD7//HMYjUaUlZVh+PDhSE9Pxy233CIo\nsHSulQcguo2xENSejWmp501ubm1SIGZZm1x35f3RaMFVBpFlWb91MAWkt8CX2sDCn4UUBz87rdPp\nHMdEp9Nh7969iI+PR58+fQAAly5dQkZGBt566y3cfffdEq+cIOQDiSk/obCwEFOnTsW///1vPPjg\ng40ea2howM6dO5GTk4Njx45h2LBhMBgMGDBggGBhJQeLb3drk8r6XCpcBSsc/iqkpOyT43bl+aWZ\n/OGbYkH9Qdc3VUwmEwIDA8EwjE+cAeUOJ6TkMJi7ufIzX2V0SUj9KaR0Ol2j7DR371i4cCGys7PR\ntWtXJCUlYf/+/XjrrbcwYsQIiVdOEPKCxJQfsGbNGixZsgS5ubktpuUtFgv27NmD7OxsHD16FHfd\ndRcMBgMGDRqkWGElN+tzKeBEBDe8WWmlmd5ATmVtrua8iVHuRP1Brh3rvO0MKHc4F1e5Xg/51Q6+\nMLAgIeVeSDljs9nw5ZdfYtWqVThx4gQAIC0tDXq9HsOHD/fb6whB8CEx5Qfk5+fjtttuc6TqPcVm\ns2Hv3r3Izs7G4cOHceeddyItLQ1DhgwRHPDx+xbE2HXk4Eq6WJb125umczYGgCpsjIUg52xMc66Z\n3hS6XK+gWktcPcGT/qC2OgPKGSWW+Xq7VJaElOdCCgCuXbuGjIwMLFy4EMnJyTh+/DgKCgpQUFCA\nY8eOITk5GXq9Hnq9HiEhISK+C4KQDySmCI9gGAZff/01cnJyUFpaioSEBBgMBgwdOlTQPBKgcYO+\nL21zlWZ97gu4Bnt3vTFyyiD6CiUZjrRkmNDa49Ha+UFqojVGC0KdAeWMEoWUM201sOCEFMuyih0D\n0FaEOHjW1tYiIyMDzz77LMaNG9fk8crKSmzbtg0FBQVYt24dunXr5sulE4RsITFFCIZhGJSWlsJo\nNGLfvn3o378/DAYDhg0bJjhY9ZXzWUsiwh/gRISQbIyvy2vERsmGI94Sup4MJFY73jBa8JXQFQM1\nljoLNbAgISVMSNXV1SEzMxOzZs1Cenq6iKskCOVBYopoE3a7HYcOHYLRaERJSQni4uKg1+uRmJgo\nuJzKW8JKSZkIX+ENEaEUi293qE1EtEbokgW+b7IxSpotxgkphmG8PgZALrRkYAGAhNT/X/Ku0Wha\nFFL19fWYNGkSZs6c2cSwiiCIppCYIryG3W7H0aNHkZ2djd27dyM2NhYGgwGjRo1y9OoIeS1XDeEt\nOW0pORPhLXwhIpyFlafHQyrULiJcCV2+E50aSrraipjZGOd5PXJxBvTX/iDn46HRaKDRaPz6XPBU\nSDU0NGDKlCl4+OGHkZGRIeIqCUK5kJgifALLsvj5559hNBqxa9cu9OjRAwaDAcnJyQgNDRX0Wp46\nbak9gG4JLoC2WCw+/Qzk7HzmjyLC1fHgMidysL2WAimzMXI5P/xVSPHhRITdbodGo2m0ESSH65UY\nCJmrZzab8fDDD2PChAl46KGHxFpim5k+fToKCwvRtWtX/PTTTy6fM2fOHOzYsQMhISFYv349Bg4c\nKPIqCTVDYorwOSzL4sSJEzAajSguLkaXLl2g1+tx3333ISIiQvBruZrVw82K8ZcA2hmpeiKcj4eU\nzmf+UM7UEnwLfJZlVeVE5ylyEhFSOQPK6TOQClc9Um01sFAaQoSUxWLBtGnTkJqaimnTpinqO/P1\n118jLCwMDz/8sEsxVVRUhNWrV6OoqAgHDhzA008/jdLSUglWSqgVElOEqLAsi99++w05OTkoLCxE\nZGQk0tLSMG7cOHTo0EHwa1mtVjQ0NPht4AjIx/7d3ewkMY6HXD4DKXEOnAA0ypBotdpGhglqREjw\nKDZiOQPK+TMQC08+A6EGFkpDyPfAarVixowZSEpKwmOPPabI93769Gmkpqa6FFOPP/44RowYgYkT\nJwIA4uLisHfvXnIfJLyG8ruyCUWh0Whw0003YcGCBZg/fz7OnDmDnJwcTJ48GcHBwUhLS0NKSgqi\noqJavKCzLAuLxeIYwso16Dc0NPiNsOK7M0kdOPGDQ37gaDabfRrIy+kzkAp3gRP/eHDnR11dnaIt\nvt0hdxHhfH44Hw9vOAPK/TMQA08/A/7x4O4fNpvNkc0SaxaiL+CyckDL3wObzYasrCwMHz5csUKq\nJSoqKhATE+P4uWfPnjh37hyJKcJrkJgiJEOj0aB379549tlnMW/ePFRUVCA3NxfTpk2DVqtFamoq\nUlNT0aVLlyYX+JMnT+Lo0aNISUlxWJ9rtVq3gbwahZXdbkddXZ1DTMrpJthS4OitQF7On4FYeDJP\njQvWnTceuGye0meLCbF8lgPOx4MzFOEC+dY4A5KQav1n4Or8sNlsMJvNjhEbcjAU8QQhFvAMw+DJ\nJ5/E3/72N8yaNUv2760tOBdhqfm9EuJDYoqQBRqNBj179sScOXMwe/ZsXLhwAXl5ecjKyoLVakVK\nSgr0ej26d++OAwcOIDMzE88//zyCg4Ndvpa7DAn/MSWXOjEMg7q6OkEzpKTCXSDf1h15Tkj58yyx\n1ohJ/vHgW3wrdUdeaULKGY1GA51OB51O1+pAXumfgTfwppjkjkdQUFAj58z6+npZG1gI6ZVjGAaz\nZ8/G7bffjqefflrV35no6GiUl5c7fj537hyio6MlXBGhNqhnipA1LMvi0qVLyM/PR15eHiorK3H6\n9Gm8+eabmDx5sqAbgKuhm0osdVLLHK22DKVVkpj0Fb4Qk3xLaSUMbVZ7ZtITZ0ASUuJl5eRsYCFE\nSNntdsydOxd9+vTBwoULVfGdaa5nim9AUVpairlz55IBBeFVSEwRimHVqlV4/fXX8cQTT+Dw4cO4\nevUqkpOTodfrERsb6xfCitsdVcsgWj7849FcqRMnJv15lpgYYpITulyTvtxmi/lbZtJVIB8QEOD4\nbxJS4pY3ysnAgu9k6omQeu6559CtWze8/PLLqvjOZGZmYu/evbh06RK6deuGJUuWwGq1AgCysrIA\nAE899RSKi4sRGhqKDz/8EAkJCVIumVAZJKYI2cNd/IuKilBUVITY2FgAQHV1NbZv346cnBxcuHAB\no0ePhl6vR9++fVstrGw2GwB4pRnc2/jTHC1+xoqfIeGCBjWKSU+RIjPpKkPCHRMpSp3sdjtqa2v9\nNjPp7GTq3Bcql2uWr5FLnxh3D+HOETHLZYUKqRdeeAHh4eF47bXX/OZ7QhC+hsQUIWsaGhrw0EMP\n4cKFC8jPz0dUVJTL59XU1KCoqAhGoxEVFRVITEyEwWBAfHy8YGHV2tIzX+GPg2j5cMfDYrE0ElZy\nyZCIiRyyclJa4ANU4gk0Lm907uvxljOg3JGLkHIFX1gxDOMzAwuhQmrx4sXQaDRYtmyZ391HCMKX\nkJgiZM0777yDAwcOYP369S7NJlxhMplQXFwMo9GIsrIyDB8+HAaDAbfeequgG4gchBW/Dt5fB9Fy\nYtJisSAkJKRR+Zk/CSs5lniKNTuJgxNSSu8XbAvNlTe6umbJve+tNchZSDnjq6wuf1B7WFhYs58B\ny7J47bXXUF9fjxUrVvjlfYQgfAmJKULWMAzjsD1vDQ0NDdi5cydycnJw7NgxDBs2DAaDAQMGDBD8\nms49Pb4u41BSwOAr+AGDc1aOK3WSS+mZL7FYLGhoaJB1iae7PkRv9ZDIISsnNUL7xMTKkIiJkq+L\n3jKwEFKtwLIsli1bhsuXL2PVqlWquzYShBwgMUX4DRaLBXv27IHRaMSPP/6Iu+66CwaDAYMGDRJ8\ng3HX0+MtYcUFTf7eWO6pO5XUpWe+RIm9cu56SFqb1SUh1VhIeZqld/73LTkDyh1OSGk0GsVfF9ti\nYNHQ0OCxkFqxYgXKy8uxZs0axRxnglAaJKYIv8Rms2Hv3r3Izs7G4cOHceeddyItLQ1DhgwRHLDy\nhRW3+9sWYcUwjGO+jD+4lLmiLbvPzqVnXHO+HOyLhaCmXjm+wYvQzQc5ljeKjbcNN9xlSOS8+aAm\nIeWMEAMLIUJq5cqVOHnyJD744ANFXfsIQmmQmCL8HoZh8PXXXyMnJwelpaVISEiAwWDA0KFDBQdv\nbRVWapkh1RbsdjtMJpNX5uYo1QK/ufJGpePqHHFXekZCyveGG2L3vbV2jWoVUq5wV57J/d4TIbVm\nzRr88MMPWL9+PQkpgvAxJKYIggfDMCgtLYXRaMS+ffvQv39/GAwGDBs2TLC4cVdW465fgQscqZTJ\nN0NYfd3T4y2ElDcqneZKz2w2m+z7xHyN2IYbrs4RqZ0B/U1IOcOdI2azGXa7vcUsIsuyWLduHb79\n9lts2LDBbzchCEJMSEwRhBvsdjsOHToEo9GIkpISxMXFQa/XIzExUfAOcUvCijMYoB14cSyvvd3T\n4811KbW5vq04G4oAQGBgIIKCglSVmfMUqZ0L5eAM6O9CisOVm6nVakV1dTU2btwIvV6P+Ph4sCyL\njz76CF9++SU2btzot5tyBCE2JKYIwgPsdjuOHj2K7Oxs7N69G7GxsTAYDBg1ahTat28v6LWcg0aN\nRgOWZREaGuq3QkrK8kZ3FvhiDNx0XkddXZ1XyhuVjNlsRkNDA4KDgx2CV6l9b61FaiHlCrGdAUlI\nXYczoAkLC2viZnr27FksX74cRUVFCAsLQ0JCAiorK/H555+3yqSEIIjWQWKKIATCsix+/vlnGI1G\n7Nq1Cz169IDBYEBycjJCQ0MFvU59fT1sNht0Op3j/+XeCO5t5FbeyA8afeHU6AquT0yn03m9vFEp\nuDPccOd6JqeeHm+iBOdCXzsDkpC6jjsh5QzDMPj3v/+N/Px8VFdXo6qqCnq9HgaDASNGjPDb4dYE\nIRYkpgiiDbAsixMnTsBoNKK4uBhdunRBWlqksXc2AAAgAElEQVQaxowZg4iICLf/jmEYNDQ0ODJS\nXHZKrfbe7pB7eaO3nRrd/Q0hs4PUiKeGG849PQBkUZ7pLZQgpJzxtjMgZWivI2S2XE5ODjZv3oyc\nnBwEBwfj5MmTKCgoQH5+Pn755Rfcd999eOCBB/DAAw+ItHqC8C9ITBGEl2BZFr/99htycnJQWFiI\nyMhIpKWlYdy4cejQoYPjeZcuXcKECROwaNEiJCYmugwW3Nl7q0lYKW1+klBDEU8Qs09MrnBCimEY\nhISEePz9lkt5prdQopBypq3OgCSkriNESG3duhXr169Hbm4uQkJCmjx+4cIFbNu2DWfOnMGrr77q\nqyUThF9DYoogfADLsjhz5gxycnKwfft2BAcHIy0tDQMHDsTDDz+M0aNH44033vBIRDQXoChBhDij\nhvlJ3ihzkmNfjNh407lQivJMb8EJKblmaFuDUGdAElLXESKkCgsL8Z///Af5+fmCSswJgvAuJKYI\nwsewLIuKigqsWrUK7777LhITE5GUlITU1FR06dJF8EBad3OTlCCs+MGzkCyEnGlNmRPNE/Otc6Fz\neaY3soi+wh9mabXkDAiAhBSECamdO3di5cqVyM/Pb7aknCAI30NiiiBEoKSkBBMmTMDKlSsxfPhw\n5OXlIT8/H1arFSkpKdDr9ejevbvXhJUcG/P9wfbbk/JMuRluSIGY3wVfmyW0BX8QUq5wdgbUaDTQ\narWq2WBpDdx3wRMhtWfPHixfvhwFBQWIjIwUaYUEQbiDxBRB+JgtW7Zg9uzZ2LJlC0aMGOH4Pcuy\nuHz5MvLz85GXl4e6ujqMHTsWaWlpiImJabOwknrYpvP6/G3n2ZULnU6nc5Q3+lPwzEfK74K3zRLa\ngr8KKT4sy6K2ttbxHeBnEeUgdsVCiJD66quvsHTpUhQUFKBjx44irdA7FBcXY+7cuWAYBjNnzsSC\nBQsaPV5SUgK9Xo8+ffoAAO6//368+OKLUiyVIARBYoogfMi//vUvLF++HIWFhbj99tubfe6VK1ew\ndetW5Obm4urVq0hOToZer0dsbKxgYeWqMV8qYcW51QUEBPi17XdDQwMsFgs0Go3ss4i+Qk4W8FL2\nIgop51IrrkS1nMSuWAgRUvv378fixYuxdetWdOrUSaQVegeGYdCvXz988cUXiI6OxqBBg7Bp0ybE\nx8c7nlNSUoIVK1Zg69atEq6UIITjn9thCiY7OxuLFy/G8ePH8d133yEhIcHl83r37o2IiAjHzejg\nwYMir5QArjvW7d+/H7169WrxuVFRUZg6dSqmTp2K6upqbN++HS+99BIuXLiA0aNHQ6/Xo2/fvi0G\noFwGRKfTISgoyCGs6uvrRRdWDMPAZDL5te03cD14tlqtjnkxXBbRZDJJLnbFQm6imi+e+Jnduro6\nx2PckGBvrpWElPvspEajQWBgIAIDAxuJXbPZrMoNCH52sqXvQmlpKV5++WUUFBQoTkgBwMGDB3HT\nTTehd+/eAICMjAwUFBQ0ElPA9e8GQSgNElMKo3///sjLy0NWVlazz9NoNCgpKUFUVJRIKyNc4VzG\n4CmRkZGYPHkyJk+ejJqaGhQVFWHp0qU4d+4cEhMTYTAYEB8fL0hYBQcHOwJGvrDylZU02X43di7k\nD97kPnN+FlEKsSsWcp+lxZXFckKP6+nx9jEhIeV5mWdLYldOZcytQUiZ56FDh7Bo0SLk5+ejS5cu\nIq3Qu1RUVCAmJsbxc8+ePXHgwIFGz9FoNPjmm29w++23Izo6GsuXL8fNN98s9lIJQjAkphRGXFyc\nx8+lHR51EB4ejokTJ2LixIkwmUwoLi7GihUrUFZWhnvvvRfp6em49dZbPSqDcRZWNpsNZrMZ9fX1\nXrWSVsPMnLbCn5/kzgLendhtaGhQnL23O+x2O2praxUjqvnCylVmt7XHRGlz1XwBJ6SElnk6i11v\nHROp4IS6J0LqyJEjmD9/PnJzc9GtWzeRVuh9PDkuCQkJKC8vR0hICHbs2AGDwYCTJ0+KsDqCaBsk\nplSKRqPBqFGjoNPpkJWVhUcffVTqJRFeICQkBOPHj8f48eNhNpuxc+dOvPfeezh27BiGDRsGg8GA\nAQMGCBJW/IDRG8KKGutbPz+JOyYAGh0TrlRSSQEjoPzspLPYbe0x4YQUPzvpb7RWSDnjagOC2xTi\njgl3/ZLjeSJkpthPP/2EefPmIScnBz169BBphb4hOjoa5eXljp/Ly8vRs2fPRs8JDw93/PeYMWPw\n5JNP4sqVK1RhQ8ge/4x0ZE5SUhIqKyub/H7p0qVITU316DX279+PG264AX/88QeSkpIQFxeHe+65\nx9tLJSQkKCgIqampSE1NhcViwZ49e7B+/Xr8+OOPuOuuu2AwGDBo0CCPgjetVusIeNsSxFMZU2Pb\n77YMom3umMh5bhKHGocSuzomFoul0TFxdqFraGhoUubpb3hLSLnCeVOI67Ny3hSSw2cvREj9+uuv\nmD17Nj777LMmokOJ3HHHHTh16hROnz6NHj16YMuWLdi0aVOj51y4cAFdu3aFRqPBwYMHwbIsCSlC\nEZCYkiG7du1q82vccMMNAIAuXbogPT0dBw8eJDGlYgIDA3Hffffhvvvug81mw969e7FlyxbMnz8f\ngwcPhl6vx5AhQzwSOM4Bo81maxIwOgfxXG+QxWLxeyHlC9tvV8dErgEj4B9lnvxjwrnQcceEM/7h\njpW7Mk9/wJdCyhmtVtvIwIJzBuQfE6mcAYUIqePHj+PJJ5/E5s2bHYYNSicgIACrV69GcnIyGIbB\njBkzEB8fj7Vr1wIAsrKyYDQa8d577yEgIAAhISHYvHmzxKsmCM8ga3SFMmLECCxfvhx//etfmzxm\nMpnAMAzCw8NRV1eH0aNH4+WXX8bo0aMlWCkhJQzDYN++fTAajSgtLUVCQgIMBgOGDh0quASvueGn\nZrPZ74NGKdzq+EG8zWaTPGAE/ENINQd3TMxmM+x2uyPA55wB/QkxhVRL63Bngy+GM6CQc+LUqVOY\nOXMmNm7ciL59+/p0XQRBeAcSUwojLy8Pc+bMwaVLlxAZGYmBAwdix44d+P333/Hoo4+isLAQZWVl\nGD9+PIDrF/HJkydj4cKFEq+ckBqGYVBaWoqcnBx8/fXX6N+/PwwGA4YNGya4DMs5iAeA4OBgVc+D\naQ45uNXxA0apZvRQv9yfxiM2mw0hISGNNiHUaO/tDrkIKWfEHnAuREiVlZVh2rRp2LBhgyCzKYIg\npIXEFEH4IXa7HYcOHYLRaERJSQni4uKg1+uRmJjosVEA1xvEsiwCAwP9atAmHzmaLEgxkJaEVGMH\nx5CQkEbff7GDeCmRq5ByxtWAc286A3LXBk+E1JkzZ/DII4/gww8/xC233NKmv0sQhLiQmCIIP8du\nt+Po0aPIzs7G7t27ERsbC4PBgFGjRqF9+/Yu/80ff/wBu92O8PDwRr1BcsiOiIkSTBZcBfHezo6Q\n8YgwB0dXQbxa5ospRUi5gnMGtFqtYBimTc6AQoTUuXPnMGXKFHzwwQe47bbb2vIWCIKQABJTBEE4\nYFkWP//8M4xGI3bt2oUePXrAYDAgOTkZoaGhAK7voOr1esyZMwfTpk1zG2Q4Z0e0Wq2qhJUSe4N8\nkR2h+Umtt8Ln4I6JzWZT9HwxJQspZ5rrEW3p+iVkk+X8+fOYNGkS1qxZg4EDB3rzLRAEIRIkpgiC\ncAnLsjhx4gSMRiOKi4vRpUsXDB06FO+88w6eeOIJzJs3T9BrOQsrfhCvNNRQ0uaN7AjNT2q7kHKG\nf0wYhlGEDT6gLiHlDN8ZsKWMuxAhVVlZiUmTJmHlypUYPHiwL98CQRA+hMQUQRAtwrIsjEYjpk+f\njiFDhiAoKAhpaWkYN24cOnToIPi13JWdKUFYcSVtShZSruAfk5Z6RzgrfKvV6tcOjvyZYiEhIV4X\nEG3JjoiJFE6WUtFcPyL3ffBESF28eBGZmZlYsWIFhgwZItLqCYLwBSSmCIJokR07duDhhx/GRx99\nhDFjxuDMmTPIycnB9u3bERwcjLS0NKSkpCAqKkpQICVGP4838ZeSNn52xLnsDIDDrY6ElO+ElKu/\n52l2REz8SUg543z94jYhgoKCms3uXr58GRkZGXjzzTdp/iNBqAASUwRBNMsnn3yCZ599Fvn5+U12\nUFmWRUVFBXJzc7F161ZotVqkpKQgNTXVMcneU9wJK24+j5RBmj9nYpzLzrRaLViW9fvSPjGFlKu/\nL4eyWX8WUnzsdjtqamocbp58YXXkyBH89a9/RXBwMADgypUryMjIwGuvvYbhw4dLuGqCILwFiSmC\nINzy3nvvYenSpSguLm7RrpdlWVy8eBG5ubnIz8+H1WpFSkoK9Ho9unfvLlhYycXtjD83yN+EFB9O\nQDAMA51OJ+uyM1/C9QZptdpGTpZSrkeK7C4JqevY7XbU1tY2GY3AMAwaGhqg1+vxyy+/IDExEaNH\nj8aGDRvwyiuvYNSoURKumiAIb0JiihCN7OxsLF68GMePH8d3332HhIQEl88rLi7G3LlzwTAMZs6c\niQULFoi8UoLju+++Q9euXdGrVy9B/45lWVy+fBn5+fnIy8tDXV0dxo4di7S0NMTExChGWPHNBZzn\nBvkTrjIxzoObAwICHOJKrZ+T3ISUM3xhZbPZfHauyGFItRzgPofAwMBmZ8xVVlYiNzcXGzZswKlT\npzBixAgYDAakpaWhW7duIq6YIAhfQGKKEI3jx49Dq9UiKysLb7/9tksxxTAM+vXrhy+++ALR0dEY\nNGgQNm3ahPj4eAlWTHiLK1euYOvWrcjNzcXVq1eRnJwMvV6P2NjYVttI+1pY8YcSe8OlTal4UtLm\nD/PF5C6knPHVQFoSUtfxVEgBQG1tLTIyMjBv3jwMGzYMRUVFyM/PR3FxMfr374/09HSkp6cjNjZW\npNUTBOFNSEwRojNixAi3Yurbb7/FkiVLUFxcDAB48803AQDPP/+8qGskfEd1dTW2b9+OnJwcXLx4\nEUlJSdDr9ejbt2+rhBUXxHtzPo/UPTFyoTUCQi79PN5EDbbfrgbSCj1XSEhdR4iQqqurQ2ZmJmbN\nmoX09PRGj5nNZuzevRt5eXnYtm0bvv/+e/To0cOXSycIwgeox9eXUAUVFRWIiYlx/NyzZ08cOHBA\nwhUR3iYyMhKTJ0/G5MmTUVtbi6KiIixduhTl5eUYOXIkDAYD4uPjPQrUdDoddDodgoKCHLvwZrMZ\n9fX1rRZWSstA+Aq73Q6TySRYQDhbRXOZxLq6Otm7NbpCLb1Brs4Vi8UCk8nk0SwrElLXcf4cmqO+\nvh5TpkxBVlZWEyEFAEFBQRg7dizGjh0Lu92umiwuQfgbJKYIr5KUlITKysomv1+6dClSU1Nb/Pf+\neoP2V8LCwjBhwgRMmDABJpMJxcXFWLFiBcrKynDvvfciPT0dt956q0dBhlardTSB84WVyWTyeBde\nLYFzW/HW56DRaBy9VMHBwS6FlRzcGt2hVgHhfK5wGStuE8K5902tn4NQ+J8D587njoaGBjz00EOY\nOnUqHnzwwRZfm4QUQSgXElOEV9m1a1eb/n10dDTKy8sdP5eXl6Nnz55tXRahAEJCQjB+/HiMHz8e\nZrMZO3fuxHvvvYdjx45h2LBhMBgMGDBgQKuElc1ma3EXngLG6/jqc3AlrGw2G+rr6yV1a3SHv3wf\ntFotAgMDERgY2KhEs6GhATqdDgEBAbBYLI6SNrV+Di0hJCNlNpvxyCOPICMjA5mZmSKtkCAIqaCt\nEEIS3LXq3XHHHTh16hROnz4Ni8WCLVu2IC0tTeTVEVITFBSE1NRUfPTRR9i3bx9GjRqF9evXY8SI\nEVi4cCEOHDgAu93u0WtxwWJoaCjCw8PRrl07WK1WXLt2DXV1dbBYLLDZbKitrUVgYKBfZ6QYhhHl\nc+CEVXBwMMLCwhwGH/X19aipqUF9fb3DNEEKnDMQ/vJ94LKFISEhiIiIQGBgIMxms8O50Ww2g2EY\nyY6LVAgR1haLBTNmzEB6ejoeeughEVfpHYqLixEXF4e+ffti2bJlLp8zZ84c9O3bF7fffjuOHDki\n8goJQn6QAQUhGnl5eZgzZw4uXbqEyMhIDBw4EDt27MDvv/+ORx99FIWFhQCAHTt2OKzRZ8yYgYUL\nF0q8ckIu2Gw27N27F9nZ2Th8+DAGDx4MvV6PIUOGCDY34AJEi8XiGEYbFBTkVzOT+DAMg7q6uibz\ncqRYhy9MRTzF3dwgf8NZQDjPsuKbiqhZbAoxH7FarZgxYwZGjRqFrKwsxX0unrjpFhUVYfXq1Sgq\nKsKBAwfw9NNPo7S0VMJVE4T0kJgiCEKRMAyDffv2wWg0orS0FAkJCTAYDBg6dCgCAjyrYLbZbDCZ\nTI7+By6IV6O1d3NwQio4OBiBgYFSL8cB39q7tQ50QpCLoJSa5nqD5DRQ29cIEVI2mw2PPfYY7r77\nbsyaNUuRn4MnbrqPP/44RowYgYkTJwIA4uLisHfvXpqXRfg11DNFEIQi0el0uPfee3HvvfeCYRiU\nlpYiJycHL730Evr37w+DwYBhw4a5FQdHjhxBnz59EBoa6hBf7vpG1CysOEHZvn17tGvXTurlNKI1\nvW+tRa6CUmxaMlnQaDQOZ0C+qUhDQ4MkmURfIURIMQyDWbNm4c4771SskAI8c9N19Zxz586RmCL8\nGhJTBEEoHp1Oh6FDh2Lo0KGw2+04dOgQjEYjXn/9dfzlL3+BwWBAYmKiI9vw8ccf46WXXsLevXsR\nGRnZ6LWcrb05YWU2m6HValUlrOQspJxxNkrgMiPONvitOS4kpK4jxK2OgxNW3L93dtHkjo2SBIZQ\nITVnzhz0798fc+fOVdT7dMbTtTsXNCn5PROENyAxRRCEqtBqtRg8eDAGDx4Mu92Oo0ePIjs7G//8\n5z8RGxuLzp07IycnB4WFhejVq1ezr9WSsFLyMFpOiISEhHhcFikXNBpNE2HFOQMKzSSSkLpOa4SU\nMy1ZrrdF8IoFf85cS0LKbrdj3rx5uOmmm/Dcc88pXlR44qbr/Jxz584hOjpatDUShByhnimCIPwC\nu92O2bNn47PPPsOAAQMQGRkJg8GA5ORkhIaGCnot/jBariGf3zcidywWCxoaGhQppJqDL3htNluL\nmUQlZeZ8iTeEVHPwM4k2m022pbNCBnbb7XbMnz8fXbp0weLFixUvpIDr50O/fv2we/du9OjRA4MH\nD27WgKK0tBRz584lAwrC71HPXZQgCMIN3A7yvn378NNPP6Fbt244ceIEjEYj0tPT0aVLF6SlpWHM\nmDGIiIho8fU8GUbLBYpyC7I4IRUaGqoI4ScEV5lEzvbe+bgwDENCCn8KKW6OlC9wziTKMcPLsixM\nJpPHQmrRokXo0KGDaoQUAAQEBGD16tVITk52uOnGx8dj7dq1AICsrCyMHTsWRUVFuOmmmxAaGooP\nP/xQ4lULh2VZxzHj/zdBtBbKTBEEoWpsNhtmzpyJU6dOobCwEB06dGj0OMuy+O233xylf5GRkUhN\nTcW4cePQsWNHQX/LXcYqICBAFk5nZrMZZrNZlUKqOZyPC/c7rrRP6uMiFWIIqeZoLsMr5kYEJ6Q0\nGo1HQmrx4sUAgLfeektWmTWiZWw2GwICAsAwjF9dAwnfQmKKIAjVwrIsHnjgAZhMJhiNxhbL+ViW\nxZkzZ5Cbm4tt27YhODgYaWlpSElJQVRUlKDgTm4W0mazGRaLBaGhoX4dAFqtVoc5AjeAVq3W3s0h\ntZByhi+sbDabaMeFE1IAEBIS0uzfYVkWr732GkwmE9555x2/Po+UCCegLBYLnnzySUycOBFJSUlS\nL4tQASSmCMJDrly5gokTJ+LMmTPo3bs3PvvssyZZDgDo3bs3IiIiHH0BBw8elGC1BEdxcTESExMF\nmwuwLIuKigqHsNJoNEhJSUFqaiq6du2qGGHFsizMZjOsVisJKSfTDbkJXrGQm5Byxt1x4UprvXVc\nhAqpZcuW4dKlS1i9erVfn0dKxm63495770ViYiKWLFnS5DE6rkRrIDFFEB4yf/58dO7cGfPnz8ey\nZctQVVXlGGrIJzY2FocPH0ZUVJQEqyR8AcuyuHjxInJzc5Gfnw+r1YqUlBTo9Xp0795dcHDHL23y\nZQDPsiwaGhpgs9lISHngXsjPjKhpZhIfuQspVzAM4+iz8tZxYVkW9fX1YFnWIyH1zjvv4MyZM1i7\ndq1fn0dKheuN2rVrF9asWYOcnBzs3r0bO3bswLFjx7B161Yq+yNaDYkpgvAQ/qT3yspKDB8+HMeP\nH2/yvNjYWBw6dAidOnWSYJWEr2FZFpcvX0Z+fj7y8vJQV1eHsWPHIi0tDTExMa0SVt4OFLl11tfX\nw263IzQ0VDVioDW0xgaenxlhGMYheJUsrJQopJxxPi6tGd4sVEitWrUKJ06cwAcffEABt8Jw7o26\nevUqxo4diytXrmDMmDEYMGAAioqKMGLECDz++OMSrpRQMiSmCMJDOnbsiKqqKgDXb7BRUVGOn/n0\n6dMHkZGR0Ol0yMrKwqOPPir2UgkRuXLlCrZu3Yrc3FxcvXoVycnJ0Ov1iI2NFRx08wPFtggrElJ/\n4g33Qu64cO6ArQngpcZut6O2ttYxB0oN8GdZ8Y9Lc7OshAqptWvX4siRI1i/fj0JKYXBF1ILFy5E\nXFwcOnTogKSkJJSWliIxMREAkJmZiXHjxmHKlClSLpdQMCSmCIJHUlISKisrm/z+9ddfxyOPPNJI\nPEVFReHKlStNnnv+/HnccMMN+OOPP5CUlIRVq1bhnnvu8em6CXlQXV2N7du3IycnBxcvXkRSUhL0\nej369u3bJmElJDMipA9E7fjCBr41AbzUqFFIOcO3XLdarS5nWQnZZGBZFuvWrcO3336LDRs2qGoe\nm7+RkpKC+Ph4dOrUCZs3b0ZOTg5uvPFGVFdX44EHHkDv3r3x/vvvS71MQsGQmCIID4mLi0NJSQm6\nd++O8+fPY8SIES7L/PgsWbIEYWFhePbZZ0VaJSEXamtrUVRUBKPRiPLycowcORIGgwHx8fGtFlYt\nZUZISP2JGPO0lDCM1h+ElDPOw5s5y3WGYWC32xEWFtaikPr444+xZ88ebNy40a/nkCmd77//HtnZ\n2XjjjTcwcuRIjB07Fs8++yzKy8sREBCAzZs345lnngHQtCSQIDyFxBRBeMj8+fPRqVMnLFiwAG++\n+SauXr3axIDCZDKBYRiEh4ejrq4Oo0ePxssvv4zRo0dLtGpCDphMJhQXF8NoNKKsrAz33nsv0tPT\nceuttwoOupvLjHg6dFTtSDFPyzmA12q1kgsrfxRSznDHpaGhweHW1tzsN5ZlsXHjRhQVFWHLli2C\nXUAJaeE78tntdpw8eRIzZswAy7IwGAyYP38+AOCNN97AtGnT0L17dwAkpIi2QWKKIDzkypUrmDBh\nAs6ePdvIGv3333/Ho48+isLCQpSVlWH8+PEArg8HnDx5MhYuXCjxygk5YTabsXPnThiNRhw7dgzD\nhg2DXq/HwIEDBQfdzpkRjUaDoKAgWWVGxIYTUmFhYZJ9Bu4yI5xjoxiQkLoO52jJMAxCQkIabUZU\nV1djxYoVSEtLw913342AgABs2bIFubm5MBqNfv25KZ1//etfuPnmm5GUlIT58+fjwIED2L59OyIi\nIjB58mSHaCYIb0BiiiAIQiIsFgu+/PJLZGdn48cff8Rdd90Fg8GAQYMGeSwEOIc2nU6HgICARhkr\nLmvlL8KqoaFBdvO0+MNorVZrI2Gl1Wp9kkEkIXUdvpBy7pHiXDnXrl2L7du3o6KiAkOGDMH58+ex\ne/duREZGSrhyQijOmaVFixbh5MmTmDVrFoKDg7Fr1y6sW7cOgwYNAgBkZ2cDoNlShHcgMUUQBCED\nbDYb9u7di+zsbBw+fBiDBw+GXq/HkCFD3GYzzp8/j+DgYLRv3x5BQUGOYNGTZnw1oZTBxK6EFSd4\nvTVjjGEY1NXVkZDizVhrqUcKADZs2IBPP/0UdrsdP//8M8aMGYPx48djzJgxCAsLE2nVRFs5dOgQ\n7rjjDgDAW2+9hSNHjmDmzJkYOXIkfvnlFwQHB+PGG28EQKV9hPfQLV68eLHUiyAIgvB3tFot+vTp\ng5SUFMyYMQPh4eHIz8/H66+/jqNHjyI4OBjR0dGOm/+JEyeQnJyM+Ph43HzzzY2CRY1G4xBQQUFB\n0Gq1jr4RblCwr7IiYqMUIQVcPy5cz05gYCACAgJgt9sdpYl2ux0ajcbxP6GQkLoO953wdFh1YWEh\nPv74Y2zbtg2PP/44pk2bBrPZjI0bN2Lu3Ln49ttvYTabccstt1DwLTM2btyIEydO4Oabb8ZXX32F\n5cuXAwBuvfVWDB06FL/++iteeeUV9OnTB4MHD0aXLl0AkJAivAtlpgiCIGQMwzAoLS1FTk4Ovv76\na/Tv3x9/+9vf8PLLL2PBggV47LHHPH4tVyYJ/MyI0uBnH+QupFqCn7FiWVbwjDFOSAUHB/u9aYKQ\ncs+dO3di5cqVyM/PR0RERJPHr169isLCQuzevRsffPCBor9jamTTpk1YvHgx3n77baSkpOD999/H\ngQMHMHLkSGRmZgIA/vrXv+LBBx/E888/L/FqCbVCYoogCEIh2O12bNiwAbNmzcKQIUPQvXt3GAwG\nJCYmCs5ENNfLowRh5WwsoKYgV+jwZhJSfyJESO3ZswfLly9HQUEB9UgpmK1bt+KFF17A66+/Dr1e\nj//93/9FSUkJbrnlFly9ehVVVVVYs2YNgOvXDTVk5Al5QVPoCIIgFMK3336L5557Dhs2bIBer8fR\no0eRnZ2Nf/7zn4iNjYVer0dSUhLat2/f4mtx/ToBAQEIDg52CKu6ujpRTBLagpDhq0pEq9U6SvU4\nYWU2m2EymZrMGCMh9SdChNRXX32FZcuWYevWrSSkFIZziV5aWhpYlsWiRYtgs9kwffp0xMTE4KOP\nPgIAx/9TaR/hKygzRRAEoQC++OILZFNuh3AAACAASURBVGZm4pNPPkFycnKjx1iWxS+//AKj0Yid\nO3eiR48eMBgMSE5ORmhoqKC/I4X7nND1qVlINYfzjDGdTgeGYRAcHOzXPVLAdUt8i8XikZDav38/\nlixZgoKCAnTq1EmkFXqfK1euYOLEiThz5kyjcR3O9O7dGxEREY4+yoMHD0qwWu/Ad9/bsmULgoKC\nEB8fj379+mH79u144YUX8Pzzz2PSpEmNns85nBKELyAxRRAEIXO2bduGGTNmwGg0YtiwYc0+l2VZ\nnDhxAkajEZ9//jk6d+6MtLQ0jBkzxmVPSEuvxS85Y1m2USmg2ELGn4WUMzabDXV1ddBqtY5SQH+z\nwucQIqQOHDiARYsWoaCgwGFGoFTmz5+Pzp07Y/78+Vi2bBmqqqqaDJIHgNjYWBw+fBhRUVESrNI3\nvPTSSzhw4ACSkpKwYsUKbN++HQkJCfj8888xdepUrFq1Cg888AAAKu0jfI9/XXEJwg8pLi5GXFwc\n+vbti2XLlrl8zpw5c9C3b1/cfvvtOHLkiMgrJFpCq9WisLCwRSEFXC/fi4uLw4svvuhwt7p48SIm\nTpyIiRMn4pNPPkFVVZVHf5dzBQwODkZYWJhDwNTX16Ompgb19fWw2WwQY0+OZVmYTCawLOv3Qoph\nGJhMJrRv3x7h4eGIiIhAYGAgGIZBTU0NamtrHe6AaodzQvRESB06dAiLFi1Cbm6u4oUUcL1X6JFH\nHgEAPPLII8jPz3f7XKXvm/PXX1xcjAMHDqCoqAjnz5/HDTfcgLvuugvffPMNkpOTkZ+fj3Hjxjme\n78/XCkIcKDNFECqGYRj069cPX3zxBaKjozFo0CBs2rQJ8fHxjucUFRVh9erVKCoqwoEDB/D000+j\ntLRUwlUTvoBlWZw9exY5OTnYtm0bgoODkZaWhpSUFERFRQkOOJzd53yZseKEFACEhIT4dXDUUo+U\n2hwbm4MTUmFhYS0KqR9++AHz5s1Dbm4uevToIdIKfUvHjh0dGyMsyyIqKsrlRkmfPn0QGRkJnU6H\nrKwsPProo2Iv1WucOnXK8V4+/fRT7NmzB/n5+XjsscfwwQcf4Pvvv8eAAQMAUI8UIR5UQEoQKubg\nwYO46aab0Lt3bwBARkYGCgoKGokp/u7mnXfeiatXr+LChQvo1q2bFEsmfIRGo0GvXr0wb948PPPM\nM6ioqEBubi6mT58OjUaDlJQUpKamomvXrh6JFZ1O58haMQzjmGPlifucEEhI/YknZhP8Hjd+/5sS\njEWEYLFYPM5I/fTTT3jmmWeQk5OjOCGVlJSEysrKJr9//fXXG/3c3Gyy/fv344YbbsAff/yBpKQk\nxMXF4Z577vHJen3JoUOH8M477+DTTz8FAFRXVyMpKQkA0L9/fzz22GPo1auX4/kkpAixIDFFECqm\noqICMTExjp979uyJAwcOtPicc+fOkZhSMRqNBj179sScOXMwe/ZsXLx4Ebm5uXj88cdhtVoxbtw4\nGAwGdO/eXZCwcnafq6+vb5Ow4oSURqNB+/btFR38t5XWuPZ54tgYEBAgSf9bW7BYLGhoaEBoaGiL\nAfOvv/6K2bNn47PPPkPPnj1FWqH32LVrl9vHunXrhsrKSnTv3h3nz59H165dXT7vhhtuAAB06dIF\n6enpOHjwoCLElHOvU0JCAs6ePYt//OMfePXVV9GpUyd89913yMjIQFlZGb744gtERESQ2QQhOtQz\nRRAqxtMAybnaV0mBFdE2NBoNunXrhieeeALFxcX47LPPEBkZiTlz5mDcuHFYvXo1zp4963HPBWfr\nHRYWhrCwMOh0OpjNZly7dg0mk8lRFtgSLMs6gn4SUm23P+eEFddnFRISAgCS9L+1BSFC6vjx43jy\nySexadMmR3ZeTaSlpTWy/zYYDE2eYzKZUFNTAwCoq6vDzp070b9/f1HX2Vq4c/7s2bP4/fffodVq\nsWbNGly6dAmVlZV46KGHkJ6ejqFDhzqGLnOZcYIQE/rGEYSKiY6ORnl5uePn8vLyJruzzs85d+4c\noqOjRVsjIR80Gg06d+6MmTNnYubMmaiqqkJBQQEWLFiAqqoqJCcnQ6/XIzY21iNx42peksVicTkv\niQ8npLRaLQkpH8yR4oxFnLOJ9fX1jv43LqMlp89eiJA6deoUsrKysHHjRtx4440irVBcnn/+eUyY\nMAHr1q1zWKMDwO+//45HH30UhYWFqKysxPjx4wFcd4CcPHkyRo8eLeWyPYZlWRw/fhwvvPACunbt\nirvvvhvp6emoqanBvn378MADDyAtLc3xfMpIEVJBBhQEoWJsNhv69euH3bt3o0ePHhg8eHCzBhSl\npaWYO3cuGVAQTaiursb27duRk5ODixcvIikpCXq9Hn379hUccDvPS+ILK+D6DjrXjyWnYF5spBjI\ny/W/Wa1Wr/e/tQVO7HkipMrKyjBt2jRs2LABcXFxIq2Q8BW//vorKisrMWfOHEyfPh379+/HDz/8\ngN27d6sy40goDxJTBKFyduzYgblz54JhGMyYMQMLFy7E2rVrAQBZWVkAgKeeegrFxcUIDQ3Fhx9+\niISEBCmXTMic2tpaFBUVwWg0ory8HCNHjoTBYEB8fHyr+qI4V0CbzQbgeg9W+/bt/bqBXAoh5Qx/\nxhjDMA5R5Sqb6EuECKmzZ8/ioYcewvr163HLLbeItELCFzhnms6fP4+SkhLs378fOTk5+Omnn9C5\nc2cJV0gQ1yExRRAEQbQak8mE4uJi5OTk4P/+7/8wfPhwpKen49ZbbxU0PNZut6O2ttYRLHOBlD8O\nopWDkHKmuWyiL4WVECFVUVGByZMn44MPPsBtt93mszURvuW3335DbGxso3Pebrc3+vnixYvo2rVr\nk98ThBSQmCIIgiC8gtlsxs6dO2E0GnHs2DEMGzYMer0eAwcObDbg4YbQtmvXDkFBQdBoNI3mJVmt\nVuh0uka23mpFjkLKGedsIr8U0JvHhhNSISEhLfbCnD9/HpMmTcJ7771HmXUFc+bMGbz11ltYtmwZ\nwsLCmjj6cbOjGIaBRqNR9bWAUA4kpgiCIAivY7FY8OWXXyI7Oxs//vgj7rrrLhgMBgwaNKhRAFRe\nXo6JEydi48aNbvsfXA2iVaOwUoKQcoYTVtzx8ZboFSKkKisrMWnSJKxcuRKDBw9u9d8kpOfatWsY\nO3Ysxo8fj3nz5jV5nAbxEnKExBRBEAThU2w2G/bu3Yvs7GwcPnwYgwcPhl6vR/fu3ZGWloaZM2e6\nDJxc4U5YcfOSlAonpNq3b+8w4lAa3jo2NpsNJpPJIyH1xx9/ICMjAytWrMCQIUPa+hYIiTh//jxs\nNhtiYmJw5MgRrFq1Ci+99BJ69erlyExxQurXX39FUVER/v73v0u8aoK4DnlIEgRBED4lICAAI0eO\nxMiRI8EwDPbt24cPPvgAW7duRUpKChISEmC1Wj0SEdyw2Xbt2oFlWZeDaNu1a6coYaUGIQU0PTY2\nmw02m63JsdFqtW77rIQIqcuXLyMzMxNvvfUWCSkFU1VVhTfeeAM///wzZs2ahRtvvBE6nQ4XLlxA\n7969wbIs7HY7dDodfvvtN0yfPh0ff/yx1MsmCAeUmSIIgiBE5fjx40hKSsKiRYtw2223wWg04uuv\nv0b//v1hMBgwbNgwwWVufGFltVo9Dt6lRi1Cqjk8PTZChFRVVRUyMjLwyiuvYMSIEWK8DcKH1NTU\n4JtvvsF//vMfDBw4EMuXL8eAAQOQnZ2NLl26AAD++9//YsqUKfjwww/xl7/8ReIVE8SfkJgiCIIg\nROPnn3/G6NGjsXTpUkydOtXxe7vdjkOHDiEnJwdffvkl+vXrB4PBgMTERAQFBQn6G0oRVv4gpJzh\njg1XDsgNCdZqtY6BvC0JqerqakycOBEvvfQSRo0aJdLKCTG4ePEiLBYL3n33XZw6dQqLFi3CwIED\ncfnyZYwYMQKbNm0iy3tCdpCYIgiCIEThxx9/xH333Yfly5dj8uTJbp9nt9tx9OhRZGdnY/fu3YiN\njYVer8eoUaMQEhIi6G9yJUKcsOKCd64UUCph5Y9Cyhnu2JjNZlitVgBAYGBgs8fm2rVryMzMxIIF\nC3DfffeJvWRCRBYtWoRr165h1apVqKqqQn19PXr06CH1sgiiCSSmCIKQPcXFxY7BwzNnzsSCBQsa\nPV5SUgK9Xo8+ffoAAO6//368+OKLUiyVaIbJkyfDYDDgwQcf9PjfsCyLX375BUajETt37kSPHj1g\nMBgwevRohIWFCfr7chFWXDmbPwspDr6o1Gq1DvMKu92O3NxcdO7cGaNGjUJwcDBqa2uRkZGBefPm\nISUlReqlEz6Cs0Nfv349jEYjcnNzFeNuSfgnJKYIgpA1DMOgX79++OKLLxAdHY1BgwZh06ZNiI+P\ndzynpKQEK1aswNatWyVcKdESzjNjWvPvT548CaPRiB07dqBz587Q6/UYM2YMIiIiBL8evxRQLGFF\nQupPmsvO2e12rF+/Hp988gmOHz+OxMREXLhwAbNmzcKkSZMkWjEhFizLIj8/H/Hx8YiLi5N6OQTR\nLCSmCIKQNd9++y2WLFmC4uJiAMCbb74JAHj++ecdzykpKcHbb7+Nbdu2SbJGQnxYlkVZWRmMRiOK\niooQERGB1NRUjBs3Dh07dhT8evw+Hrvd3mgQrbeEFQmpPxFS5lhWVoZ//OMfKCsrw3//+1+MGjUK\n999/P1JSUhAZGSnSigmCIFyjnmmHBEGokoqKCsTExDh+7tmzJyoqKho9R6PR4JtvvsHtt9+OsWPH\n4tdffxV7mYTIaDQa3HjjjViwYAFKSkqwevVq1NbWYsqUKbj//vvx0Ucf4dKlS/B0v1Cn0yEoKAhh\nYWEICwuDTqeD2WxGTU0NTCaTI3vVWkhI/Ql/OHFLn0VDQwPmz5+PBx98ED/++CP++9//Ii0tDZs3\nb0ZMTAzGjh2LdevW4dKlSyKtniAIojE0Z4ogCFnjSVYgISEB5eXlCAkJwY4dO2AwGHDy5EkRVkfI\nAY1Gg169emHevHl45plnUFFRgdzcXEyfPh0ajQapqalITU1F165dPfo+abVaBAUFISgoyNFjZTab\nYTKZHKWAQjJWJKT+hC+kWuqDMZvNmDp1KjIyMpCZmQkA6NSpE6ZOnYqpU6fi2rVrKCoqQk5ODliW\nxcyZM8V4CwRBEI2gMj+CIGRNaWkpFi9e7Cjze+ONN6DVapuYUPCJjY3F4cOHERUVJdYyCRnCsiwu\nXryI3Nxc5Ofnw2azYezYsTAYDOjevbvg8j1OWHHDaLlSwHbt2rU4hJaElDAhZbFYMG3aNKSkpDhE\nMUEQhBwhMUUQhKyx2Wzo168fdu/ejR49emDw4MFNDCguXLjgyDocPHgQEyZMwOnTp6VbNCE7WJbF\n5cuXkZ+fj7y8PNTV1WHs2LFIS0tDTExMq4QV12PlTliRkPoTIULKarVi5syZGDlyJLKyskhIEQQh\na6hniiAIWRMQEIDVq1cjOTkZN998MyZOnIj4+HisXbsWa9euBQAYjUb0798fAwYMwNy5c7F582aJ\nV03IDY1Gg86dO2PmzJkoLCxEXl4eunbtigULFmDMmDF45513UFZW5nFflFarRWBgIEJDQxEREYF2\n7drBarXi2rVrqKurQ319vd/PkeKw2+0eCymbzYbHH38c9957r+KFVHZ2Nm655RbodDp8//33bp9X\nXFyMuLg49O3bF8uWLRNxhQRBeAPKTBEEQRB+TXV1NbZv347c3Nz/r717D4r6uv8//txdCLrC1xpN\n8EajUStQL1yspMwYJYKtGGVRA9owtjUdiY4iOjF2xqTRmZSMqdaYmhirMWpTNd4QNUCwURS1YLxU\nrcaoiZZFI8R6XTAI7Of3R35sVTBckrBcXo8Z/+DzOfuZ92dkGF6c9zmHwsJCIiMjsdls9OrVq86/\nzBuGQWlpKaWlpcA3fwyonLUym1ve3y+dTicOh8O1Bu3bVFRUMGXKFEJCQkhOTm7SQQrg9OnTmM1m\nEhMTWbhwISEhIVXG1OboBxFp3LQBhYiItGht27bl2Wef5dlnn8XhcJCenk5KSgp2u52hQ4dis9kI\nCAio1S/3FRUV3LlzB6vVioeHh6sV8Ouvv8ZisbhaAVtCsKqckaptkJo+fTp9+/ZtFkEKqNX5SAcP\nHqRnz55069YNgHHjxpGWlqYwJdKEKEyJiIj8f97e3sTFxREXF0dJSQmZmZksWrSIc+fOMWTIEGJj\nY+nTp0+1YWj//v14e3sTGBjoau2rDE+GYbiCVWlpKWazuVkHq8og9dBDD9UYpJxOJzNnzuTxxx9n\n1qxZzSJI1VZ1Rz/k5eW5sSIRqSuFKRERkWpYrVZGjx7N6NGjKS0tJSsri6VLl/Lpp5/y5JNPEhMT\nQ3BwMGazmb1795KQkMDKlSurXSNlMplqDFYeHh5YLBY3vOn3q65B6sUXX6Rz587MmTOnyQWpqKgo\nLl++XOV6SkoKI0eOrPHzTe19RaQqhSkREZEaeHl5uc6runPnDrt372b16tXMnDmTwMBAPvzwQ5Yv\nX05kZGSNz7o/WFVUVFBWVkZxcfE995pisKoMUp6enrUKUi+99BJt27Zl7ty5TTJY7Ny58zt9vkuX\nLtjtdtfXdrudrl27fteyRKQBaQMKERGRetq1axejR48mOjqas2fPMnDgQGJiYvj5z39e5zB0d7Aq\nKyu7J1iZzeZGHzbuDlKtWrWqcey8efMwDIPXX3+9WbY6VoqIiGDBggWEhoZWuVebox9EpHFrvj+9\nREREfkDZ2dnEx8ezZcsW1q5dS25uLnFxcWzfvp2nnnqK5ORksrOzKSsrq9XzTCYTHh4etG7dGh8f\nH1q3bo1hGBQXF+NwOPj666+pqKio9fbtDakuM1KGYZCSkkJpaWmzDlKpqan4+fmRm5vLiBEjGD58\nOACXLl1ixIgRwIOPfhCRpkMzUyIiInWUnZ1NXFwcH3zwAREREVXuO51OcnNz2bRpEzk5OfTt2xeb\nzcaTTz5Z41lL96ucsapcZ2UYxj2tgO6esTIMA4fD4QpS31ZP5UxUUVERb731VrMNUiLScihMiYj8\nwCZOnMiHH37Io48+yokTJ6odk5SUREZGBlarlVWrVhEcHNzAVUpt7d+/n9jYWDZs2MCQIUNqHO90\nOjl06BCbN29m9+7d9O7dG5vNRkRERI3tcPczDAOn0+lqBXR3sKqcObNYLLRq1arGIPXGG29w/vx5\n/vrXvypIiUizoDAlIvIDy8nJwdvbmwkTJlQbptLT01myZAnp6enk5eUxffp0cnNz3VCp1EZRURHn\nzp0jPDy8zp91Op0cP36cjRs3smvXLh577DFsNhuRkZFYrdY6P+/uNVYNHazqGqT+8pe/cPr0ad59\n990mubmGiEh1FKZERBrAhQsXGDlyZLVh6vnnnyciIoL4+Hjgm8M+9+zZg6+vb0OXKQ3IMAxOnjzJ\npk2byMrKonPnzthsNoYNG4a3t3edn1cZrMrLy3E6nXh4eLi2XP++g1Vdg9SyZcs4cuQIq1atwsND\nGwmLSPOhn2giIm5W3cGdBQUFClPNnMlkok+fPvTp04dXXnmFM2fOsGnTJkaPHk2HDh2IiYlh+PDh\n/N///V+tnmexWFwzPpWtgKWlpdy+fft7DVZ1DVLvvvsun3zyCX/7298UpESk2VHDsohII3B/k4C7\nNxWQhmUymejduzdz5swhJyeHhQsXUlRURHx8PHFxcbz//vtcu3at1s8zm814eXnh7e2Nt7c3FouF\n0tJSbt68SUlJiastsK4qg5TZbK5VkFqzZg179+5lzZo1ClIi0iwpTImIuNn9B3cWFBTQpUsXN1Yk\n7mQymejRowezZ88mOzubt956C4fDQUJCAmPGjGH16tVcuXKl1mHo7mDl4+NTJVjduXOnVs+6O0i1\nbt26xiC1du1asrKyWLt2LZ6enrV+fxGRpkRhSkTEzUaNGsWaNWsAyM3N5Uc/+pFa/AT4Jlg99thj\nzJw5k127drFixQrKy8uZOHEiNpuNFStWUFhYWO9g5eHhQVlZGTdv3qS4uPiBwcowDEpKSmoVpAA2\nbtzItm3bWL9+fZ23ghcRaUq0AYWIyA9s/Pjx7NmzhytXruDr68u8efNcB7kmJiYCMHXqVDIzM2nT\npg3vvfceISEh7ixZGjnDMCgqKmLLli1s3bqV8vJyoqOjiYmJoVOnTnVuEzUMw7UrYHl5eZU1ViUl\nJZhMploFqcpDjDdv3kzr1q2/y2uKiDR6ClMiIiJNmGEY/Pe//2Xr1q2kpqZSXFxMdHQ0o0aNws/P\n7zsHK5PJhMlkwmq11ril+fbt21m5ciWpqan12updRKSpUZgSERFpRq5du0ZaWhqpqalcvXqVX/7y\nl8TExNC9e/c6BavKNVKGYWA2mykvL8diseDp6YlhGFUOHE5PT+edd95h69at9draXUSkKVKYEhER\naaZu3LjBjh072LJlC5cvXyYqKgqbzUavXr1q3EDi9u3bGIaB1WrFZDJhGAbl5eWUlZURHx/PrVu3\niImJITY2lrNnz/LGG2+QlpZW663cRUSaA4UpERGRFsDhcJCens6mTZuw2+0MHToUm81GQEDAPcGq\nrKyMxMREEhISiIiIqDZ0lZaW8vHHH5OamkpGRgZms5lp06aRkJBAjx49GvK1RETcSmFKRESkhSkp\nKSEzM5PNmzdz7tw5hgwZQmxsLP7+/kyaNInCwkI2b95c47qnvXv3kpKSQnJyMllZWaSmptK5c2fG\njh3LmDFj8Pf3b6A3EhFxD4UpERGRFqy0tJSsrCw2btzIvn37aNeuHfPnz+eJJ57AbH7wCSoHDhzg\nlVdeIS0tjQ4dOgBQUVHBvn372Lx5M5s3b6Zdu3bMnTuXsWPHNtTriIg0KIUpERGRFs7pdJKYmMjp\n06d54YUX2L59O8eOHSM8PJyYmBh+9rOf3bOTX15eHnPmzGHr1q08+uijD3xmXl4erVu3JigoqKFe\nRUSkQSlMiYiItGCGYTBlyhROnDhBRkYGPj4+AJSXl7N37142btzIoUOHGDhwIDExMXh5efH73/+e\n1NRUOnbs6ObqRUTcS2FKRESkhTIMg6SkJA4dOsRHH330wJ34Ktv3Nm7cyLZt28jNzaVz584NXK2I\nSOPz4GZoERGRu0ycOBFfX1/69u1b7f3s7Gzatm1LcHAwwcHBvPrqqw1codTV3//+d/Ly8sjMzPzW\nLc0tFguDBw9myZIl5OfnN/kgtXHjRn76059isVg4cuTIA8d169aNfv36ERwczMCBAxuwQhFpKjQz\nJSIitZKTk4O3tzcTJkzgxIkTVe5nZ2fz5z//mW3btrmhOqmP8vJySkpKWtzZUKdPn8ZsNpOYmMjC\nhQsJCQmpdlz37t05fPgwDz/8cANXKCJNhYe7CxARkaZh0KBBXLhw4VvH6O9zTYuHh0eLC1JAnbZs\n1/e0iHwbtfmJSK395z//wel0UlFR4e5SpBEymUwcOHCA/v37Ex0dzalTp9xdksh3YjKZiIyMZMCA\nASxfvtzd5YhII6SZKRGptddee422bdsyf/58vvzySzp06ICnp6e7y5JGIiQkBLvdjtVqJSMjA5vN\nxpkzZ9xdlrRQUVFRXL58ucr1lJQURo4cWatn7N+/n06dOvHVV18RFRWFv78/gwYN+r5LFZEmTDNT\nIlJrMTExGIZBVlYWv/3tb0lJSbnnvtphWjYfHx+sVisAw4cPp6ysjKtXr7q5Kmmpdu7cyYkTJ6r8\nq22QAujUqRMAjzzyCLGxsRw8ePCHKldEmiiFKRGptUGDBpGRkcHChQuZOHEiL774outeRUUFJpOJ\nw4cPc+fOHeB/4Uohq2UoLCx0/V8fPHgQwzC0cF8avQf9fCopKeHWrVsAFBcXk5WV9cCdLEWk5VKY\nEpFayc/PZ/ny5Zw8eZKgoCDi4uJo1aqV677FYsHpdPLmm2+ydetWnE4nJpOJ0tJSTCaTa5zWXDVd\n48ePJzw8nM8++ww/Pz9WrlzJsmXLWLZsGQCbNm2ib9++BAUFkZyczPr1691csUj1UlNT8fPzIzc3\nlxEjRjB8+HAALl26xIgRIwC4fPkygwYNIigoiLCwMJ5++mmGDRvmzrJFpBHS1ugiUqN//etfJCUl\n8cwzz5Cfn0+nTp2YOXMm5eXleHh8s/TS6XRiNptZtmwZdrudV199lUuXLjFjxgwSExMZMGAAZWVl\ntG/fvsrzz507R8+ePRv6tURERES+E81MiUiNvLy8GD9+PNOmTWPGjBls2LCBq1evuoIU/K9V5sCB\nA67WrjfffBNPT08GDx7MyZMnGTp0KJGRkaxevdr1uXPnzjF48GBu3rx5z3NEREREGjuFKRGpUUBA\nAJMnTwagTZs2REZGcuXKlXvGWCwWAHx9ffH39+ftt9/m2rVrvPDCC1gsFnr06MGRI0dYvHgxR44c\n4csvvwS+Oeg1LCzMddbN3S2BClYiIiLSmKnNT0RqVNnCV911wzCwWCwYhoHJZGLdunVs2LCBoqIi\n3n77bfr378+OHTtYtWoVn3/+OeHh4Wzfvp3169cTHh7OqFGjGDduHDExMeTk5DBo0CCsVus9oUpE\nRESkMdLMlIjU6O4gVVBQwD//+U/X9coZqcq/y3z22WekpaURGxtL//79OXz4MGvWrOGZZ57h6NGj\n9OzZk9u3bxMeHo7dbueLL75gxIgR7Nmzh+XLl1NQUIDJZCI7O7vKttqGYVBRUaEZKxEREWkUFKZE\npE68vLxYtmwZYWFhTJ06ld27dwPfBCun08ncuXP597//zaRJkwDo0qULVqsVHx8fAI4dO8YTTzwB\nQHp6Oj179qRt27acPn2aXr160bt3bwBefvll17NLSkr44osvMJlMWCyWKrsDioiIiLiDR81DRET+\n55FHHmHVqlVUVFRw/Phx3nnnHXbs2MHChQtdIScwMNA1vmPHjvTu3ZvZs2eTnZ3NmjVr2LFjBwBZ\nWVnExsZy48YN8vPzCQ0NBSAndim5CwAABxdJREFUJ4fOnTsTGhrK+fPnWb58OYcOHaKkpITf/OY3\n/O53v3M9v3LWrKKiwjVLJiIiItIQtGZKRL43leumHsRut7NixQrmzZtHQUEBoaGhHDt2jJKSEqZM\nmcLSpUvp3r07f/jDH/D09CQuLo4FCxbw+eefs2vXLvLy8tiyZQvz58/n1q1bZGdn4+vry8CBAxvw\nLUVERES+oZkpEfneVBekKtc5eXh44Ofnx7x58zAMgzZt2pCSkkLHjh25ePEiX331FTdv3uT69eus\nW7eOBQsWUFRUxNWrV/Hx8WHgwIF4eXlhMpk4ceIE6enpfPLJJxQWFuLl5cXLL7/M4MGD3fDW0tTY\n7XYmTJhAUVERJpOJSZMmkZSUVGVcUlISGRkZWK1WVq1aRXBwsBuqFRGRxkxhSkR+UCaT6Z6DfU0m\nEyaTiXbt2vHcc89hGAbt27dnwoQJzJgxAw8PD8xmM8HBwRQWFnL+/HmOHDkCwEcffcTZs2cJDAwk\nMTGRhIQEpkyZwvHjx11rsmqaHRPx9PRk0aJFBAUF4XA4CA0NJSoqioCAANeY9PR0zp07x9mzZ8nL\ny2Py5Mnk5ua6sWoREWmM1OYnIm7xoO3WCwoKyM/Pp2/fvhQXFzN9+nQSExN56qmn7hn3j3/8g/Xr\n1zNkyBASEhIaqmxphmw2G9OmTWPo0KGua88//zwRERHEx8cD4O/vz549e/D19XVXmSIi0ghpNz8R\ncYu7g5RhGJSXlwPQtWtXwsPD8fHxoWPHjowePZq5c+fi7+/P66+/zsWLF3E4HERGRjJr1ixWr17N\nihUr3PUa0sRduHCBo0ePEhYWds/1ixcv4ufn5/q6a9euFBQUNHR5IiLSyKnNT0Tc7u5WwPvb9OLj\n44mPjyc/P5/r16+72gNbtWrF7NmzMQyD69evV/tZkW/jcDgYO3Ysixcvxtvbu8r9+xs39L0lIiL3\n08yUiDQq9//CWl5ejmEY/PjHP6Zfv35YrVYWLlxIcHAw06ZNY9SoUUyePLnaz4o8SFlZGWPGjCEh\nIQGbzVblfpcuXbDb7a6vCwoK6NKlS0OWKCIiTYDWTIlIk6bZKKkrwzD49a9/Tfv27Vm0aFG1Y9LT\n01myZAnp6enk5uaSnJysDShERKQKhSkRaXIqt1u3WCwKUlJn+/bt48knn6Rfv36u75+UlBTy8/MB\nSExMBGDq1KlkZmbSpk0b3nvvPUJCQtxWs4iINE4KUyIiIiIiIvWgNVMiIiLSqMyaNYuAgAD69+/P\n6NGjuXHjRrXjMjMz8ff3p1evXsyfP7+BqxQRUZgSERGRRmbYsGGcPHmSY8eO8ZOf/ITXXnutypiK\nigpXK+apU6dYt24dn376qRuqFZGWTGFKREREGpWoqCjXWXRhYWHVnvF18OBBevbsSbdu3fD09GTc\nuHGkpaU1dKki0sIpTImIiEijtXLlSqKjo6tcr+5g5YsXLzZkaSIiOrRXREREGl5UVBSXL1+ucj0l\nJYWRI0cC8Mc//pGHHnqIX/3qV1XGaSdPEWkMFKZERESkwe3cufNb769atYr09HQ+/vjjau/ff7Cy\n3W6na9eu32uNIiI1UZufiIiINCqZmZn86U9/Ii0tjVatWlU7ZsCAAZw9e5YLFy5w584dPvjgA0aN\nGtXAlYpIS6cwJSIiIo3KtGnTcDgcREVFERwczJQpUwC4dOkSI0aMAMDDw4MlS5bwi1/8gsDAQOLj\n4wkICHBn2SLSAunQXhERkSbKbrczYcIEioqKMJlMTJo0iaSkpHvGZGdnExMTw+OPPw7AmDFjeOml\nl9xRrohIs6M1UyIiIk2Up6cnixYtIigoCIfDQWhoKFFRUVVmaAYPHsy2bdvcVKWISPOlNj8REZEm\nqmPHjgQFBQHg7e1NQEAAly5dqjJOTSgiIj8MhSkREZFm4MKFCxw9epSwsLB7rptMJg4cOED//v2J\njo7m1KlTbqpQRKT5UZufiIhIE+dwOBg7diyLFy/G29v7nnshISHY7XasVisZGRnYbDbOnDnjpkpF\nRJoXbUAhIiLShJWVlfH0008zfPhwkpOTaxzfvXt3Dh8+zMMPP9wA1YmING9q8xMREWmiDMPgueee\nIzAw8IFBqrCw0LVm6uDBgxiGoSAlIvI9UZufiIhIE7V//37ef/99+vXrR3BwMAApKSnk5+cDkJiY\nyKZNm1i6dCkeHh5YrVbWr1/vzpJFRJoVtfmJiIiIiIjUg9r8RERERERE6kFhSkREREREpB4UpkRE\nREREROpBYUpERERERKQeFKZERERERETqQWFKRERERESkHhSmRERERERE6kFhSkREREREpB4UpkRE\nREREROpBYUpERERERKQeFKZERERERETqQWFKRERERESkHhSmRERERERE6kFhSkREREREpB4UpkRE\nREREROpBYUpERERERKQe/h/cA6w40gKpXQAAAABJRU5ErkJggg==\n", - "text": [ - "" - ] - } - ], - "prompt_number": 234 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##Choosing the components of the new feature vector\n", - "- eigenvector with the highest eigenvalue is the principal component of the data set\n", - "- since it is the one that has the most significant relationship with respect to it dimensions\n", - "- usually one orders the eigenvectors by their eigenvalue from high to low and keep the $k$ vectors with the highest eigenvalues, where $k$ will then represent the dimensions of the transformed data set. \n", - "- Let's assume, we want to reduce the 3D dataset to a 2D dataset, then we can just keep all vectors but the one with the lowest eigenvalue.\n" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import operator\n", - "\n", - "max_index, max_eig_val = max(enumerate(eig_val), key=operator.itemgetter(1))\n", - "print('max. eigenvalue:', max_eig_val)\n", - "print('max. eigenvector:\\n', eig_vec[:,max_index].reshape(1,3).T)\n", - "\n", - "min_index, min_eig_val = min(enumerate(eig_val), key=operator.itemgetter(1))\n", - "print('\\nmin. eigenvalue:', min_eig_val)\n", - "print('min. eigenvector:\\n', eig_vec[:,min_index].reshape(1,3).T)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "max. eigenvalue: 1.42048348608\n", - "max. eigenvector:\n", - " [[-0.84190486]\n", - " [-0.39978877]\n", - " [-0.36244329]]\n", - "\n", - "min. eigenvalue: 0.831475590075\n", - "min. eigenvector:\n", - " [[-0.44565232]\n", - " [ 0.13637858]\n", - " [ 0.88475697]]\n" - ] - } - ], - "prompt_number": 235 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Instead of ordering the eigenvectors from highest to lowest eigenvalue and drop the last column, I chose a slightly different approach since I found the implementation easier since we only want to drop 1 eigenvector. If we want to drop more then one eigenvector, we can either repeat this step, or we can order the eigenvectors and keep the $k$ eigenvectors with the highest eigenvalues. Both approaches are equivalent in terms of the PCA result." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Form a feature vector (a matrix of the eigenvectors) for all but the lowest eigenvalue, where each eigenvector shall represent 1 column in the matrix" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "feature_vect = np.zeros(shape=(eig_vec.shape[0], eig_vec.shape[1]-1))\n", - "\n", - "index = 0\n", - "for i in range(eig_vec.shape[0]):\n", - " if i != min_index:\n", - " feature_vect[:,index] = eig_vec[:,i]\n", - " index += 1\n", - "print('Feature vector matrix:\\n', feature_vect)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Feature vector matrix:\n", - " [[-0.84190486 0.30428639]\n", - " [-0.39978877 -0.90640489]\n", - " [-0.36244329 0.29298458]]\n" - ] - } - ], - "prompt_number": 236 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Transforming the dataset" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 1) Subtract the mean\n", - "- the adjusted dataset will have column means 0 afterwards" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "adjusted_samples = np.zeros(shape=(samples.shape[0], samples.shape[1]))\n", - "for i in range(samples.shape[1]):\n", - " adjusted_samples[:,i] = samples[:,i] - np.mean(samples[:,i])\n", - "print('Adjusted dataset:\\n', adjusted_samples)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Adjusted dataset:\n", - " [[-1.19886766 -1.73953131 -0.19488401]\n", - " [ 1.45386838 0.73275671 0.32093193]\n", - " [-0.01957561 -0.09765938 0.22728493]\n", - " [-1.99330532 -0.05029589 -0.57520179]\n", - " [-1.68827921 -0.37632299 0.07286815]\n", - " [ 0.15065018 -0.10509763 0.91822244]\n", - " [ 1.08371188 -0.16400839 -0.47114851]\n", - " [-0.74453555 -0.21712991 0.14275885]\n", - " [ 0.25924434 1.10678761 -0.77757694]\n", - " [-0.48335312 -1.14150187 -0.81189972]\n", - " [ 0.78745097 -0.44348085 -0.17903902]\n", - " [-1.06549359 -0.85623312 -0.14001637]\n", - " [-1.88412396 -0.75034527 -1.61353791]\n", - " [ 1.80289763 -0.32872896 -1.34718012]\n", - " [-1.11919027 1.03614966 -0.38072179]\n", - " [-0.06319857 -0.82098599 -0.29419998]\n", - " [-0.77316424 -0.71454299 -0.04668327]\n", - " [-1.23482567 -0.71635901 -0.45113143]\n", - " [-0.14494314 0.86172721 -2.19084525]\n", - " [-0.7331331 -1.2847809 0.45645997]\n", - " [ 1.02247512 -1.1796506 -0.32712619]\n", - " [-0.47221204 1.70749592 1.87889725]\n", - " [ 0.69107197 0.10923993 0.84247461]\n", - " [-1.09217118 -0.25230097 -0.7538699 ]\n", - " [ 1.25963423 1.5842181 1.45858013]\n", - " [ 0.62146264 -0.407502 0.84057653]\n", - " [-0.37287386 -1.4121997 0.6085398 ]\n", - " [ 1.80574638 -2.04777022 0.74619908]\n", - " [ 0.55664668 0.57333998 0.66067394]\n", - " [ 1.40599911 0.96616486 1.06593341]\n", - " [-1.20289685 0.66967245 -1.47352242]\n", - " [-0.43883072 1.61911124 -1.2238501 ]\n", - " [-0.46625215 1.36759124 1.70634845]\n", - " [-1.80232302 -0.63977628 1.19639681]\n", - " [ 0.04416145 0.52093637 0.60521467]\n", - " [ 0.67303936 1.38593914 -1.12187965]\n", - " [ 1.35000147 -0.43736431 1.20218217]\n", - " [ 1.1090882 0.3067161 -0.16098353]\n", - " [ 1.97376686 0.05611339 -1.04407449]\n", - " [ 0.942632 1.57960861 0.62882923]]\n" - ] - } - ], - "prompt_number": 237 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print(feature_vect.shape)\n", - "print(adjusted_samples.shape)\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(3, 2)\n", - "(40, 3)\n" - ] - } - ], - "prompt_number": 238 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "transformed_samples = adjusted_samples.dot(feature_vect)\n", - "print('Transformed samples:\\n', transformed_samples )" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Transformed samples:\n", - " [[ 1.89836163 1.92732261]\n", - " [ 1.4352144 -1.39744334]\n", - " [ 0.77864833 -0.33141983]\n", - " [ 0.74272264 -1.36650875]\n", - " [ 1.93239755 0.36948181]\n", - " [-0.29884906 0.19585348]\n", - " [-0.67094083 -0.10847891]\n", - " [ 0.34593766 -1.00750695]\n", - " [ 1.24744019 -0.04827783]\n", - " [ 1.68737995 1.85307189]\n", - " [ 0.08255139 -0.60450288]\n", - " [ 1.87433854 0.25488856]\n", - " [ 1.1225675 0.33459471]\n", - " [ 0.58389391 0.18371489]\n", - " [ 2.1825471 -0.54859686]\n", - " [ 1.05489597 -0.90791139]\n", - " [ 0.71873966 0.90507714]\n", - " [ 1.56824565 0.10443086]\n", - " [ 0.34280323 0.28184558]\n", - " [-0.39431995 -1.32622128]\n", - " [-1.68008715 -0.28825022]\n", - " [ 0.56007219 -1.19383425]\n", - " [ 1.63134481 0.27655449]\n", - " [-2.22478231 1.25086132]\n", - " [-0.03568121 -2.11361756]\n", - " [-3.84054448 -0.14256683]\n", - " [-0.98957227 -0.13792958]\n", - " [-0.8901378 1.63412296]\n", - " [-0.47218875 1.67083039]\n", - " [-0.17106862 2.2154261 ]\n", - " [-2.1375134 0.17642789]\n", - " [-0.86238945 0.51361933]\n", - " [ 0.00986093 -1.08485621]\n", - " [-3.28114387 -0.42998085]\n", - " [-0.57046358 0.27167903]\n", - " [ 0.20780669 -0.72382118]\n", - " [-0.93290163 1.21991756]\n", - " [-0.12725036 -0.41836153]\n", - " [-2.13011074 -0.4031446 ]\n", - " [-0.29782447 -1.05648979]]\n" - ] - } - ], - "prompt_number": 209 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "plt.plot(transformed_samples[:,0], transformed_samples[:,1], 'o', markersize=7, color='green', alpha=0.5)\n", - "\n", - "plt.xlabel('x_values')\n", - "plt.ylabel('y_values')\n", - "plt.xlim([-4,6])\n", - "plt.ylim([-4,6])\n", - "\n", - "plt.title('Transformed samples')\n", - "\n", - "plt.draw()\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEaCAYAAAAYOoCaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtUlHX+B/D3cPcGiyKiQoKACpZIaOZlc9jA2+Ku5Q0t\nWq+b68rRas22vO5GpFZeyq4nI+xYudXJMiWv43q8RKtm5QWEhMBboFzk5nD5/v7wxyjCDDMwM88z\nfN+vcziHB56Z+cyDft/zPN/LoxFCCBARkXSclC6AiIiUwQAgIpIUA4CISFIMACIiSTEAiIgkxQAg\nIpIUA4Ac2tWrV/HQQw/B09MTixcvVrqcBnJycuDk5IS6ujqlSzFqxowZWLZsmdJlkEJclC6AHFfH\njh2h0WgAAOXl5fDw8ICzszMA4N1338W0adNsXsO7774LX19flJaW2vy12iKNRmP4G5J8GADUYmVl\nZYbvg4KC8P777+MPf/hDo/1qamrg4mKbf2q5ubkICwtr0WNtWZcj4VxQefESEFmdTqeDv78/1qxZ\ng+7du2P27NkoLi5GXFwcfH190blzZ4wfPx4XL140PEar1WL58uUYMWIEPD09MXr0aFy7dg0AUFVV\nhccffxw+Pj7w9vbGAw88gN9++w0zZsxAamoq1qxZg06dOmH//v3Q6/VYtGgRevbsiZ49e+Kpp56C\nXq9vsq5Zs2Zh1apVmDx5MhISEuDp6YkBAwbg/PnzSE5ORrdu3dCrVy/s2bPHUGdJSQlmz56NHj16\nwN/fH8uWLTNc4qmrq8M//vEPdO3aFcHBwfjmm29MHqfVq1fD398fnp6e6NevH/bv3w8ASE9Px9Ch\nQ+Ht7Y0ePXogMTER1dXVhsc5OTnhrbfeQmhoKDw9PbF8+XJkZ2dj6NCh+N3vfof4+HjD/vXvOTk5\nGV27dkVQUBC2bt1qtKYdO3Zg4MCB8Pb2xvDhw/HTTz81Wy85MEFkBYGBgWLfvn1CCCEOHDggXFxc\nxHPPPSf0er2orKwU165dE1988YWorKwUN27cEJMnTxYTJkwwPH7kyJEiJCREnD9/XlRWVgqtViue\ne+45IYQQb7/9thg/fryorKwUdXV14sSJE6K0tFQIIcSMGTPEsmXLDM+zbNkyMXToUFFQUCAKCgrE\nsGHDDL9vqq4VK1YIDw8PsXv3blFTUyOeeOIJ0atXL/HSSy+Jmpoa8d5774mgoCDD80+YMEHMmzdP\nVFRUiN9++0088MAD4p133hFCCPHWW2+Jfv36ifz8fHH9+nWh1WqFk5OTqK2tbXS8zp07JwICAsTl\ny5eFEELk5uaK7OxsIYQQx48fF999952ora0VOTk5IiwsTKxfv97wWI1GIyZMmCBu3LghTp8+Ldzc\n3ER0dLS4cOGCKCkpEeHh4eLDDz9s8J6feeYZodfrxcGDB0WHDh1EZmam4fgtXbpUCCHEiRMnhK+v\nr0hPTxd1dXXiww8/FIGBgUKv15uslxwXA4Cs4u4AcHNzEzdv3jS6/8mTJ4W3t7dhW6vViqSkJMP2\nm2++KcaMGSOEEGLz5s1i2LBh4scff2z0PHc2YEIIERwcLHbt2mXY/vbbb0VgYKDRulasWCFGjRpl\n2P7qq69Ex44dRV1dnRBCiNLSUqHRaERJSYm4cuWKcHd3F5WVlYb9t27dKqKjo4UQQkRHRxvCQAgh\ndu/eLTQaTZMBcP78eeHr6yv27t0r9Hq90eMkhBDr1q0TjzzyiGFbo9GII0eOGLajoqLEmjVrDNvP\nPPOMWLRokeE9u7i4iIqKCsPvp0yZIv79738bjl99QM6bN69BmAohRN++fcXBgwdFVlaW2fWS4+Al\nILKJrl27ws3NzbBdUVGBJ598EoGBgfDy8sLIkSNRUlLS4Pqzn5+f4ft27doZ+hgSEhIwevRoxMfH\no2fPnliyZAlqamqafN1Lly6hV69ehu177rkHly5dMloXAPj6+jZ4XR8fH0PHaLt27QDc6u/Izc1F\ndXU1unfvDm9vb3h7e2PevHkoKCgAAFy+fBkBAQENXtuYkJAQrF+/HitXrkS3bt0wbdo0XL58GQCQ\nmZmJuLg4dO/eHV5eXnjhhRcMl8PqdevWrUHNd257eHg06J/x9vY2vA8A6NWrl+G17pSbm4tXX33V\n8N68vb2Rn5+Py5cvIzg42Gi95LgYAGQTd48sefXVV5GZmYn09HSUlJTg4MGDELfOQJt9LhcXFyxf\nvhynT5/GkSNHsGPHDqSmpja5b48ePZCTk2PY/vXXX9GjRw+jdVkyAiYgIADu7u64du0aioqKUFRU\nhJKSEsN18u7du+PXX39t8NqmTJs2DYcOHUJubi40Gg2WLFkCAPjb3/6G8PBwZGVloaSkBElJSRYN\nJb37PRUVFaGiosKwnZub2+CY1LvnnnvwwgsvGN5bUVERysrKMHXqVJP1kuNiAJBdlJWVoV27dvDy\n8sL169exatWqRvsYC4MDBw7gp59+Qm1tLTp16gRXV1fDcNO7HzNt2jS8+OKLKCwsRGFhIf71r38h\nISHBaF3mBFC97t27Y9SoUXj66adx48YN1NXVITs7G//9738BAFOmTMHGjRtx8eJFFBUV4eWXXzb6\nXJmZmdi/fz9u3rwJd3f3BkNoy8rK0KlTJ7Rv3x7nzp3DW2+91Wxtd76Ppt7TihUrUF1djUOHDuGb\nb77B5MmTDfvW7z937ly8/fbbSE9PhxAC5eXl+Oabb1BWVmayXnJcDACyibs/hS5atAiVlZXw8fHB\nsGHDMHbsWJOfxu8cn3716lVMnjwZXl5eCA8Ph1arNTTqd49jX7p0KQYNGoQBAwZgwIABGDRoEJYu\nXWq0rqbGwZvaTk1NhV6vR3h4ODp37ozJkyfjypUrAG41oKNHj0ZERAQGDRqEiRMnGj3DuHnzJv75\nz3+ia9eu6N69OwoLC5GcnAwAeOWVV7B161Z4enrir3/9K+Lj4xsdm7sZO3bArUtr9SOKEhIS8M47\n76BPnz6N9o2KisJ7772HBQsWoHPnzggNDTWcaZmqlxyXRljyEcgGiouLMWfOHJw+fRoajQabN2/G\ngw8+qGRJRG2GTqdDQkIC8vLylC6FVEjxWTALFy7EuHHj8Nlnn6Gmpgbl5eVKl0REJAVFA6CkpASH\nDh3Chx9+eKsYFxd4eXkpWRJRm8OlHsgYRfsALly4gK5du2LmzJm4//77MXfu3AajFYiodbRabbOj\nkUheigZATU0NTpw4gfnz5+PEiRPo0KGDyZETRERkRYpMP/t/ly9fNszSFEKIQ4cOiT/+8Y8N9gkO\nDhYA+MUvfvGLXxZ8BQcHN9sGK3oG4Ofnh4CAAGRmZgIA9u7di/79+zfYJzs72zBWWfavFStWKF6D\nWr54LHgseCxMf2VnZzfbBis+Cuj111/HY489Br1ej+DgYHzwwQdKl0REJAXFAyAiIgLff/+90mUQ\nEUmHM4EdiFarVboE1eCxuI3H4jYeC8soPhO4ORqNBiovkYhIdcxpO3kGQEQkKQYAEZGkGABERJJi\nABARSYoBQEQkKQYAEZGkGABERJJiABARSYoBQEQkKQYAEZGkGABERJJiABARSYoBQEQkKQYAEZGk\nGABERJJiABARSYoBQEQkKQYAEZGkGABERJJiABARSYoBQEQkKQYAEZGkGABERJJiABARSYoBQEQk\nKQYAEZGkGABERJJiABARSYoBQEQkKQYAEZGkGABERJJiABARSYoBQEQkKQYAEZGkVBEAtbW1iIyM\nxPjx45UuhYhIGqoIgA0bNiA8PBwajUbpUoiIpKF4AOTn52Pnzp2YM2cOhBBKl0NEJA3FA+Cpp57C\n2rVr4eSkeClERFJxUfLFd+zYAV9fX0RGRkKn0xndb+XKlYbvtVottFqtzWsjInIkOp3OZDvaFI1Q\n8LrL888/jy1btsDFxQVVVVUoLS3FxIkTkZqaertAjYaXhoiILGRO26loANzp4MGDeOWVV/D11183\n+DkDgIjIcua0naq68M5RQERE9qOaMwBjeAZARGQ5hzsDICIi+2EAEBFJigFARCQpBgARkaQYAERE\nkmIAEBFJigFARCQpBgARkaQYAEREkmIAEBFJigFARCQpBgARkaQYAEREkmIAEBFJigFARCQpBgAR\nkaQYAEREkmIAEBFJigFARCQpBgARkaQYAEREkmIAEBFJigFARCQpBgARkaQYAEREkmIAEBFJigFA\nRCQpBgARkaQYAEREkmIAEBFJigFARCQpBgARkaRclC6AqCkZWRnYe3wvqkU1XDWuiImKQd+QvkqX\nRdSmaIQQQukiTNFoNFB5iWRlGVkZSDmQAvdQd8PPqrOqER0WjZjhMQpWRuQ4zGk7eQmIVGfv8b0N\nGn8AcA1xxe783dh7eK9CVRG1PYoGQF5eHqKjo9G/f3/ce++92Lhxo5LlkEpUi+omf96+W3uczTtr\n52qI2i5F+wBcXV2xbt06DBw4EGVlZYiKikJsbCzCwsKULIsU5qpxbfLnFVcrMCJghJ2rIWq7FD0D\n8PPzw8CBAwEAHTt2RFhYGC5duqRkSaQCMVExqM5qeBZQnV2NUf6j2AdAZEWq6QPIycnByZMnMWTI\nEKVLIYX1DemL6LBoVFytAHDrk390P3YAE1mbKoaBlpWVYdKkSdiwYQM6duyodDmkAjHDY4DDwNm8\nsxgRMIKN///j8FiyJsWHgVZXVyMuLg5jx47FokWLGv1eo9FgxYoVhm2tVgutVmvHConsy1gjz+Gx\nZIpOp4NOpzNsr1q1qtlhoIoGgBACf/nLX9ClSxesW7euyX04D4BkYqqRz8jPQEG3gkaPqbhawf4R\nakT18wAOHz6Mjz76CAcOHEBkZCQiIyORlpamZElEijI1B+Ln8z83+RgOj6WWMisAFi9ejNLSUlRX\nV+Phhx+Gj48PtmzZ0uoXHzFiBOrq6vDDDz/g5MmTOHnyJMaMGdPq5yVyVKbmQBSWFjb5u4qrFQgL\n4NBpspxZAbB79254enpix44dCAwMRHZ2NtauXWvr2qgNysjKwKZPN2H9J+ux6dNNyMjKULokVTE1\nB2LcoHEcHktWZdYooJqaGgDAjh07MGnSJHh5eUGj0di0MFK3loxGaer6dqouFdFX2YlZLyYqBqm6\nVLiG3A6C6uxqjOp3q5Hfe3gvdufvRvtu7W9d++/Hxp9azqwzgPHjx6Nfv344fvw4Hn74Yfz222/w\n8PCwdW2kUvUNeUG3AhT7FaOgWwFSdanNrtPDNX6a19wciJjhMRjlPwpdrnThJ39qNbNHAV2/fh1e\nXl5wdnZGeXk5bty4AT8/P1vXx1FAKrTp000tGo2y/pP1KPYrbvJ3Xa50QWJ8olXrdGR7D+/F2byz\nCAsIYyNPLWK1UUDl5eXYtGkT5s2bBwC4dOkS/ve//7W+QnJILV2szdT1bXZiNhQzPAaJ8Yls/Mmm\nzAqAmTNnws3NDUeOHAEA9OjRAy+88IJNCyP1amlDzjV+iNTFrADIzs7GkiVL4ObmBgDo0KGDTYsi\ndWtpQ841fojUxawAcHd3R2VlpWE7Ozsb7u7uJh5BbVlrGnJ2YhKph1mdwLt370ZSUhLOnDmD2NhY\nHD58GCkpKYiOjrZ9gewEVi12VBKplzltp9mjgAoLC3Hs2DEAwIMPPggfH5/WV2gGBgARkeWsFgAH\nDx5s8GT1k8AeeughK5RpmiwB4EjL/DpSrUSysloAxMXFGRr9qqoqpKenIyoqCvv377dOpaYKlCAA\nHGmZX0eqlUhm5rSdZi0FsWPHjgbbeXl5WLhwYcsrowZMzZDFYaiqYXWkWonItBYtB+3v74+zZ7n8\nrLW0dGKVEhypViIyzawzgMTE21P065dvjoqKsllRsjE1sWpEwAg7V2OaI9VKRKaZ1QeQkpJi+N7F\nxQWBgYEYMcI+/9ll6QNoagVINU6ScqRaiWRm1WGgSpEhAAA0XuZXxZOkHKlWIlm1OgDuu+8+k0/+\n448/trw6M8kSAIBjTaxypFotwSGu1Fa0OgBycnJMPjgwMLAldVlEpgAgZXGIK7UlvAREZIGW3ueA\nSI2sdj+Ao0ePYvDgwejQoQNcXV3h5OQET09PqxRJpBYc4kqyMSsAFixYgK1bt6JPnz6oqqrC+++/\nj/nz59u6NiK74g1rSDZmTwQLDQ1FbW0tnJ2dMXPmTKSlpdmyLiK74w1rSDZmTQTr0KEDbt68iYiI\nCDz77LPw8/PjdXlqc/qG9EX01eiGQ1z7sfGntsusTuDc3Fz4+vpCr9dj3bp1KC0txfz58xESEmL7\nAtkJTHbWVoe4klysNgro888/R1xcnCJ3AWMAEBFZzmoBMGPGDOzfvx8jR47E1KlTMWbMGLi4mHX1\nqNUYAOrFSVNE6mXVeQB6vR67du3Ctm3bcOjQIcTGxuL999+3SqGmMADUiZOmiNTNavcDAAA3NzeM\nHTsWTk5OqKiowJdffmmXACB14n0BiByfWQGwc+dObNu2DQcOHIBWq8XcuXPxn//8x9a1kYo1N2kq\nBgwAW+GlN7IWswJgy5YtmDp1Kt5++214eHjYuiZyALwvQEP2apSbuvSWqktF9FVeeiPLWWUtoKFD\nh+Lo0aPWqKcR9gGok6PcF8AeDbO1+kPMqZXrFZG5rNoHYEpVVZU1noYciCWTppS6ZGGvT8vW6A8x\np9aMrAwcOH4AZZ5lcIITevfuDZ8ePgB46Y1axj5jOalNihkeAxwGzuadxYiAEUYbf3MaYVuEhL06\nqq3RH9JcrQHdApByIAUV91SgquOtD1ynzp1CUFEQevfvLe2lN2odBoDKOFoHX8zwGJMNnDmNsK0+\nqZvTMFvjeFujP6S5WjPyM+Ae6o7e13vjVM4pOHd2hnNvZ2QVZKFmbw1mjZ3Fyz9kMbMWg9u4cSOK\niopsXYv06hvCgm4FKPYrRkG3AqTqUrH38F6lS2sxc5ZYNhUSrXnvza3uaa3j3dpF5DKyMnD0xFEc\n+/kY0n9OR+H1wka11h9Hn84+CPIJQnXZrW1NOw28O3iz8acWMSsArl69isGDB2PKlClIS0tr1LGQ\nmpra4gLS0tLQr18/hIaGYvXq1S1+nrbAVg2hksxZYtlW6/A31zBb63j3DemL6LBoVFytAHDrvZnb\nGV4fQl0HdkX5b+Wo6FiBUzmn8MuvvzSo9c7j2Pue3gj2DEa7snboqe+JRx56xOxaie5kVgAkJSUh\nMzMTs2bNQkpKCkJDQ/H8888jOzsbgOl7B5tSW1uLBQsWIC0tDWfOnMHHH3+Ms2flvfFGW7whiTmf\njm21Dn9zDbM1j3fM8BiM8h+FLle6WDQapz6EfHr4IKhbEPQFejh3dsa5C+fgWeNpeJ67j2Pve3rj\n/nb3469D/spP/9RiZt8PwMnJCX5+fujWrRucnZ1RVFSESZMmYfHixS1+8fT0dISEhCAwMBCurq6I\nj4/H9u3bW/x8jq4t3pDEnE/HtlyH31TDbO3jHTM8BonxiRbVfGcI9e7fGyHtQ9Auvx36+fRDe6/2\nht+15iyDyBizOoE3bNiA1NRUdOnSBXPmzMErr7wCV1dX1NXVITQ0FGvXrm3Ri1+8eBEBAQGGbX9/\nf3z33Xcteq62ICYqpsmx9Y6+Jn1zo4VsvQ6/sY5qWx5vczuX7w6h3v17ozdujeoJ828YQuaMuiKy\nhFkBcP36dXzxxRfo1atXg587OTnh66+/bvGLazSaFj+2LWpLNyRpqgE09T6UaNxsdbwtGdVkaQg1\nN+qKyBJmBcCqVauM/i48PLzFL96zZ0/k5eUZtvPy8uDv799ov5UrVwIACq8Xwvl3zggKD3KIIZIt\noeZPeeZ+qm3psE4lGjdbHG9L5h+0pdAnZel0Ouh0OoseY5WlIFqqpqYGffv2xb59+9CjRw888MAD\n+PjjjxEWdvvUt346M5cfVpYlx1/25QrWf7IexX7FTf6uy5UuSIxPbPRz3oWMrM1uS0G0lIuLC954\n4w2MHj0atbW1mD17doPG/05cflhZlhx/2VcKbcnEMF7aISUoPhN47NixGDt2bLP7yd6omMtWM4kt\nOf6yrxTaVjvzqe0xexio0triEElrs+VMYkuOvy2HddpLRlYGNn26Ces/WY9Nn25CRlaG2Y/lkE1y\nFA4TAG2hUbE1W84ktuT4O3oDaI0gbenEMCJ7UrQT2Bx3dmTsPby34WiJVvzHUvOiay2trSWdj5aw\n9Phbo2NTib+T7J3Y1DZY9abwSrn7TVirUVHriKLW1GaPhsueo1WU+jvZOkiJ7EH1o4BawhqjJdQ8\noqg1tdmj89Geo1WU+jvJ3olN8nCYPgBrUvOia62pzdGvvd9Nqb+To/c3taYDm+TicGcA1qDmT3it\nrU3NM4kt1dyxsFX/gCPPzuVN48kSDtcHYA1qvqG5mmuzN1PHov4WibbsH3DE2bnswKZ65rSdUl4C\nUvOlEjXXZm+mjoU9bp7TkuWdlabmy5ukPlJeAgLUfalEzbXZm7Fj0VRDV3ipEL/88guyjmchIz9D\nVUN77UXNlzdJfaS8BESO7+5LHYWXCvHDmR8g/ASCPYPR+57eqhnaa0+8hEj1eAmI2qy7R+r88ssv\n0HTWGBp/wPHvp9wSvIRIlmAAkEO6u6GrKq1CkE+QofGvJ+O1by5DQebiJSByaPUjdTIvZKLL0C6N\nfm/L0S9qXk6EqE0uBUHUFHtf+1bzciJEAAOAJNPUYnUB3QJs8imd4+1J7drkWkDUNlnjcsrdQ0ab\nmixmrVmxvEERtQUMAFKcJcsXNBcUdy5Wt+nTTTZbTI7j7akt4CggUpy5s3otvVGLLWfFOvqCcUQA\nzwBIBcy9nGLp8tC2XEzOkReMI6rHMwBSnLn3G7b0E72pT+n1/QO87SPJjAFAijP3coolN6YH7LOY\nnCMuGEdUjwFAiqm/ccmu/+1C6ZVS5J/LB2B8+YKWXHc39imdq2YScR4AKaSpkT+ZezLh3dEbjzz0\niNEG3dIb0xtjahx/mCYMFaKCM3zJoXEiGKlWayZSWeNGLcZmDod0CkFmSabNZvhy+QiyFwYAqdb6\nT9aj2K+4yd91udIFifGJNq+hqbOJjPwMm83w5fIRZE9cDppUy9IOXVtoqn/Aln0D9riLGZElGACk\nCLVMpLp7FI8tg4kdz6Q2DABShFpvXGLLYFLDWQ/RnRgApBg1TqSyZTCp5ayHqB47gYmaYI2RRsae\n1xrDWImaw1FARCpkq3AhuhMDgIhIUhwGSkRERjEAiIgkxQAgIpKUYgGwePFihIWFISIiAo8++ihK\nSkqUKoWISEqKBcCoUaNw+vRpnDp1Cn369EFycrJSpRARSUmxAIiNjYWT062XHzJkCPLz85UqhYhI\nSqroA9i8eTPGjRundBlERFKx6U3hY2NjceXKlUY/f+mllzB+/HgAQFJSEtzc3DB9+nSjz7Ny5UrD\n91qtFlqt1tqlkgPgWvpExul0Ouh0Ooseo+hEsJSUFLz33nvYt28fPDw8mtyHE8EI4Fr6RJZS9USw\ntLQ0rF27Ftu3bzfa+BPV41r6RNanWAAkJiairKwMsbGxiIyMxPz585UqhRwA19Insj6b9gGYcv78\neaVemhyQqbX0RwSMsHM1RG2DKkYBETWHa+kTWR8DgByCWu8gRuTIuBw0ORSupU9kHt4PgIhIUqoe\nBkpERMpiABARSYoBQEQkKQYAEZGkGABERJJiABARSYoBQEQkKQYAEZGkGABERJJiABARSYoBQEQk\nKQYAEZGkGABERJJiABARSYoBQEQkKQYAEZGkGABERJJiABARSYoBQEQkKQYAEZGkGABERJJiABAR\nSYoBQEQkKQYAEZGkGABERJJiABARSYoBQEQkKQYAEZGkGABERJJiABARSYoBQEQkKcUD4NVXX4WT\nkxOuX7+udClERFJRNADy8vKwZ88e9OrVS8kyHIZOp1O6BNXgsbiNx+I2HgvLKBoATz/9NNasWaNk\nCQ6F/7hv47G4jcfiNh4LyygWANu3b4e/vz8GDBigVAlERFJzseWTx8bG4sqVK41+npSUhOTkZOze\nvdvwMyGELUshIqK7aIQCLe/PP/+Mhx9+GO3btwcA5Ofno2fPnkhPT4evr2+DfUNCQpCdnW3vEomI\nHFpwcDCysrJM7qNIANwtKCgIx48fR+fOnZUuhYhIGooPAwUAjUajdAlERNJRxRkAERHZnyrOAMzF\nSWPA4sWLERYWhoiICDz66KMoKSlRuiS7S0tLQ79+/RAaGorVq1crXY5i8vLyEB0djf79++Pee+/F\nxo0blS5JUbW1tYiMjMT48eOVLkVRxcXFmDRpEsLCwhAeHo5jx44Z3ddhAoCTxm4ZNWoUTp8+jVOn\nTqFPnz5ITk5WuiS7qq2txYIFC5CWloYzZ87g448/xtmzZ5UuSxGurq5Yt24dTp8+jWPHjmHTpk3S\nHgsA2LBhA8LDw6W/pLxw4UKMGzcOZ8+exY8//oiwsDCj+zpMAHDS2C2xsbFwcrr1ZxsyZAjy8/MV\nrsi+0tPTERISgsDAQLi6uiI+Ph7bt29XuixF+Pn5YeDAgQCAjh07IiwsDJcuXVK4KmXk5+dj586d\nmDNnjtRDyktKSnDo0CHMmjULAODi4gIvLy+j+ztEAHDSWNM2b96McePGKV2GXV28eBEBAQGGbX9/\nf1y8eFHBitQhJycHJ0+exJAhQ5QuRRFPPfUU1q5da/hwJKsLFy6ga9eumDlzJu6//37MnTsXFRUV\nRvdXzdGKjY3Ffffd1+jrq6++QnJyMlatWmXYt60nvLFj8fXXXxv2SUpKgpubG6ZPn65gpfYn++l9\nU8rKyjBp0iRs2LABHTt2VLocu9uxYwd8fX0RGRnZ5tuG5tTU1ODEiROYP38+Tpw4gQ4dOuDll182\nur9NZwJbYs+ePU3+/Oeff8aFCxcQEREB4NapXlRUVJOTxtoKY8eiXkpKCnbu3Il9+/bZqSL16Nmz\nJ/Ly8gzbeXl58Pf3V7AiZVVXV2PixIl4/PHHMWHCBKXLUcSRI0fw1VdfYefOnaiqqkJpaSmeeOIJ\npKamKl2a3fn7+8Pf3x+DBw8GAEyaNMlkAEA4mMDAQHHt2jWly1DMrl27RHh4uCgoKFC6FEVUV1eL\n3r17iwvVIcsNAAAD9ElEQVQXLoibN2+KiIgIcebMGaXLUkRdXZ1ISEgQixYtUroU1dDpdCIuLk7p\nMhT1+9//XmRkZAghhFixYoV49tlnje6rmjMAc8l+CSAxMRF6vR6xsbEAgKFDh+LNN99UuCr7cXFx\nwRtvvIHRo0ejtrYWs2fPNjnKoS07fPgwPvroIwwYMACRkZEAgOTkZIwZM0bhypQlexvx+uuv47HH\nHoNer0dwcDA++OADo/tyIhgRkaRU0wlMRET2xQAgIpIUA4CISFIMACIiSTEAiIgkxQAgIpIUA4CI\nSFIMAKJWyMnJwX333ad0GUQtwgAgIpIUA4Ck8P333yMiIgI3b95EeXk57r33Xpw5c6bRftOmTcPO\nnTsN2zNmzMDnn3+O3NxcPPTQQ4iKikJUVBSOHj3a6LEpKSlITEw0bMfFxeHgwYMAgN27d2PYsGGI\niorClClTUF5eDgB47rnn0L9/f0RERGDx4sXWfttEJjncWkBELTF48GD86U9/wtKlS1FZWYmEhASE\nh4c32m/q1KnYtm0bxo0bB71ej/379+Odd95BXV0d9uzZA3d3d5w/fx7Tp0/H999/b/I1NRoNNBoN\nCgsLkZSUhH379qFdu3ZYvXo1XnvtNfz973/Hl19+iXPnzgEASktLbfLeiYxhAJA0li9fjkGDBqFd\nu3Z4/fXXm9xnzJgxWLhwIfR6PXbt2oWRI0fC3d0dJSUlWLBgAU6dOgVnZ2dkZmaa9ZpCCBw7dgxn\nzpzBsGHDAAB6vR7Dhg2Dl5cXPDw8MHv2bMTFxSEuLs5q75XIHAwAkkZhYSHKy8tRW1uLyspKtG/f\nvtE+Hh4e0Gq1+Pbbb7Ft2zZMmzYNALBu3Tp0794dW7ZsQW1tLTw8PBo91sXFBXV1dYbtqqoqw/ex\nsbHYunVro8ekp6dj3759+Oyzz/DGG29IeY8HUg77AEgaTz75JF588UVMnz4dS5YsMbrf1KlTsXnz\nZhw6dMiwtHJpaSn8/PwAAKmpqaitrW30uMDAQPzwww8QQiAvLw/p6enQaDR48MEHcfjwYWRnZwMA\nysvLcf78eZSXl6O4uBhjx47Fa6+9hlOnTtngXRMZxzMAkkJqairc3d0RHx+Puro6DBs2DDqdDlqt\nttG+o0aNQkJCAiZMmAAXl1v/RebPn4+JEyciNTUVY8aMaXDrxfr150eMGIGgoCCEh4cjLCwMUVFR\nAAAfHx+kpKRg2rRpuHnzJoBbt/Ts1KkT/vznP6OqqgpCCKxbt87GR4GoId4PgIhIUrwEREQkKV4C\nIin99NNPeOKJJxr8zMPDo8nx/URtFS8BERFJipeAiIgkxQAgIpIUA4CISFIMACIiSTEAiIgk9X+/\nFRna4XPQqAAAAABJRU5ErkJggg==\n", - "text": [ - "" - ] - } - ], - "prompt_number": 239 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "plt.plot(transformed_samples[0:20,0], transformed_samples[0:20,1], 'o', markersize=7, color='blue', alpha=0.5, label='class1')\n", - "plt.plot(transformed_samples[20:40,0], transformed_samples[20:40,1], '^', markersize=7, color='red', alpha=0.5, label='class2')\n", - "\n", - "plt.xlabel('x_values')\n", - "plt.ylabel('y_values')\n", - "plt.xlim([-4,6])\n", - "plt.ylim([-4,6])\n", - "plt.legend()\n", - "plt.title('Transformed samples with class labels')\n", - "\n", - "plt.draw()\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEaCAYAAAAYOoCaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYU2fePvA77IiAKCIKKIobuABiXagtoYLb4KutG9hi\ntdbW8dWfdjp2mS7qtOqotVZb29q+Wkp9dbTTvmNVRFyAUpdB61qkqCgMuKOAsobl+f3hEEFIDDHh\nJDn357q4asI5yTcn9LmTc55FIYQQICIi2bGSugAiIpIGA4CISKYYAEREMsUAICKSKQYAEZFMMQCI\niGSKASBDN27cwNNPPw0XFxcsXLhQ6nIayMnJgZWVFWpra6UuRaPp06fjvffek+S5x4wZg++++07j\n7w1VW0u+xua85ykpKfDx8dHreR5nX0tlI3UBctO6dWsoFAoAQGlpKRwcHGBtbQ0A+OqrrxATE2P0\nGr766it4eHjg7t27Rn8uS6RQKNTvYUtLSEhQ/zsuLg4bN25EWlqa+j5D1Sbla6SWwwBoYSUlJep/\nd+3aFRs3bsQzzzzTaLvq6mrY2Bjn7cnNzYW/v79e+xqzLnMih/GTcniNcsdTQCYiJSUF3t7eWLly\nJTp27IiZM2eiqKgIUVFR8PDwQNu2bTF27FhcuXJFvY9SqcT777+PYcOGwcXFBSNHjsTt27cBABUV\nFXjhhRfg7u4ONzc3DBo0CDdv3sT06dMRHx+PlStXwtnZGQcPHoRKpcKCBQvg5eUFLy8vvPbaa1Cp\nVE3W9dJLL2HJkiWYNGkSYmNj4eLigv79++PChQtYvnw5OnTogC5dumDfvn3qOouLizFz5kx06tQJ\n3t7eeO+999Rf92tra/HnP/8Z7du3h5+fH3bv3q31OK1YsQLe3t5wcXFB7969cfDgQQBAeno6hg4d\nCjc3N3Tq1Anz5s1DVVWVej8rKyt88cUX6NGjB1xcXPD+++8jOzsbQ4cORZs2bRAdHa3evu41L1++\nHO3bt0fXrl2xZcsWjTXt2rULQUFBcHNzw5NPPomzZ88+st76Ll++DDc3N/XtWbNmoUOHDurbsbGx\nWLt2rfo937hxI37//XfMnj0bR44cgbOzM9q2bave/s6dO4iKioKLiwuGDBmCS5cuaaz9l19+QWho\nKNzc3NC5c2fEx8c32qawsFDr32FcXBz8/Pzg4uKCbt26qY/VxYsXERYWhjZt2qB9+/aIjo7WWEd9\n33zzDQICAuDi4gI/Pz989dVXjbbR9N5UVlbiz3/+M7p06QJPT0/88Y9/REVFRZPPo8t7Y/EEScbX\n11ccOHBACCFEcnKysLGxEW+99ZZQqVSivLxc3L59W/z444+ivLxc3Lt3T0yaNEmMHz9evX9YWJjo\n3r27uHDhgigvLxdKpVK89dZbQgghvvzySzF27FhRXl4uamtrxYkTJ8Tdu3eFEEJMnz5dvPfee+rH\nee+998TQoUPFrVu3xK1bt0RoaKj6903VtWjRIuHg4CCSkpJEdXW1mDZtmujSpYtYtmyZqK6uFl9/\n/bXo2rWr+vHHjx8vZs+eLcrKysTNmzfFoEGDxIYNG4QQQnzxxReid+/eIj8/X9y5c0colUphZWUl\nampqGh2v33//Xfj4+Ihr164JIYTIzc0V2dnZQgghfv31V/Gvf/1L1NTUiJycHOHv7y8++eQT9b4K\nhUKMHz9e3Lt3T2RkZAg7OzsRHh4uLl++LIqLi0VAQID49ttvG7zm119/XahUKpGamiqcnJzE+fPn\n1cfv3XffFUIIceLECeHh4SHS09NFbW2t+Pbbb4Wvr69QqVRa631Y586dxYkTJ4QQQvTs2VP4+fmJ\nzMxM9e9OnTolhBBCqVSKjRs3CiGEiIuLE8OGDWvwOC+++KJo166dOHbsmKiurhbPP/+8iI6ObvI5\nc3JyhLOzs/j73/8uqqurxe3bt9XPU/81avs7LCkpES4uLupjc/36dZGRkSGEECI6OlosW7ZMCCFE\nZWWlOHToUJN1XL58WSgUCvV7vnv3bnHp0iUhhBCpqamiVatW6mOj6b3JysoSQgixYMECMW7cOFFY\nWCju3bsnxo4dK95++231vt7e3kII7X9LcsIAkNDDAWBnZycqKys1bn/y5Enh5uamvq1UKsXSpUvV\ntz///HMxatQoIYQQmzZtEqGhoeLMmTONHqf+/9xCCOHn5yf27Nmjvr13717h6+ursa5FixaJESNG\nqG//9NNPonXr1qK2tlYIIcTdu3eFQqEQxcXF4vr168Le3l6Ul5ert9+yZYsIDw8XQggRHh6uDgMh\nhEhKSmrQGNR34cIF4eHhIfbv3y9UKpXG4ySEEGvWrBHPPvus+rZCoRCHDx9W3w4JCRErV65U3379\n9dfFggUL1K/ZxsZGlJWVqX8/efJk8cEHH6iPX11Azp49u0GYCiFEr169RGpqqrh48aLO9cbGxoqP\nP/5YXLt2TfTq1Uu8+eab4ssvvxSXLl0Sbdq0UW9XPwC++eabRgEwffp0MWvWLPXthIQE0bt37yaf\nc9myZeK5555r8ncP/43UV//vsKSkRLRp00b88MMPDY6XEEJMmzZNvPLKKyI/P1/ra384AB42fvx4\nsXbtWiGE9vemtrZWODk5NWjIDx8+rP4wUj8AmvO3ZMl4CsiEtG/fHnZ2durbZWVlePXVV+Hr6wtX\nV1eEhYWhuLi4wblZT09P9b8dHR3V1xhiY2MxcuRIREdHw8vLC2+++Saqq6ubfN6rV6+iS5cu6tud\nO3fG1atXNdYFAB4eHg2e193dXX3R0NHREcD96x25ubmoqqpCx44d4ebmBjc3N8yePRu3bt0CAFy7\ndq1Bz4zOnTtrPD7du3fHJ598gsWLF6NDhw6IiYnBtWvXAADnz59HVFQUOnbsCFdXV7zzzjvq02F1\n6p9WcXR0bHDbwcGhwfUZNzc39esAgC5duqifq77c3FysXr1a/drc3NyQn5+Pa9euwc/PT2O9DwsL\nC0NKSgrS0tLw9NNPIywsDKmpqfj555/x1FNPaTwmTXn4ddZ/XfXl5+ejW7duj3w8bX+HTk5O2LZt\nG7788kt06tQJUVFRyMrKAgCsXLkSQggMGjQIffv2xTfffKNT/Xv27MGQIUPQrl07uLm5ISEhocF7\nqem9KSgoQFlZGUJCQtTvxejRo1FQUNDoObT9LckJA8CEPNzrYvXq1Th//jzS09NRXFyM1NRUiPvf\n2h75WDY2Nnj//feRkZGBw4cPY9euXU2e3wWATp06IScnR3373//+Nzp16qSxrub0DvHx8YG9vT1u\n376NwsJCFBYWori4WH2evGPHjvj3v//d4Lm1iYmJQVpaGnJzc6FQKPDmm28CAP74xz8iICAAFy9e\nRHFxMZYuXdqsrqQPv6bCwkKUlZWpb+fm5jY4JnU6d+6Md955R/3aCgsLUVJSgilTpmit92FhYWFI\nS0tDSkoKlEolhg0bhkOHDiE1NRVKpVKnmpvLx8cH2dnZGn9f9/iP+jscMWIEkpKScP36dfTu3Ruz\nZs0CcD+IvvrqK1y5cgUbNmzAnDlztF6PAO6fw58wYQLeeOMN3Lx5E4WFhRgzZkyDv3lN7427uzsc\nHR1x7tw59XtRVFSksbebru+NJWMAmLCSkhI4OjrC1dUVd+7cwZIlSxptoykMkpOTcfbsWdTU1MDZ\n2Rm2trbq7qYP7xMTE4MPP/wQBQUFKCgowF//+lfExsZqrEuXAKrTsWNHjBgxAn/6059w79491NbW\nIjs7Gz///DMAYPLkyVi3bh2uXLmCwsJC/O1vf9P4WOfPn8fBgwdRWVkJe3v7Bl1oS0pK4OzsjFat\nWuH333/HF1988cja6r+Opl7TokWLUFVVhbS0NOzevRuTJk1Sb1u3/axZs/Dll18iPT0dQgiUlpZi\n9+7dKCkp0Vrvw7p37w4HBwds3rwZYWFhcHZ2hoeHB3744QeEhYU1uU+HDh2Qn5/f4GJ3c96b559/\nHvv378f333+P6upq3L59G6dPn270GrX9Hd68eRM7duxAaWkpbG1t4eTkpH6N33//PfLz8wEAbdq0\ngUKhgJWV9iZHpVJBpVLB3d0dVlZW2LNnD5KSkhpt19R7o1AoMGvWLCxYsED9DfPKlStN7t+c98aS\nMQBMyMOf6BYsWIDy8nK4u7sjNDQUo0eP1vppvH7f7Rs3bmDSpElwdXVFQEAAlEqlulF/uI/3u+++\ni4EDB6J///7o378/Bg4ciHfffVdjXU31Edd2Oz4+HiqVCgEBAWjbti0mTZqE69evA7jfgI4cORKB\ngYEYOHAgJkyYoPGTbWVlJd5++220b98eHTt2REFBAZYvXw4A+Oijj7Blyxa4uLjglVdeQXR0dKNj\n8zBNxw64f2qtrkdRbGwsNmzYgJ49ezbaNiQkBF9//TXmzp2Ltm3bokePHupvWtrqbYpSqYS7uzu8\nvLzUtwFgwIABTW4/fPhw9OnTB56enupTcrq8N3V8fHyQkJCA1atXo127dggODsaZM2caPY62v8Pa\n2lqsWbMGXl5eaNeuHdLS0tThe/z4cQwZMgTOzs4YN24c1q1bB19f3yZrqXs8Z2dnrFu3DpMnT0bb\ntm2xdetWjBs3rsG2dacTm3pvVqxYge7du2PIkCFwdXVFZGQkzp8/3+h5mvveWCqFaM5HBiMoKirC\nyy+/jIyMDCgUCmzatAlDhgyRsiSSuZSUFMTGxiIvL0/qUoiMSvIRPfPnz8eYMWPwj3/8A9XV1Sgt\nLZW6JCIiWZA0AIqLi5GWloZvv/32fjE2NnB1dZWyJCIAj3+BlcgcSHoN4PLly2jfvj1mzJiBAQMG\nYNasWQ2u7hNJQalUPrI3EpElkDQAqqurceLECcyZMwcnTpyAk5OT1l4gRERkQC067Owh165dU484\nFUKItLQ08Yc//KHBNn5+fgIAf/jDH/7wpxk/fn5+j2yDJf0G4OnpCR8fH3U3rf3796NPnz4NtsnO\nzlb3SZb7z6JFiySvwVR+eCx4LHgstP9oG+RXR/JeQJ9++imef/55qFQq+Pn56TxcnIiIHo/kARAY\nGIhjx45JXQYRkexwJLAZ0TQnjBzxWDzAY/EAj0XzSD4S+FEUCgVMvEQikkjbtm1RWFgodRmSc3Nz\nw507dxrcp0vbyQAgIrPF9uG+po6DLseGp4CIiGSKAUBEJFMMACIiA1q8eDFWr15tsMd76aWX0KFD\nB/Tr189gj1lH8m6gRESGlJWVi/37s1FVZQVb21pERPihV68uRtvvYYaeSHDGjBmYN28epk2bZtDH\nBfgNgIgsSFZWLuLiLuLWrWdQVKTErVvPID7+EvbvP2GU/YD7Cx4FBgYiKCioUSP99ddfY9CgQQgK\nCsLEiRNRXl4O4P5qaf369UNQUJB6xbeMjAwMHjwYwcHBCAwMxMWLFwEATz31FNzc3PQ5HI/EACAi\ni7F/fzbs7Yc3uM/WNhxJSa5aG3N998vIyMDSpUuRnJyMU6dOYe3atQ1+P2HCBKSnp+PUqVPw9/fH\nxo0bAQAffPABkpKScOrUKezcuRMAsGHDBsyfPx8nT57Er7/+Cm9v72a9dn0wAIjIYlRVNd2ktWrl\nh8zMYoPvd/DgQfXylQAafVI/e/YsnnrqKfTv3x//+7//i3PnzgEAnnzySbz44ov4n//5H1RXVwMA\nhg4dimXLlmHlypXIycmBg4OD5hdqIAwAIrIYtra1Td5fVpYNf3/Ni03pu5+mvvZ11wGmT5+Ozz//\nHGfOnMGiRYvUp4C++OILfPjhh8jLy0NISAju3LmDmJgY7Ny5E46OjhgzZgySk5M1Pq+hMACIyGJE\nRPihqqphw1lVlYIRI4oRETHA4Ps988wz+P7779WjcOv+WxcKJSUl8PT0RFVVFTZv3qzeLzs7G4MG\nDcKSJUvQvn175Ofn4/Lly/D19cW8efMwbtw4nD17tnkvXg8MACKyGL16dUF4uCvKyu5PhVxWlo3w\ncBetjfjj7BcQEIB33nkHYWFhCAoKwuuvvw7gwTeADz74AIMHD8awYcPg7++vvv+NN95A//790a9f\nPzz55JPo378/tm/fjn79+iE4OBgZGRnqC8oxMTEIDQ3F+fPn4ePjY9AZkzkVBBGZLU3tw/79J5CZ\nWQx/f9dHNuKG2E9q+k4FwQAgIrPF9uE+zgVERETNwgAgIpIpBgARkUwxAIiIZIoBQEQkUwwAIrJI\n+vYOetxeRYacDjovLw/h4eHo06cP+vbti3Xr1hnkceswAIjIIiX9+KNejbm++9Ux5HTQtra2WLNm\nDTIyMnD06FGsX78emZmZBnt8BgARWZyreXkQ+/bh7JEjRt/PmNNBe3p6IigoCADQunVr+Pv74+rV\nq816TdowAIjI4mQmJiLSwwM39u6FSqUy2n4tOR10Tk4OTp48icGDB+v8eh6FAUBEFqWkpAQOFy/C\n2soKg1QqHNu922j7tdR00CUlJZg4cSLWrl2L1q1b6/R6dMEAICKLcnrfPgRZWwMAXO3tIY4eRXFR\nkVH2a4npoKuqqjBhwgS88MILGD9+vO4HQgcMACKyGDU1NSg/dQpOdnbq+wbZ2SF92zaj7NcS00HP\nnDkTAQEBWLBgQTOOhG4YAERkMTKPH0dAWVmD++ysrdHhwgXkXbpk8P2MPR30L7/8gs2bNyM5ORnB\nwcEIDg5GYmKiXsemKZwNlIjM1sPtw4Ht22HdRC8ZIQSqvbwQOXlyk4+j736mgtNBE5HssH24j9NB\nExFRszAAiIhkigFARCRTDAAiIpmykboAIiJ9ubm5GXTyNXP18AhkXbEXEBGRBTKbXkA1NTUIDg7G\n2LFjpS6FiEg2TCIA1q5di4CAAH6VIyJqQZIHQH5+PhISEvDyyy/zVA8RUQuSPABee+01rFq1ClZW\nkpdCRCQrkvYC2rVrFzw8PBAcHIyUlBSN2y1evFj9b6VSCaVSafTaiIjMSUpKitZ2tCmS9gL6y1/+\ngu+++w42NjaoqKjA3bt3MWHCBMTHxz8okL2AiIiazawmg0tNTcVHH32kXh6tDgOAiKj5zKYbaB32\nAiIiajkm8w1AE34DICJqPrP7BkBERC2HAUBEJFMMACIimWIAEBHJFAOAiEimGABERDLFACAikikG\nABGRTDEAiIhkigFARCRTDAAiIpliABARyRQDgIhIphgAREQyxQAgIpIpBgARkUwxAIiIZIoBQEQk\nUwwAIiKZYgAQEckUA4CISKYYAEREMsUAICKSKQYAEZFMMQCIiGSKAUBEJFMMACIimWIAEBHJFAOA\niEimGABERDLFACAikikGAJk0IYTUJRBZLAYAmbSkH39kCBAZCQOATNbVvDyIfftw9sgRqUshskgM\nADJZmYmJiPTwwI29e6FSqaQuh8jiSBoAeXl5CA8PR58+fdC3b1+sW7dOynLIhJSUlMDh4kVYW1lh\nkEqFY7t3S10SkcWRNABsbW2xZs0aZGRk4OjRo1i/fj0yMzOlLIlMxOl9+xBkbQ0AcLW3hzh6FMVF\nRRJXRWRZJA0AT09PBAUFAQBat24Nf39/XL16VcqSyATU1NSg/NQpONnZqe8bZGeH9G3bJKyKyPKY\nzDWAnJwcnDx5EoMHD5a6FJJY5vHjCCgra3CfnbU1Oly4gLxLlySqisjy2EhdAHD/fO/EiROxdu1a\ntG7dWupySGI3cnNR4OWF8w/dL1xdceP4cfh06yZJXaYgKysX+/dno6rKCra2tYiI8EOvXl2kLovM\nlEJI3Mm6qqoKUVFRGD16NBYsWNDo9wqFAosWLVLfViqVUCqVLVghUcvS1MhnZeUiLu4i7O2Hq7et\nqkpGeLgrIiIGSFgxmYKUlBSkpKSoby9ZsuSRY2gkDQAhBF588UW0a9cOa9asaXIbhULBgUAkG9oa\n+aysIty69UyjfcrKsjFiRDFDgBrQpe2U9BrAoUOHsHnzZiQnJyM4OBjBwcFITEyUsiQiSe3fn92g\n8QcAW9twJCW54rffcprcp1UrP2RmFrdAdWRpdAqAhQsX4u7du6iqqsLw4cPh7u6O77777rGffNiw\nYaitrcWpU6dw8uRJnDx5EqNGjXrsxyXTx291Tauqavp/yVat/FBQUNXk78rKsuHv72rMsshC6RQA\nSUlJcHFxwa5du+Dr64vs7GysWrXK2LWRGdC3IeccP02zta1t8v6ysmyMGeODqqrkBvdXVaXw9A/p\nTacAqK6uBgDs2rULEydOhKurKxQKhVELI/OgT0POOX40i4jw09jIz5gxBuHhrigrywZwPxTCw13Y\n+JPedAqAsWPHonfv3vj1118xfPhw3Lx5Ew4ODsaujUycvg055/jRrFevLlob+YiIARgxohjt2iXz\nkz89Np17Ad25cweurq6wtrZGaWkp7t27B09PT2PXx15AJuzA119DmZeHgwoFwt55B3b1Ru5qUlJS\ngtMffIAnHR1RXFmJ3wYNwpPPPtsC1ZqX/ftPIDOzGP7+7OJJ+jFYL6DS0lKsX78es2fPBgBcvXoV\nx48ff/wKyWzpO1kb5/jRTUTEAMybF87Gn4xKpwCYMWMG7OzscPjwYQBAp06d8M477xi1MDJt+jTk\nnOOHyLToFADZ2dl488031V/xnZycjFoUmTZ9G3LO8UNkWnSaC8je3h7l5eXq29nZ2bC3tzdaUWTa\n1A15vQ8C9RtyTXP1cI4fItOiUwAsXrwYo0aNQn5+PqZOnYpDhw4hLi7OyKWRqdK3IR8+ebLxiyMi\nnencC6igoABHjx4FAAwZMgTu7u5GLayO3HoBCSHMZoyFOdVKJDcG6wWUmpqKc+fOwdnZGc7Ozjh3\n7hx+/vlngxRJDZnTCFlzqpWIGtPpFNCqVavUn/QqKiqQnp6OkJAQHDx40KjFyY16YFXHjugfGip1\nOVqZU61E1DSdAmDXrl0Nbufl5WH+/PlGKUjO6kbIHty7F6qBA3UaWCUVc6qViJqm13TQ3t7eXLzd\nwPQdWCUFc6qViDTT6RvAvHnz1P+um745JCTEaEXJUZMDq8LD4dqmjcSVNWZOtRKRZjoFQP3G3sbG\nBjExMRg2bJjRipIbTQOrUrdtQ+Srr0pYWWPmVCsRaadTAEyfPt3IZcibvgOrpGBOtRKRdloDoF+/\nfhp/p1AocObMGYMXJEfmNELWnGrVh6YF2YkskdaBYDk5OVp39vX1NXA5jcltIBhJR9uC7JyVk8yN\nLm2nziOBpcIAoJayfv1B3Lr1TKP7y8qyufgKmR2DjQQ+cuQInnjiCTg5OcHW1hZWVlZwcXExSJFE\npkLbguyZmcUtXA2R8ekUAHPnzsWWLVvQs2dPVFRUYOPGjZgzZ46xayNqUdoWZPf3d23haoiMT+eB\nYD169EBNTQ2sra0xY8YMJCYmGrMuohanbUF2nv4hS6RTN1AnJydUVlYiMDAQb7zxBjw9PXlenizO\n/QXZbyMpKRutWvn959y/Cxt/slg6XQTOzc2Fh4cHVCoV1qxZg7t372LOnDno3r278QvkRWBqYVyQ\nnSyBwXoB/fDDD4iKipJkFTAGgOnjugBEpsdgvYB27tyJHj16IDY2Frt27UJ1dbVBCiTLwHUBiMyT\nTgEQFxeHixcvYuLEidi6dSu6deuGmTNnGrs2MgPqdQGOHJG6FCJqJp17AdnZ2WH06NGIjo5GSEgI\n/vnPfxqzLjITdesC3Ni7FyqVSupyiKgZdOoFlJCQgO3btyM5ORlKpRKzZs3C999/b+zayMSp1wVw\ndMSgykoc270bTz77rNRlWTzOV0SGotNF4JiYGEyZMgWjRo2Cg4NDS9SlxovApuvQ//0fgo4dU08N\n/Ut5Ofq9/bYs1wUwZKOs7aI65ysiXbXYXEBDhw7FESOdA2YAmKaamhok//WviKjXUKlqapDq7a1x\nXQApegu1xKdlQzfKe3/4ASOee67JY8X5ikhXBusF9CgVFRWGeBgyI+p1Aeqpvy5AU1q6t1Bdw3zr\n1jMoKlLi1q1nEB9/Cfv3nzDo8+zfn92g8QcAW9twJCW5Nvu5tF1Uz8rKRXLyeRw9moL09IMoKMhV\n/47zFZE+dLoGQC3P1PvWN3ddAHXD1rEj+oeGNno8Y3xS19wwZwM4YbBPy9onkUtGRITuj1V3Uf3g\n3r1QDRwIu/+cXqsLs7Kykaio6AoAOH06GV273ka3bgNQVpaNYcM4XxE1DwPARCX9+KPG0wCmYPjk\nyc3aXlPDBjR9CiU+Phnh4bcfq5HWpWE2RPBom0SuOY2ytovqdWHWrVsRTp++DGvrrrC2DsfFi9mo\nrt6El14K4ukfajadTgGtW7cOhYWFxq6F/sPS+tarGzYrKwxSqXBs9+4GvzfkKZSGj6F9dk9DnSJ6\n3EnksrJysX79QXz4/9ag+mQeCgqK4GpvD3H0KIqLiv7zePf/V3V3b4OuXR1QVXUHAKBQuMHNzZqN\nP+lFpwC4ceMGnnjiCUyePBmJiYmNzuPGx8frXUBiYiJ69+6NHj16YMWKFXo/jiWxtL71p/ftQ5C1\nNQA0atgA483D/6iG2VDBc38SOVeUlWUDuB8w4eG6TSJXF0I3boTBJrsaQtUTp08X4tKlaxhkZ4f0\nbdv+U9eDMOvWrSP8/Crh6HgZXl6ZePZZzUu3EmmjUwAsXboU58+fx0svvYS4uDj06NEDf/nLX5Cd\nff8PXtvawdrU1NRg7ty5SExMxLlz57B161ZkZmbq9ViW4lGfls1NTU0Nyk+dUncVBdCgYQOMNw//\noxpmQwZPRMQAjBhRjHbtkpvVG6cuhIqvHkf/qvsX1a2tuyI72x75uTfVF9UfDrNu3TpiwIBcvPKK\nIz/9k9507gVkZWUFT09PdOjQAdbW1igsLMTEiROxcOFCvZ88PT0d3bt3h6+vL2xtbREdHY0dO3bo\n/XiW4FGfls2NLr2FjDkPv7aG2dDBExExAPPmhTer5roQqijOxQkXLyQ6tEGiQxsccO6GzSU2uO3l\nhd+PH3+sbxlEmuh0EXjt2rWIj49Hu3bt8PLLL+Ojjz6Cra0tamtr0aNHD6xatUqvJ79y5Qp8fHzU\nt729vfGvf/1Lr8eyBJo+Ladu26axb72p06W3kLHn4Y+IGNBkT5yICD/ExyfD1jZcfd/94Hn859b1\n4nJdCHWLMZu0AAAPPUlEQVTs0/CiellZNkJHFCO8Xh33azqBzMxkDBvGgV/0+HQKgDt37uDHH39E\nly4N/4CtrKywc+dOvZ9c3x4upt5FUl/qT8tOTur76n9afrhrpVR0Of4PGkAP2Nq6P7J3jRSNm7GC\npzm9mpobQprCjEgfOgXAkiVLNP4uICBA7yf38vJCXl6e+nZeXh68vb0bbbd48WL1v5VKJSpv3zbp\nLpL6am7feqk8qouqvt06pWjcjBE8zRl/wFXIyFBSUlKQkpLSrH0MMhWEvqqrq9GrVy8cOHAAnTp1\nwqBBg7B161b4+/s/KPCh4cxX8/JwZulSdJo2rckBRWRcuhx/uU9X8MknKSgqUjb5u3btkjFvXnij\n+7kKGRlai00FoS8bGxt89tlnGDlyJAICAjBlypQGjX9TLK2LpLEYK9d1Of7G6tZpLvS5uKzPBWSi\nxyVpAADA6NGjkZWVhYsXL+Ltt9/Wuq2ldZE0JmPMu6Pr8TdWt05zYcxeTUSGJHkANIeldZE0FmON\nJNb1+FtCA1g3OveTT1Kwfv1BZGXlPnqn/2CXTTIXZhMAugwo0ocpTzWtb23GOE3WnONvjAbQ3GYR\n1XdgGFFLMpsA0Gf6YV2Y8oLm+tRmrNNkzT3+hm4AW/J9MtQUETyvT6bObGYDNUYXyUdNUSwlfWtr\n8jRNePhjr9Klz/E3VLfOln6fDDm9M5EpM5sAaO70w7rQNkWx1PSpzZgjiY1x/HXV0u+ToaZ3JjJ1\nZnMKyNBMuUeRvrUZ6zSZlKR4n8z9IvbjXMAmeTGbbwCGZqxTJYagb23mMpK4ObQdC2Ot92vOo3ON\ntbgOWSZJRwLrwhiLwuuzoHlLMeXaWpq2Y9FZOcqgC7E3xRxH58p9FDY9YPIjgaViyqdKTLm2lqbt\nWPzj72kae+rs2/erQZ7fHHvxyH0UNjWPLE8BmfKpElOuraVpOxa3Tl1Am66N92nVyg87/74EERED\nLG6yQF3wAjY1hyxPAZH503Sq4+b1NAzI/wSD/vK6yXXtbQlZWbmIj7/UaHppjkSWH54CIoulqaeO\nv+NezBjQR7aTBXIaCmoOBgCZpaYauiFDbDDArsoku/a2JE5DQbriKSAya/V76jjey0XQsWPqgXC/\nlJej39tvG61rr7G6oRIZgi5tJwOALEJLd59tqr+9obuhEj0OXdpOWfYCItOl73rPmtZTtvnXr1h6\nfTOcXL0N+im9Ocs+EpkqXgMgk6LrrJ8Pb3MjNxfnvbyQ0qaN+mdbZS125Voj56yd3tM6a8L+9mQJ\n+A2ATEZzZv18eGH6piarW7/+IJztn4FzvfsM9Smd/e3JEvAbAJkMXRey0XXFM10/petzjcncJ4wj\nAhgAZCKaM+unrkGh69rE+iw2w/72ZAkYAGQSdF1vuDlBocun9MdZP5n97cncMQBIcs1Zb1jXoAB0\n+5T+uOsnm+OEcUR1GAAkmbqFS95/fQMqDv2OgoIHDXlTM6A2JyjqaPuUbsqLAhG1BPYCIknUH0hV\ncKUAv9gMRWrWBXSvuYdevXwANJ4BVVNf/7qg0DRTqqa1iTUtNnP9RjFH+JIscCQwSUKfhUsObN8O\n66tXG90vhEC1lxcim7FusaaRw9tsHXGufLDRRvhy+ghqKRwJTCZLexfN5CY/sRtyYXpN3yZqUk9B\n1Sca9vYPtjXU2AEu10imhgFAkpB6IJWmxWZynNvj7tXjcG7b8HSStmDSFaePIFPDACBJRET4IT4+\nudHCJS21+LqmbxMZtgcBDaemHjeY9PnWQ2RM7AVEkjDVgVTGHOGr68A0opbCACDJmOJAKmMGE6eP\nIFPDXkBETai/0IwhG+f9+08gKckVrVr5ae3xRPS4uCAMkQkyVrgQ1ccAICKSKV3aTl4DICKSKQYA\nEZFMMQCIiGRKsgBYuHAh/P39ERgYiOeeew7FxVxHlYioJUkWACNGjEBGRgZOnz6Nnj17Yvny5VKV\nQkQkS5IFQGRkJKys7j/94MGDkZ+fL1UpRESyZBLXADZt2oQxY8ZIXQaZCXYLJjIMo04GFxkZievX\nrze6f9myZRg7diwAYOnSpbCzs8PUqVM1Ps7ixYvV/1YqlVAqlYYulcxI0o8/YsRzz0FRby5/IrlL\nSUlBSkpKs/aRdCBYXFwcvv76axw4cAAODg5NbsOBYFTf1bw8nFm6FJ2mTUP/0FCpyyEyWSY9ECwx\nMRGrVq3Cjh07NDb+RA973EXciegByQJg3rx5KCkpQWRkJIKDgzFnzhypSiEzwUXciQxLsgVhLly4\nINVTk5nStIi7a5s2EldGZJ5MohcQ0aPU1NSg/NQpONnZqe8bZGeH9G3bJKyKyLwxAMgsqBdxr8fO\n2hodLlxA3qVLElVFZN64JjCZBU2LuAtXV9w4fhw+3bo1uR8Racb1AIiILJBJdwMlIiJpMQCIiGSK\nAUBEJFMMACIimWIAEBHJFAOAiEimGABERDLFACAikikGABGRTDEAiIhkigFARCRTDAAiIpliABAR\nyRQDgIhIphgAREQyxQAgIpIpBgARkUwxAIiIZIoBQEQkUwwAIiKZYgAQEckUA4CISKYYAEREMsUA\nICKSKQYAEZFMMQCIiGSKAUBEJFMMACIimWIAEBHJFAOAiEimGABERDIleQCsXr0aVlZWuHPnjtSl\nEBHJiqQBkJeXh3379qFLly5SlmE2UlJSpC7BZPBYPMBj8QCPRfNIGgB/+tOfsHLlSilLMCv8436A\nx+IBHosHeCyaR7IA2LFjB7y9vdG/f3+pSiAikjUbYz54ZGQkrl+/3uj+pUuXYvny5UhKSlLfJ4Qw\nZilERPQQhZCg5f3tt98wfPhwtGrVCgCQn58PLy8vpKenw8PDo8G23bt3R3Z2dkuXSERk1vz8/HDx\n4kWt20gSAA/r2rUrfv31V7Rt21bqUoiIZEPybqAAoFAopC6BiEh2TOIbABERtTyT+AagKw4aAxYu\nXAh/f38EBgbiueeeQ3FxsdQltbjExET07t0bPXr0wIoVK6QuRzJ5eXkIDw9Hnz590LdvX6xbt07q\nkiRVU1OD4OBgjB07VupSJFVUVISJEyfC398fAQEBOHr0qMZtzSYAOGjsvhEjRiAjIwOnT59Gz549\nsXz5cqlLalE1NTWYO3cuEhMTce7cOWzduhWZmZlSlyUJW1tbrFmzBhkZGTh69CjWr18v22MBAGvX\nrkVAQIDsTynPnz8fY8aMQWZmJs6cOQN/f3+N25pNAHDQ2H2RkZGwsrr/tg0ePBj5+fkSV9Sy0tPT\n0b17d/j6+sLW1hbR0dHYsWOH1GVJwtPTE0FBQQCA1q1bw9/fH1evXpW4Kmnk5+cjISEBL7/8sqy7\nlBcXFyMtLQ0vvfQSAMDGxgaurq4atzeLAOCgsaZt2rQJY8aMkbqMFnXlyhX4+Piob3t7e+PKlSsS\nVmQacnJycPLkSQwePFjqUiTx2muvYdWqVeoPR3J1+fJltG/fHjNmzMCAAQMwa9YslJWVadzeZI5W\nZGQk+vXr1+jnp59+wvLly7FkyRL1tpae8JqOxc6dO9XbLF26FHZ2dpg6daqElbY8uX+9b0pJSQkm\nTpyItWvXonXr1lKX0+J27doFDw8PBAcHW3zb8CjV1dU4ceIE5syZgxMnTsDJyQl/+9vfNG5v1JHA\nzbFv374m7//tt99w+fJlBAYGArj/VS8kJKTJQWOWQtOxqBMXF4eEhAQcOHCghSoyHV5eXsjLy1Pf\nzsvLg7e3t4QVSauqqgoTJkzACy+8gPHjx0tdjiQOHz6Mn376CQkJCaioqMDdu3cxbdo0xMfHS11a\ni/P29oa3tzeeeOIJAMDEiRO1BgCEmfH19RW3b9+WugzJ7NmzRwQEBIhbt25JXYokqqqqRLdu3cTl\ny5dFZWWlCAwMFOfOnZO6LEnU1taK2NhYsWDBAqlLMRkpKSkiKipK6jIk9dRTT4msrCwhhBCLFi0S\nb7zxhsZtTeYbgK7kfgpg3rx5UKlUiIyMBAAMHToUn3/+ucRVtRwbGxt89tlnGDlyJGpqajBz5kyt\nvRws2aFDh7B582b0798fwcHBAIDly5dj1KhRElcmLbm3EZ9++imef/55qFQq+Pn54ZtvvtG4LQeC\nERHJlMlcBCYiopbFACAikikGABGRTDEAiIhkigFARCRTDAAiIpliABARyRQDgOgx5OTkoF+/flKX\nQaQXBgARkUwxAEgWjh07hsDAQFRWVqK0tBR9+/bFuXPnGm0XExODhIQE9e3p06fjhx9+QG5uLp5+\n+mmEhIQgJCQER44cabRvXFwc5s2bp74dFRWF1NRUAEBSUhJCQ0MREhKCyZMno7S0FADw1ltvoU+f\nPggMDMTChQsN/bKJtDK7uYCI9PHEE0/gv/7rv/Duu++ivLwcsbGxCAgIaLTdlClTsH37dowZMwYq\nlQoHDx7Ehg0bUFtbi3379sHe3h4XLlzA1KlTcezYMa3PqVAooFAoUFBQgKVLl+LAgQNwdHTEihUr\n8PHHH+O///u/8c9//hO///47AODu3btGee1EmjAASDbef/99DBw4EI6Ojvj000+b3GbUqFGYP38+\nVCoV9uzZg7CwMNjb26O4uBhz587F6dOnYW1tjfPnz+v0nEIIHD16FOfOnUNoaCgAQKVSITQ0FK6u\nrnBwcMDMmTMRFRWFqKgog71WIl0wAEg2CgoKUFpaipqaGpSXl6NVq1aNtnFwcIBSqcTevXuxfft2\nxMTEAADWrFmDjh074rvvvkNNTQ0cHBwa7WtjY4Pa2lr17YqKCvW/IyMjsWXLlkb7pKen48CBA/jH\nP/6Bzz77TJZrPJB0eA2AZOPVV1/Fhx9+iKlTp+LNN9/UuN2UKVOwadMmpKWlqadWvnv3Ljw9PQEA\n8fHxqKmpabSfr68vTp06BSEE8vLykJ6eDoVCgSFDhuDQoUPIzs4GAJSWluLChQsoLS1FUVERRo8e\njY8//hinT582wqsm0ozfAEgW4uPjYW9vj+joaNTW1iI0NBQpKSlQKpWNth0xYgRiY2Mxfvx42Njc\n/19kzpw5mDBhAuLj4zFq1KgGSy/WzT8/bNgwdO3aFQEBAfD390dISAgAwN3dHXFxcYiJiUFlZSWA\n+0t6Ojs7Y9y4caioqIAQAmvWrDHyUSBqiOsBEBHJFE8BERHJFE8BkSydPXsW06ZNa3Cfg4NDk/37\niSwVTwEREckUTwEREckUA4CISKYYAEREMsUAICKSKQYAEZFM/X/LszKU8J+6WwAAAABJRU5ErkJg\ngg==\n", - "text": [ - "" - ] - } - ], - "prompt_number": 240 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#Using the `PCA()` function from the `matplotlib.mlab` library" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[[-1.76464879 -1.13653839 0.05852699]\n", - " [ 1.43905455 0.29026097 0.50516462]\n", - " [ 0.066269 -0.23806384 -0.08537818]\n", - " [-1.53123575 0.41198791 -1.05293767]\n", - " [-1.15593938 -0.3077984 -1.02719971]\n", - " [ 0.56045658 -0.74950164 -0.3173577 ]\n", - " [ 0.27663747 0.20433893 1.05811821]\n", - " [-0.47389475 -0.25446784 -0.48637399]\n", - " [ 0.30711377 1.38755191 0.07657736]\n", - " [-1.37368069 -0.25220715 0.59540703]\n", - " [ 0.11851677 -0.21225391 0.83147638]\n", - " [-1.17361337 -0.52003766 -0.27515812]\n", - " [-2.44649206 0.64476095 -0.13377678]\n", - " [ 0.10518897 0.70864667 2.07263704]\n", - " [-0.31345039 1.06690754 -1.04050878]\n", - " [-0.65373151 -0.39678731 0.47584995]\n", - " [-0.87074027 -0.4868642 -0.18572844]\n", - " [-1.37630964 -0.18654887 -0.2957547 ]\n", - " [-0.8783789 2.24048441 0.6296909 ]\n", - " [-0.86779196 -1.27909097 -0.1582361 ]\n", - " [-0.22943285 -0.65680342 1.39947908]\n", - " [ 1.73463062 -0.08843235 -2.0500832 ]\n", - " [ 0.95138683 -0.54280409 -0.00405028]\n", - " [-1.21415092 0.37774702 -0.2521997 ]\n", - " [ 2.4439545 0.0993283 -0.59113121]\n", - " [ 0.62797432 -0.92559277 0.18154456]\n", - " [-0.63764945 -1.49037223 0.06893655]\n", - " [ 0.37700722 -2.09780437 1.78067087]\n", - " [ 1.02027964 -0.06232996 -0.21243173]\n", - " [ 1.96726016 -0.07766722 -0.01246942]\n", - " [-1.19190493 1.59098606 -0.37607617]\n", - " [-0.08164937 2.10524681 -0.40572706]\n", - " [ 1.45362963 -0.21623914 -1.80514398]\n", - " [-0.71910161 -1.32085344 -1.5597507 ]\n", - " [ 0.65835645 -0.05315859 -0.51250722]\n", - " [ 0.50411734 1.84012533 0.41067921]\n", - " [ 1.24858026 -1.22240105 0.51092084]\n", - " [ 0.72659744 0.32895233 0.70570308]\n", - " [ 0.58989275 0.77214999 1.86235804]\n", - " [ 1.77689231 0.70514369 -0.38375984]]\n" - ] - } - ], - "prompt_number": 241 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEaCAYAAAAYOoCaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYVOW+B/DvcEcRRBRRUFE0BZOLmBcyGQzwcnTnTjOw\nMEsttye3tttmnTJ1l7rV1LTMrGMRdbpYuisVFVFgU2po5A0JBZXAKyigA8hwec8fbEa5DA7DzKxh\n1vfzPDw5w7r81hp6f7Peq0IIIUBERLJjJXUAREQkDSYAIiKZYgIgIpIpJgAiIpliAiAikikmACIi\nmWICkKFr165h1KhRcHZ2xsKFC6UOp56LFy/CysoKNTU1Uoei1YwZM7B48WJJzj1+/Hh8/vnnWn9v\nqNhMeY0t+cyTk5PRo0cPvc7Tmn0tlY3UAciNk5MTFAoFAKC0tBQODg6wtrYGAHz00UeIjo42egwf\nffQR3N3dcevWLaOfyxIpFArNZ2hq8fHxmn/HxsZi69atSE1N1bxnqNikvEYyHSYAE1OpVJp/9+7d\nG1u3bsXo0aMbbVdVVQUbG+N8PLm5ufD19dVrX2PG1ZbIYfykHK5R7lgFZCaSk5Ph5eWF1atXo1u3\nbpg5cyaKi4sxYcIEuLu7o1OnTpg4cSIuXbqk2UepVOLNN9/EyJEj4ezsjDFjxuDGjRsAgDt37uDp\np59G586d4erqiqFDh+L69euYMWMG4uLisHr1anTo0AEHDx6EWq3GggUL4OnpCU9PT7z00ktQq9VN\nxvXcc89h2bJleOKJJxATEwNnZ2f4+/vj3LlzWLlyJbp27YpevXph//79mjhLSkowc+ZMdO/eHV5e\nXli8eLHmcb+mpgZ///vf0aVLF/j4+GD37t3N3qdVq1bBy8sLzs7OGDBgAA4ePAgASEtLw4gRI+Dq\n6oru3btj3rx5qKys1OxnZWWFzZs3o1+/fnB2dsabb76JnJwcjBgxAh07dkRUVJRm+7prXrlyJbp0\n6YLevXvjyy+/1BrTrl27EBgYCFdXVzz88MM4derUfeO914ULF+Dq6qp5PXv2bHTt2lXzOiYmBhs2\nbNB85lu3bsXvv/+OOXPm4PDhw+jQoQM6deqk2f7mzZuYMGECnJ2dMXz4cJw/f15r7D/99BNCQkLg\n6uqKnj17Ii4urtE2RUVFzf4dxsbGwsfHB87OzujTp4/mXmVnZyM0NBQdO3ZEly5dEBUVpTWOe336\n6afw8/ODs7MzfHx88NFHHzXaRttnU1FRgb///e/o1asXPDw88Je//AV37txp8jy6fDYWT5BkvL29\nxYEDB4QQQiQlJQkbGxvx6quvCrVaLcrLy8WNGzfEjh07RHl5ubh9+7Z44oknxKRJkzT7h4aGir59\n+4pz586J8vJyoVQqxauvviqEEOLDDz8UEydOFOXl5aKmpkakp6eLW7duCSGEmDFjhli8eLHmOIsX\nLxYjRowQBQUFoqCgQISEhGh+31RcS5YsEQ4ODiIhIUFUVVWJ6dOni169eokVK1aIqqoq8fHHH4ve\nvXtrjj9p0iQxZ84cUVZWJq5fvy6GDh0qtmzZIoQQYvPmzWLAgAEiPz9f3Lx5UyiVSmFlZSWqq6sb\n3a/ff/9d9OjRQ1y5ckUIIURubq7IyckRQgjx66+/il9++UVUV1eLixcvCl9fX/Huu+9q9lUoFGLS\npEni9u3bIiMjQ9jZ2YmwsDBx4cIFUVJSIvz8/MRnn31W75pffvlloVarRUpKimjfvr04e/as5v69\n8cYbQggh0tPThbu7u0hLSxM1NTXis88+E97e3kKtVjcbb0M9e/YU6enpQgghHnjgAeHj4yMyMzM1\nvzt+/LgQQgilUim2bt0qhBAiNjZWjBw5st5xnnnmGeHm5iaOHj0qqqqqxFNPPSWioqKaPOfFixdF\nhw4dxNdffy2qqqrEjRs3NOe59xqb+ztUqVTC2dlZc2+uXr0qMjIyhBBCREVFiRUrVgghhKioqBA/\n//xzk3FcuHBBKBQKzWe+e/ducf78eSGEECkpKaJdu3aae6Pts8nKyhJCCLFgwQLx2GOPiaKiInH7\n9m0xceJE8dprr2n29fLyEkI0/7ckJ0wAEmqYAOzs7ERFRYXW7X/77Tfh6uqqea1UKsXy5cs1rz/4\n4AMxduxYIYQQn3zyiQgJCREnT55sdJx7/+cWQggfHx+xZ88ezet9+/YJb29vrXEtWbJEREZGal7/\n+OOPwsnJSdTU1AghhLh165ZQKBSipKREXL16Vdjb24vy8nLN9l9++aUICwsTQggRFhamSQZCCJGQ\nkFCvMLjXuXPnhLu7u0hMTBRqtVrrfRJCiPXr14s///nPmtcKhUIcOnRI8zo4OFisXr1a8/rll18W\nCxYs0FyzjY2NKCsr0/x+6tSp4q233tLcv7oEOWfOnHrJVAgh+vfvL1JSUkR2drbO8cbExIh169aJ\nK1euiP79+4tFixaJDz/8UJw/f1507NhRs929CeDTTz9tlABmzJghZs+erXkdHx8vBgwY0OQ5V6xY\nIR5//PEmf9fwb+Re9/4dqlQq0bFjR7F9+/Z690sIIaZPny6ef/55kZ+f3+y1N0wADU2aNEls2LBB\nCNH8Z1NTUyPat29fryA/dOiQ5svIvQmgJX9LloxVQGakS5cusLOz07wuKyvDCy+8AG9vb7i4uCA0\nNBQlJSX16mY9PDw0/3Z0dNS0McTExGDMmDGIioqCp6cnFi1ahKqqqibPe/nyZfTq1UvzumfPnrh8\n+bLWuADA3d293nk7d+6saTR0dHQEUNvekZubi8rKSnTr1g2urq5wdXXFnDlzUFBQAAC4cuVKvZ4Z\nPXv21Hp/+vbti3fffRdLly5F165dER0djStXrgAAzp49iwkTJqBbt25wcXHB66+/rqkOq3NvtYqj\no2O91w4ODvXaZ1xdXTXXAQC9evXSnOteubm5WLt2rebaXF1dkZ+fjytXrsDHx0drvA2FhoYiOTkZ\nqampGDVqFEJDQ5GSkoJ///vfeOSRR7Tek6Y0vM57r+te+fn56NOnz32P19zfYfv27fHNN9/gww8/\nRPfu3TFhwgRkZWUBAFavXg0hBIYOHYoHH3wQn376qU7x79mzB8OHD4ebmxtcXV0RHx9f77PU9tkU\nFhairKwMwcHBms9i3LhxKCwsbHSO5v6W5IQJwIw07HWxdu1anD17FmlpaSgpKUFKSgpE7VPbfY9l\nY2ODN998ExkZGTh06BB27drVZP0uAHTv3h0XL17UvP7jjz/QvXt3rXG1pHdIjx49YG9vjxs3bqCo\nqAhFRUUoKSnR1JN369YNf/zxR71zNyc6OhqpqanIzc2FQqHAokWLAAB/+ctf4Ofnh+zsbJSUlGD5\n8uUt6kra8JqKiopQVlameZ2bm1vvntTp2bMnXn/9dc21FRUVQaVS4cknn2w23oZCQ0ORmpqK5ORk\nKJVKjBw5Ej///DNSUlKgVCp1irmlevTogZycHK2/rzv+/f4OIyMjkZCQgKtXr2LAgAGYPXs2gNpE\n9NFHH+HSpUvYsmUL5s6d22x7BFBbhz958mS88soruH79OoqKijB+/Ph6f/PaPpvOnTvD0dERZ86c\n0XwWxcXFWnu76frZWDImADOmUqng6OgIFxcX3Lx5E8uWLWu0jbZkkJSUhFOnTqG6uhodOnSAra2t\nprtpw32io6Px9ttvo7CwEIWFhfjHP/6BmJgYrXHpkoDqdOvWDZGRkfjb3/6G27dvo6amBjk5Ofj3\nv/8NAJg6dSo2btyIS5cuoaioCP/85z+1Huvs2bM4ePAgKioqYG9vX68LrUqlQocOHdCuXTv8/vvv\n2Lx5831ju/c6mrqmJUuWoLKyEqmpqdi9ezeeeOIJzbZ128+ePRsffvgh0tLSIIRAaWkpdu/eDZVK\n1Wy8DfXt2xcODg744osvEBoaig4dOsDd3R3bt29HaGhok/t07doV+fn59Rq7W/LZPPXUU0hMTMS3\n336Lqqoq3LhxAydOnGh0jc39HV6/fh0//PADSktLYWtri/bt22uu8dtvv0V+fj4AoGPHjlAoFLCy\nar7IUavVUKvV6Ny5M6ysrLBnzx4kJCQ02q6pz0ahUGD27NlYsGCB5gnz0qVLTe7fks/GkjEBmJGG\n3+gWLFiA8vJydO7cGSEhIRg3blyz38bv7bt97do1PPHEE3BxcYGfnx+USqWmUG/Yx/uNN97AkCFD\n4O/vD39/fwwZMgRvvPGG1ria6iPe3Ou4uDio1Wr4+fmhU6dOeOKJJ3D16lUAtQXomDFjEBAQgCFD\nhmDy5Mlav9lWVFTgtddeQ5cuXdCtWzcUFhZi5cqVAIB33nkHX375JZydnfH8888jKiqq0b1pSNu9\nA2qr1up6FMXExGDLli144IEHGm0bHByMjz/+GC+++CI6deqEfv36aZ60mou3KUqlEp07d4anp6fm\nNQAMHjy4ye0fffRRDBw4EB4eHpoqOV0+mzo9evRAfHw81q5dCzc3NwQFBeHkyZONjtPc32FNTQ3W\nr18PT09PuLm5ITU1VZN8jx07huHDh6NDhw547LHHsHHjRnh7ezcZS93xOnTogI0bN2Lq1Kno1KkT\nvvrqKzz22GP1tq2rTmzqs1m1ahX69u2L4cOHw8XFBRERETh79myj87T0s7FUCtGSrwxGUFxcjFmz\nZiEjIwMKhQKffPIJhg8fLmVIJHPJycmIiYlBXl6e1KEQGZXkI3rmz5+P8ePH47vvvkNVVRVKS0ul\nDomISBYkTQAlJSVITU3FZ599VhuMjQ1cXFykDIkIQOsbWInaAknbAC5cuIAuXbrg2WefxeDBgzF7\n9ux6rftEUlAqlfftjURkCSRNAFVVVUhPT8fcuXORnp6O9u3bN9sLhIiIDMikw84auHLlimbEqRBC\npKamiv/6r/+qt42Pj48AwB/+8Ic//GnBj4+Pz33LYEmfADw8PNCjRw9NN63ExEQMHDiw3jY5OTma\nPsly/1myZInkMZjLD+8F7wXvRfM/zQ3yqyN5L6D33nsPTz31FNRqNXx8fHQeLk5ERK0jeQIICAjA\n0aNHpQ6DiEh2OBK4DdE2J4wc8V7cxXtxF+9Fy0g+Evh+FAoFzDxEIpJIp06dUFRUJHUYknN1dcXN\nmzfrvadL2ckEQERtFsuHWk3dB13uDauAiIhkigmAiEimmACIiAxo6dKlWLt2rcGO99xzz6Fr164Y\nNGiQwY5ZR/JuoEREhpSVlYvExBxUVlrB1rYG4eE+6N+/l9H2a8jQEwk+++yzmDdvHqZPn27Q4wJ8\nAiAiC5KVlYvY2GwUFIxGcbESBQWjERd3HomJ6UbZD6hd8CggIACBgYGNCumPP/4YQ4cORWBgIKZM\nmYLy8nIAtaulDRo0CIGBgZoV3zIyMjBs2DAEBQUhICAA2dnZAIBHHnkErq6u+tyO+2ICICKLkZiY\nA3v7R+u9Z2sbhoQEl2YLc333y8jIwPLly5GUlITjx49jw4YN9X4/efJkpKWl4fjx4/D19cXWrVsB\nAG+99RYSEhJw/Phx7Ny5EwCwZcsWzJ8/H7/99ht+/fVXeHl5teja9cEEQEQWo7Ky6SKtXTsfZGaW\nGHy/gwcPapavBNDom/qpU6fwyCOPwN/fH//3f/+HM2fOAAAefvhhPPPMM/jf//1fVFVVAQBGjBiB\nFStWYPXq1bh48SIcHBy0X6iBMAEQkcWwta1p8v2yshz4+mpfbErf/bT1ta9rB5gxYwY++OADnDx5\nEkuWLNFUAW3evBlvv/028vLyEBwcjJs3byI6Oho7d+6Eo6Mjxo8fj6SkJK3nNRQmACKyGOHhPqis\nrF9wVlYmIzKyBOHhgw2+3+jRo/Htt99qRuHW/bcuKahUKnh4eKCyshJffPGFZr+cnBwMHToUy5Yt\nQ5cuXZCfn48LFy7A29sb8+bNw2OPPYZTp0617OL1wARARBajf/9eCAtzQVlZ7VTIZWU5CAtzbrYQ\nb81+fn5+eP311xEaGorAwEC8/PLLAO4+Abz11lsYNmwYRo4cCV9fX837r7zyCvz9/TFo0CA8/PDD\n8Pf3x7Zt2zBo0CAEBQUhIyND06AcHR2NkJAQnD17Fj169DDojMmcCoKI2ixt5UNiYjoyM0vg6+ty\n30LcEPtJTd+pIJgAiKjNYvlQi3MBERFRizABEBHJFBMAEZFMMQEQEckUEwARkUwxARCRRdK3d1Br\nexUZcjrovLw8hIWFYeDAgXjwwQexceNGgxy3DhMAEVmkhB079CrM9d2vjiGng7a1tcX69euRkZGB\nI0eOYNOmTcjMzDTY8ZkAiMjiXM7Lg9i/H6cOHzb6fsacDtrDwwOBgYEAACcnJ/j6+uLy5cstuqbm\nMAEQkcXJ3LsXEe7uuLZvH9RqtdH2M+V00BcvXsRvv/2GYcOG6Xw998MEQEQWRaVSwSE7G9ZWVhiq\nVuPo7t1G289U00GrVCpMmTIFGzZsgJOTk07XowsmACKyKCf270egtTUAwMXeHuLIEZQUFxtlP1NM\nB11ZWYnJkyfj6aefxqRJk3S/ETpgAiAii1FdXY3y48fR3s5O895QOzukffONUfYzxXTQM2fOhJ+f\nHxYsWNCCO6EbJgAishiZx47Br6ys3nt21tboeu4c8s6fN/h+xp4O+qeffsIXX3yBpKQkBAUFISgo\nCHv37tXr3jSFs4ESUZvVsHw4sG0brJvoJSOEQJWnJyKmTm3yOPruZy44HTQRyQ7Lh1qcDpqIiFqE\nCYCISKaYAIiIZIoJgIhIpmykDoCISF+urq4GnXytrWo4AllX7AVERGSB2kwvoOrqagQFBWHixIlS\nh0JEJBtmkQA2bNgAPz8/PsoREZmQ5AkgPz8f8fHxmDVrFqt6iIhMSPIE8NJLL2HNmjWwspI8FCIi\nWZG0F9CuXbvg7u6OoKAgJCcna91u6dKlmn8rlUoolUqjx0ZE1JYkJyc3W442RdJeQP/zP/+Dzz//\nHDY2Nrhz5w5u3bqFyZMnIy4u7m6A7AVERNRibWoyuJSUFLzzzjua5dHqMAEQEbVcm+kGWoe9gIiI\nTMdsngC04RMAEVHLtbknACIiMh0mACIimWICICKSKSYAIiKZYgIgIpIpJgAiIpliAiAikikmACIi\nmWICICKSKSYAIiKZYgIgIpIpJgAiIpliAiAikikmACIimWICICKSKSYAIiKZYgIgIpIpJgAiIpli\nAiAikikmACIimWICICKSKSYAIiKZYgIgIpIpJgAiIpliAiAikikmACIimWICICKSKSYAIiKZYgIg\nIpIpJgAiIpliAiAikikmAGo1IYTUIRCRHpgAqNUSduxgEiBqg5gAqFUu5+VB7N+PU4cPSx0KEbUQ\nEwC1SubevYhwd8e1ffugVqulDoeIWsBGypPn5eVh+vTpuH79OhQKBZ5//nn89a9/lTIkagGVSgWH\n7GxYOzpiaEUFju7ejYf//GeDnycrKxeJiTmorLSCrW0NwsN90L9/L4Ofh0huFELCyturV6/i6tWr\nCAwMhEqlQnBwML7//nv4+vreDVChYP2ymfr5X/9C4NGjaG9nBwD4qbwcg157DS4dOxrsHFlZuYiN\nzYa9/aOa9yorkxAW5oLw8MEGOw+RpdGl7JS0CsjDwwOBgYEAACcnJ/j6+uLy5ctShkQ6qq6uRvnx\n45rCHwCG2tkh7ZtvDHqexMSceoU/ANjahiEhwQWJiekGPReR3JhNG8DFixfx22+/YdiwYVKHQjrI\nPHYMfmVl9d6zs7ZG13PnkHf+vMHOU1nZ9J9ou3Y+yMwsMdh5iORI0jaAOiqVClOmTMGGDRvg5OQk\ndTikg2u5uSj09MTZBu8LFxdcO3YMPfr0Mch5bG1rmny/rCwHI0e6GOQcRHIleQKorKzE5MmT8fTT\nT2PSpElNbrN06VLNv5VKJZRKpWmCI60enTrVJOcJD/dBXFwSbG3DNO9VViYjMtKZbQBE90hOTkZy\ncnKL9pG0EVgIgWeeeQZubm5Yv359k9uwEZgSE9ORkOCCdu18UFaWg8jIklYV/uxVRHKgS9kpaQL4\n6aefMGrUKPj7+0OhUAAAVq5cibFjx94NkAmAUJsEMjNL4Ovbut4/7FVEcmGwBLBw4UIsXrwYjo6O\nGDt2LE6cOIH169cjJibGYMFqDZAJgAxo06aDKCgY3eh9QzxZEJkTg3UDTUhIgLOzM3bt2gVvb2/k\n5ORgzZo1BgmSyJTYq4joLp0SQFVVFQBg165dmDJlClxcXDRVNkRtSXO9inx92auI5EWnXkATJ07E\ngAED4ODggM2bN+P69etwcHAwdmwkAUtvIGWvIqK7dG4EvnnzJlxcXGBtbY3S0lLcvn0bHh4exo6P\nbQAmJJcGUkP3KiIyRwZrAygtLcWmTZswZ84cAMDly5dx7Nix1kdIZkUu0y6Ehw9GZGQJ3NySWPiT\nrOmUAJ599lnY2dnh0KFDAIDu3bvj9ddfN2pgZHpyaiANDx+MefPCWPiTrOmUAHJycrBo0SLY/Wfi\nr/bt2xs1KJKGJTaQsvqQSDudEoC9vT3Ky8s1r3NycmBvb2+0oEga4eE+qKxMqvdebQNp260m4XKV\nRNrplACWLl2KsWPHIj8/H9OmTcPo0aOxatUqY8dGJta/fy+EhbmgrCwHQO03/7Cwtts7hstVEjVP\n515AhYWFOHLkCABg+PDh6Ny5s1EDq8NeQKZnqGkXpHbg44+hzMvDQYUCoa+/rqnCJJIDg00FkZKS\nUu9gdYPARo0aZYAwm8cEQPpQqVQ48dZbeNjRESUVFTg9dKhRlqskMle6lJ06DQRbs2aNptC/c+cO\n0tLSEBwcjIMHD7Y+SiIjOLF/PwKtrQEALvb2EEeOoCQszKDLVRK1dTolgF27dtV7nZeXh/nz5xsl\nIKLW0rZcZco33yDihRckjIzIvOi1JKSXlxcyMzMNHQuRQar7TLVcJVFbp9MTwLx58zT/rqmpwfHj\nxxEcHGy0oEi+EnbsQOTjj7dqskFTLVdJ1NbplADuLextbGwQHR2NkSNHGi0okidNt81u3eAfEqL3\ncUy1XCVRWyfpimC6YC8g+WC3TSLDaXUvoEGDBjV78JMnT+oXGVEDKpUKDtnZsHZ0xNCKChzdvZvd\nNomMrNkEsHPnTlPFQTLHbptEptdsAvD29jZRGCRn7LZJJA2dGoEPHz6Mv/71rzhz5gzUajWqq6vh\n5OSEW7duGTs+kgFNt817Zpm9t9umMXvtWPoKaETN0SkBvPjii/j6668xdepUHDt2DHFxccjKyjJ2\nbCQThui2KYRocdfRplZAi4tLQljYjTY9BxKRrnTqBRQcHIxff/0V/v7+mobfwMBAHD9+3PgBWlgv\nIH0KKrq/fdu3t3j8wKZNB1FQMLrR++a0TCSfUEhfBlsSsn379qioqEBAQABeeeUVrFu3zqIKZVPi\n/PSGp++0z+a+AlrdE0pBwWgUFytRUDAacXHnLWp5TpKWTgng888/R01NDd5//320a9cO+fn52L59\nu7Fjszicn944MvfuRYS7O67t2we1Wq3zfua+Appc1mgm6eiUAI4dOwYrKyu4uLhg6dKlWLduHfr2\n7Wvs2CyOvgUVaacZP2BlhaFqNY7u3q3zvua+Apq5P6FQ26dTAti5cyf69euHmJgY7Nq1C1VVVcaO\ny+K0pqAi7ZocP1BcrNO+5r4Cmrk/oVDbp1MCiI2NRXZ2NqZMmYKvvvoKffr0wcyZM40dm0VpTUFl\nKJbW9qBt/EDaN9/ofIzw8MGIjCyBm1uS2Xzzr2PuTyjU9uk8HbSdnR3GjRuHqKgoBAcH4/vvvzdm\nXBbFEAWVIVhaA7Shpn0ODx+MefPCzK5QNfcnFGr7dBoHEB8fj23btiEpKQlKpRKzZ8/Gt99+a+zY\nLIaUA53q6DLTZlvrciiHaZ9rC/t0ZGYmYeTItr1GM5kfncYBREdH48knn8TYsWPh4OBgirg0LGEc\nwIFt22B9+XKj94UQqPL0RIQJpi++30ybTQ2KqqxMQliYvAodUyVBjgchYzPYovD3M2LECBw2UtdG\nS0gAUtNlgfS2MCjK2EyZBPUZuEbUEgYbCHY/d+7cMcRhyEh0aYC2xC6HLf3iYKp+9xwPQubCIAmA\nzJeuDdCW2OWwpY3epkqCHA9C5oIJwMLp2lPG0roc6vMt2xRJkONByJzolAA2btyIoqIiY8dCRnAt\nNxdnPT2R3LFjvZ8bnp74/dgxzXaW1uVQn2/ZpkiC5jAeBKht79i06SDefTcZmzYdRFZWrsljIOnp\n1A302rVreOihhzB48GA899xzGDNmTL3Gq7i4OL0D2Lt3LxYsWIDq6mrMmjULixYt0vtY1FhLFki3\nlC6H+i4vWZsEbyAhIQft2vn8pwHccEnQXBa+4TTYVEfnXkA1NTVISEhAbGwsjh07hqlTp2LmzJnw\n8fHR++TV1dXo378/EhMT4enpiYceeghfffUVfH197wbIXkDUQj//618IPHpUU9D+VF6OQa+9pvPy\nkomJ6cjMLIGvr2GT4OlffkGn775D93vGgwDASZUKrnPnmmzcAnt8yYNBewFZWVnBw8MDXbt2hbW1\nNYqKijBlyhQsXLhQ7wDT0tLQt29feHt7w9bWFlFRUfjhhx/0Ph6RoaaHMMbIYF2r44zNEnt8kX50\nqgLasGED4uLi4ObmhlmzZuGdd96Bra0tampq0K9fP6xZs0avk1+6dAk9evTQvPby8sIvv/yi17GI\nAP1HXbd0AJg+A8ZaUh13P60ZsNZcY/fIkW2zxxfpR6cEcPPmTezYsQO9etX/A7OyssLOnTv1PjkH\nwZCh6TM9REvrxE1Rh95cAd/a84eH+yAuLgm2tmGa92obu9tuoz/pR6cEsGzZMq2/8/Pz0/vknp6e\nyMvL07zOy8uDl5dXo+2WLl2q+bdSqYRSqdT7nFSfpUxJUHcd+nzL1j4ALAdAeqNCsaXbt9T9CvjW\nnt/Yjd0kjeTkZCQnJ7doH4NMBaGvqqoq9O/fHwcOHED37t0xdOhQNgKb2N7vvsOYyZNNngQMlXjq\njtOaqRXefTcZxcXKJn/n5paEefPCWrV9Q/ervrlfI+3p07dadf46xmrsJvNgsqkg9GVjY4P3338f\nY8aMgZ9/Kd5BAAAPV0lEQVSfH5588sl6hT8Z1+W8PPzx0Uc4eehQk783ZuI11NTUCTt24NIff7Rq\naoWWDgBrzYAxXdb5vV8jraEGrJnrNNhkOpKPBB43bhyysrKQnZ2N1157TepwZOXQl18i9MYNnNy6\ntcnBUsZaP8BQc+HUHSdx06ZWTa3Q0gFgrRkwpst8Q/cr4C1t1DZJR/IEQNJQqVSoSEpCPycnDDp7\nFocaLPBjqEK6qQRiqLlwMvfuxYiOHWH900+AEHpPrdDSUdCtGTWtSxfM+xXwljZqm6TDBCBTR3bu\nRHBxMawUCgwAcPWrr+pNSWCoQrrhU4Sh5sKpO87pCxcwrqYGl86ebdXUCi1dGlLfpSR1qb7RpYA3\n56Usqe1gApCh6upq/PGvf6GPrS0AwMHGBkOuXkXyp58CaHkhra2aqKmnCEPNhXNi/34MUihQfvUq\n3Oztgfx83Llzp1VLbba0TlyfOnRdq290KeBZh0+txQQgQ6d/+QUD8vNh95+CGAB629pCER+PvPPn\nNYW0EEKnQlpbW0HDpwhDrY1cd5w/CgvhV1kJAPC0tsal06f1WhPYlFpSfcMCnoyNCUCG0pOSUGBv\nj2QHB81Part2uFVVhX/v3KkppBMyMyGEaLaQ1tZW0NRThKEWca87zrWSEpx1dtbEf6S0FP+qqjL5\n1AotxeobMhc6DQQjy9KzXz9YN5iQDAA8hcB5lQp+ZWW4XFUFkZODUx06wL9HD61TKdR9yz+4bx/U\nQ4Zo1hpuqqonZ8AAgyziXjfa19rTs9773f+zxnKYEddYNtSaweHhgxEeboQAiVpA0oFguuBAMNOq\nW8A+4/BhjC0uxgEAvSMiYGNt3WgBe21rDVdXVyPpH/9A+D2DstTV1Ujx8jLptMeGZso1g4laS5ey\nk08AVM+jU6dCpVLB9soV+Dg6onNFBU77+DQ5n36TDbphYcjLytJrQjbAcN+wjcHYU0AQmRoTADWi\nrWC/dz795hY3sXJ11auqR6qFSnSdlqL5PvxJrNKhNocJgOrRddWq5qZd1ndxE6m+YSfs2KHTPEKc\nRpksDXsBUT269tQxxuImUixU0pIRz5yCgSwNnwCoHl3n0zfk4iZ1pPiGra0XU1M4jTJZGvYCIrOR\nlZWLuLjzjRYqMdY8N9p6Md0Pp1GmtkCXspMJgMxKYmI6EhJc7vmGbbzqlbrF48tvleH8+SL8XKFG\n9dgoTPxToNn0PCLSF7uBUptTW9inIzMzCSNHGu8bdl1jd/mtMhw/fhM2Nn3wYE01dqZcRVzxeaP3\nPCIyB3wCIFk6/csv6PTdd8jPuI6yst6a9zPVKmQPmQtrB8HGXWrT+ARApEVdY3dKdjnKa+6ObxD2\nLrh1+Rg8H5zKvv1k8ZgALIilLPBuCnW9mDJsG6+/6wn27Sd54DgAC2KsJRwtGfv2k5wxAVgIQy3h\nKDdcXpHkjFVAFqIlA5oMra1XPRmj55E5T2pHVIe9gCyAvgOaDGXf9u06zaUjF5w2mswBewHJhC6z\ndxqLpuqpWzf4h4Twmy84bTS1HWwDaOMMtc6uvu5d9/fUqXOIjc1GQcFoFBcrUVAwGnFx55GYmG6S\nWMyFFJPaEemDCaCNM9Q6u/pouO7v1xu/0vLN10VWSaC5Se18fdm1lMwHE0AbZ4xpmXXVsOqp8/lM\n3CkvbrSd3L75smsptRVsA2jjjDEtsy6arHqytcY3Gd/AYUjtwjGFhcU4f74Id+5cwMCB55GV1UcW\n7QGcNpraCj4BkF6aqnrq37cz+hccxO2b51FYWIzjx2/i9u1ceHl1hJvbLFm1B4SHD0ZkZAnc3JL4\nzZ/MFruBkl4ObNsG68uXG72flZWHQ5d6oaBqIoqLa9C3bwn69Llb+Bl7imciqsX1AEgSiYnp+OCD\no3Byeqhe4V/HzS0J8+aFNbEnERkKxwGQJMLDByMrqxgFBY0Lf06yRmQ+2AZARsGeMETmjwmAjIKT\nrBGZP7YBkFFxAXUiabARmIhIpnQpO1kFREQkU5IlgIULF8LX1xcBAQF4/PHHUVIin6kCiIjMgWQJ\nIDIyEhkZGThx4gQeeOABrFy5UqpQiIhkSbIEEBERASur2tMPGzYM+fn5UoVCRCRLZjEQ7JNPPkF0\ndLTUYZCF4iI1RE0zagKIiIjA1atXG72/YsUKTJw4EQCwfPly2NnZYdq0aVqPs3TpUs2/lUollEql\noUMlC9XU8oxxcUkIC7vBbqlkUZKTk5GcnNyifSTtBhobG4uPP/4YBw4cgIODQ5PbsBsotcamTQdR\nUDC60fuclI4snVl3A927dy/WrFmDH374QWvhT9RaXJ6RSDvJEsC8efOgUqkQERGBoKAgzJ07V6pQ\nyIJxeUYi7TgSmCxaVlYu4uLOw9b27vTTlZXJnJeILJ5ZVwERmQInpSPSjk8AJAuclI7khpPBERHJ\nFKuAiIhIKyYAIiKZYgIgIpIpJgAiIpliAiAikikmACIimWICICKSKSYAIiKZYgIgIpIpJgAiIpli\nAiAikikmACIimWICICKSKSYAIiKZYgIgIpIpJgAiIpliAiAikikmACIimWICICKSKSYAIiKZYgIg\nIpIpJgAiIpliAiAikikmACIimWICICKSKSYAIiKZYgIgIpIpJgAiIpliAiAikikmACIimWICICKS\nKSYAIiKZkjwBrF27FlZWVrh586bUoRARyYqkCSAvLw/79+9Hr169pAyjzUhOTpY6BLPBe3EX78Vd\nvBctI2kC+Nvf/obVq1dLGUKbwj/uu3gv7uK9uIv3omUkSwA//PADvLy84O/vL1UIRESyZmPMg0dE\nRODq1auN3l++fDlWrlyJhIQEzXtCCGOGQkREDSiEBCXv6dOn8eijj6Jdu3YAgPz8fHh6eiItLQ3u\n7u71tu3bty9ycnJMHSIRUZvm4+OD7OzsZreRJAE01Lt3b/z666/o1KmT1KEQEcmG5N1AAUChUEgd\nAhGR7JjFEwAREZmeWTwB6IqDxoCFCxfC19cXAQEBePzxx1FSUiJ1SCa3d+9eDBgwAP369cOqVauk\nDkcyeXl5CAsLw8CBA/Hggw9i48aNUockqerqagQFBWHixIlShyKp4uJiTJkyBb6+vvDz88ORI0e0\nbttmEgAHjdWKjIxERkYGTpw4gQceeAArV66UOiSTqq6uxosvvoi9e/fizJkz+Oqrr5CZmSl1WJKw\ntbXF+vXrkZGRgSNHjmDTpk2yvRcAsGHDBvj5+cm+Snn+/PkYP348MjMzcfLkSfj6+mrdts0kAA4a\nqxUREQErq9qPbdiwYcjPz5c4ItNKS0tD37594e3tDVtbW0RFReGHH36QOixJeHh4IDAwEADg5OQE\nX19fXL58WeKopJGfn4/4+HjMmjVL1l3KS0pKkJqaiueeew4AYGNjAxcXF63bt4kEwEFjTfvkk08w\nfvx4qcMwqUuXLqFHjx6a115eXrh06ZKEEZmHixcv4rfffsOwYcOkDkUSL730EtasWaP5ciRXFy5c\nQJcuXfDss89i8ODBmD17NsrKyrRubzZ3KyIiAoMGDWr08+OPP2LlypVYtmyZZltLz/Da7sXOnTs1\n2yxfvhx2dnaYNm2ahJGantwf75uiUqkwZcoUbNiwAU5OTlKHY3K7du2Cu7s7goKCLL5suJ+qqiqk\np6dj7ty5SE9PR/v27fHPf/5T6/ZGHQncEvv372/y/dOnT+PChQsICAgAUPuoFxwc3OSgMUuh7V7U\niY2NRXx8PA4cOGCiiMyHp6cn8vLyNK/z8vLg5eUlYUTSqqysxOTJk/H0009j0qRJUocjiUOHDuHH\nH39EfHw87ty5g1u3bmH69OmIi4uTOjST8/LygpeXFx566CEAwJQpU5pNABBtjLe3t7hx44bUYUhm\nz549ws/PTxQUFEgdiiQqKytFnz59xIULF0RFRYUICAgQZ86ckTosSdTU1IiYmBixYMECqUMxG8nJ\nyWLChAlShyGpRx55RGRlZQkhhFiyZIl45ZVXtG5rNk8AupJ7FcC8efOgVqsREREBABgxYgQ++OAD\niaMyHRsbG7z//vsYM2YMqqurMXPmzGZ7OViyn3/+GV988QX8/f0RFBQEAFi5ciXGjh0rcWTSknsZ\n8d577+Gpp56CWq2Gj48PPv30U63bciAYEZFMmU0jMBERmRYTABGRTDEBEBHJFBMAEZFMMQEQEckU\nEwARkUwxARARyRQTAFErXLx4EYMGDZI6DCK9MAEQEckUEwDJwtGjRxEQEICKigqUlpbiwQcfxJkz\nZxptFx0djfj4eM3rGTNmYPv27cjNzcWoUaMQHByM4OBgHD58uNG+sbGxmDdvnub1hAkTkJKSAgBI\nSEhASEgIgoODMXXqVJSWlgIAXn31VQwcOBABAQFYuHChoS+bqFltbi4gIn089NBD+NOf/oQ33ngD\n5eXliImJgZ+fX6PtnnzySWzbtg3jx4+HWq3GwYMHsWXLFtTU1GD//v2wt7fHuXPnMG3aNBw9erTZ\ncyoUCigUChQWFmL58uU4cOAAHB0dsWrVKqxbtw7//d//je+//x6///47AODWrVtGuXYibZgASDbe\nfPNNDBkyBI6Ojnjvvfea3Gbs2LGYP38+1Go19uzZg9DQUNjb26OkpAQvvvgiTpw4AWtra5w9e1an\ncwohcOTIEZw5cwYhISEAALVajZCQELi4uMDBwQEzZ87EhAkTMGHCBINdK5EumABINgoLC1FaWorq\n6mqUl5ejXbt2jbZxcHCAUqnEvn37sG3bNkRHRwMA1q9fj27duuHzzz9HdXU1HBwcGu1rY2ODmpoa\nzes7d+5o/h0REYEvv/yy0T5paWk4cOAAvvvuO7z//vuyXOOBpMM2AJKNF154AW+//TamTZuGRYsW\nad3uySefxCeffILU1FTN1Mq3bt2Ch4cHACAuLg7V1dWN9vP29sbx48chhEBeXh7S0tKgUCgwfPhw\n/Pzzz8jJyQEAlJaW4ty5cygtLUVxcTHGjRuHdevW4cSJE0a4aiLt+ARAshAXFwd7e3tERUWhpqYG\nISEhSE5OhlKpbLRtZGQkYmJiMGnSJNjY1P4vMnfuXEyePBlxcXEYO3ZsvaUX6+afHzlyJHr37g0/\nPz/4+voiODgYANC5c2fExsYiOjoaFRUVAGqX9OzQoQMee+wx3LlzB0IIrF+/3sh3gag+rgdARCRT\nrAIiIpIpVgGRLJ06dQrTp0+v956Dg0OT/fuJLBWrgIiIZIpVQEREMsUEQEQkU0wAREQyxQRARCRT\nTABERDL1/2AMQWbTh63UAAAAAElFTkSuQmCC\n", - "text": [ - "" - ] - } - ], - "prompt_number": 242 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -} \ No newline at end of file diff --git a/dimensionality_reduction/.ipynb_checkpoints/principal_component_analysis-checkpoint.ipynb b/dimensionality_reduction/.ipynb_checkpoints/principal_component_analysis-checkpoint.ipynb deleted file mode 100644 index 8d8f65f..0000000 --- a/dimensionality_reduction/.ipynb_checkpoints/principal_component_analysis-checkpoint.ipynb +++ /dev/null @@ -1,913 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:9fd3af6cfad54f1dc6b603af0bb5049d3f3029ecb9bb6fef0fe639eb5743b57f" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Sebastian Raschka \n", - "last updated: 04/10/2014\n", - "- Link to the containing GitHub Repository: [https://github.com/rasbt/pattern_classification](https://github.com/rasbt/pattern_classification)\n", - "- Link to this IPython Notebook on GitHub: [principal_component_analysis.ipynb](https://github.com/rasbt/pattern_classification/blob/master/dimensionality_reduction/projection/principal_component_analysis.ipynb\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "#Stepping through a Principal Component Analysis\n", - "# - using Python's numpy and matplotlib\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#Sections\n", - "- Introduction \n", - "- Generating 3-dimensional sample data\n", - "- The step by step approach\n", - " - 1. Taking the whole dataset ignoring the class labels \n", - " - 2.  Compute the $d$-dimensional mean vector\n", - " - 3. Computing the scatter matrix (alternatively, the covariance matrix)\n", - " - 4. Computing eigenvectors and corresponding eigenvalues\n", - " - 5. Ranking and choosing $k$ eigenvectors\n", - " - 6. Transforming the samples onto the new subspace\n", - "- Using the `PCA()` class from the `matplotlib.mlab` library\n", - " -  Differences between the step by step approach and matplotlib.mlab.PCA()\n", - "- Using the `PCA()` class from the sklearn.decomposition library to confirm our results " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# Introduction" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The main purposes of a principal component analysis are the analysis of data to identify patterns and finding patterns to reduce the dimensions of the dataset with minimal loss of information.\n", - "\n", - "Here, our desired outcome of the principal component analysis is to project a feature space (our dataset consisting of $n$ $d$-dimensional samples) onto a smaller subspace that represents our data \"well\". A possible application would be a pattern classification task, where we want to reduce the computational costs and the error of parameter estimation by reducing the number of dimensions of our feature space by extracting a subspace that describes our data \"best\".\n", - "\n", - "###Principal Component Analysis (PCA) Vs. Multiple Discriminant Analysis (MDA)\n", - "Both Multiple Discriminant Analysis (MDA) and Principal Component Analysis (PCA) are linear transformation methods and closely related to each other. In PCA, we are interested to find the directions (components) that maximize the variance in our dataset, where in MDA, we are additionally interested to find the directions that maximize the separation (or discrimination) between different classes (for example, in pattern classification problems where our dataset consists of multiple classes. In contrast two PCA, which ignores the class labels). \n", - "***In other words, via PCA, we are projecting the entire set of data (without class labels) onto a different subspace, and in MDA, we are trying to determine a suitable subspace to distinguish between patterns that belong to different classes. Or, roughly speaking in PCA we are trying to find the axes with maximum variances where the data is most spread (within a class, since PCA treats the whole data set as one class), and in MDA we are additionally maximizing the spread between classes. *** \n", - "In typical pattern recognition problems, a PCA is often followed by an MDA.\n", - "\n", - "#### What is a \"good\" subspace?\n", - "Let's assume that our goal is to reduce the dimensions of a $d$-dimensional dataset by projecting it onto a $(k)$-dimensional subspace (where $k\\;<\\;d$). \n", - "So, how do we know what size we should choose for $k$, and how do we know if we have a feature space that represents our data \"well\"? \n", - "Later, we will compute eigenvectors (the components) from our data set and collect them in a so-called scatter-matrix (or alternatively calculate them from the covariance matrix). Each of those eigenvectors is associated with an eigenvalue, which tell us about the \"length\" or \"magnitude\" of the eigenvectors. If we observe that all the eigenvalues are of very similar magnitude, this is a good indicator that our data is already in a \"good\" subspace. Or if some of the eigenvalues are much much higher than others, we might be interested in keeping only those eigenvectors with the much larger eigenvalues, since they contain more information about our data distribution. Vice versa, eigenvalues that are close to 0 are less informative and we might consider in dropping those when we construct the new feature subspace." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Summarizing the PCA approach\n", - "\n", - "Listed below are the 6 general steps for performing a principal component analysis, which we will investigate in the following sections.\n", - "\n", - "1. Take the whole dataset consisting of $d$-dimensional samples ignoring the class labels \n", - "2. Compute the $d$-dimensional mean vector (i.e., the means for every dimension of the whole dataset)\n", - "3. Compute the scatter matrix (alternatively, the covariance matrix) of the whole data set\n", - "4. Compute eigenvectors ($\\pmb e_1, \\; \\pmb e_2, \\; ..., \\; \\pmb e_d $) and corresponding eigenvalues ($\\pmb \\lambda_1, \\; \\pmb \\lambda_2, \\; ..., \\; \\pmb \\lambda_d$)\n", - "5. Sort the eigenvectors by decreasing eigenvalues and choose $k$ eigenvectors with the largest eigenvalues to form a $d \\times k $ dimensional matrix $\\pmb W\\;$(where every column represents an eigenvector)\n", - "6. Use this $d \\times k $ eigenvector matrix to transform the samples onto the new subspace. This can be summarized by the mathematical equation: $\\pmb y = \\pmb W^T \\times \\pmb x$ (where $\\pmb x$ is a $d \\times 1$-dimensional vector representing one sample, and $\\pmb y$ is the transformed $k \\times 1$-dimensional sample in the new subspace." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# Generating some 3-dimensional sample data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For the following example, we will generate 40 3-dimensional samples randomly drawn from a multivariate Gaussian distribution. \n", - "Here, we will assume that the samples stem from two different classes, where one half (i.e., 20) samples of our data set are labeled $\\omega_1$ (class 1) and the other half $\\omega_2$ (class 2). \n", - "\n", - "$\\vec{\\mu_1} = $\n", - "$\\begin{bmatrix}0\\\\0\\\\0\\end{bmatrix}$ \n", - "$\\quad\\vec{\\mu_2} = $ \n", - "$\\begin{bmatrix}1\\\\1\\\\1\\end{bmatrix}\\quad$(sample means)\n", - "\n", - "$\\vec{\\Sigma_1} = $\n", - "$\\begin{bmatrix}1\\quad 0\\quad 0\\\\0\\quad 1\\quad0\\\\0\\quad0\\quad1\\end{bmatrix}$\n", - "$\\quad\\vec{\\Sigma_2} = $\n", - "$\\begin{bmatrix}1\\quad 0\\quad 0\\\\0\\quad 1\\quad0\\\\0\\quad0\\quad1\\end{bmatrix}\\quad$ (covariance matrices)\n", - "\n", - "###Why are we chosing a 3-dimensional sample?\n", - "The problem of multi-dimensional data is its visualization, which would make it quite tough to follow our example principal component analysis (at least visually). We could also choose a 2-dimensional sample data set for the following examples, but since the goal of the PCA in an \"Diminsionality Reduction\" application is to drop at least one of the dimensions, I find it more intuitive and visually appealing to start with a 3-dimensional dataset that we reduce to an 2-dimensional dataset by dropping 1 dimension.\n", - "\n" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import numpy as np\n", - "\n", - "np.random.seed(234234782384239784) # random seed for consistency\n", - "\n", - "mu_vec1 = np.array([0,0,0])\n", - "cov_mat1 = np.array([[1,0,0],[0,1,0],[0,0,1]])\n", - "class1_sample = np.random.multivariate_normal(mu_vec1, cov_mat1, 20).T\n", - "assert class1_sample.shape == (3,20), \"The matrix has not the dimensions 3x20\"\n", - "\n", - "mu_vec2 = np.array([1,1,1])\n", - "cov_mat2 = np.array([[1,0,0],[0,1,0],[0,0,1]])\n", - "class2_sample = np.random.multivariate_normal(mu_vec2, cov_mat2, 20).T\n", - "assert class1_sample.shape == (3,20), \"The matrix has not the dimensions 3x20\"" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 2 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Using the code above, we created two $3\\times20$ datasets - one dataset for each class $\\omega_1$ and $\\omega_2$ - \n", - "where each column can be pictured as a 3-dimensional vector $\\pmb x = \\begin{pmatrix} x_1 \\\\ x_2 \\\\ x_3 \\end{pmatrix}$ so that our dataset will have the form \n", - "$\\pmb X = \\begin{pmatrix} x_{1_1}\\; x_{1_2} \\; ... \\; x_{1_{20}}\\\\ x_{2_1} \\; x_{2_2} \\; ... \\; x_{2_{20}}\\\\ x_{3_1} \\; x_{3_2} \\; ... \\; x_{3_{20}}\\end{pmatrix}$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Just to get a rough idea how the samples of our two classes $\\omega_1$ and $\\omega_2$ are distributed, let us plot them in a 3D scatter plot." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%pylab inline\n", - "from matplotlib import pyplot as plt\n", - "from mpl_toolkits.mplot3d import Axes3D\n", - "from mpl_toolkits.mplot3d import proj3d\n", - "\n", - "fig = plt.figure(figsize=(8,8))\n", - "ax = fig.add_subplot(111, projection='3d')\n", - "mpl.rcParams['legend.fontsize'] = 10 \n", - "ax.plot(class1_sample[0,:], class1_sample[1,:], class1_sample[2,:], 'o', markersize=8, color='blue', alpha=0.5, label='class1')\n", - "ax.plot(class2_sample[0,:], class2_sample[1,:], class2_sample[2,:], '^', markersize=8, alpha=0.5, color='red', label='class2')\n", - "\n", - "plt.title('Samples for class 1 and class 2')\n", - "ax.legend(loc='upper right')\n", - "plt.draw()\n", - "\n", - "\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Populating the interactive namespace from numpy and matplotlib\n" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAcwAAAHMCAYAAABY25iGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXmYVOWV/7+1b13d0MhmszSCREBZ1BFBEFBRMS4YNWqi\nonGUoOOSmSebzvzUxOiTxGV0fDSayWiIW6IzEzWACCqOYpCoYBBBQGhtUFFo6O7ab1Xd3x/tub51\n+95bd6/t/TyPT0LX8t77VtV73nPec77HI4qiCA6Hw+FwOJp4K30BHA6Hw+HUAtxgcjgcDoejA24w\nORwOh8PRATeYHA6Hw+HogBtMDofD4XB0wA0mh8PhcDg64AaTw+FwOBwdcIPJ4XA4HI4OuMHkcDgc\nDkcH3GByOBwOh6MDf6UvgMPhcDju09raigMHDlT6MirOwIED0dXVpeu5Hq4ly+FwOI2Hx+MBX/6N\nzQMPyXI4HA6HowNuMDkcDofD0QE3mBwOh8Ph6IAn/XA4HA4HgiBg1ap3sGtXCoLgRSBQxJgxUcyf\nfwwCgYDtr1Pi1ltvRTwex7/8y79YvR0AwPe+9z0sW7YMQ4YMwaZNmyy/HzeYHA6H0+AIgoB///eX\nsH//LITDLdLfd+/uxubNL+HGG09VNH5mX6eGx+OxdiMyrrjiClx33XW47LLLbHk/HpLlcDicBmfV\nqnfQ1VVq9AAgFGpBV9csrFr1jq2vI5YuXYopU6Zg6tSp/Yzab3/7Wxx33HGYOnUqzj//fKTTaQDA\nM888g6OOOgpTp07FnDlzAACbN2/G9OnTMW3aNEyZMgU7duwAAMyePRsDBw7UPxFl4AaTw+FwGpxd\nu1IIhVoUHwuFWrBrV8rW1wF9Ru4Xv/gFXn31VWzcuBH33XdfyePnnXce1q9fj40bN2LChAn43e9+\nBwD4+c9/jpdeegkbN27ECy+8AAB4+OGHccMNN2DDhg145513MGLEiLL3bAZuMDkcDqfBEQRtU6D2\nuNnXAcArr7yCb3/722htbQWAfp7gpk2bMHv2bEyePBlPPPEEPvjgAwDACSecgEWLFuE///M/kc/n\nAQAzZszAHXfcgV/96lfo6OhAOBzWvC6zcIPJ4XA4DU4gUDT1uNnXAeqCAXSOefnll+PBBx/E3//+\nd9xyyy1SSPahhx7C7bffjs7OThxzzDHo6urCxRdfjBdeeAGRSARnnHEGXn31Vc3rMgs3mBwOh9Pg\njBkTRTbbrfhYJnMQY8ZEbX0dAJx00kl45plnJFk6+l8yoolEAsOGDYMgCHj88cel13300Uc47rjj\ncNttt2Hw4MHYvXs3du3ahfb2dlx33XU455xzbMmIVYIbTA6Hw2lw5s8/Bq2tb/QzftlsNwYNWov5\n84+x9XUAMHHiRNx8882YM2cOpk6dKpWSkIf585//HNOnT8esWbMwYcIE6e8/+tGPMHnyZBx11FE4\n4YQTMHnyZPzpT3/CUUcdhWnTpmHz5s1SAtHFF1+MmTNnYtu2bRg5ciQeffRRcxP0FVxLlsPhcBoQ\neUi0GuowK4ERLVluMDkcDqcB4eLrfXDxdQ6Hw+FwbIYbTA6Hw+FwdMANJqdmuPXWW3HppZfa/r5X\nXHEFWltbcfzxx9v+3iyXX345/u3f/s3RMaqBNWvWYOTIkYZf59Tny+HYBTeYnLK88cYbmDlzJgYM\nGIBBgwZh1qxZePvtt12/Drt1JgHg9ddfx+rVq/Hpp59i3bp1tr8/i8fjceQe1Lj66qtxxBFHwOfz\n4fe//71r45rFzbn58ssvcfHFF6OtrQ0DBgzArFmzsH79etfG59Qm3GByNOnp6cGZZ56JG264AQcO\nHMCePXtwyy23IBQKuX4tTiQofPzxx2hvbzelDEIqI0ZwM8li6tSpePDBB3H00Ue7aozM4ubcJBIJ\nTJ8+He+++y4OHDiARYsW4Zvf/CaSyaRr11DNmP0s6j2JiBtMjibbtm2Dx+PBhRdeCI/Hg3A4jPnz\n5+Ooo44C0FdEfNJJJ+GQQw7B4MGDcckll6C7++uarPb2dtx1112YPHky4vE4rrzySuzduxcLFixA\nS0sL5s+fj4MHDwIAOjo64PV68dvf/hZtbW049NBDcffdd6te27p16zBz5kwMHDgQU6dOxWuvvSY9\n9thjj2Hs2LFobm7GYYcdhieffLLf63/3u9/hqquuwl//+lfE43HcdtttAPpEnw8//HAMGjQI55xz\nDj777DPpNV6vFw8++CAOP/xwfOMb31C8LvLIBw4ciFGjRmHp0qX9nnPgwAGceeaZGDJkCFpbW3HW\nWWdhz549Za9/x44dmDNnDgYMGIDBgwfjoosuUp2fa665BieddJKuzcCyZcswbdo0tLS0YNSoUdJc\nAF9/LkuXLsXo0aMxePBg3HHHHdLj6XQal19+OVpbWzFp0iT87W9/0xxr8+bNmD9/PgYNGoRhw4bh\nzjvvVHzeBRdcgOHDh2PAgAGYM2eOJI0GAMuXL8ekSZPQ3NyMESNGSN+Tffv24cwzz8TAgQMxaNAg\nnHjiiYqL+JgxY3DjjTdi6NCh8Hg8uOqqq5DL5bBt27ayc1XviKKIlf/934aNn9nXsdx6662av3kj\ndHZ2Yt68eZg0aRKOPPJI3H///dbfVORwNOjp6REHDRokLlq0SFyxYoXY1dVV8viOHTvE1atXi7lc\nTvzyyy/FE088Ubzxxhulx9vb28UZM2aIX3zxhbhnzx5xyJAh4rRp08SNGzeKmUxGPOmkk8TbbrtN\nFEVR3LVrl+jxeMTvfOc7YiqVEjdt2iQOHjxYXL16tSiKonjLLbeIl1xyiSiKorh7925x0KBB4ooV\nK0RRFMVVq1aJgwYNEvft2ycmEgmxublZ3LZtmyiKovj555+LmzdvVry/xx57TJw1a5b075dfflk8\n5JBDxA0bNojZbFa87rrrxBNPPFF63OPxiKeeeqp44MABMZPJ9Hu/jo4OMR6Pi08//bSYz+fF/fv3\nixs3bhRFURQvv/xy8V//9V9FURTF/fv3i//zP/8jptNpsbe3V7zgggvEhQsXiqIoal7/RRddJN5x\nxx2iKIpiNpsV165dW+YTFMVZs2aJv//97zWfs2bNGvH9998XRVEU//73v4tDhw4V//znP4ui+PXn\ncvXVV4uZTEZ87733xFAoJG7dulUURVH88Y9/LJ544onigQMHxM7OTnHSpEniyJEjFcfp6ekRhw0b\nJt5zzz1iNpsVe3t7xbfeeksUxdLPVxRF8dFHHxUTiYSYy+XEG2+8UZw6dar02LBhw8Q33nhDFEVR\nPHjwoPjuu++KoiiKP/nJT8Tvf//7Yj6fF/P5vPSccmzYsEEMh8NiT0+PrufXA2rL//b33xdXXH21\nuP2r74NezL6O5dZbbxXvuusu069n+eyzz8QNGzaIoiiKvb294vjx48UPPvig3/OMmEHuYXI0icfj\neOONN6Rd+JAhQ3DOOefgiy++AACMHTsWJ598MgKBAA455BD84Ac/KPH0AOC6667D4MGDceihh2L2\n7NmYMWMGpkyZglAohHPPPRcbNmwoef4tt9yCSCSCI488EldccQWeeuqpftf1+OOP44wzzsDpp58O\nADjllFNw7LHHYtmyZfB4PPB6vdi0aRPS6TSGDh2KiRMnKt6fKNsNP/HEE7jyyisxdepUBINB3Hnn\nnfjrX/+KTz75RHrOT3/6UwwYMEAxLP3kk09i/vz5uPDCC+Hz+dDa2oopU6b0e15rayvOPfdchMNh\nNDU14aabbiqZN7XrDwaD6OjowJ49exAMBjFz5kzF+zLKnDlzMGnSJADAUUcdhYsuuqjf50ih+MmT\nJ2PKlCl47733APS1W7r55psxYMAAjBgxAjfccIOql/GXv/wFhx56KH7wgx8gGAyiqakJxx13nOJz\nL7/8csRiMQQCAdxyyy1477330NvbK83D5s2b0dPTg5aWFkybNk36+2effYaOjg74fD6ccMIJZe+9\np6cHl156qdS8uJERRRE7li3DacOGYceyZbq9RbOvc7K917BhwzB16lQAQFNTEyZMmIBPP/1U71Qo\nwg0mpyxHHHEEHn30UXR2duL999/Hp59+ihtvvBEAsHfvXlx00UUYMWIEWlpacOmll2L//v0lrx86\ndKj0/yORSMm/w+EwEolEyfPZDMtRo0Ypfsk//vhjPPPMMxg4cKD039q1a/H5558jGo3ij3/8I37z\nm9/g0EMPxZlnnokPP/xQ171+9tlnGD16tPTvWCyGQYMGlYRLtTJAd+/ejcMOO6zsOKlUCosXL0Z7\neztaWlowZ84cdHd3QxRFxGIx1ev/1a9+BVEUcdxxx+HII4+0LPVFvPXWW5g3bx6GDBmCAQMG4OGH\nH+73OQ4bNkz6/9FoVPrcPv30036fmRqdnZ265qdQKOAnP/kJxo0bh5aWFowZMwYejwf79u0DAPz3\nf/83li9fjvb2dsydO1dK2PrhD3+IcePG4dRTT8XYsWPxy1/+UnOcdDqNs846CzNnzsSPf/zjstdV\n73z0wQcY98UX8Hg8GPfFF/iICYPb/To323t1dHRgw4YNmD59uq77UYMbTI4hvvGNb2DRokV4//33\nAQA33XQTfD4f3n//fXR3d+MPf/gDikXtDgbldp+sN/fJJ5+gra2t33NGjRqFSy+9FAcOHJD+6+3t\nxY9+9CMAwKmnnoqXXnoJn3/+OY444ghcddVV/a4hl8shlUqhWCwin89DFEUceuih6OjokJ6XTCax\nf//+kmvQSqAZOXIkPvroI9XH6bV33303tm3bhvXr16O7uxuvvfYaRFGU5kbt+ocOHYpHHnkEe/bs\nwcMPP4xrrrkGO3fuVB1PL9/5znewcOFC7N69GwcPHsT3v//9sp8jMXz48H6fmRqjRo3Sdb1PPvkk\nnn/+ebz88svo7u7Grl27Subn2GOPxZ///Gd8+eWXWLhwIb797W8D6PMk7rrrLnz00Ud4/vnncc89\n9+CVV15RHCObzWLhwoUYNWoUHn74YV33Ws+Qlzg2FgMAjI3FdHmLZl/nVnuvRCKB888/H/fddx+a\nmpoMzEh/uMHkaPLhhx/innvukTyszs5OPPXUU5gxYwaAvi9jLBZDc3Mz9uzZg1//+teWx7z99tuR\nTqexefNmPPbYY7jwwgv7PeeSSy7BCy+8gJdeegmFQgGZTAZr1qzBnj178MUXX+C5555DMplEIBBA\nLBaDz+eTXlssFpHNZiEIAkRRRLFYRCKRkBJxHn30UbzzzjvIZDK46aabcPzxx2t6TSzf/e53sXr1\najzzzDPI5/PYv3+/FLpkF/xEIoFIJIKWlhZ0dXWVJNloXf8zzzyD3bt3AwAGDBgghZ+VEAQBmUwG\nxWIRuVwOmUxGdRFLJBIYOHAggsEg1q9fjyeffFJ3Zu23v/1t3HnnnTh48CB2796N//iP/1B97pln\nnonPPvsM9913H7LZLHp7exXLORKJBEKhEFpbW5FMJnHTTTeV3NcTTzyB7u5u+Hw+xONxaX7+8pe/\nYMeOHRBFEc3NzfD5fCWfPfse559/PqLRKB577DFd91nvsF4iAN3eotnXudHeSxAEnHfeebjkkkuw\ncOFCYxOiADeYHE3i8TjeeustTJ8+HU1NTZgxYwYmT54sZbLdcsstePfdd9HS0oKzzjoL5513XtmF\nln1cqTZxzpw5GDduHE455RT88Ic/xCmnnNLvuSNGjMBzzz2HO+64A0OGDMGoUaNw9913Swbw3nvv\nRVtbGwYNGoTXX38dDz30EERRRD6fx4EDByCKIrxer/QfLaozZ87ET3/6U1xwwQU49NBDsX37djz2\n2GOSB1ru3kaOHInly5fj7rvvxqBBgzBt2jT8/e9/73f9N954I9LpNA455BDMnDkTCxYskB5Tu34A\nePvtt3H88ccjHo/jnHPOwf3334/29nbFa5k/fz6i0SjWrVuHq6++GtFoFK+//rricx988EH8v//3\n/9Dc3Iyf//zn/TYpWvd9yy23YPTo0RgzZgxOP/10XHbZZarPb2pqwqpVq/DCCy9g+PDhGD9+PNas\nWdNvfi677DKMHj0abW1tOPLIIzFjxoyS93z88ccxZswYtLS04JFHHsETTzwBoC+LeP78+YjH45g5\ncyauvfZa6ZyL5c0338SyZcuwatUqDBgwAPF4HPF4HGvXrlW9z3pG7iUS5bxFs68D3GnvdeWVV2Li\nxInSEZJVuPg6p2ro6OjAYYcdhnw+r+o1mYVCsMViEQcPHsTAgQOlv9FY+XwegiAgEolIr2G9QgDw\n+XwIBALw+/3w+Xw1Ud/I4SjBeng7Nm8GHn0U4xRCljsSCeCKKzDuq6SwksdMvo5YunQpfv3rX8Pn\n82HatGlob29HPB7HP//zP+M3v/kNfvWrX2Hw4MGYPn06EokE/uu//gvnnXcetm/fDlEUccopp+De\ne+/FL3/5S/zhD39AIBDA8OHD8eSTT+L999/HiSeeiMmTJ0u/0zvvvFNKFFSah7Jzxg0mp1pwymBS\nSJI8xAMHDmDgwIEQBAHZbBZ+vx9erxeFQqHEYMrhBpRTT7CGYvWf/gTfnj2K319RFFFoa8MpX50T\ns5h9XTXBDSanJuno6MDYsWMhCIItBpNCsPl8viTc19XVhXA4jGw2C6/Xi2KxKIVoRVFEOByG1+st\na/zIeBaLRem53IByagXe3qsPbjA5DU+xWIQgCJIxI8NVKBTQ3d0Nv9+PaDQqebP0fFbuzuv1lhg+\nbkA59QQ3mH0YmQe/w9fC4biKKIpSaBUoTSTJ5XKSVmgsFisxXpT4UywWEYlEUCwWUSgUUCgUkMvl\nAEDKuFQzoPQ38o7JeKbT6RID6vf7EQgEuAHlcGoMbjA5dYNaCFYURaRSKQiCgHg8jt7e3rKGirJn\nA4EAANhmQPP5PJLJpFQn5vf7pf+4AeVwqhtuMDl1gVoIlgyUz+dDc3Nz2bNRtdAMa0Ap9KplQJXG\nYY2nz+cr8YbpelnvkxtQjpMMHDiQf7/QXzBBC24wOTWN3Oiw3lw2m0U6nUY0GkUwGFRcHOQ1oXpg\nPUerBlR+zYVCoeQclQwoZfLyBY5jF1T3yNEPN5icmoWtrWS9ymKxiFQqhUKhIKm9KL3WLuNjxIBS\nJq7W+7DXSAaUsnjZJCJuQDkcd+EGk1OTkJxdoVBAJBIpCcEmEgkEAgE0NzeX9SqdQMmAsmegAKQw\nsR4PlJB7oB6Pp+QMlBtQDsdZuMHk1BRsYg/VT1JaeCaTQSaTQSwWQzAYrPSlSng8HskwkvcbDocl\n45fNZqXnaCX/KBlQUieix7kB5XCcgxtMTs2gFYKlVlNqIdhqgjWgAEo8UBJMp/CrVvKPlgEVBAF+\nvx/BYJAbUA7HJrjB5NQEck+KNZbd3d0IhUIlodlawgkDSlKAZDzpce6Bcjjm4QaTU9Vo1VaSMYjH\n41K9pJH3tVvg3S7sNKCst61mQKmMhRtQDkcbbjA5VYuWvB2FYAOBgGFjWWtGwYwB1XofghtQDscY\n3GByqg65vB3rCWazWaRSKamjCFuzaNfY1Y4eA8pixQNldXC5AeU0OtxgcqoKWrQLhUK/EGwymUQ+\nn0c8Hoff70c2m7V17Fo1BkoGlLrTU5KU2RBuLpeTsnhZA+r3+3UJ0nM49QQ3mJyqQd63Ul5b6ff7\n0dLSIv2dd1tQRm7c5CIKdhhQ9vFQKMQNKKch4AaTU3HkiT1q8nahUMiRset9kWezYwEoGlC5iIIe\nA0rlPGxCFp0p622JxuHUEtxgcioKCQ4kEgnE4/GScpFkMolisWh7bSXrmTbigq5lQLPZrCEDCkDy\nYoG+EDBJAVI/UW5AOfUCN5icisEq9tCZJQAIgoBkMolAIICmpia+yDqMHQaU7fdJ7wFoG9BqLevh\ncNTgBpPjOlohWCPydvwM0xmMGFB6nBtQTiPADSbHVdRqK0VRRG9vLwCgpaWFL54WsXMjoWZAqaRH\nSUieG1BOPcINJscVtGoracEMBAIIh8M8BFvlkAH1+XzI5/OIRqOSByoIAkRRNGVAKQuXNaDyOlAO\np5Jwg8lxHK3aylQqJRlREiNwGgrlkhFnyyp4iNc4Xq9XMm4ASlqZyQ2oWvmJkpA8ZUlnMhkIgoBw\nOMwNKKeicIPJcRS12kqSt/N6vYjH4+ju7jZc4mHlDLNYLKK3t1dqEcYuwE6XmrhllCvlqWsZUBJU\nkNeAahlQOtsmA0p1oNwD5bgNN5gcR9BK7MnlcpK8XSgUcn1hLxaLSKfTUvjX4/EYPpMzSz2Fm/Vu\nLLQMKIVfyxlQeh92bLkB9fl80vknN6AcJ+AGk2M7an0rleTt3L6uVCqFQqGASCSCcDiMXC5X9kwO\n0Legc/TBGlA2NK5mQIH+Gw2lEG6xWJR0dEVRLEkgolAwh2MFbjA5tsKeWynJ2wUCgRJ5Ozevi0LA\nZBzVMOoRcU/GPPQdKWdA6Rxcbb61DCh9F8kDpc+fG1COUbjB5NgCLWjd3d1oampSrK3Ukrej80gn\nzjDZDiehUAjJZNLQOaKWR0TC5NyA2oOSAS0UCshkMoY2LOU8UHoPbkA5RuAGk2MZtraSzizp707J\n2+mBzcK1KwSstKCTB5rP55HNZnUJm3P0QXPt8XgQDocV51vPhoUbUI4dcIPJMY28tpJdYARBQCKR\nQCgUqoi8HYVgfT6foyFgpdZaWs2dufdpDa35tsOAHjx4EMFgUPrMuAHlsHCDyTGFWm0lAKRSKeRy\nOTQ1NUnngOWwU+ZOHoJ1c6HTWtApEYqu0e/386bMFtFjQPW2MmOjB16vV8qmZkUWuAFtbLjB5BhG\nq7aS/tcNeTu5kbUrBGtnHSa7oAeDQRSLRaRSKQAw1BmkkTHyeRj1+OWGj+1iIy+H4gaUww0mRzds\nCJZdTIA+ebtkMgkAiMVirocejYRg1bxZNxY8GoOSn8y21uLow6gBVTPO3IByAG4wOTrRqq1kvbpE\nImFpDDNQCDYajSIYDNbUQqUlbM7KyrGLcC3dX7VRzoACQCaT0R3C1TKg9LlyA1o/cIPJKYtaCDaf\nz0uqOM3NzZa8SjOLCZV4pNPpigghOIHcgFZzDajTEoJuIDegVCtMZ/TlQrjs+8gNKBuNAbgBrQdq\nf4XhOIaWvF02m0U6na6YV0dCCAAsZcFW+6JlVBWHZ+FaR64rzM53sVi0xYCKogiv14twOMzLj2oI\nbjA5iqj1raSklUKhoFhbaWe2qxJyLdpUKtUwC42RGlAyrhzjsN8ntZC5VQOaz+clFSKCpPx49nT1\nwg0mpwQKRaXTaclzVJK3a25utvUHrcfQkhYtGWuv1ytlnBqlHoyJ1nkcKSzVg4hCNYV+9RhQvUlb\n9Pmx70MNAORSftyAVgfcYHIkKARLBjMcDkt/J3m7WCyGYDBY9n3sRslYmx2nXhce1oDm83lpw6O3\npIJjHC0DaiTrWUlIQW5A2TNQbkArAzeYHAD9E3vYv9NZoR55O7t/xPLzUlaLls3UNTtuNXkvdqPk\ngZr1hhoBOzZ6eg0oO6ZeA0qbWfk43IC6BzeYDY5SbSWp0VBtZSgUQiQScfQHqeQxykOwbmvR1ht2\neUP1jt1HDUpzTipZenuvcgNaHXCD2cCo1VbSY6lUypC8HWBf0o+T56Va0PU3wmKjZUApIYUWcuon\n2Qjz4iQ05/QdC4VCtoVwBUHgBtRhuMFsULTk7dgQrNtlClohWLvH4ZTCLrKhUKikBjSdTgPo39iZ\nYw72dyevu6WuP6xwhR4DKg/1kgElycpwOCw11OYG1BzcYDYYarWVwNeKOeFwuESxxA08Ho90Xmqk\nHZgZj1DuBTeKR2kUPY20yzV2toNG+nxozpWEK8wa0EKhIJWJyT1QbkCNwQ1mA6Elb5dMJpHP5yXF\nHPIojGI2JEuyYsFg0LV2YDQH3NvUh1xEgRZgtq0WqdjUYgZuNRpmrU0LGT951rNRD5QeZ3VwuQFV\nhhvMBkGeICCvrfT7/Y72jVSDQrD5fB6hUAixWMzV8ZXakzUqRruC0GIeiUQMdwVpdMxu0vR4/fI5\nV/pclQxoLpdDNpuVxiEDys+vv4YbzDpHHoJlvUqts0I3kl+KxSKSySSKxaIUGnIL8qrpHLfRFXJE\nUcTq557DKeecY+oz1xJR4AZUGTvuX48BpecpJfex16LHgNLvtFENKDeYdYyWvB0ZKrvLNfSGONks\n2KamJtOKPWZCqpTwFAgEEI1GSxZ3AEin046VV1TrIrNzyxb4X3kFO8ePx9iJEy2/H68BrQxK2sPZ\nbFZqUgDo0x6WqxABkAworSWNaEC5waxDaHHq7e0FAESjUekxQRCQTCYlQ6X2JXfqbM+oapDd0I/e\n7/cjFotJYWoKPeXzeYTDYWkOqbxCfjZndXGopvMyURTRsXIlTh86FC+uXInDJkyw/dpqoQa0mj4T\nO6DvKTv3ZsT7aU6UDCi9ByUq1bsB5QazzqDDfDqboy+3m4ZKzdA66dnquSbq20kGUesHrVZeUY8d\nQnZu2YLx+/bBE4th/L592Llliy1ephZGDCgJadQTdAzgJmTE5B4oHdmQ92jFgGYyGRQKBYRCoX5Z\nuPVAfdwFB0CfQcpmsyWJLBRu7O3thSAIaGlp0WUszXqYakZIEAT09PTA5/O53uWkUCigp6dHMtRa\nP16l66cFJhwOIxqNIhKJwOv1Ip/PI5VKIZVKSYlLtXb+Sd7lYV9FIQ6LRtGxcqXr90EGNBQKIRqN\nIhqNwu/3SzWJ1N2DjhhqbZ4riZb8ntfrRTAYRCQSQSwWQzgcLvluJ5PJknlXgtYaJQOaTCaxZMkS\n7Ny507kbdBHuYdYBWrWVhUIB3d3dCIfDCIfDFQlzOenZljO09KONRCIIhUKW758WB7qPWk9uYb1L\noO/+3PIytWDP4tgzz3r18qsBrcQtI6VDcgP65ZdfOiZA4jbcYNY4WrWVuVxOqq00Im9nBdaAUQhW\nFMWKhGDT6TRyuZxheT8jmEluqRaks0vmjBvo8zKdOss0C5tkQqFE+UJOEn5mNylunmHWwnmpmcxn\npc1rKpUqyaOoZarn18sxDIWp5MaSQpCiKEqLjFGshkjZEGw8HtfV5cSuMBuFoEm0XX7/ToZ/5aHF\nWCwmLfL6GtmuAAAgAElEQVSZTAbJZBIAqiK0KHmXCjV65GVWI+w5nDyUSElttRwmtxu7jDMZUDaE\nS1Ebmnf6XrN13+l02lB9dSaTwfTp0zF16lRMnDgRP/3pTxWfd/311+Pwww/HlClTsGHDBsv3pwfu\nYdYgWrWVuVwOqVRK6i7C1mK5eW3ZbLYiWbCCICCRSFQsBC2HTW6hBKJUKiUpGwGVCy12bt0K//Dh\n+ERhjsTmZuS3btUMy7rlJZUzeLwGtDIozTslbAmCgAsvvBBdXV2IRCJ48cUXMWfOHLS0tJR933A4\njFdffRXRaBT5fB6zZs3CG2+8gVmzZknPWb58OXbs2IHt27fjrbfewpIlS7Bu3TrH7pXgBrPGUKut\nVJK3s2IsrdQ3iqKIlpYWVxZ/uk72rNTJEKxVaE7oTEcptOiWvNzcb33Lsfe2GyPzoGZA8/m8FCan\nMohGKGFxayy2hCUYDOJPf/oT3n77bdx8883493//d3znO9/BxIkT8d3vfhc33HCD5ntRCDeXy6FQ\nKKC1tbXk8eeffx6LFi0CAEyfPh0HDx7E3r17MXToUGdu7iu4wawR2D56AEqMESsCIJe3cyscRZ4d\nLUBGjaXH4zFdPkAhWACGDbWT4Vk9Y8vT/LlnZD9a58xGmjpzjBEOh3HCCScgEong5ZdfRjabxVtv\nvSV1Q9KiWCzi6KOPxkcffYQlS5ZgoizSsWfPHowcOVL694gRI7B7925uMDn9aytZr5K8KjV5O7Po\nNSSUXJPNZtHU1CQtRG5B9ZVuNLl2GjvVcRr93E4LtRpQo02dOf1Rqy/1eDwIh8OYM2eOrvfxer3Y\nuHEjuru7cdppp2HNmjWYO3duv7HkYzgNN5hVTqFQQCqV6ieArFcEwMmFk9pxAV97dm4lstBmoVAo\nIBKJIBKJ6H5tuc1AtRgbI8X9SgLZfJHXB80zeZbBYNBURxAj1GNIVg0rY7e0tOCb3/wm3n777RKD\n2dbWhs7OTunfu3fvRltbm5XL1AXPkq1SyKukzEp2lysIArq7u1VFAAgnfyR0DYFAAPF43NVkFTLU\nuVxOOoeyi2o2MlrF/el0GqlUSioyrxajX4uwQhWxWAyRSESqAZXPcz2qEFlByTgb/S7u27cPBw8e\nBNCXYbtq1SpMmzat5Dlnn302li5dCgBYt24dBgwY4Hg4FuAeZlXC1lZ6vd4SeTs2/KknscXswqnm\nhem5BrMKQWZE2/Wch9QrSkLbbEicROT9fr+pc+VqwS0ZOTVPTGue9crJVYpKb5wEQTCcgPfZZ59h\n0aJFKBaLKBaLuPTSS3HyySfj4YcfBgAsXrwYZ5xxBpYvX45x48YhFovh0UcfdeLy+8ENZpXBdlZn\nf7x0tuLxeHQnttjtLSmFYJ0ek6CUdarpcrtcpdqRJxAlEgmpjCWXy+Hl55/HSWedVdMNnqsBrUQt\nynTWk6jldpi0UuHfZDJpuMftUUcdhXfffbff3xcvXlzy7wceeMDcRVqAG8wqQU3ejnaIPT09pmoL\n7fIwSWKuEvWNVDJDQgRuKgbVKvQd8vv96NyxA01vvolPjzwSow4/nLfXshFeA6oN1YTXC9xgVgFa\ntZXUJ9JMbaEdP0yjEnNmyzTUXseGYJubmxVVacyMV+lQlVuUtO5atQrjJk2S5qza2mvVA1oGlD1m\nAfqiRk4bULc9Wfl41KC+XuAGs4LIaytZY5nP56X0dgCmvSorhoHqGz0eT9kuH06QzWYlHUo7xZsb\nyRCote6SZ+CyLcyUMkOVPvtKZ1/ajRP3wxrQYDAo/eYzmUxDePqpVMpwSLaa4QazQmjVVtJZXTQa\nRTAYlBYwo1j54dHZVyQSqVgIllUt4hhHLq6uJarOJrYApQaU7Q5iRdyc87UBBfrUbJz29N2OpMg3\nHfUkvA5wg1kRWAk5eW1lKpXqd1ZnVY3GyM6ZQrCCIEgiy0awGpItFAqSYpBctYhjjF1bt5pu3SXP\nDFU6l6P3dNrTrDdPlkWt1pbEy0VR7LdRMToXlZw7bjA5plFL7AHKn9WZweh7kLHyer0Ih8Ou15gV\ni0X09PQY6l1ZSWm7aoa8ywU2tO5SO5ejkCLVCVdSm7WW0Pq+aoXKq70PaL239gK4wXQNtrZSTd5O\nrVzCDaMgz4LNZrOOjsdCc0CqRW6EYKmejnbxrFJOPRjgjg8/xPj9+yXvkjDiZarBGlCv11uijFPL\nCURu1XsC+jezWjWgegxoJbxzedIPP8PkGKJQKKC3txfBYLBk8WDrGp0qlygXMqNMXEEQSs4L7c52\nVYO8WrYMwmnoGumc1OPxSPVzNFe1HgbcvW0bYsOGoVMpWUdH6y4jlAsrAtXrFdUSZmpAK00ymeQe\nJkcfbAg2nU6XhBnJo9MjGu6U18OGYCuRBUtzQNJjVELjNIVCQfL0Y7GYFHomD4kW+lr0kojZZ5+N\nSCRSEeNUy2HFWkJPDSibdV+JEpZ0Oo1DDjnEsTHdhhtMh9CqrTRS10jYLXHHGiu954VWxmNRmoN8\nPu/YeCxUqkLGksalRZ4WFr/f76iXVOserBHUEoiMKOPUE0599koGlPpJVkpEgddhcjRRq630eDxS\n5xGjHp2dX2q1EKzSmE54tRSGdru2k73vaDSKTCaj+XwtL8lqo+d6NwhaGFHGIQ1ctzYX9baJofCt\nKIoIh8OW2sXpQc3D5GeYHEXkWbDsl0cURSQSCVMenRXjxb620iFYajKtJK/nZLKN3Eibyf7VU2bB\nLvL1tPA6iZIBlScQAShpnM7nVj+sEVM7a3YyWYufYXIUUautpOQSURQRi8VsVawxAoUi9RpsO5N+\n2ExgMxJ/VlAy0pRtyF6f0Q1MuUVeq09lveCUMo58UU+lUtJ3iDKa7exN6TbV4slqGVCaayPfYzUP\nkxtMjgQbglWrrWTr08xg1ftKp9MoFAoVUc3R0+HECmpz46aR1soSTafTAErPPzn6oUU6GAzC5/Px\nBCIHYb/H1OmG5lrpe6xnrnlIliOhVVvJytuFQiH09PS4fn30Zfd4PIZVc6waaQpPJ5NJSTHIrUxg\nKqYvFouOGOlyqJ1/UpILgJLm19XgbdQKSnWJdAxiNYGoHupv5VjxZvXKJdJ/SmPVm5Ys346ZpFgs\nSuE31liSR5XNZtHc3CyFYO06h9RLNptFT08PfD6frVmw5aBxMpkMEokEotEootGoa+Pn83n09PSY\nPqd14iyVFp1IJCItHh6PB4IgIJlMIpVKSdmM9bhoOwVFdGhDRkce8rmlUiE9c8uTi9Sh73E4HEY0\nGpXKlvL5fMl3mM0sN6r009nZiXnz5mHSpEk48sgjcf/99/d7zpo1a9DS0oJp06Zh2rRpuP322227\nx3JwD9MgWvJ29CMNBAJoamrq96NwYzGUC5en02lXf5yUpJHL5VzvXelUdxM7oc1VIBCQMhgb8fzT\nCHoNjNbZciN0BlHCKfUiNlRO49D3VxAEXHHFFfj444/R3NyM1157DfPmzUNzc3PZ9w0EArj33nsx\ndepUJBIJHHPMMZg/fz4mTJhQ8rw5c+bg+eeft/2+ysE9TANQCFaeBUt1heRRxWKxfj9EKz9MvV4P\neVdA33khLbhuKPbIx4/H44aMpZXrpBBsOp1GPB4vayydzMg1CoVvQ6GQ5I37/X4Ui0Wk02mkUilk\nMhmpppejH/ncxmIxKZSbyWSk7wzNbbV8J2oRch58Ph8ikQiWLl2Ke+65B9lsFvfffz/a2towY8YM\n3HfffZrvM2zYMEydOhVAXw/gCRMm4NNPP+33vEp9VtzD1AF7HkchH3kIFtBOanFykSZDTt5VMBh0\ndefMntnGYjEkk0nXxqYdrd/vr4vuJmraoY1a5G8nWkktlOHOni07dfZdqyHZcrD3FQwGMWPGDITD\nYaxevRrZbBbr1q1Dd3e37vfr6OjAhg0bMH369JK/ezwevPnmm5gyZQra2tpw1113YaJNMo/l4Aaz\nDGQsBUFAOp0uaXclFyx36kdAXpTa9SWTSdUsWKc9THZ8CsG6ZTBzuRwymQx8Pp9iCFwP1bxw0cZM\nqf6TQoy8S4h55JsT6rpCmxMr4hTVQiWNMzt2OBzG3Llzdb82kUjg/PPPx3333YempqaSx44++mh0\ndnYiGo1ixYoVWLhwIbZt22bnpavCQ7IaUG0lhWCBr7tcUEJBU1NT2QxQwJmkn3w+L+3Y3OryoTQ+\nCQLY0b9Tr5FOpVKSx0+h53qHzuiCwaAUYgwGg5KHz4YY5bWmHG3Ys2VKIKJNsNkEokZDzTgb/W0K\ngoDzzjsPl1xyCRYuXNjv8Xg8LiUSLViwAIIgoKury9xFG4R7mApo1VYWCgVpJ2o0C9OuH5lS2Yoa\nTnmYdifY6P1R0XmlKIpoaWmBIAhSRl6joVa+UigUAEDyvtkEIo4+lBKIisUi8vm85QQiN72+Sod/\nja49oijiyiuvxMSJE3HjjTcqPmfv3r0YMmQIPB4P1q9fD1EU0draasflloUbTBlqtZVEb29vReXt\nlEKgbsJm4bo9PglB6Knr1KKakn7shA0xJhIJ6ZzOqfNPpzIwlcaptLHn6k7lkX9OZn5ja9euxeOP\nP47Jkydj2rRpAIA77rgDn3zyCQBg8eLFePbZZ/HQQw/B7/cjGo3i6aeftucGdMANJkM5eTsAplVj\ntM4h9UIGIxAIoLm5WXeqvVUBAhqHtGh9Pp9mgo3dBkmeVKTUZJtTCkVGWPUh+flno5VYlMOIYdby\n7s2q4tQbgiAYjj7NmjWr7Dp57bXX4tprr7VyaabhBhPatZWskZI/5ibUhNqtGkP5wmFUi9bsmEq7\nVDc96nr1PlkPic49lTwkpzNE6xW17Ga2uw3Nb7FYdC3foJLeeb0JrwPcYGrK25EWKRkpK4f9Zhfi\nYrGITCYjybwZNRhWPVtKsCnXDswJWI9WzaOuVwPnNFoeEit7xuX7jKOV3SwIgtTAnPXy62F+5caZ\nNtj1REMbTFbCSV5bSVqkdnk1ZoUAyGDQ+ZPb9Pb2murfadWIOdXgmqOM3vZl9bTAszi56ZKff6bT\naem35HR4vJIeZr0JrwMNajDlIVj2C0XtoEKhUL/aPre8GXkWrJXaRrPXTF4Gpdm78aMjbziTySCX\nyznm0bJRBE5/9GaI0mLs5KLs9mfklnEh7x1wpy+lGyh5mDwkW+OQMoxSCDadTiObzaom9jhRS6l0\nfXLv1k1RbpqHXC4Hj8dj2rszc71s8XglGlxzlFHLEKWaRFJacjLBpRYMhlm0wuMUATOTQFTpDSE/\nw6xhRFGUavYo/ERQbaXH43G0HVS5LzCbYGRWuUaOESNPMn8kRGC2JZmZ66Zie0oVN5KtaHZhoM1J\noVCQFvxKLzJ24XSI0e/3I5/PS4s4P/8sj15PXG9bLb3zW6maz3prHg00iMEkY0kF72xc3Yi8nVUP\nU+v6KMFIqWzCjVAwhaKdlvmTw4afvV6vq+eVvb290s6eIg/UP5S8qloJhynh1nU3+vmnHkRRxOrn\nnsMp55xj+Ldcq/Nbb70wgQYwmLQgU5E1qaCYyf50IiSrJ8HIjlpKrcfUQtFOqQSxYycSCeneScTe\naaiJcyQSQSAQkAS36THqXMHLLYzjpEKOkzidHLNzyxb4X3kFO8ePx/D2dkuiG0rzq6Qv7Oa80u+d\nn2HWOOQt0H+U8JNMJqVyhUotguX6Z9qB1nvq7bTiBE6En8vBbpIAqJ5Tk6cLKIfDal2Q2y70GBm1\n8082Q73eC/xFUUTHypU4fehQvLhyJYZdfbVt761VX0vzm06nK7JB4R5mjcJ6PKwAgNE2WHbK22mF\nYNUwuwtWumYy1loyc06FgrV0aI2OZySZij2fVWszJK9b1RMOM9MtpF7OSo2ip/6T3ZBUgyyeVXZu\n2YLx+/bBE4th/L596PjwQxwxZYojY7HzGwgEkEqlEAgEHN+gKH1OmUwGQ4cOteX9q4WGMZiU1Vco\nFEwJAND7WA2NsuLhems8rSwY8teaNdZGx1Sap3JhcKcWRrvOZ9W8JaNqObVuAOxEz4aE5rlawrdG\nkLzLr0KTh0WjeGH1ascMpnxs2tCVE6hwwsPnwgU1iiAI6O3tLflimMVq0k9PT48p8XA76t3MCDLY\n5QmRao+bJSNOa9BytRx7UdqQkHC80/WJTnmyrHcJ9N3j4fv2YdfWrRg3aZLt45VDbYNiVaBfaf54\nSLZGIXk7r9drqbmx2R8UJdYAkELBbsGe2xo9M7RrATHi4dlloN3WoAX0ZzOS1ihHGzKgHo8H0Wi0\n5s4/5d4lMTYaxeqVKzF24kRHN1HlvmNaCUTy76zf7ze8QeFlJTVKPB6XvghWFiozIVk2sQZQTjRx\namzg64bXvb29rnX6oGtlw796uryYWTyU5kWPBi3gbGakVviW5kXufXIPVBstj54EzqspIUvuXbKM\n378fO7dswdiJEx29BqNRLD1HDkoePvcw6wj6IO1IYjHyelZmLxKJ4ODBg64mMZBnK4qiaeF2s/NF\nJSM0tlu7f70atG4vpuxiXygUSjIaefjWHHo9ejPekR10bt0K//Dh+EQ2bjabRSAYRGHrVscNphXk\nGxTWgGYyGYiiKM2vUtSEl5U0OEbi+UqelRN1nGpQCJa+7G4Kt5MIQDAYNKTaYwWj3mylocWoWhf7\nakHvBtOId6TU4NmJjezcb31L8e+JRAKxWMzxz9Tue2INKDUnpznO5/MA+o6/duzYgUGDBhkWX+/s\n7MRll12GL774Ah6PB1dffTWuv/76fs+7/vrrsWLFCkSjUTz22GNSo2k3aCiDadXD1PN6J2sb9V47\nW7YRDAYlD8YoZuYrm80il8shEAgYDsdYCTtXwpu1C6uLPac/St5RPp9XbfDsFkoF/rUK6+Hncjkp\nk/m5557Db37zGzQ1NeFnP/sZFixYgDlz5qClpUXz/QKBAO69915MnToViUQCxxxzDObPn48JEyZI\nz1m+fDl27NiB7du346233sKSJUuwbt06p29VorZWFouw8XazaL1WEAR0d3fD7/cjHo/3W7iteph6\nri2RSCCdTqO5ubmkxtHpJBNKskmn0wiFQq4tQqTK4/V6FedcD9W2eNFiHwqFEI1GEYvFJPm+dDqN\nVCqFTCZjqT9ro+HxeBAIBBAOhxGNRhGJRODz+ZDP55FKpaSNCZ9Tc9AmLhgM4uabb8auXbswevRo\njBw5Evfffz9GjBiByy67TPM9hg0bhqlTpwIAmpqaMGHCBHz66aclz3n++eexaNEiAMD06dNx8OBB\n7N2715mbUqAhPEx2QbRSnqGVPFKu04lVyhlbNtGlpaWl5NzWCnoWD/nYVO/qNORJAzCVXKD0PXBK\nrMEKtNhT+Ja8pUqHb2tVVIAWd/b8kxozWBWkqCbczpdgxyLP/ic/+QluuukmZDIZ7N69W/f7dXR0\nYMOGDZg+fXrJ3/fs2YORI0dK/x4xYgR2797tmkBCQxhMu1BaTI2EYJ1WzrG72bKe97Gz0bPe+aEN\nSi6XQywWM1UqVIsLIFC6kwfUw7cAJF3RWr1Xt6A59fl8CIfDjobEa3WTYQZ2nsLhMMaNG6frdYlE\nAueffz7uu+8+NDU19Xtcvka4OZ8NZzDtTLwx0unE7rEB/QLydogeyGGNlptJNnKJu0ZH66wuk8kA\nQL/FnqONVvmK0vlntZ6ZV9LDNLvOCYKA8847D5dccgkWLlzY7/G2tjZ0dnZK/969ezfa2tpMjWWG\n6vykbUYpJGsFMlTJZBJNTU2GVXvsoFAooKenR1Lt0dNtxShqc1UsFtHb24t8Po/m5uZ+xtIpTzqf\nz6Onpwd+vx9NTU2S91RtIdRKQuFboK8bSyQSgdfrlRoO0HldrZzVVYNHRqFb9vyT5jSVStXcnLqF\n0c9OFEVceeWVmDhxIm688UbF55x99tlYunQpAGDdunUYMGCAq3q13MM08dre3l4AxrNg7fIwjYZB\n7TQqVK5iRt5PD2rXmclkHJO4q4ZF2QmUwrdqrbZ49q0+1OaUba+lJd9Xr981Sryzwtq1a/H4449j\n8uTJUqnIHXfcgU8++QQAsHjxYpxxxhlYvnw5xo0bh1gshkcffdTytRuh4QymFUiOy+/3mzYWVjN0\nU6kUcrmc7h6eWu+lx9BS5w6ndVlpPKXrTKVSkjfrRPZtPS5gSqiVr+Tz+X6hxkYL31pJBFRrr6Uk\nyO+mB2qHEXNz7FmzZpV0ClLjgQceMHtZlmk4g2nG22LP6wCYNpZWF6BsNmuqh6f8nkVRxKr//V/M\nP/dc3eUqRnRZ7fJo5YLtdhdh1+tuXy/sWR2bfWtViLuR0Tr/pPWDsnLraVMi/y1ls1lXNbPdoiEM\nppUzTPmi3d3dbWk3asaQCIKAbDYrnd1Z/ZHt3LIF3pdfxs4jjigrzVUsFtHT01NWl9Vu9Aq2s7W1\n9bL4VAIj4dtqTnSpNuTyfVS64sampJK/iXqUxQMaxGCyGDFaSlmwbiaZsPWdwWDQdIkAe82iKOKj\n5cv7ur8vX47DJkxQfU+SaqNGz0YP8M1cJxXn14rEXb2iFb6lownySKmmkaMNzZPX60UkEjF8/lnN\nyI0zN5gNBFuuYeeibcTYyus76TzEKju3bMHhX3VQOHzfPsWOCWwI2u/3IxwOGxrDSo2aIAhSyYgb\nakHkvbPndjzTsT9K4dt0Oi1tqpzylNzykirhjRk9/6ylTUk9tvYCGtBg6lXMUWt0bHVB1fNaeZcT\nq9mLdM2Sd/nVF3lsNNrPy2TrHKPRqGkdWqPQIuHEeaUSoigil8tJmwIKkdFckS5mrezw3URekE6R\nAa3wLZ/H8ug5/zTS0aaSdZjJZJIbzFpF7xmmnnINq6UhWoji1x035Jmodng+rHdJ78l6mfJzQwq9\nGcXotdK8BwIBU5sDowk8FAojwYdCoSC9hyAIyOVyNb/DdxM94Vt+/tmHke+p3vZl1ZiUxUOydYRZ\nxRyraBmSYrGIZDIpCRHYGY4kD4D1LgnyMoe3t/fTwnU6PMmGfuPxuKRQ4yQUQQAgCXDTmLTwe71e\nRKNRxR1+NTUorlbUPCWefWsepU1JOa++kh6m0dZetULDGEw1L6RcCFbtfeyExAACgYBqFqzVcXdu\n3VriXbKM/vRTbNu0CUcde6yrXUbIcNG8U089p2A9aDor1aLcDp+HHfWhNo/VFL6tZM2iGdS8era5\nM9C3tpAov5twD7NOYA2PGdFyu9R6AHfEAGjcT7ZsQWT4cHQy91gsFvt2/MOHw/vJJ/DJOgNYGU9r\njtTUgpzyaNl5Jg/aqHEut0ABPOyoB61EF6V5rDec8vpYr56aO6dSKWmDBxg7/zSC0m+WG8w6gcKT\nyWTS8RCsEmx5h5tiAHPPPbck25VtMs32zbRzTCVoXDs3CFrXaXSejYyp1H1eb9iRZ+L2UW4e6Uw7\nn8/z8K0BaMNGv3k3zj/lZSX12ByhYQwmLaoU9/d6vSV9I42+j9lrAEpDsG5khMrrMN04r5VTiXHZ\nPp3yebZ7M6AUdlTTbOWoI59HSr6qpvBtraEVHXFqXjOZDIYPH27H5VcVDfXrpbCc1+tFLBZzVa2H\nXlsoFNDb26vp2dk9LsGe1+rZLJgdU/46eUsurXClXUZMr1KQEygtUJTQlE6npWxcANxr0oAK/T0e\nD0KhkKNhcDfFSNyqK1VDnpRlNatZ6Z6o2qDeaBiDmUgkkMvlEI1GkclkXF+kKCNUFEW0tLS4ej5D\nIa1MJuO6ATFiuOy4JqXzSiM4EYb2ePpabpHXlE6n4fF4SsJjbOkKN6DKqIVv2RpeK2HGepx3vXkZ\navWfFBY3mh3Os2RrHBIBKBaLlhZEMwsq69mR9+HGuMDX6jn5fB7xeNyQAbHqYTrZkktpPKfOK+2E\nzuRY1Rx5diO7OPHkIXVqIfu2FtFb/0nZt0oeJjeYNU4wGJTq7awaTCMSdWwmbiAQQE9Pj+lxjV43\nW9sZDAZd02Vls5DdMlx0r26LxFvFaa/JSdwIL+r9zpfLvq2WjYhb5St2fTZa5590vkxGk1XH4ko/\ndYKbhbzyJBc7tGD1wpZuuDk2Kwxg1HBZ8aLlIvlOjeU0er2mRmr4bDbXQGsjIg8z2vFdqIQerdso\nnX/mcjnpyOfBBx/Eli1bpC5Hevne976HZcuWYciQIdi0aVO/x9esWYNzzjkHhx12GADgvPPOw7/+\n67/ac1MGaLh4j9WFUs/rC4UCenp6JNUe+nLZWcOpBoVCKbEoGo1KO0CnxiRyuRx6enpc64NH91os\nFhGJREz3Ka1WaHcfDAYRjUYRi8UQCASkji6pVAqZTAb5fL4qjX81QZuQcDiMWCwmbawEQZCiMJSY\npaQEVg5RFLH6ueeq5nNw6zpYdaxYLIYLLrgAM2bMwEcffYSzzjoLEydOxA033ICVK1dqvs8VV1yB\nF198UfM5c+bMwYYNG7Bhw4aKGEugAQ0m4ZThIqMRCoXQ1NSkGH5x6stMnhaFQt00XOl0GslkEk1N\nTa5kx7H3Wq9F7nJodx8OhxGNRhGJROD1eqVFP5VKIZvNSqIM9bR5sBN2IxKJRKSMeUoYSyaTyGQy\nEAQBhUJBlyHcuWUL/K+8gp1btmg+z00vtBKyeO3t7bjqqqtwyCGHYOfOnVi6dCmGDx+OV199VfM9\nZs+ejYEDB5Ydp9I0TEiWVZNxArkuqlK9nV1ZoErvo1VzSK+ze0zg67NDyv61cj6j16OV32tvb6/p\nMWsVCseyDZ/lurfpdJoLx+uAnUufz1cSvv3w738HXnoJW9vbcfiRR6qKUHSsXNnXY3blSs0es40C\n9bM99thjceyxx1p+P4/HgzfffBNTpkxBW1sb7rrrLkyUtSV0g4b8FdkdGi0Wi+jt7ZWyM7WK061k\nnqrBerVK9aVmf7zlXpfP59HT0wOv14t4PF6yKDt1RigIghT2NVtLW4+Q90nZ4ECfUDzVfpI3zsO3\n5aHwbSgUwt7/+z8sOPRQdK5eLXXVSaVSyOVyUvh255YtGL9vHzweD8Z/1f2n0lRSeJ2wc5N29NFH\nowf5iQ4AACAASURBVLOzE++99x6uu+46LFy40Lb3NgI3mBZfKwgCuru7JeF0J3fy8rEpsSiVSiEe\nj2smvFj1MOVks1n09vaWhLSchM4rE4kEYrGYLeeV9W446MwuGo1K3w1a9CkaonRmV01UUlCADKHX\n68WEAwfwWUeHVCJF4dtEIoHtf/kL2sNhiKKIw6JRdKxcqSnV2CibPDvvMx6PS1m3CxYsgCAI6Orq\nsu399dIwBtNuWTQyVolEQjq3czM7k7zafD6vy6s1i1L4iRbceDxuSK1Iz1hKc1PubNbMnKrNSbVm\nz1pBLXmINiGUPCQIQlXeeyUMDIVZD/tqkSZDCEDy5KPRKPZ+8gmOOHBAUnPK5/M4bO9ebH///aqc\nSyeQbwKoJtpO9u7dK73n+vXrIYoiWltbbR1DDw1zhmkXVIdJ52ZGz+3s8G4pyUPe7UMLu4y0Xok7\nuzcGtVZfWc2olVzIheOpML0R51wKszLN1sczzdaBvt/Uxy+9hNOZlnyiKGJsNIrlK1ZgeHt7xRqQ\nV4Mna2T8iy++GK+99hr27duHkSNH4rbbbpNk+hYvXoxnn30WDz30EPx+P6LRKJ5++mmnLluThjSY\nVhZzCmH5/X7XyxjII8jlcobUc6x6mLR7VmrJ5SRu6cFWemGpNGrC8VSYXqlFv1JISTyywvvDotGS\npB65UQW+3oxM6u7G3s5OtI8fX1LkD/Sd/Xs8nrqZSyUxBqO/qaeeekrz8WuvvRbXXnut4WuzG24w\ndULGikSfzapYWCnOB/qMiJuyb3RWk81mDRtps/dJY7ohq8cpRUnZheoTKfu2Hst4WI9MyRAC/b3M\nzq1b4R8+HJ8oGAexuRn5rVsxbuLEEo3WVCol1dECzvaorNRGsBq8W6doGINp5QyTLZ1obm5Gd3e3\nE5eoCnU4AfoMtdHFyqqRzuVyrhhpuk6jerBW7o+aaNejEbADj6dUOJ7VFQX6l67Uw0KpxxCOnTgR\nc7/1LUPvy3ZeoaMdLY3WWp3LTCZja25DNdEwBtMsbO/KaDRaclZhVrLLyOLONnomSS83YCXuYrGY\na3qwAKSNiZP36vF4JEUmn89XsmgBKNHF5PTBep+BQEA6R3dSr7US3opRQ2gE+u0refJyjVa591mt\n30X5Z0QN4uuRhjSYeoxWubCg0wZTSYs2l8u5InFHZ4eRSEQKQbs1JgA0MUkUTkG9/9iSGAo/ZrPZ\nqhLsdgK7DJGe5KFqFI6vJErzwCZiAaUttthQuN7wbSXDotRsoh7hBlOBcmFBp7+IRrJR7YQ9p6Ve\nkvRjdXJMdmNC9+3keOl0Gvl8HsFgEMFgELlcTtrB+/1+6by2XrNHSff0lHPOsfUe1JKHql04nvX6\nqgWjLbYqee1KHmY9dioBGshg6j3DZEOwamFBu5WCWLQyQ62oBOnxqBOJBIrFomWJO72QF021pGbH\n1DsvtBEBoOuMpRayRwVBwKuvbkRHRxqC4EMgUMDo0WEcd9zhqq+RdE/Hj5dKJOxGLeSYz+cdT3ip\nVqysGXrCt+xmRClz1S24wWwARLGvTQ192FoLqhPF7Urend1o6dD29vZKakVuGGmqr/R6vdLGxMlC\nb/Yeo9Go1OVE6bqB/nMlX7SqoW+lIAh48ME12L9/FsLhFunve/YcxHvvvYwf/OD0ft+jSumesiFH\nyoSmsDh5TPWWPKSG1XuTh2/ZTGbajBBkQJ2En2HWKbQoU4YaYSYz0+o1sLCNnrW8OyvGSw2SSiu3\nSbCTcvWVdp+/KN2j1fc30rfSqZ3+q69uRFdXqbEEgFBoAA4ePBGvvroRp576DyWPsSUT8kJ8p6HP\nlf5TEo6Xe++NopZjBXkmM22+aV1xO3xbzx5m/WQxGIA1PJQpCcDxMgal17IC5m6fV7I6tGrG0m7P\nT0sP1u4fMp1XUtsxpXukxdvKPZL3yUrPUdNuJ4XPOzrSCIVaFB8LBlvQ0VHqbajJvblhlOjcVGks\n8phIbi4ajUrC8VT246RwfD3VDZIgAm1I2IRFal1GOsLFYtGW+ZTPXzqdrluD2VAeJkELJJVsRCIR\nqTbKyOutwpaM6PHu7DDU5F3TWZ5TRlp+rWzWr91evNK8sFEDt85k2etRq12krGMy1FZ2/IKgPYfy\nx/XIvTmFkXNT1nun0hU6MmG991oL31bCMOsJ38rPP61SzyHZhvIw2fMp+sKU6/LhxDVQqMSMgLlV\nQ00erd/v79eSyynovJJCzlrG0o7NiDxqUMlyENb7pM4uXq8XxWKxRPjcjPcUCBR0Py73LgmzXqaR\nxZ/GPnXoUMNj0aZCLhwvn79qFY6vFGqfD23m5E3I8/l8vybkesvf5PCQbB1BhpKK47W6fKhhZVEv\nFosQBEEyHkbGt2LUPR6P1JKLwl563s9q0o+8/ZnTG5Nq75dJBoCSj2jBIkF9ea9FLdrbI8hmlVWn\nstmDaG//uhaO7dkovx4nejiy125nv0jymMLhsBTWV1rwq71tWTXAbkZoM0ebd3kbuHLhW3lItl49\nzIYKyVL/umAwCEEQHC9jkJPL5ZDJZODz+UwZD3mykl5YCTg3dWiphMAtPdhMJqN7PKezcvWglfxC\noVt5+JFl3ryp2LJlDbq6ZpWcZWazBzFw4OuYN+906W965d7sgK3zBFAiZC4XMLcKLfg0rpZajtrv\n3a1QabWfleotBZKXr8jviQsX1AmFQgHxeBwej0fSwnQDSj7JZrOIRCJStwI3YFuRmZG4M2NYyLMk\nL94NA00qSG5uCOyGPW/S03YrEAjgmmvmqtRhziopKXFS7k0Oe14JwLVzU/l5nZJaDqvcVM3Gyyp2\nGGe1UiD2++j1eqXHaLx0Oo2mpiY7bqPqaCiDGYvFpB+QFYwYEVa4vaWlRfrCOT0uUFq+4ZYOrVwc\nwGkDXSwWpcWwpaWlrhZBvcIJp5xyTIn3RAlPlYCt81zx4ovweDxl22SVez+zn6ketRzWU+KooxQN\noeMlAEgmk3jttdewfft2SVZTL9/73vewbNkyDBkyBJs2bVJ8zvXXX48VK1YgGo3isccew7Rp06zf\nlAka7gwTsB6O0/t6SrDx+XxSgo0bP06qw0okEmhqapLOeZxSCSLy+bx0XhkIBBw3XmxJjp3jVeMC\nSuEypdILKg9ysvRCL+x5ZWTbNgzets21c1MtlJKv2Oxb+s1QfoETuBmSdXosms9AIACv14tYLIbW\n1lbs2LEDzz33HM466ywsWrQITzzxBPbu3av5XldccQVefPFF1ceXL1+OHTt2YPv27XjkkUewZMkS\nu29HNw3lYRJOL4hUsqIl3G4GPdftpggDi/z8MJVKOToeK0ZgVz1ZLVFOOAHomyMnhRPkSN7lVx5l\nMZHAO9kseiZN6i9OYeLc1E4jwIYbfT4fcrkcfD4fF443CP3uPB4PZsyYgRkzZuAf//EfsWTJEmzZ\nsgXPPvssHnzwQaxdu1b1PWbPno2Ojg7Vx59//nksWrQIADB9+nQcPHgQe/fuxdChQ229Fz00pMEk\nzP4AtZJvyhksJ3941JLL5/P108F1apOgVl9pNbtWazzK3KMuLmoyd1bGqSXYZI1gMKjYqNiNszt5\nnefJEyeiPZlE7qSTLJ9XsolETly/Uu1sLQjHK+H291op6WfixImYO3culixZYvl69uzZg5EjR0r/\nHjFiBHbv3l0Rg9lQIVn6YO04DFf6EuhRDbJTJYgll8uhp6cHoVDI1nIKrTGN1FfagSj2CcSTWLuZ\nkqBGgD57qrWjOmMqXaENh52lF3bXecqREolcCOPKw99y5SaztbNuZ8lWyqjLlX7suA75PFfq3hrK\nYLLY7WE4ZbDkKCnasBJ3aiIMdt8vnR9q1VfaOR5tRrxer2uCC/WA0tmdUuG/1bNPJ+s8rQgf2IG8\n2D8cDpuuna03lDYBmUzG1rKStrY2dHZ2Sv/evXs32trabHt/IzTsFt0uT08pROjkuCxsBq5bEnfA\n15J+WvWOZjcMSuOxDa3D4bCp9+X0oVYqYLRriHyhdKrOUxRF7PrwQ0cF4414fmq1imztZ6WbjldD\nvaed93322WfjgQcewEUXXYR169ZhwIABFQnHAg1mMO0606PXmmn0bNXTo9eyfTv1qPbY4WGqnVc6\nBZs8pdXyzK2sZ0KpB2V7ewTz5k11pC2bU1gVTmBxqs5TFEV87KDwgVW0aj/lyUPFYrEqrtlOlIyz\n0d/ixRdfjNdeew379u3DyJEjcdttt0nlKosXL8YZZ5yB5cuXY9y4cYjFYnj00Udtu36jNJTBtBNR\nFNHd3a3aosoJaAyjou1WxzSzObBjY+B0tq+Z61PvQdmNLVvW4Jpr5taU0WQh70mPcIJboceODz/E\n4RUSjDdDuexl2qTUmnC8Xsx8L5566qmyz3nggQfMXI7tNOxBkNkFneq2CoWCYosqPePS+5iBEg+M\nirZbMWDFYlESbG9qanI8zGSm5ZpR6HOg+dRbw6jeg7IFXV2z8OqrG22/VregTFSaA1r45Tqj2WxW\nykx2um5x98svY6xDiUROw54fR6NRqWbRaeH4Std7VnsWsRUa1sM0K/mWSCSknaIb+qiEGy25lBAE\nAYVCAaFQCP/3f5uwa1caguBFIFDEmDERnHzy0bZ6VHQm7IbnLoqiJCwBoKSGURAEaYFj0epBGQr1\n70FZS2i14JKf3ZHXqRR6tKt0ZeeWLX3e5cCB/a7FTi/TTQPj9XoRCoVUpebcbPTsFNW+kbFCQxlM\nK7F29swwEolIxsvsdRj5kVLSSygUQqFQMG0sjabAU/ZfsVjEww//H/bvn90vDPnBB6tx3XWn9DOa\nZjYktACHw2FDWXZmxqKNANtui95Hq4bRaA/KWoGVtNNzRkheRDgcVgw9snWLZr+vn2zZguLw4fg8\nGLRF+KAaYEvb1M6PjQjHK+GmwRJFseTaisViXWewN5TBZDGye5OfGVpVltG7wMsVgwKBADKZjKkd\nsRGjwp5XxmIx/OUva9HVNVslDDkbL7/8Lk4/fbqh62Fhk4nYBAonIAm0bDYr1dqxQvzsQkaGlDUE\nopgpOYuSU65HZbXCig4Y9d7kwgnkObFNis0IJ8z91reQTCbrVsibRSt5yIxwfKW8U7tLSqqN+t0K\nlMGIzJz8zNANlRgam1pyBRV22Wbesxxsg2k6r+zoyGiGIXftMh+GJPEDSu4xq3mrB5rTXC6nq8Gt\n/AwqFovhsMOiyGQOSKUYhUJBCuPKe1DWCnLRAatnhEp1i04LJ9QbdH5c7XMo37zXc/NooMEMppGy\nEko8KRaLqqoyTij2sGMD9iW96DG2ag2m8/lyYcj+XyM9mwq6T1ac3ikocQkwP6cejwfz5x+LwYPX\noVhMSt+JPknCLxGPr8GsWZMcS4LRi9HvpVx0wA6xAcIt4QQruDWuFSlOpTmkaAmbPETRr0p5mKTv\nXK80bEgWUP+hsG2xlBJPnJB6IkhUPBKJIBQKKY5t9gehNqZWfWVfqCiPbFb9fQMB4waCFU+3WhpT\nzjjT+XMoFLKcSKTVg3L27Lnwer2u6reqoXc86ezSQgsuo9elVzjBzTmrpQQbdg6Vyn++3ujmHZ9H\n+VqUTqfrOiTbcAaTNThKMnOZTAaZTEazUF7+PmauQY6Rsc2gdp166itHjQph48ZuxbBsNnsQY8Yo\n/0CUjBh7n0rKSHaHu/WoEhklEAjg1FP/QfVxtSQYMgTVhFwwnSiXiWrHZ1ROOIHGoLPtWjJqbiKv\n/czlchUTjqd8i3ql4Qwm4fGUdhyRN3p2MjwoNwpGxrZiUOSvI8+LQj1qP6Q5cybjk09eR1fX7BKj\nmc12o7X1DZx88imK16k0PokROD3HeiQLBUHAiy++hR07EsjlPAgGi2hvj2D69PGWvF6tJBjqvUib\nrUq3jrIiaWf3dcs9p3w+L4Vr66Hswo1QKRlEmkOlBCx282ZHXgT7HolEgodk6xHW8BiVmZO/3gqF\nQgG9vb2OS9zJ31ev50U/vuuuOwUvv/yuQh1m/5ISJbRaj9kN1cuKorrGriAIeOSRN5BMnoJgMC7N\n6Z493XjvvVdw3XUn2+YNUhIMe+4EQNH7dDsl3ylJOzsgoxiJRCSvnYxnpeetVpB/9yjyYVQ7WC/y\nTiX1RsMaTMKszJwVg0mvtfMcTw/k2dB5pR6xeCIQCBgqHWHnhxVPVzqXVXudmbFYw6zWRQXoU+w5\ncGAWmptbSiINoVALurtn49VXN2LBguMNXYfea/V4PPB6vYreJ1DZs89qRS6coKXZanTe5LWEtY6a\nJyufQ6XaT6vC8TwkW2fIF3LqrWjGm7DiYdIX1IjRAqw3Zu7t7dU8r7RrPCKTyZQVT7eLcslaLB0d\nGQSDyqUyweAAdHRknLrMftnaSh5ANXif1Uw5zVY7hBPkWBXdr2T2qhJatZ96NyHye+JZsnUIG89v\naWmxLXFHD6S/acRo2QH9EEhFx+kfLi1imUzGlc4mlLykN7lHqRSGpVwpjRPIzz5zuRxWr34Hu3al\nkct5EAgUMGZMFCedNM01wf9awCnhBJZ6Ft0njGxC1OYwnU5j0KBBLl+5ezScwczlcujt7UUoFEIu\nlzO96JjxvOislL6UZoylmXFJLcjr9Zre/RnZHVMSE2BuQ2JUwo8yKltaWnQb5nKlMH5/ZRV7BEHA\nQw+9VrJAp1Ii1q07gA8+eAX/+I8zEQ6HufepQLlzO70ty1j0iO5rZU67iR0hZqVNCJWusMlDcuq9\nrKThfmX5fB5NTU2uKecQmUxGEgUIBAKueAesUpHeZCY5Rl/DKgWZeb3Rs6dEIoFCoSD9wPXS3h5G\nLtet+Fg2ewDt7ZVtVK20QPclwLQikTgJ69dvh9/vl7yoVCqlu+NKrWBHCFOPcAKpNWnNmx2i+9UW\nkjUChW9JeSgSiUhGOZlMYvXq1fjZz36Gffv2GTaYL774Io444ggcfvjh+OUvf9nv8TVr1qClpQXT\npk3DtGnTcPvtt9tyT2ZoOA8zFotJ4UmrerB6UBIFsDK2Xg9TXl9JCT9OwiZQBQIBKYnFCSi5x+/3\nmxLDP/nko7FhwzKk06ciEIhLi1k2242BA9di7tx5Dl25Psot0B9/nNE8+wT6vFTufZaiJJyQTqdR\nKBSQTCZVs0ZrSXTfacPMlq4IgoBoNIphw4Yhm81i+fLl+O1vf4tTTz0Vp512Gk477TSMHj1a9b0K\nhQL+6Z/+CatXr0ZbWxv+4R/+AWeffTYmTJhQ8rw5c+bg+eefd+ye9NJwBpOwmsyi5/W0qHu93pLQ\npLwG1G6U6isLBfMhxnIiDUo1j1YMdLnXsVm34XDY1L0FAgFcddUsvPvuZnz0URLZLKQ6zOOPn1Xx\n8ygjC7Q8fEZep5Ott+oBNmM5EAhIm1kSTgAgzVk5Uf1aFd23A4/HgyOPPBK/+MUvIAgCzj77bHz5\n5ZdYuXIlHnnkEfztb39T/c6tX78e48aNQ3t7OwDgoosuwnPPPdfPYFZL1IQbTAtovd5IxqYRyl23\nWn2l3Qo6hJ6aRyOUmyc7s26pVIZ6EtK10xlNJbGyQJMh0Gq9ZfXss1oWMDuRCyewknNDh3rw8cf7\nEA4P7FevqFd0v5ZDskoo3U86ncbo0aOxYMECXHbZZWXfY8+ePRg5cqT07xEjRuCtt94qeY7H48Gb\nb76JKVOmoK2tDXfddRcmVqitW8MZTPkHbKe8Hb1fOYk7q8ZLTXLOTH2lHtSuV4/ogp75FQRBEkVI\np4vw+QR84xsDSppTl9O7rbcFvL09gj171OUI9XZF0cogtep91svir/YdZbNGFyyYjp07X0FX1wnw\n+5ulxJp8vgcDB67FvHknVeDKlam0+LqROkw913n00Uejs7MT0WgUK1aswMKFC7Ft2zYrl2mahjOY\nhB3JBEpatCT95lQphdJ103klAFUvT69RYY0XKfoMHlzAmWeeUHI/8rConutUG+8//mO11Jyaklbe\neCMlNaf2+Xxl9W4B+xaKajDA8+ZNxZYta9DVNUtBjnAt5s2ba+p9ed2nOYLBIP7pn06W6jBzOS98\nPgEjRwZxwgnHSZ1CGinsreZhGsnEb2trQ2dnp/Tvzs5OjBgxouQ58Xhc+v8LFizANddcg66uLrS2\ntpq8cvM0rMEErAuos+eQbBJKOek3O1SCCL16sITW/cqNF7Fz5150dLyCG26YD7/fb6tI/Msvv1vS\nnJrmlZpTr1r1NmbOnFD2/kRRxKr//V/MP/dcXZ9nNRhFLdS6ovQVyttT8+ek92kH1RbCVBPdZ2X7\n1DYebn7XKjlvdFyil2OPPRbbt29HR0cHDj30UPzxj3/EU089VfKcvXv3YsiQIfB4PFi/fj1EUayI\nsQS4wbTli8y25FLytpwa14isn54fkNx4EaHQAHR1zcLq1e9g9uwjdXvQejYku3apZ4P6/U3YuvUA\nTj45Uvb+Oj78EN6XX8bOI45QFQtXw40MYjOU64piN0a8T87XKEnOyeUO63HOlH7b2WzWUFcgv9+P\nBx54AKeddhoKhQKuvPJKTJgwAQ8//DAAYPHixXj22Wfx0EMPwe/3IxqN4umnn7b1PozQcAbTzuSb\nYrGIVCql2RHDbijj1YlxtYxXMNiMLVsOYPZs2Cqerqa483Uijj6d3c7Vq3Hu0KF4cflyQz0cyUMX\nRVFa9KrReLpNOe+T5teNnotOY7dHprTxyOfzAPrO+Nxst+U2ZkQTFixYgAULFpT8bfHixdL/v/ba\na3Httdfacn1WaTiDyWLV06PzNqPZoVbGFUVRqq8zO656SFb9vQRBABBCLBaz9QeupLhDReShUAh6\nNOl3btmCw/ftg+eQQ3C4Rg9HJXp7e6VuGKxRKBaLDXcmpYXcCCj1XORnn/2hjYfH44EgCFIduFwx\nx86m2W6FZKstZO4GDf3NNmu48vk8UqkUPB4P4vG4qQXC7LiZTMbSuFooGS8yHn0CAcba/+iZ3zFj\nIshm+xR3aDMA4Cvpwm7V5tSEKIrYuWIFxn6VaDA2GsVHy5drjkt1o0BfQgEpL5GSCbv7p3B7Op2W\nEjsaHapd9Pl8iEajiMVikupQKpWqS9UhO2AL/uWKOYIgIJlMSpEjq8IqlaARDCg3mCZ0WUmL1mz/\nODOvoXGDwaDp7vPl7pc1XkCfVykIArxery7jZYaTTz4ara2vI50+ICWakOJOX3PqozVfv3PLFoz7\n8ssSUQjyMpWgTGYyzEpnS2QQgsGgpkGoxUXNCcj7DIfDiMViUgidbza0Yb9nJNtH4W+S7ctkMhAE\nQff3rNLJRfVuNBsuJGv2w5TXOQKQFl0z12DkB8Cq6BSLRWSzWVPjluPkk4/GBx+sxv79s+Dx9BnH\nUCiEZPJLHHLIOpx88qm2jxkIBLB48YlYsWIdPv9c/ErBJosJEwaWbU4tiiI+Wr4cp8dikjIL0Odl\nKp1lyuUCDxw4oOsa1c6k5D0EzW5k6gmtBBijmbeNFlrUEk5g545alpXLxOfYT8MZTBa9hku+0PYV\nLOcdvz6l+kor+qzl7jcQCGDJkrlYtuxN7NlTgMcTRiBQxFFHAaeearyUodx4tJPO5XJYuHCOpE2Z\nTqfR3Nxc9v2ls0tZoTTrZdJZptHyG617UmpkzC5qdnawr1b0bvjUNhuNdvZpxijL223Z3ezZbujz\nrGe4wdSpWyqXuLOzllIJtQXeyfrBXC6HTCaDs86aVZKZSvWldsKKPLS0tJj6we/ctAk7uwX8seNL\npNN5RCIJtLYGMH78SHiam5H/4AOMnThRCg3qKb8BjM2x2qLGapHamdBRTfx/9r49PKryWv+dmcw9\nEy4WuQR6goINUhRQpFawBEHAQhKkrSi11FqbahGt5/y0VdvKOcWjHg+etrQea31Ka6tF7lFCFKTx\nDpSC1h5AEQxCkACSkEySue/fH2FtvtnZ9+uQmfd5znMqSWZ/e8/M935rrXe9S+v9aI0+CzgLNvoE\npIc920mcQkVsZ2dnrx7tBeQhYYrl3MXAcRw/R1JsKLEZxCV16lTqrzSbqFk7P7PbY8Sul8lk0N7e\nzit91b4nLJLJJN5vKsFn/ZcgMKQPkl1dKAoG8Un8NKKZN3DnndN4kwWzvGeVIJZSS6VSPeYwFuqe\n3VCKPmkzZv93Ad0QG/ZMnzWg20DA7sid9qzejLwjTBZyrjFWWtzJXVc49UPt3+oFmadnMhnJSE/v\n4UBsrRQ5+/1+UVN6tfcn5hDU3YrS7RC0ZcvfcfXVY5BKpWTfQyvJiwQddB1K3bLp/ELbSjfEok8S\nVnV2dlrmOkTvv9XP38o6KfvsKLtBIjUq4bDpWzOfHftahQizl4LtRxRumGRxJxX9CF/DjDUA6vxg\njV5X+Ldq79UsJBIJtLa2YseO/Th8OMl71Q4fHswyWlcDJZOFfftaMWlSRrb9xk6SYqNPStdS2wrb\n70mCjnwHkQCArGg932qfeqDGsckK4wTKxvVm5CVhEsith8Ba3Pn9flUfJDNOjmYJUrSANU9Xulcj\nESYZAnR1daGjowN//OPf0NLylSz7vaam07zRutp7lzJZoMgkFCpCcXFxTkZutEn5fD6+jUDYzG5F\nRCCHXFGKsqA1mam8zTewz07qs6a3zi4WYfb2lGxeH83ENvTi4mJV8yuNfinp2tRfGQwGJUdkif2d\n3mtmMhnEYjFEo1HV92oElPJNpVL4298OoLX1KyJetd1p1Fdf3aX6/qQcguLxOIqKihAOnzstHsJm\ndnpP7Opj5DgOWzZsOGdqq+di32eutMhYaZyQD4SZ1xEmkD0AWataU5hW1Yquri6kUinbfGjJ0ozs\n/KxWItJBpKioO9o7dCgmmUb1+/vg44/VD24ePrznvMhkMgmfz4dksk2TyYKVymMpSF1PGBFIqSHV\n9OKpxcG9e1G0dSsOXnSRZuN6pyHV5qM2+szFyNousJkO4GydXajyluoxFoswCynZXgjaIDOZDJLJ\nJPx+v6roTup1tIJ8SklUZIcPLdWA3G635nqlnmsmk0mkUin4fD7ef1bOq7b7b9Q/BzJZOHVqGUO1\ncQAAIABJREFUEtzuMDiOO0OW7Wccgqapeh027ZeLkFJDmmWawHEcGl9+GTMHDkT9yy9rMq6XQjKZ\nlBhLNtZypbLU8yrUPpWh1ThBiEKE2YsRj8cRi8XgdrttPRVRvdLlcvHpED3QcjKma5Jq02pyoLaY\noqIi3qcVEE+jsvB6MxpSsl4sWnQNNm58G42NMSQSLkQiPlxwQUjRIYjgFEkaqQmrMU3QMn/x4N69\nuOiM+cNFGo3rxZBMJvGb3zTgs88m9ahT793bgDvuMGeWpxqoiT7pWVkdaeZKSlYLlIwTgLPTajwe\nj+bh0QBQX1+Pu+++G+l0Gt/97ndx33339fidxYsXY9OmTQiFQlixYgXGjRtnyv3pQV4SZkdHB+Lx\nOILBoCGbOa0bH9tAr/e6Wr8MRF7hcNiQlZ+aepCwLYa1qwPE06hn19mqKY2aTqfR1dWF6dMvRzgc\nxunTpxGJRExJMzuRotUDuQ0NAN9eICXm4KPLM5vcBaGQ6ihT6vn89a/v4tSpSRJ16kn461/fVT3j\nU4t9pJrvhVj0Sd8JGrtViD7FIWac0NnZiXQ6jbq6Ovznf/4nxowZgwsuuADxeFyVQUg6ncaiRYuw\nZcsWlJaWYsKECaisrMSoUaP436mrq8NHH32E/fv3Y/v27bj99tuxbds2y+5TCXn5qfD5fCgpKTFc\nN1S7sZIPbWdnJyKRiGoFrhHQNbu6uhCJRCyPLFlxDz1b4fMho3XW4B2AaqN1QiqVQltbW1a691wh\nOatAG5rf7+d74VgxBx1kaHQawESXrrMuUhfJGNeLXVOIxkbpdh+/vw8aG9XXqaWuwUKvYImiT6/X\nC7fbjVAo1CsmrtgVydI1AoEAZs+ejV/84hcAgDVr1uD8889HZWUlfvOb38haiO7YsQMjRoxAWVkZ\nvF4v5s+fjw0bNmT9Tm1tLRYuXAgAmDhxIlpbW9Hc3GzRXSkjLyNMn8/Hq8Cs/jJkMhl0dHTwQhs6\nuZrRTyn1xZC6JqCvUV9prdTPSRPRpdbl9Xpx553T8Oqru/Dxx12CPszuNCq7oYuBjZi1THbPJ9Bn\nQ8w0gW0lOLhpE64TpNC0RJli6DbP1/9zrTBLsGR17bO3iovooPalL30JDQ0NuOWWWzBhwgRs3rwZ\n27dvl834NDU1YdiwYfx/Dx06FNu3b1f8nSNHjmDgwIHm34wK5CVhEswyH5AC1Q69Xq8uUZGe66bT\nabS3t4te04ooTKmfM5FIoKHhvR4E+d3vXiVay5J6RmTfF4/HbVMV9xaw6TQig/3//CcuOH4cyTN1\ndJfLxf9/I7VMrzdt6OdaYIVgCTCuvM0HiB0ASPRz3nnnYf78+Zg/f77sa6h9bsI9y8nnnfe7jlWE\nqWT4bQV5scYLgUBA9HfMvKaST2sqlcL//u9raGubKmlUoEYAIrQqNKu+ZLQtKJchdU9EBscOHEDR\nsGH4FOBJlOrUrnAY6f/7P10EVFYmX6cuKzPPOs1swZIUziXlrZOfZ61OP6WlpTh8+DD/34cPH8bQ\noUNlf+fIkSMoLS01vlidyEvCZGs2gLkfMjV+sOzv6oGQbCn6isVisibjeu9R7Ho0G1Sun7Oh4T20\ntExGOCxtVDBz5kTRv6X3RMmoXWqNBchjyvXX9/g31kYtlUrpEsJUVIzF3r0NOHVqUhZpdtep30JF\nxRRT1m9EsCR8Ha0tVmqiT2GfLMdxjpOpmZCLMNXi8ssvx/79+9HY2IghQ4Zg5cqVeP7557N+p7Ky\nEsuXL8f8+fOxbds29O3b17F0LJCnhEkwy62HIFc7NPvaBGH0paQSNUoqaj1vAeDQoTh8Pm1GBexz\nscsyMB6PI5FI8MSQr9BimiBFNF6vF3fcMUWiD1NbS4kcmbHRJa3dyihTCkp9suzzsgNOErNW44Ki\noiIsX74cM2bMQDqdxq233opRo0bhqaeeAgDU1NTguuuuQ11dHUaMGIFwOIzf//73Vi1f3ZodvXoO\nwEhajiVMrfVKM0Q/aqMv9u+MXE+uPiqGVEpJACL9xU4kErIjzgDjmQGKzFOpFK+QjMfjvOo2nU73\n6iHQSlAiA3o2QtMEr9erunVECWraYQhGBUtGIRd9ptNpPu1tpktTLkGP+fqsWbMwa9asrH+rqanJ\n+u/ly5cbXptZ6D05AodAdnPkB0ttDlYjnU7j9OnTWa0VaqCXpDOZDNra2nj/TjXXKypSEoD07O2k\n9bEtOGLgOA6b163TfT9s+pHS2HRvtOHFYjF0dnbypJrPKV8iA3LFIpKk1K0RD1KtELbDsGvU0hZj\nNeiwEQgE+P8NdGc0ctXzVi3EDquFaSW9FGYqR5PJpKp6pdga9H5RqE6qtbVCr3UaiRsikYimlFpZ\nWRBHj7bC6x3Q42diRgVUGwWg+DwP7t0L96uv4mB5OS68+GJN7yNF5qzbUjrdTe5EDEB3j5nUEOh8\nH8NFqlp2AobQg1TPBAw1OLxvH4oGD8YnYtFnSQlS+/apTsva2bdITkyA+tqnVjgp+onH47a5ODmF\nvCRMFnoJM5PJ8EbmWk3b9V6XCCWdTiMUCunqQ9RyTVbcw56Q1aKi4lLs2fNXRKNTRQQg2X6vVBul\nL7vc8+Q4Dgfq6rrbCerqcAHjDKKEVCqF9vZ2BAIBJBIJ/n2gexReV2oItFNjuHIRbNsKO7tS7JBB\n6W4jEBMsnWtQW/vMBeWtGKSIORfXaiYKhKmDuKiWx/avWQ2WUFh/Vi3Q8jfs9cLhMB/5aYHX68X3\nv381tm37P0mjAuDs8yRxT2trq+zrHty7FyPPCD5GnknBnc80N0uB2m4oMqd0GNWVWEKk/82+v2L9\njOxgXqNG6OcS5MQlhUOGNuhV3orByQgzH97LvCRM4Rur1w8WgCF/VrXXFapFSYlrFYTXU3LfkQIR\njFTrCJBtfEC9o3LPho8uzzz/C0Mh1NfVYcD3vid5DY7rnjtKNoGsajEej8Pn8/EkF4vFkMlkeJUo\nPQ+KCFjyFFOUCo3QKULIh81EDEqHDLkUt57NP1f7arWs61yIPoX3Y4drWi4gLwmThRaxjLC/klKy\nVkLMAMGsfkq117MKSsYHYmCjS6D7nkaePInGDz7AFy65pMfvU1qZPG49Hg8f9fj9fn4j6uzs5CdX\nBINBfj20wbOnfgB8NEAblpQRulhNL18hPGQoRZ9aQb6y06qqNH2vc5FgCVqjT6eRy8/SDBQIUwWJ\nmO3Nqua6SlZwZhM1a34gvJ7eOq/U36k1PhD7Oza6JFwYCqF282ZcNGZM1r+zaWVqu6FNmuO4rB45\nqg17PB50dnbyP/N6vXz0Selb2rQAZLWeiKVuxWp6VMej1ox8hVL0Sb8jVlsWw7k8CFstlKJPAD1K\nCVZA7KDR28kSKBCmIhkoebNacV2O6578kclkRM0BzI4wtZofGAHdm5K5g9g6hdElweVyYeRnn+Hg\nvn24eOxYAOKG8BzH8dMT6Lo0psjtdiMSiWSRajKZRGdnJziO44mT/o/S1ELyFNvghTW9eDzOjyej\nCCKXe/PEBkIPGeLB1KnjTFNFiqW4u7q6st4fuefE92aa7CtrFqyIZMWiTzr4JRIJ05S3akAHx96O\nvCRMtR8cJ/xgaaOXMyMwct1kMon6+u28CKeoKI2BAzlUVIxFv379JJ+NGfepdqqJ1L837tmDosGD\ncVjk57FAANzevbh47FheCcsawlNalVVpptNpdHR0wOfzZb2/YpEPm7qln3m9Xv7/4vE4tmzZhcbG\nLiQSLni9aXz+835cc814+Hy+rOiTNi8iBjZCyDXhkNRA6E8++Qwffvg67rzzGktaCdhIyuPxKD4n\nu3xlcxn0GSMtgJW1T6Hoi9V19GbkJWGyECMfsXql2r81cl2lyR9GkUql8NvfvoHOzmsRCPThW2M+\n+SSKxsZtWLxY3AzdjIjWjHu75mtfk/wZ+Z4KlbAULQrJMpVKobOzE4FAgP+9zevXY3p1dY8sAp3i\n/X4/34JCGxH97m9/+yZaWq5GMNiXF0B8+mkLPvigAd///tX83EWp1wbO1qdySTgkNRDa5+uD1lZt\nA6H1Quk5uVwuHKirw3Vn5oCaMQj7XIeZyls16OrqygvC7P0xtAToAyIkLqp7sYOQrQJdl+qH0WgU\nxcXFCAQCsh9gvUT96qu70do6GYFAHz5t4/V6EQ5/Di0t3WboatarFfF4HNFoFOFwWPHe9IKIrKOj\ngx+YTdGhkCxZ2z1KlR7cuxeerVsVXWIoMgyFQohEIggGg2hoeA8nTnwJbneQb1VxuVwIhc5De/sU\nvPXWniyxEWuVxoIiKnKMontw0nFIbiC0z9dX80BoLZDr9WOfU9PBgxh58iSfRk+n07jwxAkcMDAI\n22zYIS6S+1ywrkPhcJjPqOh1HRLej1bj9XMVhQjT5coqlmvxSjUaYQLiKk6rcOhQF7zePkilUkil\nUlmpQikzdHatWkEEwbZzqIHW50q1SdZEghX3EFlS/TCZTGZZ4HEch4/r67vrX/X1qutflLo9ejSD\nSOT8LEIkIwSPpxgff9yZZYuWTqf5IeZU/5QTDhFxOjFSyu6B0HpweMsWzGTqz5lMBsP9ftS9+CKG\nlJXxz5E9NPVmqNm3zI4+C4SZZ9DTTmFGSpYs2tSYpxu9biLRvbFSS4XwenJm6FpBkZFeJyS1YKen\nkGenFFmSiCQcDmet5+DevRhx4gRcxcUYceKE5voXPTciOSB7xmRHR5p/n9PpNMLhcJZwiI02xYRD\ndA8+ny+LPO1oLbBzILQeiE0tITIY3daGIwcO4PMjRxZME2Sgp++zEGHmGVjSIcm/Vj9Ygp50C6k1\ni4qKLB1dReg+RXa79fh8PtHriZmhE+h5qVknebUKm/3NBpsRYL/IckpYoXE8H12e2XBHhMOaokxA\n/LmxG3c4XMT71brdbnR0dGS1rFBaWKrnUyz6JLGR1AZHdVSjnys7B0LrgaKv7P79uGjMGEnTBGov\nshK0z9iRkjV6DbXRp9CoIB+M14E8JkzgrMQ/k8no9oPVA1JbAtBFllojTFKNjhhRjKNHTyMY7LnJ\niZmh6wG5BPn9fhQVFemy1FNzf0KHIGr/SKVSPZSwnZ3dKVGxqJqNLunaWqPMsrIAmppa4ff37fGz\nWKwFQ4Z0R73UtsL2ZXZ1dUn2fLLRJ22GYuQp3OCojtfR0WFYOCQ1EDqRaEX//m+jouIaTa9nNtT6\nygrbVtgUN4m4CtFnT0hFn5RBamtrw8svv4xwOKw7wjx16hRuuOEGHDp0CGVlZXjhhRfQt2/P71JZ\nWRlftvJ6vdixY4fR29OMvCXMVCqFtra2Ho4tWqEl8hKqb9va2nSfCtUSJpFzOBzGrFlfwvvvv4jO\nzukIBPoyv9PTDF0PhApVq0Y9sfdEmx+JfgDwXrtCJawQwuiSoDXKnDp1HPbs2YqWlklZpBmLtaC4\n+K+YMuXqrMiW+jJZFa9Uzye1VGjp+aTZnsFgsIfjkFZSkBoIPXiwG9OmfeWcnU5BUTpF/R6Pp0f0\n6bT9XK6BPXSkUikEAgEcO3YMW7duRUNDA4qLixGNRnHdddfhyiuvVJ2te+SRRzB9+nTce++9ePTR\nR/HII4/gkUceEb1+Q0MD+vfvb/atqYaL6626agV89tln/Beiq6sLJSUlul6npaVFVXTKugUVFxfD\n7Xar/lshKDKRWzNLzsXFxfyH9/jx49i58yAOHYoJzNDHy25+ra2tiEQioukrKZcgSpmKnRbl0N7e\nDr/f34PkWPcjuieWSEjMRN6vmUyGt7kTI4cDe/bA8+yzGHkmumSxPxpF+uabVUeZyWQSW7fuRmNj\n93P1eJIYNMiFadMuQ3FxsepDEd0HRYlszyebYqbDCOvzSyRImRP2xC98TkZJoauriyd2q9DR0cGP\nX7MKNE2F/eyzaUj6LBlpwSATBqtTlpQ2taOWKHxvVqxYgU8++QQ+nw+bNm3CoUOH0NjYiEgkovha\n5eXleO211zBw4EAcO3YMU6ZMwb59+3r83vDhw7Fz506cd955pt+PWuRthFlSUpKVXtALNelDKfWt\nXvGO0t/Juen4fD7MmDHBtLoN6xIkJH8z70/oRiQU97jdbp5kY7EY3zJDRM5GbfT8D+3dC++QITgi\nUf9KakjLer1ezJhxBYCePZ5aoNTzKbwPKeEQEaSUWbyScMislKQd7RRmQ0kEk2vmEk5A+L4mEgmM\nHTsWCxYswNKlS3Hy5ElVZAkAzc3NGDhwIABg4MCBaG5uFv09l8uFadOmwePxoKamBrfddpvxG9GI\nvCVMo6TFvo7c31Oakp3GYSXUuulohdh9inm1WgElT1gxJWwkEuFJlep6rFOP1+vFlLlzTY9eKPpn\nDdz1QqiMZY3KOY7Lij7pAETRKYmMWLN44WFGSjhEQhijA6A5TtkMXcx2r6wsiIqKsbquqWeNSj3P\nuW4uQbArWSh2nc7OzixtxOc+97msn0+fPh3Hjh3r8XdLly7N+m+51p+33noLgwcPxokTJzB9+nSU\nl5dj8uTJem5BN/KWMAlGCVMKbJpSahqH2RGmGjcds+5XOMPSqo1C7DpySliXy5VVLxTb8KQEN0Y3\nvHg8jng8ntXjaRbYvsxAIMAfAtj78Hg8SCaTfIM6m4ZVUt2KkYLRAdBKZuhStntNTaexd28DFi6c\nICpQcxJaptKwvdZ2EamdhC1sK5FLOW/evFnyZ5SKHTRoED799FOcf/75or83ePBgAMCAAQMwd+5c\n7Nixw3bCLFSzDUIufZhIJFBSUiIZaZhJ1la76bBrTSQSaGtrQzAYVPSE1Xt/lI5sa2tDIBDgr0On\ne3bDJ0Wox+NRjKpJcBMOh1FSUsKnPjs6OtDe3s47nmg1TmDrxXaM8KIUNN0HO24ulUrxcz0pvevz\n+bJ8WYkQqZ4pfG3WScfr9fJ1uM7OTj4KVSoLNL78Mq4dOBCNL78s+rtStnt+fx+cOjUJr7/+vjkP\nyyLQIYbeB6rpkeMUfSb0zpM9l2CkRltZWYk//OEPAIA//OEPqK6u7vE7nZ2daG9vB9BdP33llVcw\nRjCdyA7kbYRpVUqWehDlzNONgr0mx2kblWX0fvXMsNQKUriy12GNANgoh+qFfr9f8/xONi1JUZvQ\nZJ1qhnJTVUjdqkXcYyaoPSIUCvGGCBQdknCI7oPulxUOqXUcYiPWTCaDeDye1Y4hNINQMkOXs93z\n+/vgk0/iFj0xayCcSkOHO3rO8Xjc0rYVuyJZsesYMS740Y9+hG984xt45pln+LYSADh69Chuu+02\nbNy4EceOHcP1Z1qIUqkUFixYgGuvvdbYjehA3hKmEGZ82CglGggEVEV5RslLbk6n2aAUs54RYFqe\nLUVIVIcUbtRs2jSRSCAWi5lWL2QFN0SeRNxiqVvWEMHMerEW0DMgsgSgOgWtJBySS92mUin+mQuF\nQx6Pp3vU1pkNVMoMXclWL5GwviZoFcmwB41kMolEIgGXy5XVtpJLg5+Nwoj5ev/+/bFly5Ye/z5k\nyBBs3LgRAHDBBRfg3XffNbRGM5D3hMkKRvR8cVgZP9sbaCXomm1tbap9b4V/qwUU2QHQRMxanyel\nRjOZDAKBAE+WrBKWfd6JRMKSeiGg3CtJfXsUndpNlmqfgZ6eTwA8edJBRarnk1oyWOHQvvfeQ9mn\nnyJ9pn3K7XaLRpnKtnvqjMBzHfTsxKwNz0XLPqkIs1ikPau3IW8J08wPJcnNtUZeeiNMatCnSNZK\nkOjG5XLxXq1WgJSwYmktKSUs9bNaDWFakqI1NmJQSt2aCYr2U6mUpmfA3gdwtudTas4nIG7XR59Z\nipTotSkt2/z665hRUpJFop/3+fByXR3KvvAF/m+UbPdGj9aWYj9XIKZQNsM0wckWnnwZ75W3hMlC\nL3FRrYjaHfRY62m9LtUQAWiu2Wm9Jqu6JVWqFRAqYaltQqiEpQhUqIS1EySoCYVCfC1QKXVrJsys\nmQp7Pil1q9TzyQpZEolElmcw1S7dAgFIJpPBiJMnsffddzG8vBxFRUWYPPmL2LPnDbS0TM4izW7n\nqbdw9dWX6763cwXC/lir51aaAakIs+AlmyfQQ1zkmUqKQqsjC9ooaQzY6dOnLT1RUtRBohuaCKIV\nSuluImV2Sgxt3tTjBpyt11JbhRMbB7WNsPVCLSlPo2u2smYqjHqkej6B7vcsFArxaWl2k//4n/+E\nf9AgHBJpP+H69kWysRGjxo7lI9WFCyfgzTf/jiNHkkinvfD5Mmf6MKcgHrde9GNHVKblGkZME5yM\nMKmdqbejQJhnoIUw2VFgRiTjaolarHFf7xdD6ZpsiwSbYraiX1VIyrRB0MZM48GoCd/v99ti/iCE\n2hSomKJUq+pWCnYeGKR6PmnTJttBOtBQ9JnJZFAxb15Wm4pQOESgiCoQCGDmzIl8TY99zXyHVH+s\nlGmCXRAjZiN70rmEvCVM9s3VouAkL1NScNIJXC+U/lbKIMAKAuM4aUs9vZDqUxWSMlvLoRN0IBBA\nPB5HLBaD2+3m2xgoErKrXig1R1MOcqrbWCyWlfJUEnpQn6me1hkzwDbgh8NhPgNA6XHWbYid86nW\nLF7MCICiy3g8bthxqLdAyTQBAP9dckKElg/IW8JkoYZ8pMjEyAdT6bp6hlqrgdg12f5RK/sJxZ6j\nkhKWzADk6mxWbKhyczS1Qip1y6Y82VYPghFfWjMgFV2zvat6ej5JaSzV8+nz+fjxZGKOQ+dSK4YV\nBMY+KzqQ0XtAJh563JnUQHg/+UKWQIEwASgTF/mzipGJkUiPUllC0CZlla2eEDQvU65/1IyIVoyU\n5ZSw6XQ6a5NWU2cTIx29a7UqBapWrQqgR83UTihF12IpQykBlFzPZyqV6kGeBDEjALYVw6gYxsm6\nn5mg6JOeudizsrJtpZCSzTNIkYEaf1az18FO5bCix5C9V+EMS7NBBEgiKSVPWBI3AZCNdKXqbIlE\nokeLhNZoxIh7kB6ITShh64X0jOxMS7Lvg9roWkkAxZKnsC7H9nzSa7GQqw8XJoh0gz10irkzFWZ9\nGkfeEqZSDZNSgko2cEYjTPZvtUz/MBJhchwnWo/VslYtoJMum1qmTZI9mRqJ6shbVW4slppWDzOn\njegFkUZxcXFW36fZUbQU2FS0XmN9vT2frLAFAD95RZi6PVcmiADORrHCthXWNCGRSADQHn0K74cy\nBPmAvCVMFkIyELZwyH0YzCJMsQjMKhAxsbMlrbyW1Z6wBOEQZ683g3/5Fz++8pVLsvoXpVo9xNpG\n7IRUClQN6Zj1HlqVilbb80nftXg8zl+fdR/SIhySmyCSrxCWNcyIPklnkQ/Ia8JkewRZ9xKtMx6N\n1vb0iHuMEDX1TGk1h9dyPdr8SVkp/IKyJ38zorpkMonly7fi1KnJglFRrdi793UsWjQVwWBQknQo\nxWeV1Z4S1KRA1Q6X1ksMJBihdg+rIFeLJnKkCSts9kGrWTwbUbHCIeEz6i0kqjWSFUafak0TSJxH\nyBeXHyDPCZOFVJ1NCUa/bOl0Gp2dnarSokbBtjRoVX1qJVZSwtJJVUoJm0gkTJkhuXXrbrS0iI2K\n6ouWlknYunU3Zsy4okerB0U5tC6yHbQzlacnqnO5eg6XNpK6ZSP81+rqML262pb7ZwnO7Xajq6sL\nfr8f6XQabW1tvFetmOMQpfWJKMTIk54TcPY7ToRA9yc8wJkNIcHkKtSaJggPzkYmlZxryP130Qa4\nXC6+3zEUClluZg6cVcKSB61WstR63UQiwfdzWl3/amtrg8vlQiQSkVXCxmIx02ZINjbG4Pf3Ff2Z\n398XjY2xHv/ucrmQTCbh8XgQiUQQDAZ50ZXe2ZhaQQpsIybuRDrBYBCRSIQ/fNDc0o6ODn7TEwMJ\nc4LBII4cOADP1q04uHev0VvTBOq3LS4uRiAQyJpXSgeKaDTKq6dZgZHP5+M3crk5nxTZ0utTNice\nj6OjowOxWMzy99tKmFkrpejT7/fzeyJNqaEUbjwex3vvvWcoJbtq1SqMHj0aHo8Hu3btkvy9+vp6\nlJeXY+TIkXj00Uf13pZh5HWESadV+oLZQVzA2fYKsXqM2dcVipfofq24HkXo5MhD5EgpYCJFtUpY\nLUgm5Z+h8OdiUR2JRYTuNp2dnVlRjlnRglU9llrqhZSqpA3x4/p6zBw4EPX19T3GcVkB+nwmk8ke\nLkps6lbsPRH2fALiqVupnk/6PJJjVy4Lh5wGG312dnbC4/Hg5MmTWLhwIaLRKIYOHYq1a9di2rRp\nKCkpUf26Y8aMwbp161BTUyP5O+l0GosWLcKWLVtQWlqKCRMmoLKyEqNGjTLj1jQhrwmT6pWUbrBD\n6MH2PBrxaFUDjuNw+vRpvPrqLjQ3u5BKeeB2J1BaWoTZs68yVQUqVocl155EIoFEIsGTZiwWM30s\nltIoKPbnSs45Uv2F7ExJoUhFK+xS46qpFwYCAXg8HhzcuxcjTpyAq7gYI06cEB36bCZYUwQlFyUz\nez7ZQyp9/pSEQ0b6GHtLryeLoqIilJaW4t1338WqVauwcuVKPPXUU1i4cCGuuOIKPPvssxgyZIji\n65SXlyv+zo4dOzBixAiUlZUBAObPn48NGzYUCNNutLe386kdvUbPWiJM4cxMEi5Ycd1MJoOWlhb8\n9rdvIBqdxtf20uk0Dh/+DB9/vAV33jlN9WYtdz2aoCKmhKWUWSaTQSKR4BupKVowK2IrKwugqalV\nNC0bj7egrKxbxKKHqMRmGUpZw6nZGMWGPtsBWiuRTiKRgM/n40nng9paXHcmKh0RDlsaZbKKYD1Z\nBqM9nxR50meVXhPoKRw6V/oYnSLmUCiEr3zlK7j//vsRjUaxdetWDBgwwLTXb2pqwrBhw/j/Hjp0\nKLZv327a62tBXhNmJBIBAF0pSiHkPqy0OSQSiSxxjxGlqxyoHvvGG/9ER8c1WUKY7oijD06dmoxX\nX92FmTMn6r4OpVaTyaSoJyybyiKCZGshZkZsU6eOw549W9HSMimLNOPxVvTr9xamTp3Ok39LAAAg\nAElEQVRqClFJpQmFUz28Xm+PzwObfnRSjUsWamwK9KP/+z+Mam0FAgG+P294Wxs+/Oc/cdEXv2jq\nRqzHFEEOeno+SWxHE1fo3+R6PoV9jLk6fstqCPc6ViVbXFyMysrKrN+fPn06jh071uN1Hn74YcyZ\nM0fxern0TPOaMOnLYrSXUg6sYtTMnkepNbPORJ9+yskIYfrg44+7NF1T2Kuq1hOWBAIsUQkjNqP+\nsF6vF4sWTe3Rh1lWFkBFRQUfgZhJVOxmypInEaiQPNWmH60C24vKEhXHcWh8+WXMZOwKOY7DhW43\nNr70EgZ9/vM82RgVjJGoyogpghKUarhFRUV8doOEXuxBD5Du+RTrY1RyHLIj8nNSqKQ0C3Pz5s2G\nXr+0tBSHDx/m//vw4cMYOnSoodfUi7wmTILRSI/t52Qh50FrxnWFEKZGtQph5MCunURLRUVFvKJY\nTgkrNxZLrsamtT3C6/Vixowrsv5NygzACgjdhtiNmp6L1aYUUmCJSqgCZ2uXwNl2DLfbjdFtbTh+\n+DA+P3KkYdtBchCiA4ZdbSvs54uEVi6Xi/+csSl1KbN4QLznU43jEBGyHbDjmQr3us7OTvTr18+U\n1xXD5Zdfjv3796OxsRFDhgzBypUr8fzzzxu+nh4UCNMEiBEfRXpyhuYEPSdQEjXQ34vNsNQihFEL\nMaN22ogA7Z6wwnti/WHFUmta5kkSSejpOzUK2qg9Hg9PVCR40tMnaQRKfZ6H9u6Fd8gQHBFZB1dS\nguQHH2DkF78oG7Ep1XBpDV6v1xZPZjHQAY5U3MKMgJqeT0A8dQuIC4dSqRSfiicRXG9zHCJNgB6s\nW7cOixcvxsmTJ/HVr34V48aNw6ZNm3D06FHcdttt2LhxI4qKirB8+XLMmDED6XQat956qyOCH6BA\nmADMj/SE4h656xqFXMp3+PAgmppOw+/PrmF2f4FbMXy4+g85bR7t7e1Z9yXnCevxeAxFVFLONkJV\npFjtyM6By1KQWoNYe4TZFnfCNcgR1dR581S/npqMgLCG6/Q8T6k1iGUEhGIu+j8ps/hUKsVHmsLU\nLf0ttVqR8M0K4ZBdgh+xfZKGwOvB3LlzMXfu3B7/PmTIEGzcuJH/71mzZmHWrFm6rmEm8pow6QNm\nVkpWKtJT87d6I8y2tras1CiLa64Zjz17tuDUqclZpJlInMbgwX/DNddMU3UtOiGzJgusEpYlS3Zj\nYq3NjMLlcqlWqhJJmL0GLZAjCbOM4o2swQwIMwJiERu1FQWDQUfmeQJnn4Ncv6venk/WTk4udUvp\n2d4iHBKmZPPF6SevCVMIvac0Ii86ZWsV9+ghaxKxUN+j2Lq9Xi/uvHMaXn11Fz7+uAvJpBtFRWlc\nfHEGVVXqWkpYJSxtkFJKWCd6C4VKVUqbEbk6sfloMSQQHgSE7RFSRvFq12Dn1BXhQYDM7AHwKUkt\n7TdmQI85hFhtUqrnk/63VOpW7D7lhENksqBV9GZnS4nwOgUv2TyD0Q8akYrX69Vkq6f32mQjRuIJ\nOXi93qzWkUwmg9OnT6smSzJWKC4u5lO/QiUsrcmJSR/s5kZepNQ7R9G3VelOMRhpXWEjNuFGqqWG\nS4cHp6auAN1ElUgk+DWoSd1asQYzDg1Gej6phkmpWzXCIaFZPBt9Og2xw31XV5esSrY3Ia8Jk/2i\n6k2NJpNJpNNp+P1+XR8aLelgNuUbCoX4fjkrrkcKX0r3sidorUpYq8H2N7K+tFItK2akO8VAhwYz\nWlfYjZTqX8LeVbEaLhG2U32egDhhK6VujfbhqlmDGWAPNYB8z6fL1W0LGQwG+RY2ObN44Cw5A+hR\nIwaMOQ5ZBaW2kt6EvCZMFnrqmNTGYYetHik+aYalEZcgJZASNhgMZqV7ibBpc2P7+szyhNUKubYR\nMYGKGelOsTVYfWiQcxsCwN+j8NBgN9QQtlz7jVrVrRzsjLClej5ZSz1Sz1J9na3/UyRKxCklHGLL\nIGLCITtFP8LrFGqYeQitkR7rcEOnP6uuS+pUj8fDz7CkL56e6wHSNQ/yhBVTwhYXF2edpoHuDUNr\nGtossK0rSm0jYpuPGebqdvZ5EoQ1XPI8pUNUPB7XdS9GoSfCFqvnEeGwHs9qU7dORth0LxRZBgIB\n/vMhTEMLU7dsNAlA0ixeOLuSFYsB1o8qE0MhJVuAJIQDpllHG72Q+1uxCSBWgKKkWCzG2/cJlbCs\nmo/StQB4MmfTnVbDSNuIXN2ITREq3YuTfZ4sKDVfUlKSFeVYle4UQpgS1/v+q31fpNSkuZSODofD\n/PfDSM9nKpXqQZ5Az57PRCLBz7sFoEs4pAZSBi1O1crtRn7cpQTEaphyII9W4YBpI4Qp92EWmwCi\nZb1y12Q/+BSppVIp9OnTh7e5U1LCCgfz2lUrNLt1RSzdqWTVlwt9nmIRtlj7DZlovP76+2hqSiGd\n9sLvB4YPD2Lq1HGGBDF00Eqn06ZH2FpM780aRG4EYqlgtl4p1fMJIIs8pXo+KYMg1vNJh1kiZzuF\nQ3YqdJ1GXhMmCyUCkiMvs68rFu1ZBWHETOvRooS1q1YInN2UzJ4hSRC7F6G6kxx7aAN0YrMgmzk5\nT1a6FwB46qnXcfLkJPh8EX7j/eSTNrz//mYsXjxN17MUpqOtfA5qWomcOrgA2ZElKzrbvH49pldX\n9zic6+35ZPs+AYgeSK0UDuUTOYqhQJhnIEWYlG5iPVrV/q0eCMU9UqdlMyJMipjZdhglJazSCV5t\nrVBPO4HdY7HYe6FaIa0BONsLa3etUGt0u3XrbrS0TEYo1G3ET++Nx9MPn332Zbz00tuYMWOCpvYb\nLfVjs0GpW8qEJJNJfkwZRVRyqVuzIZUKPrh3Lzxbt+LgF74gOVfUSM8nG3VS7TOTySgKh6jlR8os\nXgvYfSIfUCBMGWghLzrlagVLfGLRnlVge9Sol1PYL0b/xk640EIMSjUptT2SdGhJJBKOptzERpSx\nG5sdm7Qe957GxliPqTW0kRYXD8Dx491pXLUTY+h7YeXEESWwqWC2bqqUujV7rVJkyXEcPq6vx8yB\nAzXNFdXa89k9ZKH7faMZu0bN4ukwIrbeQoSZx5CrYdpFXsJoT1gfVfo7PSASJCWsUNzD1uko7WeG\nElZNrVBY92TTfk71eQLi0a2ZQ6XVQI9rDaA8lSaV8iimodlWolyo3UqlgqXSnUSuetXQYpATGbET\nYEacOIGDe/dKRplSYKNDQLzn0+12833ZNGlFKBzSYhZPimtAvXDIrOzauYC8JkwWLAGRMtUO8gK6\nP9BtbW266qNaTnx0KqdoUY4sKZLx+XyW1Omk6p5CEQSRqVMqVFYBKhXdytXXhISj9x6M2A5qmVoj\nloYWthKRJ2quCJ2kYFR1Kwe5Fho+ujzTajEiHNYUZUpB2PPJWg9SyYQOaXLCISJOqdSt8EDLCoeE\nKd9kMmmb9WIuwHmvJYchVLomEgm+aV9tVGWEMKkuVlxcrIks9RTrOzo6kEgksuo/7JeIXpMiJTWj\nycwAfVmDwSAikQjf09XZ2cmvjSzG7ARFMmpqtwTapAOBACKRCG8ikEgk0NbWho6ODt7IXi0SiQSv\nvtSzOZWVBRCPt4r+LB5vQVmZtL0ibdA0volqzx0dHYhGo3zkZsd7w5KlnowHZTjC4TBKSkp4B6WO\njg60t7ejq6sLyWRS8V6oPCBlEMFHl8zeQlGmWaB9IxQKoaSkhD/Yd3V1ob29HZ2dnXy7EU2q8fl8\n/HrpgJpIJLKiUVovPatgMIhwOMxHr2xW6N1338Xp06d192CuWrUKo0ePhsfjwa5duyR/r6ysDJdc\ncgnGjRuHK664QvL37EAhwjwDOlHF43HLlal0PWrl8Pl8ujZCYXuIFITp5fb2dkklrN3CGiFoHclk\nEn6/H16vlxcpWD0Ki4VZohY5VxuqGcm135hhtzd16jjs2bMVLS2TsmqZ8Xgr+vV7C1OnTpX9e8o2\nCFuJrFRDC2F23VSLUpX9nMViMT7bIPb5E0aXBLOiTEDcI1doPSgVSSv1fFLkKRV9dnV1we12I5VK\n4a677sLHH3+MwYMH47nnnsPMmTPRv39/1fcxZswYrFu3DjU1NbK/53K50NDQoOm1rUKBMAFeaZfJ\nZPg+RC3QGmHSqZbjOP4DbhWkaqNsVEnrV0o92gGxOh2bhmJHYakhHD1Q07KhB1JpaDHCAWCKGQDQ\nHWEsWjQVW7fuRmNjDMmkG15vBmVlAUydOlX2sCZlYC6lvtQ77FsOVouM1KRuSZ2qZH/I1i6F19Bb\ny2ShxlBejY2iXM8nKxyinwtHlYXDYbz22mt455138O///u944YUXcPvtt2PMmDF4+umnVQ14Li8v\nV33fuVInzXvC5DgObW1tAKD7y62FMIWm5pQS0QOl61LDulAJ6/F4epw8KU1ol72bGJSiW5dLfBSW\nmUIbNQOXzYBS+w1d16z3w+v1YsYMbekstZ6sLOFIGcXrrRU6YRAhRjhk1edyubKsB4XrObR3L7xD\nhuCImMK0pARJA4SpZ/qKlkhaqucTOCscEma0wuEwxowZgyeffBKxWAyvvfYahgwZouv+5O5h2rRp\n8Hg8qKmpwW233Wbq62tBXhMmkaXP5+PVZlaCJTCrG97pC0G9o6y4h1KElOokVRxFcXZLx/W0jQjF\nKWYIbaweuCwFlnAomqJUeTQatd12EDCWmtfi0CP33th1eFEC9TgWn4ka5VK3U+fNs2wNRkeVSUXS\nwp5PtjeT7flMpVJZJOp2u3kzF6DbOGLGjBlZ15w+fTqOHTvWYy0PP/ww5syZo2rdb731FgYPHowT\nJ05g+vTpKC8vx+TJk3U9A6PIa8Kkmh4AQ2SpJsKkLxhraq72b7Vcl4QqiURC0hOWNh632410Og2f\nz4eioqIeaRuretfE1ivsp9MCdiPQUo9i4cTAZSHEUo9S7TdW+IQSzB5TJtXmIWeuTmRJKm0nIOz1\npPUppW7NLhFY9dmU6vkUO3S63W7E43H+HoHuA+b+/fvR3NwseY3NmzcbXufgwYMBAAMGDMDcuXOx\nY8eOAmE6BbfbzROJmcRFECMwsd8xA0KjBVYJKyRLsVqhlW0RUuslYY2Z48GEQhuqe0qZkTstdAKk\nU49idU+pHkmjz4+tY1vR86q2zcN9ZhC43ZE+C7leT4IU4YjVCvW+N3Yd5KR6PklsR3tHIBDgf+fA\ngQN4+umn8eijjxq+vtQeSEr5SCSCjo4OvPLKK/jZz35m+Hp64eJypZrqEFKpFP/h6OjoQJ8+fTS/\nRiaTQWtraw8VF8dxiEaj4DhOcgOizYIiXS1oa2vjv0ikhKWCPJG40OYO0EYQ7JQFmkpghpiDCMLj\n8djmFsOmB5PJJP9MyDjcKbJMp9O8baCW1CN9bs14byiaohYau+vY9N7Q1A32oGB1lkNsLUY8ctkU\nppH3hsjSyYMcHcKB7gPCK6+8giVLlmDKlCl444038Pzzz+PSSy/V9drr1q3D4sWLcfLkSfTp0wfj\nxo3Dpk2bcPToUdx2223YuHEjDh48iOuvvx5A9/NYsGABfvzjH5t2f1pRIEyGMKPRKPr27av8RwJw\nHIeWlpYswmRnWMp96YwQdVtbGwKBADweTw8lrBhZshEE2btpAbsJ0NghPbU1q00R1CCTyfA9lhSJ\nWxVJy8GsuqnUe8NG0lJgCSIUCjkm+mKzHtS6QH2Rdr039Cw4jjNtzitbK0wmk6pSt7lClsK+13Q6\njVdeeQW/+tWv0NzcjOPHj2PmzJmYPXs25s+f71id2S7kfUqWYOSNpr8lcrJrhiVdSzhFhU7rwFk5\nuPDUrGdT1GNtJ4ReezczwToeke2hmO2YWW0RUjAz3aZXaGM0mjILUr2FbInA6l5co8YIUlDyhxWm\nbnOVLAHg+PHjeOyxx/C///u/GDduHJqamlBXV4dt27bhxhtvdGStdqIQYZ6JMDOZDE6fPo1+/frp\nep1Tp06hX79+fA1DKO6RAvVJ6olsT58+zef3hUpYNgVrVV8hgd0EkskkAHHRUC7UCinF5HK5JDdF\nsyJpOaht2TAKtmVFGK1RexFgLkFohZZnwR7U2NStURGUVWSpdE1h6tbj8SCdTmeZRNgNqWdx7Ngx\n3HTTTfjlL3/puOOOU8j7CJMVVxg9OyiJe6Sur/W6rLKUTuRSZKm3PqYFalo8aKOTshOzA2p7+vQM\nlNYCOdNusyGnICbzChJHOUGYWg8OUuYPRkRQRBAul8vW6SvC/lWKOmneaiKRsER1KwfaW4CekeWC\nBQvwxBNP5C1ZAgXC7AE9GwcRXjKZ5NWpVoEipEwmwxtga1HCWg3hBp1Op3lyB7qtxaxOdYpBb91U\naYPWooTU029qNmg6RSKR4NdutXOSFIweHKSUnVrS6la7CKkFKZ9JfGa39SAgXb/97LPPsGDBAjz2\n2GO48sorTb/uuYQCYZ6B3g8gqVMB6BJMaIkwWSFRJBLhv0hGlbBWgWqF1O/KRmtsG4HVDflmHRyU\nNmjWMUX4eWJVqE6OKRMzA5Bri7BKpWpmrydBzG1IbBAzHQZyiSyFNUszDgNaIFXLbmlpwY033oil\nS5c61vuYS8h7wmS/JPQlUvvFYceAUXSnF0rXlRo5RnUPdhNwOooBxOumtDkbEQ1phZGxWEpQYwdH\n5MnO9HRqY5ZT5Eql1YVzJMUOA1phBVkKodQjWVRUxH93co0sxSAc7UU1XDqQGvnuSJFla2srbrzx\nRjz00EOYMmWKkdvsNch7wmShJdpLJBJZ6lS946fUfLjJUk+ohKVaRzKZ5Dc7EnY4GcWoSX9KpTrZ\n9JPR6IY2ZjuibLm6J9nc0YgsJ6AlylZrMKA1M2C1MYIUhIcBijoB8N8XJ8oEeoVfwoOn8LujpY5L\nmQ8hWba1teGmm27C/fffj2nTphm6z96EAmFqBH3pu7q6eJ9WwByLO7EPdywWy7oWW68sKipCJBJB\nJpPhZyYC4OtSdm8AgL70J7uhsapOvUIOdmN2Isqmw4DH4+FTfqRINeswoAVG21fMEEE5bYwgXAe5\nWlF0tWnTNnz8cRfS6SL4/cCFF4ZxzTXjLav9m6WSVpO6lWrBoWdBxh303kWjUdx00034t3/7N8yc\nOVP/TfZC5H1bCW3OAPhhqFIfYFLTiak929vb+SGtWtHS0tJjrBh9kUl1S8bcckrYoqIiPtq1siVC\nClbUTbU6DeVKE75YrZA9DJCRtZSXqlmwsn2FjW4owyImTGE35lx7T5LJJJYv34pTpybD7y/hv1+x\n2Cn07fsm7rhjCm/yYXaZwI6WInpvhC045A0rJMuOjg7ceOON+MEPfoC5c+datrZzFXlPmBzH8cbr\nrNWcEOwQZrETcjQa5b+IWtHa2sqTIq1JaKmnpIQVq0sJe9ZYFaSZURc9Q6vrUkr9kU700olBrXsP\nS56UETCzId9u4ZeYVR9lOziOc9QYgSVLGnUHAC+/vANvvTU6a7A2QCTfiokT30VFxVjTDjd2kaUQ\nwsMN7SP0LHw+H7q6unDTTTfhu9/9Lr7+9a/btrZzCYWULAOptCqZC3i9XsmN2GgfJ/0tq4QlgYiS\nElaK5KXqhNS4b1bDt13qT6XUINV1c0HEoSYlLTSJZ+/HaIuHHcIaIYQiKLaG6/F4+L5Cu1PkcpNP\nGhtjPcgSwJmezH44erRbqMVmOqRM/JXgFFkCZ1O3Ho+HFwX6fD50dHRg/Pjx+OIXv4hYLIb58+cX\nyFIGzuRGziEkk0nes9WqEzIbLdJ8TjkDdSIp6mFTU5eiL0wwGEQkEuEFKF1dXWhvb+d9VbWQPkV0\npP60M9VGhB8KhRAOh3lhDQ3o1nM/RkHCCz0uLez9RCIRvr7W0dGh6X7os5FIJBw1iXC5XHwWIBKJ\n8CTa0dGh+/OmB5QZkhoTlkzKf2bp53S4CYfDKCkpgd/v5zMJ7e3t/KFR6n6cJEsWrOgqEAigX79+\n2L59O/r37w+Px4MlS5bg0ksvxYMPPoimpibH1pmryPsIU6ythCAcwqz0OkZEPyTh1+IJa2R+JKsa\npMiTnVGoJLKx2m5PLYTpT7ZOqOV+jMLM9Kca5ySx+8klYY2wv5EME+jzZtWIMhZqUuNeb0b2NcR+\nLpa5kbufXCFLUtSzn41EIoEf/vCHmD17Nr7zne8gk8ngnXfewUsvvYR4PO7YWnMVeV/DBMB/MGjc\nlN/v7yG4UQLrkKEVra2tfL1SzuaONiKXS9oH1SjUiGzssNtTAzU9llaNJ2NhZ/pTrO5JNel4PO64\niTp9RsnpSWkdUvdj9P0hslRKjUvVMAEgHm/BVVftwYwZ6q3ghPdD83ad9IYFxMkymUzi1ltvxbRp\n01BTU+PYZ+ZcQoEw0X3KYgUjlALVEsHpIUy6JvUKUhpOykBdjQ+qmRAT2VAtyukNQE9ER6pBsxTE\nwvYVJ2ZIsvcDAH6/33RRl1oY/Yyyqk61Y7DEoJYsAfAq2ZaWSVmkGY+3ol+/N7Fo0VTdhhfU6uXx\nePjvsxm6Aa1gjUzoM5pKpfC9730PkyZNwg9+8IMCWapEgTBxljA7Ojp4j02tp3S2n0kNWCUsAL4l\nRasS1i6wtTEAWZuZnZuzWYpcoYJYq1tKrrSvsFkHn8+XNRybfX+s3hDFWjaMgBWpyU3AEUILWRKS\nySS2bt2NxsYYkkk3vN4MysoCmDp1nG6yFKZh1bbgmA0xskyn07jjjjswfvx43H333aZd+/Dhw/jW\nt76F48ePw+Vy4Xvf+x4WL16c9TsNDQ2oqqrCBRdcAACYN28eHnzwQVOubwcKhIluwiRxD5kB6FEl\nUjFdCaSELSoqQigU4k/l9MViydJKaze1EJIUiWtoM7Pr5GxVjU5qM5PanHOlfUWqjszW1ewYwEzC\nGqsOdGr7V82cL2oEamqWYi04VpUK2ExZOp3G4sWLMWrUKPy///f/TP0sHDt2DMeOHcPYsWMRjUZx\n2WWXYf369Rg1ahT/Ow0NDVi2bBlqa2tNu66dyHvRD9D9wSLZOUtWVkBquHQ6nYbb7c7yhLWjt1EJ\nUm0jQtEQK3qwwsmGSIpS5Wa+R1JOQ2KiIQA5Ydgtl/6UEg1ZYdyttufUCJSs+ug+EokEQqFQTpCl\n0ndWq1G8VoiRZSaTwT333IMRI0aYTpYAMGjQIAwaNAgAUFxcjFGjRuHo0aNZhAmcbaE7F5H3hEl1\nk0gkwkcZeqBGJUv+s+xwaepRo3QnbWSJRMKRdg0WakjKDMWtmnUQSVkd0YltzslkEolEgo8qaaPL\nFWWwEth+TylfWD39kXrSn2ZA2I9L5ACcLY3YXScE1JOlEEpG8VpTt3TQFpLlvffeiyFDhuD++++3\n/Lk0NjZi9+7dmDhxYta/u1wuvP3227j00ktRWlqKxx9/HBdffLGlazEThZQsuj/omUxGU1pV7DW6\nurpQUlLS42f0pe7q6uKHSwvFPQCyIgHgbM3GyhqHFMxoGzFDoeqE2EkMRA60EbKiITub8c2M6KTq\nuGrIJlfSn+y0D4/H40idENBPlnIQpqLZqTFS3yGxGaOZTAYPPPAAwuEwli5davl3KBqNYsqUKXjw\nwQdRXV2d9TMyZQmFQti0aRPuuusufPjhh5aux0wUCBNnCZNOZpFIRNdriBGmmP+sGiUsK+Awe7yS\nEqxoG1GytZNaB5EDpcudgFgkZVQ0pAdWDgQXq3tKkU2ukKVSrdCOOiG7DqtLJ1LfITrgSJHlQw89\nBAB47LHHLM9WJZNJzJ49G7NmzcLdd9+t+PvDhw/H3//+d/Tv39/SdZmFvE/JsjBqPiD8W1LCAkAk\nEtHsCSs1a9GqLz67DrM3ZTlbOzGPWyvJQQukyEHKdtDM8WQsrBZ/iaXWxQYWA3B8MDmgTlijZl6p\n0eyAXWQJiH+HUqkUn7rlOA7BYDDL5GTp0qVIJpN44oknLCdLjuNw66234uKLL5Yky+bmZpx//vlw\nuVzYsWMHOI47Z8gSKBAmgLNuP2YSJlm0kRJWzhNWaTMUflHEPC3NMOy2S5Gr5HHrdruRSqUc7/VU\n69CiRTSkhzydcIoRI5tEIsGL01iRmt3QQ1JyZKO3BcdOshRCmNGgkWXxeByzZs3CsGHDeCX5008/\nbcv79NZbb+FPf/oTLrnkEowbNw4A8PDDD+OTTz4BANTU1GD16tV48skn+X3xL3/5i+XrMhOFlCzA\n1wfoC9SnTx/Nr0EG7X379kUqlUJ7ezuCwWDWaCcxT1gjSlhhWpDsx/Scmp0w6xaC7fWkTcvu2ZEE\ns56HUScbsTSbE2CNIliDATtS0WLrMOt56G3ByZX3RYy0Dx06hGXLlqGhoQHNzc2YOHEiKisrMW/e\nPAwZMsSxtfYGFCJMBmZEmFJKWDFPWKNTPoSRmvDUrGYjM2MdZoCEUalUik9fW6G4VbsOs4ZPCyeS\nENGoSQvmwiFGah1yqWirRDZWkJSeFpxcJkuO47BhwwYkk0ns27cPXV1d2Lx5M2pra1FWVlYgTIMo\nRJg4Kw7IZDI4ffo0+vXrp/k1MpkMWltb4XK5JJWwbGO5lY3vQpcUqZQT2zbitP+okmuOHZ6wdpqX\ny4mGXC4Xb6bhpIk6IN7PJwa15gJ64QRJiVn1uVwu/vORazVcjuPw1FNPYffu3VixYoWjZN5bUSBM\nnCVMjuPQ0tKiuQjN2ur16dNHtRLWjjYJdiNj1Y9k1u30/Eg9hwc9ils16yDStvvwIHQaymS6J2RQ\nLdmJ98aoT67wPWLJU+tr5UKknUvlAimyfOaZZ/D222/jT3/6k6Nk3ptRmIcpAi1nCLK5o7+RU8KS\nEMjn89nWU0iN+IFAAJFIhPe6JXIAYPvcSAIdHlwubdNXSMAhnE0YjUYRjUb55nW1cDrSpgxAIBDg\nhTR+vx+JRALt7e3o7OzkDzt2gMjBSIQrfI98Pp/oe6R0T2yE63T6k3q06XvkcrkQi8X494g8qa0E\npfOFZPnHP/4Rb7zxBp599llTyfLw4cOoqKjA6NGj8cUvfhG//OUvRX9v8eLFGNU/J3oAACAASURB\nVDlyJC699FLs3r3btOvnGgrHEAZaN0oS+tDg39bWVmQyGXAcl5OesMDZNFMgEIDX6xWt15xLvZ5K\nilulRvxcmevJRtqsq5LQacjKliJaB5GZWRaEcu8RIB2pEWk7WVsHxNPBYm5QbNuX3mhaDqxJA0uW\nzz33HF555RWsXLnS9L3F6/XiiSeeyPKHnT59epbdXV1dHT766CPs378f27dvx+23345t27aZuo5c\nQYEwIT5EWmmjSCaTiEajCAaDCAQC/L+n02meKOk16JScK71rLGlLWabZ0etptv+oVC+hlMet2RM2\n9IK1/hOSthHRkJ51WJ2WlhLZsMOXi4qK+PfO6Rqumtqp8D1ie4zNUhGLkSUAvPDCC6itrcXq1ast\nacFS4w9bW1uLhQsXAgAmTpyI1tZWNDc3Y+DAgaavx2kUCFMANUpZisiESli3281vwPQFIeWn06dk\nJdIW6/UUbsznWq+nnMetx+NBKpXiTfCdgpaatsvlkjR/0GJrJwY2wrUrLc369rLkGYvFeI9lqn86\n8d3RIzRSY2ihVUUsRZZr1qzBqlWrsHbtWlvG/kn5wzY1NWHYsGH8fw8dOhRHjhwpEGa+g9JVZJ8n\nVMKyPWp0Une5XI6n+rS2jchtzGKuPGqhZ+izWWBTaDTYlw40rPWgnRuzkQhXamPWMzHGatW2WlDU\n73K5EA6HszIEZkzw0AIzVLlihhZi7klynzvWaYr9ztTW1uJPf/oT1q1bZ8uBLxqN4mtf+xp+8Ytf\niHptC4MMpz5DVqNAmAJIRZiUNkun0ygpKZEV97hcLiSTSf60T8brdvQRCtfMptjM6PXUWiOkdbCD\nbJ0WbxBpe71eScs0s+tPQphpom7EaUguHWwnxGqnHo/HVGcetbCq31OrVZ+ULePGjRvxu9/9DuvX\nr0coFDJlfXJIJpOYN28evvnNb/YwUweA0tJSHD58mP/vI0eOoLS01PJ1OYECYUK8hsmCBuS6XC6U\nlJTwvyOlhBUzDBc2RFs9iYQVs5iVYtNaIwRyxxgBEI9wtXrcmgErx2KxGzMgLxoCgM7OTj4lmgt9\nuGKfVfbQJlX3NOu7ZFe/p9znjt7DZDLZgyxfeeUVPPnkk1i/fr2uqUpaocYftrKyEsuXL8f8+fOx\nbds29O3bt1emY4FCHyYA8A49ANDW1pa1kZES1ufz8SdwvZ6wBCm7NLPUqbnQ60nESs/VSWMEQHsv\nn5j5g5EaIcHJSR/CRnwAfB+uk/2NRoRGZhpa5IKDD1vSoWdBKlWfz4df/vKXqK2t1WXfqQdvvvkm\nrr76alxyySX8eoT+sACwaNEi1NfXIxwO4/e//z3Gjx9vy/rsRoEwkU2Y7e3tfHQopoSVIku9Slix\nBm8j9TSrFKhawI5KA8CPK7MrFc3CDPceMb9RPU3rudJaRBkT1rnGrAOBFhBZchxnSu1UafyVHHKB\nLIGz2Qf6jKTTafz617/G+vXrsXv3bkydOhXz5s3DnDlzem0Ul8soGBdAPCUbj8cRjUZRXFzMkyV9\nIQHwwgP60icSCRQXF2sWswgbvL1eL2/eHo1GEY/HeYMBJZAaj0zfnUQymYTP5+OfSSKRQFtbG++I\npPaejIDem3Q6bag9gTUWkGpaVzIWIKER1U6dApkH+P1+hMNhhEIhRCIRBINB/nm1t7ejq6vLUkML\n1izCLKGRmKEFZVva29v5g5PwnnKNLKlHGujOAFx22WXweDzYs2cPbr75ZmzZsgXl5eVYtWqVY2vN\nVxQizDOgaCgajfK1SdrslTxhrXCIEXqN0iQSKTFKrvR6yolZKN1khl2aEuxSfqpJCeaCtRugTmgk\n5QlrZr3dblWuWIaA7imTyeTUeyOsa2/fvh0PPPAANmzYgAEDBvD/TqPWgsGgE8vNWxQI8wwo6jl9\n+jQ4jkOfPn1klbB2OsTIGXXTLLxcaPLWMvSZvScytjarCd8p5adYSpBSnk5bu+kVGhkdTyZELrSw\nsMOxqd+TSgZOfH+k3pudO3fivvvuw7p163jzgAKcRYEwz4DSa5lMBj6fj++plFPC+nw+2x1ihGIU\nqqVSn5ZTwhojQ47ZtgFWYKOn585uwZPcOiitCSCrj9Bu4jRLaCQUDWk95ORKCwuQnZFhDwV2tRUR\nqJ4sJMt3330X99xzD9auXWvqSK7vfOc72LhxI84//3y8//77PX7e0NCAqqoqXHDBBQCAefPm4cEH\nHzTt+uc6CoSJ7i/yiRMnsjaTYDAoq4S1oiVACziO41tdyBFFrxjFKMxMOYqpU9X23Dl5kGHBKj8p\nirJCcasGVqlypQ45UveUi2QpbHOSyuRY9T4RWQpT5O+//z4WL16MNWvWYOjQoaZe84033kBxcTG+\n9a1vSRLmsmXLUFtba+p1ewsKfZjoFnXQ0GJqniayZL9QuVInFIui2NqTHrcXPSBxlJkG2Upeo1L3\nZGVvoxZItUlo7V81A0aifiUIeyPF7onuGQA6Ojoc7/cE5Od7qnFPMms4thRZ7tmzB3feeSdeeOEF\n08kSACZPnozGxkbZ3ynEUNIoEOYZFBUV8ZNGKN3ETgRg64S5UIsSftGEvpxC71QrhBtGXYSUoPae\nAOREu4YaP1Yx8wcr3icryVIIqXsikw56H52M+gH1w7CB7HsC0OOe6D3S0ztNB17hd3jfvn24/fbb\n8Ze//AVlZWWa788MuFwuvP3227j00ktRWlqKxx9/HBdffLEja8lFFAjzDOhESTUM1s6OZis6LarR\n0scn5vZilsuQE0bdgPg9sWbqHHd2rJrd0JtylHuf9ApsnG6ToHuiKIrEc+3t7ZaPJ5OCFrIUg/B9\nEk72Uav2JrKksgFh//79qKmpwXPPPYcLL7xQ8/rMwvjx43H48GGEQiFs2rQJ1dXV+PDDDx1bT66h\nUMM8g7///e8YOXJkVlqMJqwDyEqdOSGuMcu4XKoNQu1JOVfmRwLSwg27N2UrhEZSTfhKm3KutLCI\nGcsbFQ3phVGylIOSgp39LLDPhDVMP3jwIG655RY8++yzKC8vN3V9YmhsbMScOXNEa5hCDB8+HH//\n+9/Rv39/y9d1LqAQYaI7cvvNb36Df/zjH7jqqqtQVVWFUCiEBQsWYM2aNRgxYgT/ZTcjJaMFbJ3Q\njE2Qnd2ndQamWUOfjULqmVg9mkwMVs3U1ONxSwb3Tnv2ShGDy9VzCg5rqG6FwMZKsgTUD8d2uVz8\nd4d9Jp988gluueUWrFixwhayVEJzczPOP/98uFwu7NixAxzHFciSQSHCZJBMJvH666/jiSeeQEND\nA77+9a/jpptuwpe+9KWsjUnKzs5s8hSqLa3cBIWmAkKi0dJjaSW0WN2JmT+Y2dph5sQRtZBSEdO9\n5gpZClOOcpCyHjQqsGEn5Nj9TIT+yplMhj8ExeNxlJSUoKmpCQsWLMDvfvc7XHLJJbas68Ybb8Rr\nr72GkydPYuDAgViyZAnvK1xTU4Nf//rXePLJJ1FUVIRQKIRly5bhS1/6ki1rOxdQIEwBnnnmGTzw\nwAN4/vnn4XK5sHr1amzfvh3jx49HdXU1rrrqqqyUqJh7jRnpQKqJuVwu2xu8haYCbrcbmUwGgUDA\nUcs9I0bdUmbqeucr5sIBgu6Jnb3qRFsRQUr5qRUsebKzSrUcSJ0kSxZsut7tdmPfvn249tprMWHC\nBBw7dgxPPPEEZsyY4dj6CtCGAmEyOHDgAGbPno0NGzbgoosu4v89nU5j27ZtWL16Nd58801ccskl\nqKqqwtVXX521WZpFnrnSfA90bzyxWIwXPwk3ZbtgpkMMS556+lednDjCQniAsNrSTg5WRdt6nIZy\nhSypV1r4Pd6/fz/uv/9+pFIp7NixAxdddBGqqqpw++23o1+/fo6ttwBlFAhTAPpSSiGTyWDnzp1Y\nvXo1GhoaUF5ejurqalRUVGRtFFLWb0q1NCfSfGKgOiE79NnsKE0trBQaCVNnSulAO9s15KAUbZtt\naScHu3pg1YiGcoksxXpPT5w4gfnz52PZsmW48sorkUgk8Prrr2PDhg34+c9/btvYrgL0oUCYBpDJ\nZPDee+9h1apV2Lp1K4YPH47q6mpMmzYtyxRZLXnmyvgnNXVCI448WmCVqEYKbDpQGKVRG0sukKWW\naFupPm0EThlGiDkNuVwu/gDhpEJYiiw/++wz3HDDDXj00UcxefJkx9ZXgH4UCNMkcByHf/7zn1i9\nejU2b96M0tJSVFVVYcaMGQiHw1m/JzaFhOO6Z3LmymasZQKLVJRmlDydjraFURoAfi1OKoSNpKbN\nFELlkrsStYBRz6eZrjxa1yJGli0tLbjhhhvwH//xH6ioqLBtPQWYiwJhWgCO4/DBBx9g9erVqK+v\nx4ABA1BVVYWZM2eipKQk6/dSqRTffM+O8HLihGxW6lNoDq+nlpYLohogOzXt9/uzUpxWjSaTW4uZ\nfqxSKXY1rR25UscFuvulqcXI7XabIhrSA6n3p7W1FfPnz8dPfvITTJ8+3dRrKpmpA8DixYuxadMm\nhEIhrFixAuPGjTN1DfmEAmFaDI7jcODAAaxZswYbN25Enz59UFlZia9+9asIBoO4++67cfPNN2Pi\nxIlZqTO76oMEq4RGQmm9GvLM9dS03vq0EdBhxio/VqnWDrEsQS6TpRB21XKlyLKtrQ3z58/Hfffd\nh1mzZpl2PYKSmXpdXR2WL1+Ouro6bN++HXfddRe2bdtm+jryBQXCtBEcx+HQoUNYs2YN1q1bh2PH\njmHo0KF46qmnMHToUP5LZre4xq7Up9BlSOzkb5ajkVGobWHR4vSiF06oplkVcS769gLKZCmEVU5D\nlCanMXv0/kSjUcyfPx8//OEPMWfOHN2vrwQ5557vf//7qKiowA033AAAKC8vx2uvvYaBAwdatp7e\njILTj41wuVwoKyvDN77xDaxYsQKTJk3C2LFj8YMf/AButxtz5szBnDlzMGDAAFEza6pdmSmusTP1\nqeQyROtxetiyFq9cOacXM9xr7BY9EdT49lIZwQloJUvAGqchKbLs6OjATTfdhEWLFllKlkpoamrC\nsGHD+P8eOnQojhw5UiBMnSgQps3o6OjA5MmTceedd+Kee+6By+XCXXfdhebmZqxbtw41NTVIJpOY\nM2cOKisrMWjQIJ48zR7h5WQ0x1q/UbqRTO6p79PO+iDBSJ1QbGqHkTFeToueCG63mxfT0GB1+gza\nPXAZ0EeWQmgZTyaXXaCDFftZ6erqwje/+U3U1NTg+uuv13eTJkKYRHSyr/tcR4EwbUY4HMaWLVsw\nYsQI/t9cLhcGDRqE22+/Hd///vdx8uRJrF+/HnfeeSe6urowa9YsVFZWYtiwYfzJn6I0veSZKybd\nVCcEgEgkApfLxUeesVjM1g3ZzH5Po2O8ckWBCoj3nmrxuDUTZpClEFIHHTnfaCm1ciwWw80334yF\nCxfi61//uinrM4LS0lIcPnyY/+8jR46gtLTUwRWd2yjUMHMcp06dQm1tLdauXYvW1lbMnDkTVVVV\nKCsry9pohcpUqROyFi9Wq6HUImG1FywLO+uESrXcXCdLMRhR3KqFFWSpBDHfaOrJFdpWxuNxLFy4\nEF/72tdw88032xbJydUwWdHPtm3bcPfddxdEPwZQIMxzCKdPn8aLL76ItWvX4vjx45g+fTqqqqow\ncuTIHmOExJSpHo+Hj3CsNnNXgtbUp5VCKKnpGnZAbIxXOp1GMBh0nCz1ztXUorhVCyfIUghKRcdi\nMXAcB4/Hg/feew/nnXceLrjgAtxyyy2YPXs2vvOd79hGlkpm6gCwaNEi1NfXIxwO4/e//z3Gjx9v\ny9p6IwqEeY6ivb0ddXV1WL16NZqamjB16lRUV1dj1KhRkuRJXrCBQMDynjQ5GI3mzIxmcqVOCIAX\ndhFpOlEfJJg5hFpKcaumL1c4ys3pQx6VP4LBINLpNJYvX47ly5fD4/Fg9OjRWLJkCa644gpH11mA\ndSgQZi9AZ2cn6uvrsXr1ahw8eBBTpkzB3LlzMXr0aLjdbnz66afYuXMnrrnmGng8nqxUoF3m3ASW\noHw+n2nN93qimVwxRwB6pj6lHKGsHrYMmEuWQmjpi8xFshS2GaVSKdTU1PAlkg0bNqClpQV33nkn\nfvzjHzu23gKsQYEwexlisRheeeUVrFmzBnv37sW4ceOwadMmfPvb38Z9993Hf9HtmunJwmqC0mKk\nnkvN90pqZTHfVKv6cu0Ug8l53Lpcrpwny3Q6jTvuuAPjxo3DD3/4Q/7fP/zwQzQ3Nxf8YnshCoTZ\ni/Hmm2+isrISX/7yl3H8+HF8+ctfRlVVFSZMmJC1AdlBnk4QlJSROgmfnDZHALRHc8J0NADTZmAS\nWToxhFoYUROcPtDQZyWdTvcgy8WLF6O8vBz33ntvoVUjT1BItPdSbNy4EXPnzsWzzz6Ll156CW+/\n/TbmzJmDlStXoqKiAvfeey/efPNNpNNpvicyHA6jpKQEXq8XyWQSbW1t6OjoQCKRQCaT0b2WRCKB\nzs5OhEIhWzc/ar8pLi7mzRBisRjfP8hxXI8eNTtBs0a1RHPUAhEMBhGJRPhNvKurC+3t7ejq6uKj\nay0g83InyBI42xfJEmRRURF/X6TstvP9kiLLTCaDe+65BxdeeKElZFlfX4/y8nKMHDkSjz76aI+f\nNzQ0oE+fPhg3bhzGjRuHn//856ZevwBpFCLMXoqXXnoJAwYMwMSJE3v8LJ1O44033sCaNWuwbds2\njB8/HtXV1bjqqquyIi4zPFNzpd+TXUswGMyySbMjHS2EFapPudFkcs33uZT6FK7FCsWt2rVIkeW9\n996Lz33uc1iyZIklNpVf+MIXsGXLFpSWlmLChAl4/vnnMWrUKP53GhoasGzZMtTW1pp67QKUkVfG\nBatWrcJDDz2Effv24W9/+5ukvLqsrAwlJSU8QezYscPmlRrH7NmzJX/m8XgwZcoUTJkyBel0Gtu2\nbcPq1avx05/+FJdccgmqqqpw9dVXw+fzZdm+aTEUYDc/p6IWpbVQ8z0dCMiiz6pBy8K1mE1QYqYW\n1HwvdijINbIU6w82agBhZC1iZPnAAw+gT58+lpAlAOzYsQMjRoxAWVkZAGD+/PnYsGFDFmHSGguw\nH3lFmGPGjOHt5+TgcrnQ0NCA/v3727Qy5+DxeHDVVVfhqquuQiaTwc6dO7F69Wr8/Oc/R3l5Oaqr\nq1FRUQG/3y9KnuTwwpJnrpkjyK1F6C9KUacVtm92Phcl396ioiKk02meFHL5PWIh5nFLKX8zDjt0\niKC1sGS5ZMkSFBUVYenSpZZFtmLer9u3b8/6HZfLhbfffhuXXnopSktL8fjjj+Piiy+2ZD0FZCOv\nCLO8vFz17+bjCc7tduOKK67AFVdcgUwmg3/84x9YtWoVHnvsMQwfPhzV1dWYNm0aX2cSI092Iyku\nLnZUDMGqG9WsRcycW+pQYPVazATr20uHgng8zhupJ5NJR3o9AWOHCPZQIMwU6D3siEXcHMfh4Ycf\nRjwex//8z/9Y+pzUfC7Gjx+Pw4cPIxQKYdOmTaiursaHH35o2ZoKOIuC6EcELpcL06ZNw+WXX46n\nn37a6eU4ArfbjbFjx2Lp0qV45513cP/992PPnj2YM2cOvvWtb2Ht2rVZUx7IOYiENBzHIRqN8qkt\nuw8gZLvHcZzixBExsPcViUT4SC0ajfIiFLX3pXZUmF2gMWR0X+l0usd92QEzI2467JBwjb0v9nMo\nB7G6MsdxeOyxx9DS0mI5WQI9vV8PHz6MoUOHZv1OJBJBKBQCAMyaNQvJZBKnTp2ydF0FdKPXRZjT\np0/HsWPHevz7ww8/rHrMzltvvYXBgwfjxIkTmD59OsrLy/O6p8rlcmHMmDEYM2YMHnroIXzwwQdY\nvXo15s6diwEDBqCqqgqXXXYZvvnNb+Jf//VfMW/ePABnHV5YYrVjILaRiSNiEJtsofa+tIwKsxpi\nxE2RsxWjyZTWQiRmdsStZ+SaFFk+8cQTaGpqwm9/+1tbIvDLL78c+/fvR2NjI4YMGYKVK1fi+eef\nz/qd5uZmnH/++XC5XNixYwc4jsuL8lEuoNcR5ubNmw2/xuDBgwEAAwYMwNy5c7Fjx468JkwWLpcL\n5eXlePDBB/HAAw/gwIEDePrpp3HXXXdh0qRJiMViOH36NPr27WvbTE8WNHHE4/FYYqIuJUKhaJZV\ncAIQnZXoBFhbNzHiNns0mdJaxEQ1VkDNfVH6nRWEcRyHX/3qV/joo4/wzDPP2JauLioqwvLlyzFj\nxgyk02nceuutGDVqFJ566ikA3f6wq1evxpNPPomioiKEQiH85S9/sWVtBeRpW0lFRQUef/xxXHbZ\nZT1+RnMZI5EIOjo6cO211+JnP/sZrr32WgdWmvv4xz/+geuuuw733Xcf5syZgzVr1uCll15CMBjE\nnDlzMHv2bPTv3z9LmSnmxmPGZuzUsGVA/L6A7tR2Lhjdy02FUfpb4X0ZUabaSZZKSKfTfEoY6I7c\n3n//fVx77bX485//jF27dmHFihWOm1sUkDvIK8Jct24dFi9ejJMnT/KNv5s2bcLRo0dx2223YePG\njTh48CA/9DWVSmHBggUFT0gJcByHK6+8EnfffTfmz5+f9e9NTU1Yu3Ytamtr4Xa7MWfOHMyZMwcD\nBgywhDxzyUSdiNvlcvH1XCvaH9TACFmKQWw0mRYj9VwhSyDb2QgAdu7ciZ/97GfYtWsX+vbtiyVL\nlqCqqgrnnXeeo+ssIHeQV4RpB9T2etbX1+Puu+9GOp3Gd7/7Xdx33302r9QcJBIJWV9YjuPQ3NyM\ndevWYf369Ugmk5g9ezaqqqowaNAgXTM9hcil+ZFiUa4RkjECs8lSCK1G6rlKlmwa9o9//CO2bNmC\n2bNn48UXX8Srr76Kyy67DOvWrUOfPn0cXXMBzqNAmCZj3759cLvdqKmpwX//93+LEqYaN4/eCI7j\ncPLkSaxfvx7r169HZ2cnZs2ahcrKSgwbNkzVTM9cNlFXM1dTimTMdhkyW/ik5npyRuq5RJbk3ysk\ny+eeew4bN27ECy+8wB+8Ojs78dprr2HmzJmOr7sA51EgTItQUVEhSZjvvPMOlixZgvr6egDAI488\nAgD40Y9+ZOsancapU6dQW1uLtWvXorW1FTNnzkRVVRU/KokgRZ4UteQCWepJCUuZ3ht1GbKbLMWu\nz1oq0vVzwR5Ryux+5cqVWLt2LVatWmX7EPECzh0U+jAdgJibR1NTk4Mrcgb9+/fHt7/9bdTW1uLF\nF1/Ev/zLv+AnP/kJrr32WvzXf/0XPvzwQ3Acxzeoi5mosxGCU2BTwlrqp1Km9+3t7YhGo7y5gBYQ\nWXo8HseUuUIjdVKqdnR0aO5hNRNSZLl27Vq88MILeOGFF0wnSyUjdQBYvHgxRo4ciUsvvRS7d+82\n9foFmIuC/EsHjPZ6FlI7PdGnTx8sWLAACxYsQHt7O+rq6rB06VI0NTVh6tSpqK6uxqhRo+B2u/H8\n889j7NixGD16NDiO62GNZqeJulkzPs1wGbK6pUYLKPpnnY3EeiKtai8SQoosa2tr8cc//hHr169H\nMBg09ZrpdBqLFi3KKr1UVlZmlV7q6urw0UcfYf/+/di+fTtuv/12bNu2zdR1FGAeCoSpA0Z7PdW4\neeQzIpEIbrjhBtxwww3o7OxEfX09li1bhoMHD2LIkCHYuXMnNmzYwKdhfT6fqF+qXQOxzU4JCxvv\nhdaDwl5P4Gz9lPoNc4EshTVLYU8kpdqt6PVkIUWWdXV1+N3vfof169fzzjlmQo2Rem1tLRYuXAgA\nmDhxIlpbW9Hc3IyBAweavp4CjKOQkrUQUikn1s0jkUhg5cqVqKystHl15wZCoRCuv/56/PnPf8bk\nyZOxc+dOVFRUoKamBj/96U+xa9cuZDIZy2d6CkFmBVbXT4UWfTSajE1vJpNJRKNRXmzkNFl2dXUp\nCnxcLhcfCbNzPWOxGNrb29HZ2alrrqcQNNlESJabN2/Gr3/9a6xdu5ZvKzEbakovYr9z5MgRS9ZT\ngHEUIkyTwfZ6fvWrXxXt9ZRy8yhAHJlMBnfccQd27dqF3bt347zzzkMikcDWrVuxYsUKvPfee/jy\nl7+M6upqTJgwQdRs3MwJJBQVhUIhW5vaxVxrEokE4vE4APApT6vTm1Iw4pkrNoVEbjSZGtD7JCTL\nv/71r1i2bBk2bNiAkpIS9TeoEWrXKjwUFEo2uYsCYZqMuXP/f3v3HlR1nf9x/HngyE0IdUS8sT9o\npQBBxCXYllVzRyJEDqg7YmKGoqNkYNmE2+Y6uatsxmRrw4zN1q7VbpMmF8EEhg0Hd0WBSR27YCPZ\nEAJqpahc5HIO5/eHc07nwDl6UM45XN6PmWYEvnLeSvLi+/l+Pu/3EpYsWdLv/VOnTuXo0aP6t2Nj\nY4mNjb3v17l+/TpJSUl8//33+Pr68sknnzBu3Lh+142E2Z4ODg6Eh4eTnZ2Nh4cHcGcZ9qmnnuKp\np55CrVZz/PhxDh48SGZmJpGRkahUKh5//HEcHR1NPhu0ZKanKbrlPVuHZV+6PrAajUY/es0Wy5vm\nDGaD+XuNJrNkJ7HhDzWGYfnf//6X119/ncLCQpP/XgaTJY9e+l7T2NjItGnTrFqXuH9yrGSY0k19\nz8zMZPfu3bS0tOiPpxjy8/Pj9OnTo6Y5s0aj4cSJE+Tm5lJVVcWcOXNITEwkKirKKOAMw1OtVlu0\nscbcszB70E1OMXWMpW8DCGt3GbLVNBbD1YKenh6zP/CYWwGorKzktddeo7CwkIkTJ1qlRkNqtZpH\nH32U8vJypk6dSkRERL/z1sXFxeTk5FBcXExVVRUvvPCCbPoZwiQwh6mAgACOHz+Ot7c3V65c4Ykn\nnuCbb77pd52fnx+ff/75qGzvpdFoqKqqIi8vjxMnThASEkJCQgLz5s0z2tFqKjwNd2/Cz51hhkJY\nDuTMp6UNIO6XvUaXmfuaOTg4mFwBqK6u5tVXX+Xw4cNMmjTJJjUClJSUEKB8QwAAExBJREFU6Dt6\npaam8sorrxg1Ugd4/vnnKS0tZezYsezfv99sdzBhfxKYw9T48eNpaWkB0I/30b1t6OGHH8bT0xNH\nR0c2bNjA+vXrbV3qkNDb28vnn39Obm4uFRUVBAQEkJCQwO9+9zuj0DE8+qA7dK9rb2fYGcZeHqQN\nYN8WfQ+6k3iozPnUfc26urr0sz41Gg0XL15kzpw5nDlzhq1bt1JQUMDkyZPtUqMYGeQZ5hBm7rzn\nrl27jN7WfVM3RWZ73uHg4EBERAQRERH09vbyxRdfcOjQIbKzs/Hz8yMxMZGFCxfi6uqq31jj5ORE\ne3s7vb29KBQKfds7W8z0NOVBe+YOxrNBnaESlvDzJhmNRqPvmfvVV1+RkpJCd3c3SqWSt956Cy8v\nL7vVKEYGucMcpgICAqioqGDy5MlcvnyZBQsWmFySNbRjxw7c3d156aWXbFTl0KfVavnqq6/Izc3l\nP//5D1OnTtWH55/+9CdcXV3JysrS37UY3nlac8ByX9ZsMN+3D6zuBwZzz3OHUljCz+dh+y7DfvHF\nF2zbto3Q0FCOHTtGc3MzCQkJbN++Xc49i/si5zCHKZVKxQcffADABx98QGJiYr9rOjo6aG1tBaC9\nvZ2ysjJCQkJsWudQp1AoCAkJYceOHVRWVrJz506+++47HnvsMSorKwkODqatrU1/pMPV1RUPDw/9\nQffbt2/T2trK7du3UavVVmn3plaraW9vx9XV1SrTWHRdhnRnWJ2cnNBoNCZb9A3VsNStDOjU1taS\nnp7Oe++9x5tvvsnZs2c5deoUjz76qFWaFIjRQe4wh6nr16+zfPlyGhoajI6VyGzPB9PT08OqVau4\ndu0ae/bsoaSkhKNHj+Lp6YlKpSIuLs7oOII1B2KDfaex9N1YY9ixZ6iFpeHfzTfffMOGDRs4cOAA\nv/zlL+1YoRhpJDCFMPDKK6/w9ddfGzXi1mq1fP/99+Tl5fHpp5/i4uKCSqVi8eLFTJgw4Z4zPe83\nPIfa6LKOjg79naZhiz57Ps/t+3dTV1fHunXr+Oijj3jkkUes9vqj6Ry0+JkEpujHkuHWGRkZlJSU\n4Obmxvvvv09YWJgdKh18N2/exM3NzWxAabVampqayM/Pp6ioCAcHB+Lj44mPj8fLy6tfeOru0AZ6\npMPcczl70C3DarVa/XLmUHie2zcsv/vuO9asWcOHH35o9c5Zcg56dJLAFEYsGW5teNi6urqazZs3\nj8rD1lqtlh9++IH8/HwOHz5MT08PixcvJiEhgcmTJ9/XQGywX+s9U/qGZd9arb0k3Ze5sGxoaOCZ\nZ55h//79BAcHD+prmiLnoEcnCUxhxJLh1hs3bmTBggUkJSUBxt88RiutVsu1a9c4fPgwBQUFdHR0\nEBsbi0qlwsfHx2x4ajQafcAolUp9z9vhEJamrjcVnrpdtw8anuZ2Cjc1NZGcnMy7775LaGjoA72G\npeQc9Ogk5zCFEVPTE6qrq+95TWNj46gOTIVCwcSJE1m3bh3r1q3j+vXrFBUVkZmZyY0bN4iJiSEh\nIQE/Pz+T5yF1Mz0BnJ2d7d5NaKBhCT9PINFNIdEtSXd1dfU76znQ8DQXlpcvX2bVqlW88847gx6W\ncg5a9CWBKYzIhIXBMWHCBFJSUkhJSeHmzZt8+umnbN++nR9++IHo6GgSEhLw9/fXT1Y5c+YMgYGB\nODs7o9FouHXrll0GYsOdr60uvC0NS1N04an7wcBwAonhXfW9Pr+5sLxy5QrJycm8/fbbVmknd7e5\nt7qlWN05aHPt9qZMmQKAl5cXS5YsoaamRgJzGJNzmMKITFgYfJ6eniQnJ5Ofn09paSmBgYFkZWUR\nHR1NVlYWf/vb31i5ciWtra24uLjYbKanKYMVln3p7qrd3d3x8PBAqVTS3d1t9Gcz9XRINxi7b1j+\n+OOPJCcns2fPHiIjIwelxoGQc9CjkzzDFEZkwoLtdHR08NJLL/HRRx/x61//Wj9ZJTg42KjDjqVT\nOh6UtcLyXq/Zt8uQ7s4TMDmR5dq1ayQlJfH6668zb948q9doipyDHp0kMEU/MmHBNnJycsjOzqa8\nvBwfHx/KysrIzc3l/PnzzJs3j8TERGbPnt0vPHXBOZjhaY+wNFWD4Z8N0HdX0v3ZWlpaSEpK4i9/\n+QsLFiyweY1idJPAFMIO2traUKlU/OMf/8DPz8/oY93d3Rw7dozc3FzOnTvHb37zGxITE3nsscfM\nhqelMz1NGQphaUg361N3l1lcXMzevXuJjY2lvLycP//5z0RHR9u1RjE6SWAKu7lXg4SKigoSEhJ4\n+OGHAVi2bBnbtm2zR6l2o1arOX78OIcOHeL06dNERkaiUql4/PHHjXbSWjLT05ShGJbt7e04OTnp\nl2G7u7spLS1l3759fPnll/ziF79g2bJlLF26lKCgILvXLEYPCUxhF5Y0SKioqGDPnj0UFRXZsdKh\nQ6PRcOLECXJzc6mqqtI/84yKijI6s2lqpqdhMwHD64ZiWI4ZM0bflhDu3I2vWLGCF198kUWLFnHy\n5Eny8vI4fPgwp06d0u9EFcLaJDCFXVjSIKGiooI333yTI0eO2KXGoUyj0VBVVUVeXh7/+9//CAkJ\nITExkXnz5hntJjUXnkqlks7OThQKxZAOy/b2dlauXElaWpp+A42OVqu1e91idJFjJcIuTDU/aGpq\nMrpGoVBw8uRJQkNDWbRoEbW1tbYuc8hydHQkKiqKPXv2UF1dzcaNGzlx4gQxMTFs3LiRkpISurq6\n+o0lc3V1RavV0t7ejkajwcHBAY1GY5WxZJYyF5a3b99m1apVrF+/vl9Ygpz9FbYngSnswpJvdnPm\nzOHSpUucO3eO9PR0k2fdxJ0zjhEREbzxxhucOnWKLVu2cObMGWJjY0lNTeXIkSPcvn0bhUKBWq3m\n73//O4B+RJctZnqaYxiWhkdHOjs7Wb16NatXr2b58uVWreHQoUPMnDkTR0dHzpw5Y/a60tJSAgIC\n8Pf3Z/fu3VatSQxNEpjCLixpkGA4qDk2Npaenh6uX79u0zqHGwcHB2bPns2uXbs4deoUr776KufP\nnyc+Pp7k5GRUKhUnT57UD1x2cXHB3d3dLuGpu9NVKpU4Ozvrf4jq6uoiJSWF5cuXs3LlSqu9vk5I\nSAgFBQV3PdOp0Wj0R6lqa2v5+OOPOX/+vNVrE0OLBKawi/DwcOrq6qivr6e7u5uDBw+iUqmMrrl6\n9ar+G3ZNTY2+ybWwjEKhIDg4mNdee43y8nKuXbtGe3s7N27cYM2aNRw8eJBbt27pe8C6uLjg4eFh\nk/A0DEsXFxd9WHZ3d5OamopKpWL16tU2WXYNCAi45+zMmpoaZsyYga+vL2PGjGHFihUUFhZavTYx\ntEgvWWEXSqWSnJwcYmJi9A0SAgMDjRok5Obmsm/fPpRKJW5ubhw4cMDOVQ9PnZ2dLF26lClTpnDs\n2DEcHR25ePEieXl5JCUl8dBDD6FSqYiLi2PcuHEmG6h3dnYOeKanObqw1L2G7vP09PSwfv16Fi5c\nSGpq6pB6RmnJUAIx8klgCruJjY0lNjbW6H26TkIAmzZtYtOmTQ/8OmvXruXo0aNMmjSJL7/80uQ1\nI3UgNsCtW7eYNWsWu3bt0h8/mTFjBlu3biUzM5OGhgby8vJITk7GxcUFlUrF4sWLmTBhgtkG6vc7\nfcRcWKrVajZu3MjcuXNJS0sb9LA0N3kkKyuL+Pj4e/7+oRTewn4kMMWIt2bNGtLT01m9erXJjxcX\nF/Ptt99SV1dHdXU1aWlpI6o37qRJk8xuUlEoFPzf//0fW7Zs4cUXX6SpqYn8/HzWrl2LQqEgPj6e\n+Ph4vLy8+o0lG+j0EV1YOjg4GIWlRqNh06ZNhIeHk56ebpVwutvkEUtY8sxdjHzyDFOMeHPnzmX8\n+PFmP15UVMSzzz4LQGRkJDdu3ODq1au2Km/IUCgUTJ8+nYyMDMrKyvjXv/6FUqlkw4YNxMfH8847\n73D58mW0Wm2/6SOOjo53nT5iGJaurq5GYbl582ZmzpzJli1b7H4nZ+45rSXP3MXIJ4EpRj1zA7FH\nM4VCgbe3N2lpaZSWlvLJJ5/w0EMPkZGRQVxcHDk5OTQ0NBiF59ixY/Hw8Og3lqyrq8tkWPb29rJl\nyxb8/PzYunWr3cKyoKAAHx8fqqqqiIuL0z8maG5uJi4uDjB+5h4UFERSUpJRVyoxOkinHzEq1NfX\nEx8fb/IZZnx8PH/4wx+IiooCYOHChbzxxhsygcWMlpYWCgsLKSgooKWlhZiYGBISEvDz8zMKPa1W\nS3d3N11dXWi1WpRKJXV1dUydOpWJEyeSmZnJxIkT2bFjh93vLIWwhNxhilFPBmIPzPjx40lJSaGw\nsJAjR47g6+vL9u3biYmJITs7mwsXLujD8o9//CO3bt3S33nm5eUxa9YsoqKiuHjxolU2+AhhLbLp\nR4x6KpWKnJwcVqxYQVVVFePGjcPb29veZQ0Lnp6eJCcnk5ycTFtbG8XFxWRlZdHQ0IBCocDDw0O/\nYcjJyUl/N9nY2IiDgwNBQUHMmjVL3wJPiKFMlmTFiPf0009z/PhxfvrpJ7y9vdmxY4d+QLEMxB58\narWa5cuX09jYiL+/PxcvXmT+/PksWbKEoqIiWltb2bt3Lw4ODnR2dvLZZ59RX1/P888/b+/Shbgr\nCUwhxKBRq9U888wz3Lx5k4KCApydnenq6qKsrIz33nuP1tZWPvvsswENuBZiqJD/a4UYJGvXrsXb\n25uQkBCTH6+oqMDT05OwsDDCwsLYuXOnjSu0jTlz5pCfn69vpu7s7Ex8fDyFhYUcO3bMqmFpaSN1\nX19fZs2aRVhYGBEREVarR4ws8gxTiEFyrwYJAPPnzx/RA7GVSiUvv/yy3V5f10jdsGOUKQqFgoqK\nCulNLAZEAlOIQTJ37lzq6+vveo08AbGugIAAi6+Vr4UYKFmSFcJGZCD20KFQKFi4cCHh4eG8++67\n9i5HDBNyhymEjegGYru5uVFSUkJiYiIXLlywd1nDzoM2UgeorKxkypQp/Pjjj0RHRxMQEMDcuXMH\nu1QxwkhgCmEjHh4e+l/Hxsby3HPPcf36dXmONkAP2kgdYMqUKQB4eXmxZMkSampqJDDFPcmSrBA2\nIgOxbcvcM8qOjg5aW1sBaG9vp6yszOzOZiEMyR2mEIPEsEGCj49PvwYJMhDb+goKCsjIyOCnn34i\nLi6OsLAwSkpKaG5uZv369Rw9epQrV66wdOlS4M650eTkZJ588kk7Vy6GA2lcIIQQQlhAlmSFGIYu\nXbrEggULmDlzJsHBwbz99tsmr8vIyMDf35/Q0FDOnj1r4yqFGFlkSVaIYWjMmDG89dZbzJ49m7a2\nNn71q18RHR1tNKOxuLiYb7/9lrq6Oqqrq0lLS6OqqsqOVQsxvMkdphDD0OTJk5k9ezYA7u7uBAYG\n0tzcbHRNUVERzz77LACRkZHcuHGDq1ev2rxWIUYKCUwhhrn6+nrOnj1LZGSk0fubmprw8fHRvz19\n+nQaGxttXZ4QI4YEphDDWFtbG7///e/Zu3cv7u7u/T7ed0+fDGsW4v5JYAoxTPX09LBs2TJWrVpF\nYmJiv49PmzaNS5cu6d9ubGxk2rRptizxgbz88ssEBgYSGhrK0qVLuXnzpsnrSktLCQgIwN/fn927\nd9u4SjGaSGAKMQxptVpSU1MJCgrihRdeMHmNSqXiww8/BKCqqopx48bh7e1tyzIfyJNPPsnXX3/N\nuXPneOSRR/jrX//a7xqNRqMf/l1bW8vHH3/M+fPn7VCtGA1kl6wQw1BlZSX//ve/9TMd4U4v1YaG\nBuBOo4RFixZRXFzMjBkzGDt2LPv377dnyQMWHR2t/3VkZCR5eXn9rqmpqWHGjBn4+voCsGLFCgoL\nC412CwsxWCQwhRiGfvvb39Lb23vP63JycmxQjfX985//5Omnn+73flMbm6qrq21ZmhhFZElWCHFX\nljRJqKiowNPTk7CwMMLCwti5c6dFnzs6OpqQkJB+/x05ckR/za5du3BycmLlypX9fr9sYhK2JHeY\nQoi7sqRJAsD8+fMpKioa0Oe+1+SR999/n+LiYsrLy01+vO/GpkuXLjF9+vQB1SCEpeQOUwhxV5Y0\nSQDz00HuV2lpKdnZ2RQWFuLi4mLymvDwcOrq6qivr6e7u5uDBw+iUqkGtQ4hdCQwhRAWM9ckQaFQ\ncPLkSUJDQ1m0aBG1tbUP/Frp6em0tbURHR1NWFgYzz33HADNzc3ExcUBoFQqycnJISYmhqCgIJKS\nkmTDj7AamVYihLBIW1sbTzzxBNu2bet37rO1tRVHR0fc3NwoKSlh8+bNXLhwwU6VCmEdEphCiHvq\n6elh8eLFxMbGmj33acjPz4/Tp0/LgGwxosiSrBDirixpknD16lX9M8yamhq0Wq2EpRhxZJesEOKu\nLGmSkJuby759+1Aqlbi5uXHgwAF7liyEVciSrBBCCGEBWZIVQgghLCCBKYQQQlhAAlMIIYSwgASm\nEEIIYQEJTCGEEMICEphCCCGEBSQwhRBCCAv8P9KdUlGzt2liAAAAAElFTkSuQmCC\n", - "text": [ - "" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "\n", - "#1. Taking the whole dataset ignoring the class labels\n", - "\n", - "Because we don't need class labels for the PCA analysis, let us merge the samples for our 2 classes into one $3\\times40$-dimensional array." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "all_samples = np.concatenate((class1_sample, class2_sample), axis=1)\n", - "assert all_samples.shape == (3,40), \"The matrix has not the dimensions 3x40\"" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 5 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "#2. Computing the d-dimensional mean vector" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "mean_x = np.mean(all_samples[0,:])\n", - "mean_y = np.mean(all_samples[1,:])\n", - "mean_z = np.mean(all_samples[2,:])\n", - "\n", - "mean_vector = np.array([[mean_x],[mean_y],[mean_z]])\n", - "\n", - "print('Mean Vector:\\n', mean_vector)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Mean Vector:\n", - " [[ 0.50576644]\n", - " [ 0.30186591]\n", - " [ 0.76459177]]\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# 3. a) Computing the Scatter Matrix" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The scatter matrix is computed by the following equation: \n", - "$S = \\sum\\limits_{k=1}^n (\\pmb x_k - \\pmb m)\\;(\\pmb x_k - \\pmb m)^T$ \n", - "where $\\pmb m$ is the mean vector \n", - "$\\pmb m = \\frac{1}{n} \\sum\\limits_{k=1}^n \\; \\pmb x_k$" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "scatter_matrix = np.zeros((3,3))\n", - "for i in range(all_samples.shape[1]):\n", - " scatter_matrix += (all_samples[:,i].reshape(3,1) - mean_vector).dot((all_samples[:,i].reshape(3,1) - mean_vector).T)\n", - "print('Scatter Matrix:\\n', scatter_matrix)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Scatter Matrix:\n", - " [[ 48.91593255 7.11744916 7.20810281]\n", - " [ 7.11744916 37.92902984 2.7370493 ]\n", - " [ 7.20810281 2.7370493 35.6363759 ]]\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#3. b) Computing the Covariance Matrix (alternatively to the scatter matrix)\n", - "Alternatively, instead of calculating the scatter matrix, we could also calculate the covariance matrix using the in-built `numpy.cov()` function. The equations for the covariance matrix and scatter matrix are very similar, the only difference is, that we use the scaling factor $\\frac{1}{N-1}$ (here: $\\frac{1}{40-1} = \\frac{1}{39}$) for the covariance matrix. Thus, their ***eigenspaces*** will be identical (identical eigenvectors, only the eigenvalues are scaled differently by a constant factor).\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$ \\Sigma_i = \\Bigg[ \n", - "\\begin{array}{cc}\n", - "\\sigma_{11}^2 & \\sigma_{12}^2 & \\sigma_{13}^2\\\\\n", - "\\sigma_{21}^2 & \\sigma_{22}^2 & \\sigma_{23}^2\\\\\n", - "\\sigma_{31}^2 & \\sigma_{32}^2 & \\sigma_{33}^2\\\\\n", - "\\end{array} \\Bigg]$" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "cov_mat = np.cov([all_samples[0,:],all_samples[1,:],all_samples[2,:]])\n", - "print('Covariance Matrix:\\n', cov_mat)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Covariance Matrix:\n", - " [[ 1.25425468 0.1824987 0.18482315]\n", - " [ 0.1824987 0.97253923 0.07018075]\n", - " [ 0.18482315 0.07018075 0.91375323]]\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "#4. Computing eigenvectors and corresponding eigenvalues\n", - "\n", - "To show that the eigenvectors are indeed identical whether we derived them from the scatter or the covariance matrix, let us put an `assert` statement into the code. Also, we will see that the eigenvalues were indeed scaled by the factor 39 when we derived it from the scatter matrix." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# eigenvectors and eigenvalues for the from the scatter matrix\n", - "eig_val_sc, eig_vec_sc = np.linalg.eig(scatter_matrix)\n", - "\n", - "# eigenvectors and eigenvalues for the from the covariance matrix\n", - "eig_val_cov, eig_vec_cov = np.linalg.eig(cov_mat)\n", - "\n", - "for i in range(len(eig_val_sc)):\n", - " eigvec_sc = eig_vec_sc[:,i].reshape(1,3).T\n", - " eigvec_cov = eig_vec_cov[:,i].reshape(1,3).T\n", - " assert eigvec_sc.all() == eigvec_cov.all(), 'Eigenvectors are not identical'\n", - " \n", - " print('Eigenvector {}: \\n{}'.format(i+1, eigvec_sc))\n", - " print('Eigenvalue {} from scatter matrix: {}'.format(i+1, eig_val_sc[i]))\n", - " print('Eigenvalue {} from covariance matrix: {}'.format(i+1, eig_val_cov[i]))\n", - " print('Scaling factor: ', eig_val_sc[i]/eig_val_cov[i])\n", - " print(40 * '-')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Eigenvector 1: \n", - "[[-0.84190486]\n", - " [-0.39978877]\n", - " [-0.36244329]]\n", - "Eigenvalue 1 from scatter matrix: 55.398855957302445\n", - "Eigenvalue 1 from covariance matrix: 1.4204834860846791\n", - "Scaling factor: 39.0\n", - "----------------------------------------\n", - "Eigenvector 2: \n", - "[[-0.44565232]\n", - " [ 0.13637858]\n", - " [ 0.88475697]]\n", - "Eigenvalue 2 from scatter matrix: 32.42754801292286\n", - "Eigenvalue 2 from covariance matrix: 0.8314755900749456\n", - "Scaling factor: 39.0\n", - "----------------------------------------\n", - "Eigenvector 3: \n", - "[[ 0.30428639]\n", - " [-0.90640489]\n", - " [ 0.29298458]]\n", - "Eigenvalue 3 from scatter matrix: 34.65493432806495\n", - "Eigenvalue 3 from covariance matrix: 0.8885880596939733\n", - "Scaling factor: 39.0\n", - "----------------------------------------\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Checking the eigenvector-eigenvalue calculation\n", - "\n", - "Let us quickly check that the eigenvector-eigenvalue calculation is correct and satisfy the equation\n", - "\n", - " $ \\pmb\\Sigma\\pmb{v} = \\lambda\\pmb{v} $ \n", - "\n", - "
\n", - "where \n", - "$ \\pmb\\Sigma = Covariance \\; matrix, \\; \\pmb{v} = \\; Eigenvector, \\; \\lambda = \\; Eigenvalue$" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "for i in range(len(eig_val_sc)):\n", - " eigv = eig_vec_sc[:,i].reshape(1,3).T\n", - " np.testing.assert_array_almost_equal(scatter_matrix.dot(eigv), eig_val_sc[i] * eigv, \n", - " decimal=6, err_msg='', verbose=True)" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 10 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Visualizing the eigenvectors" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And before we move on to the next step, just to satisfy our own curiosity, we plot the eigenvectors centered at the sample mean." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%pylab inline\n", - "\n", - "from matplotlib import pyplot as plt\n", - "from mpl_toolkits.mplot3d import Axes3D\n", - "from mpl_toolkits.mplot3d import proj3d\n", - "from matplotlib.patches import FancyArrowPatch\n", - "\n", - "\n", - "class Arrow3D(FancyArrowPatch):\n", - " def __init__(self, xs, ys, zs, *args, **kwargs):\n", - " FancyArrowPatch.__init__(self, (0,0), (0,0), *args, **kwargs)\n", - " self._verts3d = xs, ys, zs\n", - "\n", - " def draw(self, renderer):\n", - " xs3d, ys3d, zs3d = self._verts3d\n", - " xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, renderer.M)\n", - " self.set_positions((xs[0],ys[0]),(xs[1],ys[1]))\n", - " FancyArrowPatch.draw(self, renderer)\n", - "\n", - "fig = plt.figure(figsize=(7,7))\n", - "ax = fig.add_subplot(111, projection='3d')\n", - "\n", - "ax.plot(all_samples[0,:], all_samples[1,:], all_samples[2,:], 'o', markersize=8, color='green', alpha=0.2)\n", - "ax.plot([mean_x], [mean_y], [mean_z], 'o', markersize=10, color='red', alpha=0.5)\n", - "for v in eig_vec_sc.T:\n", - " a = Arrow3D([mean_x, v[0]], [mean_y, v[1]], [mean_z, v[2]], mutation_scale=20, lw=3, arrowstyle=\"-|>\", color=\"r\")\n", - " ax.add_artist(a)\n", - "ax.set_xlabel('x_values')\n", - "ax.set_ylabel('y_values')\n", - "ax.set_zlabel('z_values')\n", - "\n", - "plt.title('Eigenvectors')\n", - "\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Populating the interactive namespace from numpy and matplotlib\n" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAGUCAYAAAASxdSgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXmcHGWd/z9VXX3PmWsSZiYJIROSQEzCYVYIBo2ahF0O\nF/WFqLCIy7FgFtf1WFhYg3jA4g9FlEUXg8gSFt1VoiQE/f02ikAIKBgWhSRIkpnJOUnm6rOu3x/N\nt/J0TVV1VXdVT3fP83698lJmuquqa7qez/O9BV3XdXA4HA6HUyHieF8Ah8PhcBoDLigcDofD8QUu\nKBwOh8PxBS4oHA6Hw/EFLigcDofD8QUuKBwOh8PxBS4oHA6Hw/EFLigcDofD8QUuKBwOh8PxBS4o\nHA6Hw/EFLigcDofD8QUuKBwOh8PxBS4oHA6Hw/EFLigcDofD8QUuKBwOh8PxBS4oHA6Hw/EFLigc\nDofD8QUuKBwOh8PxBS4oHA6Hw/EFLigcDofD8QUuKBwOh8PxBS4oHA6Hw/EFLiicuuA//uM/sGrV\nqvG+DA6H4wAXFE5NMXv2bCQSCTQ3Nxv/1q5di4997GPYsmXLeF9eWTz00EM477zzxvsyOJzAkcb7\nAjgcFkEQ8Itf/ALvfe97x/tSagZVVREKhcb7MjicknALhVMXmHf5Tz/9NE499VS0tbXhhhtuwIoV\nK/Dggw8av//BD36AhQsXYtKkSVi9ejX27dtn/E4URTzwwAOYN28e2tvbceONNwIAcrkc2tra8Npr\nrxmvPXLkCBKJBAYGBgAAv/jFL7BkyRK0t7fj3HPPxauvvmq8tre3F3/913+NadOmYcqUKfj0pz+N\n119/Hddddx2ef/55NDc3Y9KkSQCAoaEhXHHFFZg2bRpmz56Nr3zlK9B13fis5557Lv7hH/4BU6ZM\nwbp167B7926sWLECbW1tmDp1Ki677LIA7jKHUxlcUDg1By2sdgwMDODDH/4w7rzzThw7dgynnnoq\nnn/+eQiCAAB44okn8LWvfQ0//elPMTAwgPPOOw8f/ehHi47x5JNP4qWXXsKOHTvw+OOPY8uWLYhG\no7j00kuxYcMG43WPP/44zj//fEyZMgUvv/wyrr76anz/+9/HsWPHcO211+Kiiy6CLMtQVRV/9Vd/\nhZNPPhl79+5Ff38/PvrRj2L+/Pl44IEH8K53vQsjIyM4duwYAODTn/40RkZG8NZbb+HXv/41Hn74\nYaxfv9447/bt23HKKafg8OHDuPnmm3Hrrbdi9erVGBwcRH9/P9auXevX7eZw/EPncGqIWbNm6U1N\nTXpbW5vx7/vf/77+0EMP6cuXL9d1Xdd/+MMf6uecc07R+7q7u/UHH3xQ13VdX716tfH/dV3XVVXV\nE4mEvm/fPl3XdV0QBP3ZZ581fv+Rj3xE//rXv67ruq7/6le/0k855RTjd+ecc47+ox/9SNd1Xb/u\nuuv0W2+9tei8p556qv7rX/9af+655/SpU6fqqqqO+Uzr1683rl3XdV1RFD0Sieh/+tOfjJ898MAD\n+vnnn2+8fubMmUXHuOKKK/RrrrlG7+vrc7x/HM54wi0UTk0hCAKeeOIJHD9+3Pj3qU99qshq2b9/\nP7q6uorex/733r178fd///dob29He3s7Jk+eDADo7+83XjN9+nTj/ycSCYyOjgIAzj//fKTTaWzf\nvh179uzBH/7wB3zwgx80jvuNb3zDOG57ezv6+vpw4MAB9Pb2YtasWRDF0o/UwMAAZFnGrFmzjJ/N\nnDmz6Pq6u7uL3nPXXXdB13W8853vxOmnn15kzXA4tQIPynPqjpNOOgk///nPjf/WdR19fX3Gf8+c\nORO33nrrGDeXG0KhED7ykY9gw4YNmDZtGi688EIkk0njuLfccgtuvvnmMe97/vnnsW/fPssAOrni\niClTpiAcDmPPnj1YsGABAGDfvn1Fomh+T0dHB773ve8BAJ599lm8733vw4oVKzBnzhzPn5HDCQpu\noXBqDrJGdF1HLpdDKpWCqqrGzy644AK8+uqreOKJJ6AoCr7zne/g4MGDxvuvu+46fPWrX8Uf//hH\nAIUA+I9//OOS5yMuv/xyPPbYY3j00Udx+eWXGz//27/9W/zbv/0btm/fDl3XkUql8OSTT2J0dBTL\nli3DjBkz8MUvfhHpdBrZbBbPPfccgIIY9PX1QZZlACdE65ZbbsHo6Cj27t2Le+65Bx//+Mdtr/HH\nP/6xIZptbW0QBMGVNcThVBP+jeTUHBdeeCGam5vR0tKCKVOm4LLLLkM+n4eqqjh+/Dji8Tg2bNiA\nz3/+85gyZQr+9Kc/4ayzzkI0GgUAXHLJJfjCF76Ayy67DK2trVi0aFFRDYt59y8IQtHP3vnOd6Kp\nqQkHDhzAmjVrjJ+feeaZ+P73v48bb7wRkyZNQk9PDx5++GEAhcyxn//859i9ezdmzpyJ7u5uPP74\n4wCAlStX4rTTTsP06dMxbdo0AMC3v/1tJJNJzJkzB+eddx4+9rGP4aqrrrK8HgB46aWX8Bd/8Rdo\nbm7GxRdfjHvvvRezZ8/26Y5zOP4g6ObtGYczjui6DlVVMTw8jEgkAlEUIcsyRFE0rIJYLGYsuKIo\nQhRFnHrqqXjkkUfwnve8Z5w/AYczceEWCqdm0HUdsixDlmUoijLm9yQioVAIW7duxfDwMHK5HL7+\n9a9D13UsXLgQw8PDSKfTkGUZmqZV+yNwOBMaHpTn1ASapiGfz0PXdcPlo2kaMpkMVFWFJElFwe7t\n27fj6quvhizLmD9/Ph599FHE43Houo58Po98Pg+gYMFIkoRwOIxQKMTjDhxOgHCXF2dcIReXLMtF\nsYPBwUHouo5IJFL0OlVVIYoiQqGQ8c8cb2CPTf8IURQRDocNgeICw+H4BxcUzrhB1oSmaYaY6LqO\nTCaDbDaLeDyOSCRixFAAYHR0FNFolAsMh1ODcJcXZ1ywcnGpqorR0dEigTAjCELRws8KC4mTncCY\ns6dIXHK5nJEEEAqFuMBwOGXCBYVTVXRdh6IoUBSlqJYin88bGVyxWMyoXC+FIAiQJAmSJBnHL0dg\n6HUkMLlcDgAMgQmFQpAkydb64XA4XFA4VUTTNCP7inVxUVZWc3OzIQyE1wXcrcCwFgh7DtYi0XUd\nmqYhm80aPzNbMFxgOJwTcEHhBA6lA5NVQv8URUEqlUIoFEJra2sgi7OTwORyOWiaZrjWVFUtslqs\nXGRcYDgce7igcAKFXFwUG6HU3mw2i0wmg0QigUgkUrWFuJQFk8vlitxjrAXDBYbDcYYLCicwzIF3\n+lkqlYKmaWhpaXGcRFiNBEQSGEEQEI/HjeQAswVTrsAIgoBwOGwE/LnAcBoZLigc3zHXllBcglqq\nhMNhNDU1OS6uTr8LUmjcusjcCkw2m4WiKEahJbdgOI0MFxSOr9jVllBmV1NTk1GsWA7VXoDNAqNp\nGjRNg6IokGUZuq47CgwAI8uMLJhMJlPURoYLDKdR4ILC8Q279imjo6PQNA3RaLQiMakFqBklKzBk\nwVgJDGtN0T1ha2i4wHAaCS4onIpxU1vSqA0ZSGDC4TAAa4EhkSWBMLvInASGrCMuMJx6gAsKpyKc\n2qfk83k0NTUhHA4jk8l4FpV6FCGzwKTTaYRCISOLDMCYIksngWFjUQAXGE5twwWFUzYURwBOLIZs\n+5SWlhZjcST3l1saZaGkVjFWLrJKBAYoJDnEYjGjkp8LDGe84YLC8QybvRQOh41FLJfLIZ1OIx6P\nIxqN8sXNAtaCoV5iTgLDVu6zAkPvUVW1aHYMteqXJGlMFwAOJ2i4oHA8Qe1TqNYiEokYkxQVRbFs\nn1IpjboosgJRjsAAY1vFkMDoum5kl3GB4VQLLigcV5jdLWw68OjoKCRJCqx9ykTBSWAURUEulzNc\naHT/rd5PsO+l37MxGC4wHL/hgsIpCfXiYntdkZjkcjkkEglEo1HHY1gtgJVcz0TASmAoBkNWCPVC\nc3KREfQ3YzcFXGA4fsIFheOIXW0J/axU+5RysROgibzgkXVC/7LZLGKxmKUFY5UFxgWGEzRcUDiW\n2NWWyLKMVCplBJeDEBMWaltiN3BrIsMKDIAiC4biXE7TLO0EJpPJAIARe+ECw3ELFxTOGJxqS3K5\nHJLJpLFwBXkNiqIgm80iFAoZ1wMUu4L4AncCvwSG/t6CIECW5TEWDKUp8/vPMcMFhVOEXW1JKpUC\nALS2tkIUxaKOum7wEkOhTDIAaGlpMawkEjWaqujUqJHjj8CwViHF0rjAcOzggsIBMNbFRQuDeTQv\nW3QXRHBclmWjMDIcDlsGmckVw2YxsX202PhBoy5w7EgAt7gVGHqt+RxuBIbtQ8YFZuLBBYVjNHCk\npoe0mDiN5vUbKpbMZrNIJpNQVbWkYFl1AvZSwzHRsRMYsv4oVubFgqEhZWbxp+8VF5jGhgvKBIat\nLcnn88bkRGqfEgqFitqnBAUJGnDCpUaBYS9UUoXOKRYYEgP2/mmaVrbAADA2LOQm4wLTeHBBmaDY\n1Za4bZ/i1eVl93pycUWjUWNioh/YFQmSW4920eSemSi1LV4wW4BmgS5HYNLpNHRdNzYv4XDYiMFw\ngal/uKBMQKxqSwAYO8lqubgoa4w6Eju9ttKFhj4nzWMxxw8AIJPJGALDGy2OxY3AOCVJsFlk7IgD\nsh7JguECU79wQZlA2NWWUK2HJElobm4O/CG2cnE5YV6U/LAmzPGD0dFRoy+ZmwwoTnnjkul9dC/Z\n+A3gLDDcRVn7cEGZINjVllAgXJIkww3hhnIXdnJxmbPGrI7vpd19pZDAsgucl903x53A0H1WVdVy\nXDIXmPqGC8oEgJ0eyLZPSaVSRvuUXC4XeByBgv2lXFzjgVkcytl9N4rAUKfiSrG6h9ls1lUdEReY\n+oQLSgPj1D4liEC4HZqmGcHYtra2unzwnQSGFklaGHmKrDV0T0KhkOFetLuHbgSGrG4SGPobRSIR\nLjDjBBeUBoWqze3ap/hhJbixaKgwkhaQRnnIWYGJRqNFNTCU8hwKhaBpGjRN8yWxoFFgRcLuHrKF\nqnYCw95PtlUPdb6mDD+20JITLFxQGgx2RgnFKNjaElEULQPh5aQBl7oOdq68IAhFkwUbDfMseXOR\npSzLvtbANKJAOd1DtwJDFhBZMLlcrqgOhgtMsHBBaSAoQ4l2auTOsmufEhTU+0sQBKMw0k3lO0tQ\nrV2qBS2OiqIYC5jbNvOcAqUEBiguVGW/L1YWjFlgaJolL3T1Dy4oDQJbW0IPhtf2KX4s4NUWr3qA\n4ldWg7JqMUU5SCGv5NilrEC2Q7K5jsVKYDRNK2pyygoMxcE43uCCUufYBd4BYHh42PVo3nIaDbKL\nAytetZjFVUvY9dCqJYEJ8nx+Hdss0mSd27XaKVdguBXpHi4odYxdbQmZ9LFYzLF9il+w8Zmge3/V\nuyvMCiuBsWpxwn3/9rAV+LFYzHMvNzcCAwDRaLSokp9TDBeUOsWptoQKAqtRqEguLr97f01k3BYI\nUrJFI9XAVAKbqMAKTDnNQq0EJpPJGN2Y6b3cgimGC0qdUWo0bzgcRlNTEwYHBwO/FqovCar3Fxeg\nAlYCk8vlJkSRpV9YCQy5Gc2JEnYCA8BwRXIXmTVcUOoIu9oSdo4INT8M0iIgFxeAwFxc9DCSb7xR\ng6SapqH/UD+GMkPQdA2iIKI13oqu6V2O1h65x2KxWMnsp1oqsqyVdGenOJadwFhZQAQXmAJcUOoA\ndm4JcOLL7LXJohNuBYjN4spkMoH683Vdx/DwsJG5Q4iiaMQVah2ne6ppGnbs3oF8PI9wspDEoELF\nwfxBHN11FIt7FrtahEplPwHe5sDUq2VYiVi5ERgARhNVq1b9VgKTyWSKqvwbXWC4oNQ4ZIGoqlq0\nSy+Vnuu3hWJOQQ6FQp6GYHm5HjZjJ5lMFv2ceo6l0+m6r+XoP9QPOS4jHCnOiJMiEmTI6DvYh+4Z\n3Z6P6zRorJRrh6i3e+k3VgJDtVVuMvFYFxu9fyIIDBeUGoZqS9LptPHlM1egVyM912qCY1C7WHpw\nqSAwEokgn88XPaCCUBjMVGuptl4ZygxBSlo/glJEwlBqCN2wFhS3u3E3sQPzfeOMhe41Jbp4TfUu\nJTD094zFYnUtMFxQahDWxcWa0l7Sc71aKHavdzvB0Q9UVcXIyAgkSUI8HjfcDHbXa+eisEu1Ha8H\n1O68mu7cnr/U78u9llI1MACKWp34ed+CjKEEfWyWSmuJzALDNlCl191777247bbbAvk8QcEFpcaw\nqi0RBKGonUo1akvcVtn79RCTcCUSCUSj0aKYidU5zbAPuLmTba1mQomCCBWq4++DxmphTKfTADBm\nzK8kSTVx35wI+tpKJUpUUqxK2Xz0/qeffpoLCqd8rEbzksDouh74aF5aqFkXl12VfbkPrlmA3AiX\neWfnxvKySrWlKmqrTKjxoDXeioP5g5AiYz+zklcwJT6l6tdE3zsq3qsHYa5FrATGqljVTlyovqje\n4IJSA9jVllDXYHrAvYhJOS4vIDgXl9Vx3AiXX9A9dOoDRRk81UpR7prehaO7jkKGXCQqSl5BOBNG\nV09X4NdghTk9dqIOGmOp1BJ3uo8kMEDh+fvzn/+MyZMnIx6P+3Lt1aT+JLDBoIWMxIStLRkZGUE8\nHjdqS4K+DgoSNjc3B97YMZ/PY3h4GNFoFMlksuqLEAWpY7EYEomEIeSKoiCVSiGdTiOXy0FRlMAS\nEARBwOKexZguTUc4FUZoNIRwKozp0nTXKcPVhhbGaDSKRCKBRCIBSZKMGoxUKoVsNmvUS5nvXb3G\nUPzGfB/Z5+3222/HO97xDrz++uu4/fbb8Zvf/MYxnpjNZrFs2TIsWbIECxcuxD/90z9Zvm7t2rXo\n6enB4sWL8fLLLwfyubiFMk441ZZQ+5SWlhaEQqEx/YTc4MVCoUVU1wsTFd0+lGx2ilu8dECuVj0E\n3XsK4FczwC8IArpndNtmc9U6XmtgOPaIoohoNIoNGzbg1VdfxW233YbR0VF89rOfxb59+7B//37L\nexiLxfA///M/SCQSUBQFy5cvx29/+1ssX77ceM2mTZuwe/du7Nq1Cy+88AKuv/56bNu2zffPwAVl\nHDC7uGhxovYpkUjEGEoV9HVQWnIsFkM2mw38nCMjI66z1MaLegzw1wpONTAkMLlcznWRZa1QbetH\nFEWcfPLJuOuuuwAAmUzGUZATiQSAguWvqiomTZpU9PuNGzfiyiuvBAAsW7YMg4ODOHToEDo6Ony9\nbi4oVcaqqSPVluRyuaL2KUQ5RYql3kP1HqqqoqWlBQAczepKocUkHA57nmM/3q4MO/+3oiiWAf56\nWSSDxqoGJpVKGa5FqxqYSv7O4/09qQTztVPGI1EqnqJpGs444wy8+eabuP7667Fw4cKi3/f396O7\n+4QV3NXVhb6+Pi4o9QotQlS019TUBODEdEOg8vYpbqFgvyRJaGlpMVxtfosWUDwKGEBND91y+/nN\nAuPk5qnXNiZBQhumclJrx4tqi1UmkynqElEKURTxyiuvYGhoCKtWrcLWrVtx/vnnF73GqpbGb7ig\nVAFzbQnhdrphORaK3XXkcjlkMhmj3iNI2F5jLS0tGBoaCvR844WVm4dcmhQzOnzsMEZyIxBEASEx\nVLIBZCmCFKpqLZ5ui1NrUWD8xnzPU6lUkYXiltbWVvzlX/4lXnrppSJB6ezsRG9vr/HffX196Ozs\nrOiareC2ecDQ/AS2UJEC7+l0Gk1NTZ5dQG4wixC5G3K5HFpaWgIXE1mWMTQ0hHA4jObmZiPOUKs7\ndj+D7KIoIhKJIB6PQ9d1vNH3Bg6qB5GNZZEKpTASGsG+zD68/MbLRrroeF5zrUACE4lEkEgkity/\ntPkia1dV1apmkFUb2vS5YWBgwBhXkclk8Mtf/hJLly4tes1FF12Ehx9+GACwbds2tLW1+e7uAriF\nEhh2tSWapkFRFE/TDStdiMnFFQ6HDReXH+eweg+lPGez2Yp6jbEZZOb/X8kiXG0OHDkANaEiESss\nDrQL10QNKS2FnX/eiVmds3iA3wKvNTD1bLWZr92Ly+vAgQO48sorC98rTcMnPvEJrFy5Eg888AAA\n4Nprr8UFF1yATZs2Ye7cuUgmk1i/fr3vnwHgghIIVu1T6GfU8j3o2gtaeLPZbFVdXJR+XK14UK0z\nlB2C1HbiMWPdPOFIGPKojHA4DFVVkc1mjf5ZbIPARhGYoIoD2eSIXC5Xt/fO7PJya0EsWrQIv//9\n78f8/Nprry367/vuu6+yC3QBFxSfYb/c7I46nU5DVVUkEgnP6bnlWA9sC3iqZ3H7vnIeQjblOQgX\nXr1SMmkBurFIRqPRimeZTCTMAkOJJkHcu/EIytdjpTwXFJ+wqy0xu5tU1b4ZoF+wE+fsXFxmyn1Y\nWCvIKuXZfI5ajaEERan7am4AaVfHYU6zDWrAWL3/fSRJKmuG/Hij63rR9VB8td7gguIDQY/mdfse\nNosrHA5XxeQnN40XK2gi0RprxXH5OCKhsUJbqgGkVR0HWTCsJRNEFlS9W5hW947d9NGGi9xjtZZB\n5iUoX0twQakAc/sUNvBOsYRqLbTmli2yLHu2hry0UqHOvZTFFVSWGsWe6OGvNzo7OjHaOwpFVCpu\nAMnGX2iDEQqFitJsa7mCP+g+Xk6QwJRbA1ONoLxTYWO9UH9PaI1ABXuyLBd15ZVlGaOjo4hGo5ax\nhCAsFNatRi1bgmpqyFpBoigGWqio64WZ8ux5aWGg9t61tGBaIQgC3jH3HThw5ACGUkPQdA2iIGJK\nfAq6esqvQ6Fju82Cog7KtX6/KsXt53OqgbESmPGIoXBBmSDQ3BJZliHLMmKxWFH7lGqN5rVzqwV5\nPrZdC02Y83oMN5DVZ26hT52Z62nBFITqNIB0quDPZDIAajeGMN5YCYy5vTx9t4Kw/qwsFB5DaXDs\nakvY0byl0mX9slCsuhIHcR6CHc/rNtBvdfxSsMIMFFq1sEPHaNcYi8Um9IJpDuJaUSrAX8sxBK/4\nbUGYxZmd/V6NBqHc5dXgWNWWAIWFfXh4uGT7FKvjlfsFrHZXYvN43qBgW7U0NzdjZGRkzGtY0XNq\neeJ348F6xynAb3bxAMHEDOq5kp0sGPI8sBYMWz9UrsCY743XXl61AhcUF7B9mdgsrlwuZ7h/3AaM\nK9nZUxsXty6uSmMo1IfKbnaJn2nAFAeiOhY6v1ucgq71ELCuNnYxBHI1plIpfr8YzAs+a8GY64es\nOlB7dcfKslyVwXp+wwXFATsXFw2koh1yOdlH5ezW2EaLpTLHyhUuWsSDGM9rJUBskJ8VyUqFil0w\nnWaasEO1JjJ0vyjhIZFI1FWAf7z/fl4HjZndlVbrQS3dX7dwQbHBrraE7dYriiLS6bTnY3v9orA7\nHhpXGyTUiM/vufJmzEH+INOrnQLWFKOhOTXVmilfy9RjgL+W/mZu4lfshsbMeAtkuXBBMVGqtoQN\nglt1PHWDl0JFyuIC4KmlSTnuKAqIq6pacjxvuecgWAuoVJA/iAp78wNPQVcef7HGaQdutUBa3a96\njqFUcu1u4ldAIVbZ39+PyZMn+3npVWX8txU1BO1SZVkucnHJsozh4WGjQ3C1ChVHRkYgy7KRORbk\nroWqr6kYM8giwnw+j+HhYUSj0cCbZLqBHnhJkhCPx5FMJo3kAzdt0ycitDjGYjEkk0nEYjGIomgk\njKTTaeRyucDqoczU09+ExJfihZTNJYoi1q9fjwULFmDv3r245ZZb8Mtf/tLRC9Lb24v3vOc9OO20\n03D66afj3nvvHfOarVu3orW1FUuXLsXSpUtxxx13BPbZuIXyNlRbYg68O9V5lLtzLvW+UsWRfpyD\nhRZNKlQM0n2RzWahaZorCwgYn4XCqSaBMnrYdNtacPf4RbnfZzeDsuh7HJSlUs1Kdr+hhJI77rgD\nN998My644AJIkoR169bhlVdewa5duzBjxowx7wuHw7jnnnuwZMkSjI6O4swzz8T73/9+LFiwoOh1\nK1aswMaNGwO7fmLCCwoF3kdGRoz6BqA4hdWutsRvVwwrYObiyCDcPuTqyefzaGpqMkzvIPA6B2a8\nrRYWp4weNuDq5O6pJyq9fruECGoHxDPInAmHw0gmk7j99ttx++23Y3R01LbIcfr06Zg+fToAoKmp\nCQsWLMD+/fvHCEq1NmYTWlDY2hIWt6N52eN4eSDsChVLCZifmMfziqLoWVDcihxZXKIoIhqN1v2O\n3hx/KdWyY6JDgkyWSiQSGTPHpNYC/NXE/B1Jp9NFNShuK+b37NmDl19+GcuWLSv6uSAIeO6557B4\n8WJ0dnbi7rvvxsKFCyu/cAsmrKDQAsC6uCjwLsuyq/Ypfu2q3Li4vFooTq+n83ktxvSK2WVITR4r\nIQhLrRLs3D2KohguVHbok1+78XoOcJfKuANOCIzbjLtqN2/0G3PbFa9V8qOjo/jQhz6Eb33rW2ME\n6IwzzkBvby8SiQQ2b96MSy65BDt37vTlus1MrK0ATgTe6YvLzjqnfPuWlpZAe3HR+ahwkEzaoFOC\nycVF5zOLl5+Lta7rGB0dRT6fR0tLCyKRSM2JQRCQwESjUePvKUmSIa7pdBrZbNZISecUB/gTiYQR\nx6N6r2oH+Mcbr8O1ZFnGpZdeio9//OO45JJLxvy+ubnZEKg1a9ZAlmUcO3bMt+tlmVAWilVtCVBI\n16NdpNdWJrRIehUCyuIC3Lm4KrVQghjPa3dNVt2PJyqsBTMR4i+V4jbAT/esGvGXoEXMqjGk27Yr\nuq7j6quvxsKFC3HTTTdZvubQoUOYNm0aBEHA9u3boes6Jk2a5Mu1m5kQgmKuLWGzuFKpFBRFMToG\ne/1yVlLvEbTLiajmeF4/+341okXjJf4yHgIT5P2uNIPMqeMBvTZI11S1/hZeXF7PPvssHnnkEbzj\nHe/A0qVLAQBf/epXsW/fPgCFufI/+clPcP/990OSJCQSCTz22GOBXXvDCwq5uFRVLbJKaBctSRJa\nW1uNdvRBX0smk4GiKEa8xC3lLq6ZTMZ1769KFvBSfb/qgSAWU6djOqUnj2f/sWrFCsp9v9UMGKoR\nUhRlTAeO25eyAAAgAElEQVTlWrf6rCwUt4KyfPnykq7TG264ATfccENF1+iW+nvqPWBXW8K2T2F3\n0UFWvVO6JOWbB10cSddEMYwgzkeJDGz7/lIpwbVqcdTCImq3WFplQ9Xqfaw2bAaZrusIh8O+z5Gv\ndgJEvbauBxpUUFgXF1vx7jRDpJK2CqUebnMaciaTKWtBcPsesr6AQkDOy0Pk9bq8tO+v9Z1ireGU\nDUWdp9mZ8hP5/tKiX48jDcyCVa+t64EGFBR60AAUmbulZohUo3Cwkswxt6mTrPXltXGll4eLbVPT\n3NwcWFacpmlFzQhrYQEYL9jFMp1OG0Jjjr9UK1hd69Dz72aOvNM9q7aFkkqluIVSC5CYDA4Oor29\n3RAJmgBYKo7gp8vLyQ1Urng5vYcSDNjOveV0QnYDWXqqqiIcDgeaYj0yMmIcX1EUqKoKoBD8r6Vd\nZrWh3bibefK1Uo2u66WnTLpB0zT0H+rHUGYImq5BFETEQ3F0Te9yfJ9TzGo875mVhdLW1hb4eYOg\nYQSF9ZmyP0ulUgBKp+b6+cXxWmnvBqdjsAkGbOdeP4shzeeKRCIIh8NQFMX18QH3op3L5aDrOhKJ\nBCRJgqqqRoU1WSx8cNYJvMRfnGIJtV4wqWkaduzegXw8j3CysNFQoWJodAjH/3wcZ84/s+KYlXkK\nIzVmrda9IQ9DPdIwgkILCf3B8/k80um060W9XKuBfZ/bTCcKZnvF6vqqNZ6XdaeRpUeuRbe4ucfs\nPRQEwfCFs8cQBMH4rOUunPVOqftoF3+p5ViCG/oP9UOOywhHiq1iKSxBFmX0HexD94zuso7N3jO2\nZog6aqTT6UC+W2bLzUsdSq3RMIICFC9YmUzGU9yiUkHxkulUDubrcyNefsWFrNxpQUDFnqIoorW1\nFUNDQyXf06gLpxu8fBY39S9U0V/LGWRDmSFISetlS4pIGMoMoRvlCYoZumeCICCfzyMWi1Xlu8Wz\nvGoEWtSBQkO1atVCKIpitEtwM+Gw0hhKEON56brMlpPTICw/ExlK9Rdz626wWzi5e+wETrEEam+S\nyWR8H/frh8tI060tex2FY9v9vhLIggiqKNUqhsIFZZzRdR3Dw8OIx+PG9D0vlFvxriiKp/ke7Hu9\nXh9QvfG8QZ3L/LlZV5rfLfudqqypszKv6yi28qiHFsWtam3cryiIUKE6/r4aBFmUytOGawBRFNHW\n1gZBEIyAbjm43UXRzl3XdUQiEU9iUs7CTOLlpRK9EkvIr3Rn8/WYz1OtmfJ0fisfOWWPaZpWtBBM\nROsFgBG7spuHPp5uxNZ4Kw7mD0KKjP3+K3kFrfHWql0Li1OA35xBZrb6zM9oKpXiglILUDZGOQup\nl4eCAuHxeLys4LrX66Mvpa7719jR7rrYppWlYkGVWBBeZsoHBevCyGQyRf7yieoeM2+oaOFzciNS\n/KUa96lreheO7joKGXKRqMh5GQklga5ZzqnD5VBujz+7olSz1cddXjVOpQF2uy+PVSA8m80atRFB\nQG4nepi9iEk5wiXLMmKxWKBNJKvptnMLu2iWco+Nt9tnPHFyI7I7cbZ7MrsTr/RvLQgCFvcsRt/B\nPgylTtShdIgdmDN3Tk18l6ywquBnY1bZbBavvfYa9u/fD1VVXVkovb29uOKKK3D48GEIgoBrrrkG\na9euHfO6tWvXYvPmzUgkEnjooYeMJpJB0JCCUi5OC7CfgXC36bOs24liDUFAx6ZiwSB3RzR4yk9X\nWhDYucdo4Wzk7DEvOO3Ezb20/IpTCYKA7hndRdlc6XQ6sL+B3/UnZquPhusdP34c69evx/PPP4/l\ny5dj5cqVWLlyJZYvX27ZSNbNPPlNmzZh9+7d2LVrF1544QVcf/312LZtm2+fxUxDbbPKLegrRS6X\nw/DwMKLRKJLJZGCZTgS5nRRFqWjYl1vhSqVSyOVyiMfjgVlA1MVA0zS0tra6/kzm4wdxv93ADoFK\nJpOGZUXWFom/qqoTOsBvHpZF3yl2Jz6RhmW5gcRl1apVeOKJJ7BkyRLcfffdiEQi+NKXvoQdO3ZY\nvm/69OlYsmQJgOJ58iwbN27ElVdeCQBYtmwZBgcHcejQocA+S0NaKH4UKQInFltFUXyt9XB6j136\nbBALqaqqGBkZMSrsg2rfT9X15Gt3K1rsZ68lSmWP6bpuuHwm8qJJO3Fqd0SuW8D/Lge1XuHvhPna\nRVHEu9/9bqxYsQK33367q2PYzZPv7+9Hd/cJS66rqwt9fX3o6Ojw5+JNcEGxeV9QtR520O4tm81W\nxR1kVWEfhGix5wEQ+MyZ8cDJPQYUgqzmGR2VUq9CRRsKN/GXWolT+dWDzO7Y5v/2WvfjNE/e6hxB\nrmUNKSiVwi6CNAvdDj8sFDfjef2yhNy2h3GL3TVZnYdm0zQ6bACW/OM0fpqtSq90Vx7EwlDNnb6X\n+Aul2jYq7Gfz8oyUmiff2dmJ3t5e47/7+vrQ2dlZ2cU6UBtbAJ/wwz2UyWSQyWTQ3NxclQwkWZYx\nPDyMUCjkeXaJVyg2Q/NgKhUTu3vj93nqGfKP0/hl6oNGiRCpVArZbBayLJeVgt5ImOMvsVjMiL+k\nUimk02nb+EvQQliLYqbrpefJX3TRRXj44YcBANu2bUNbW1tg7i6gQS0UqxYipaAhPDQS2O0XqBLL\noZzxvJqmof9gP46njxfaTUBAe6IdXTO6xlwze22lWpuU+1nMuDmPFxrNonGzK/fbPVaPWFWia5pm\nZAma4y9BEuR30CyEsiy7dne7mSd/wQUXYNOmTZg7dy6SySTWr1/v/4dgaFhBcfslYFt/hEIhz1ZJ\nOYswiZ3X8byapuEPu/+AfCyPcNOJL92B/AEM7BrAkp4lltXoJFxBxmbY++hGIN0wERZTt00bG6G4\nshIrwqnVCdUJZbPZmou/eMXLcC038+QB4L777qv0slzTUILi9ctqbv1BGTpBUu54XkEQCq27kxat\nuyMSZMjoO9CH7pNOZHToum60gQ+itQmJqZcWKo1mcfiJ06JpDlpP9PvIWnqRSASpVMroP8bGX9gC\ny3IJ0p1mVSVvVXNSLzSUoBBurAZa2MPhsNH6w+8UYBZ2B1/OeF4AGM4OI95u/WWTIhKOjx43ir3I\nNUDt9N08EOV8fmrK6aaFSrkPJfXYqufdeTk4uceAYLLH6hm2/5hfnYCrTT03hgQmoKCYF/Ygh1Kx\n56x0PK8gCFB15xYvOgqfmbLU/NidOUEpwNFoNLAEBmpISNDunXpITSSqkT0WZIpstfAafxlPV6LZ\nQqnnWSjABBOUUq6ZICwUK0uo3HOJJZLyBF1AKpUyUnXZGexu8GJtUc0MAMRiMdfncAvb6yiRSBgW\nCo0cTqfTxq6TahsmUgIAZY+V6m5bKzEFurfjkersJv7i1KetmqnUXmIotUhDCYrTH91uYTe/v9zU\nTasvnd/jeVtiLcjkMghHxwbWc9kcolrUaG3CLr5+ous6RkdHjZRgN1MVze93ew5d1xGLxSBJEmRZ\nNtJv8/m8ITJ+LaC16gJxi9uajqCt1nrAqRDVKtMuSBqp0zDQYIJCsDvtoF1cVg+mm+JBrxaKIAjo\n7OjE3oG9UASlqHV3JpWBekzFyaedXNQl2O/Kd2rVEg6HLSty3XwGN+egDgVObVomevptqb+r2+mC\nfll39UypewUU3LvVuFf1PE8eaHBBoQp02k2X2m1U2rJFEIRAW7aIoojFcxdj/6H9OD56HJquQc7L\naBFbcOriUytO1XX6/NQEkRVlVrT9+JzmtvapVMq4rlKUWhRqxWfuJ15qpbxkj9WT6w/w1yVlda/o\ne2gelOXHd4nHUOoAWhiHh4eN3XRQWU4sXuZ8VCJe3Sd1o1PrNNq1NDU1+dauxQzVseTz+THWll8P\nsd99zCr1mTc6TtYd/dM0zVf3WD03bwRgtGBiY3uUlOLnd4kLSg1Bf3BaNGhhrwbpdNqxK7EV5SYA\nUDyI2nn4/aDSw69pmlEzU2p6o5djm/+bEiWs+pj5sVu285mzI22B4omfEwnWuqPsQADcPcbAupHt\nxDiXyxm/L9fVmslkMHnyZN+vv1o0lKDQAkiBda8uoHJ29DT/gtxqXluze4HiQblczrdqdLtrCkK0\nzMcoNQY4qIXLyj2Wy+WgqipSqZTt7O+JgNvssVq6P+O5Cag0VsULG2scSZIQi8UwODjo+YvmVVDI\nxSUIQqDDqYATO3Uv7VrKdXl5aaHCxo+8QD2/xnsMMOseEwQB4XDYSLdmZ39P1Owo846cLOSJcn+8\nfLfdxqqcuifzoHwNEQqFitQ9qOAiG1doamoyHqygoJ08ACSTycBSGel+ZbPZQFq10Dkq7S1Wroi5\nPXapiutG6a1VDub7QwJTakc+EV2JbsQYKKxbVKhb7zGUho1GlvPldbOjtxrPG0RBJJHP543xw+XU\nVri9LlVVMTw8DKDQYyxI0SIrq5ZnygMndpy89bw15B4z3x8Axv2hjZemaYFu8OoBEmN2PDLFKjdv\n3oyzzjoLO3fuxO9+9zuMjIw4HuuTn/wkOjo6sGjRIsvfb926Fa2trVi6dCmWLl2KO+64I4iPNIaG\nslCA4t2r34u8363ZnbDKrqL6Cr9hP1cmkwnETUg1LABc9xarNUoFZOulX5QTlSzOTjtyijVSCrco\nith/eD+GMkPQdA2iIKI13oqu6V3GItt/qN/291bnDoIgLWH6Fw6HsWrVKkybNg133nknHn30Udx8\n881YunQp1q1bh/e+971j3n/VVVfh05/+NK644grbc6xYsQIbN270/dqdaDhBIfwUlFJprX6Ll112\nld+FilafK5fL+b7jK1ew/P68fmMXkGX7RdHPayF47RY/azrIPcZm1OXzeezYtQNyk4xYNAYxVLiP\nB+WDOLrrKBadsgivvvkq8vE8wsnCs6ZCxcF84feLexbXzb10iyRJOPvss5FMJvGDH/wA7e3teOaZ\nZ9DV1WX5+vPOOw979uxxPOZ4PDsNKyiAPzeUXdztxvP6CS2+0Wi04uwqpwW5VF8zPzALVigUMlK6\nGw02IGs1Lx3wb5xtLYusE4IgIBKJ4NDRQwhNCiEiRYz4lK7pEEMiZEnGiztehDhZtB/TcLAP3TOK\nxzQERdCxH6vCxmQyiUQigVWrVpV9XEEQ8Nxzz2Hx4sXo7OzE3XffjYULF/pxyY40rKCUG0MBTvyR\nZVlGKpUqmTrrh4XCtohxyq7y4+Epla7rBSerzixYlVRh19uOlNw/AIxEEZoKyrrHKqntqMd7AgBD\nmSHD8hBDIsJgLDyoeOvIW5jZPhN6riAyrPtQikgYSg0ZYxrMx653/ArKn3HGGejt7UUikcDmzZtx\nySWXYOfOnT5coTMNF5RnC5DKrUTXNA2ZTAajo6NIJBJIJBKBVL0TtPjmcjm0tLTYionXh8bqutgg\nfzKZtKz9qFS02AB/UNZPPeE2eD1RgvuaPvYzGgkQ0QhCkRBi0RgEsdDKKJspWLlyXi5YfZr7Dtq1\njtlCUVXVdWG0E83NzYYwrVmzBrIs49ixYxUftxQNbaGUszDS4q7reqCLIQkX23DRjbVQ7mLv1ELF\nT2qlvqSWcQruT4TGlqIgQoW9KEiiBEEUEBYLVoyu69A13XCPaVnNGNlNlm9QVDvd2a9Y26FDhzBt\n2jQIgoDt27dD13VMmjTJhyt0pmEFBfC++FK7d1EULXfvdpQrXrSTd9sFuVwLhZpkkkj6GQeic/jd\nj4s9dqPjtbFlkAS1gLJ/x9Z4Kw7mDxZ1zCaUvILO1k4o+RMdtQVBgBASIIZECHkBHZM6jEC/LMvQ\n9cJQMFmW6643G3u/vXzXP/rRj+LXv/41BgYG0N3djXXr1hm9xa699lr85Cc/wf333w9JkpBIJPDY\nY48Fcv1mGlZQvDwUbPxCFMWqpATn83mjlsWLtVDOAjs8POy6hUo5i7jXAH+li1YjC41TtTXb2BKo\nv6mV9Dfvmt6Fo7uOQoZcJCpKXkE4E8Y7Fr0DO3bvsP19d0+3YeXRs0spyn6nb1fbQnF7vg0bNjj+\n/oYbbsANN9xQ1jUcOXIEAwMDWLBgAQYHB/Hiiy+ipaUFy5YtK/ne+vk2usRrDMUcvwiqIJKgwkhd\n14vcHm7P4wXKLorH4yXjQOWi67oxzriUmJRzfjo+W0TYqGJiBS2cFPNiW/yk02mk02nkcjkoilI3\n90UQBCzuWYzp0nSEU2GERkMIp8KYLk3H4p7FhTENDr9nv0fkIqIuGclk0rD2qTUSuXqpFqZWqKVr\nAWBMd33yySfx5S9/GQDwwx/+EJ/4xCdw22234aGHHgIAxzhfQ1sopQKcVlMcg6x6Z+sxKB/fK25F\nkgZ8Ad6bZLr9/LJcCJJGIhFPLkIv15HP5yFJEuLxuDEXnNxrJMgTqQUKucby+TySyaTtrPRaadxo\nhyAI6J7RPSZby+3vWcjlRe+zsvCCajfvB2aBHG+Gh4dxyimn4OjRo3jjjTfw4osv4sUXX8TTTz+N\nv/mbv3FcHxpWUEphN543CHeKVXyhnJ22m2ujuhlBENDS0oLBwUHP5ygF+3mo7sLvB4F1XySTScM/\nHg6HkUqljHhDLc5Pd8JrBbgTVotnrTZuHK/duF0ChFv3WDVdXvl8flzbEdHnnDJlCnbu3IlvfOMb\nkCQJ3d3d2LBhA9ra2koeo+EEpZTLi929+5XtVKrqnQLiQRdGWrWGoWvz66Ewx0vI3eX1GE7XQ2JP\nfdKsUpvZhbRWWqBYiYWkSZg3Z55hMe/YvSOwCnC2Mt0quD/ejS1rYfftprvBeCVA0ETU8YI+7yWX\nXIIDBw7gtddew2c/+1kAQDgcNvqGOf0dG05QCKtF3s143krSjc2wLjVzDKNc15qVG89tUaTbc9hd\nlx8FkU7vMac20267FG4XCacZ9ZViJxZHh48iuyuLxfMWo/9QP+S47LoCvBJKBfcphmdePKsdhPaD\ncq+ZvUfm7gZsRwdRFKuSAJHJZMa907Cu60gkErjuuutw+PBhdHR0QNd1fOYznzFe43Qfatc3UCHm\nhbFUQZ/d+9yey0wul8PIyIgRKAzqIS1VFOmXC0+WZcv759fxyVVXTuYbi1EgF4kgkUggmUxCkiSj\nWJXulVUQu5LPYScWYSmMfDyPvoN9GMoMWabKAm9XgGeGXJ2r1AKqaRp6D/Tif//8v9jx5g7875//\nF30H+xAKhYy/XyKRQCgUgqqqRcF9Ov5ExCoBgr7fQSRAmP+O4y0odD07duzAl770JZx66qn4r//6\nLwiCgHXr1uE3v/mN8To7GtZCIYJwcZlhF1X2fE5ZT34E//1soWIHa/34VV9ihi3u9DsbrZQbyK/i\nuKHMEKSkg1ikhywrxFlK/d4Nbt1qdlYdUMge8zu4X48iRfeI7kMp91il92i8XV5Upf+Nb3wDF198\ncZGHYPfu3Tj55JPx7ne/23FD03AWCrtz1jQNw8PDxnheN2JSyY6bChUpXhJkyxG3FpdXzOLIWj9+\niYmV5RiLxQK15ADr+SbhcNjIlFIUBdlstqwdqBuxEAXnx63U793g6FaLF9xqZtj7AgCJRMK4L5lM\nBul0uuz7Yj5PEATppqNjW1m+JMbZbNa4R17a55ive7yHa9G1ZLNZzJkzB7quY9q0aQAKHpfW1taS\nx2hYC0VRFGiahng87qlQsZLYxvDwsOuWI5Wcx8vEw3IF0q314/X4dBw3lfV2x/bLzcZmAFFxHFVc\new1il2onQtlcThXiU+JTKv5MJS0li8aKZtj7Ql0Q3ExlnEiw9ygajfqSGEIx0PGCrvHcc8/F73//\nezz33HNYtGgRnn76aeRyOcycObPodVY0nKCQy4kt6gv6fBTkbG5udr2LL2dRpKAhEGwrfUo7DWqQ\nmNfK+mpAn5F26XYV6nbt50uJxdT41JIV4l091rMvSsFml73e+zrQDDRFmzBt8rQx1+lkSdmJtyAI\nlvel3lK2g8Rr9phV9uV4u7wo+WDt2rW45557EI/Hce+99yKRSOBb3/oWli5dCmCCCQr5/Zqbm0uO\n0bTCTUEkwc5KARBoDrmiKEaKbnNzcyAWF1sE5kUcvUBiEmTcxw/sdqB27eftxEJWZCTyCXR1F+pM\nFvcsLgToUydSi6fEp6Crx3sdCmARM0kASkzBUeUohvYNoWdmT9Fx3bjVnK7Drq5jPBtbVsPl5YVS\n2WOUYUfHJ8Y7KA8URGXv3r341Kc+heuuuw6apiGZTBrXXepeNJygRCIRNDc3G6a6V9wuwJQSHIlE\nEIvFPBcQEm7+SFSXEY1GoShKYMF3shqi0agnMfFSWU8PU1CtYILCagdK4kI70IWzF+LAkQMYSY0Y\nYtEhdGBez7yi2J7bCnA3mGMmyVgSx5RjCEkhKDEFh48eRseUDgD+udVY3O7M6f9PROw2JxRvGRgY\nwNe//nVMmjTJdkIjyyc/+Uk8+eSTmDZtGl599VXL16xduxabN29GIpHAQw89ZFgXTtBa9PDDD6O/\nvx/RaBSiKBpJGnfccUfJjsUNJygE66v3c+Gyqvlgg9heLAc352LrMgAY7SPc4kYg2XiJ16p3t6/N\nZrNG8816b2vvVFg5uXUypopTjd9ns9lAP6s5ZtIxtQPDe4ahJBSEpBBGs6PoQEfFbjU3OO3M6R/r\nIquH70AQ1g+JMAlwKBRCR0cHNm3ahNdeew2PP/44PvCBD+Diiy/G6aefPub9pebJb9q0Cbt378au\nXbvwwgsv4Prrr8e2bdtKXhd9zrPPPhvz5s0z3JqbN29GPp93tSFoWEEBTiymXhdIuwXYzvdf7hfO\n6frMLVREUTTa6/uJubqeTFu/MKdRsy5Ct++vdeysF3IBUXpyEIWV5piIIAjomd2DQ0cOIZVKAWkg\nnApX5FYrF3Nwn2IHfk6tBOqzGBM40YOsvb0dn/vc5yCKIj73uc+hpaUFv/zlL/HMM89YCkqpefIb\nN27ElVdeCQBYtmwZBgcHcejQIXR0dLi6ptWrVxf97KqrrsK73/1uV6GAhhOUSr9YdoJSKuupHPGy\ng3WnsS3n/cpuAvytL3FqO2MWRS/U4yJhtl5GR0chSVJRf61KYwzs/bbKLhMEAdOnTQdQEJPT54xd\nlOygokg/eo2ZsaoJMrsNJ3JwP5PJYMqUKVi5ciXWrFlT9nH6+/vR3X3CpdrV1YW+vj5XgiIIAjZv\n3myk1cfjceTzeQwMDLia2dRwgsLi1wJMbbD9nkJovj4/W6jYnYPOY5dl5SUpwe74gL0o0vknEpIk\nuR6e5dVl6mcqsqZpeO3PryE0OeR7rzHzZsssvJSazAb3a6GxZdABf1Y4/axDMT9jbl3sgiDg3nvv\nRTabRT6fhyzLOHLkCL70pS+5uraGFBTWWqikGt0cw3AqjKxUvNyk0vohkNWoricBtppEWY9Wh19Y\nLaJWrdW9LKJ+piL3HeyDnJQRi8SKfh5ErzEzVtaLm8aWjbQ58UtQOjs70dvba/x3X18fOjs7S76P\n7unmzZvLPndDCgpRiaBU6q7xcq4gF3n2Hlh1I/YTLwJcCU5/Vz/bwweNmwLCUoWVfqYiD2WGIIUr\nK4r0AzvhtWpsyc5B8Zugxcps/fiVNnzRRRfhvvvuw2WXXYZt27ahra2tpLtLlmX867/+K9ra2oxe\nb/QvFouhpaUFp512WslzN7SglIuu6xgaGvK08JZrPSiK4rqIsNxzUPGlm3iJ13OQi0zXdYyOjkLX\n/Z1b7+Vagm4PHyROBYTmwkqr+J0fqcgagu81Vg5ONUFU6JvL5QKrfanWd4aez1KUmid/wQUXYNOm\nTZg7dy6SySTWr19f8pj5fB47duyAIAgYHh5GJpOBLMvI5/MYHR1FW1sbnn322ZIuwIYWFK+LI8Uw\ndF1HU1OTpxhGOeeiHX1QTRfpPNlsFvsP74csyBCOChAgoD3Rjq4Z/uzadV3H8PCw6/oSt/eJjpPP\n55HJZEo2cqxme3i/cbKsnBZRP9ufiCVa+1XSa8zPWASbVadpmlHwW29TK83fY7eV8qXmyQPAfffd\n5+lakskkHnvssZKvm3CFjUB5MRTaYVNA2o+AeKlz6bqOeDzuWUzcPpyapiGXy+GPe/6I8JQwItET\nn+lA/gAGdg1gSc+Sih44CqJSvKTUsbyci3bpmUzG8K3T2GGyithFw48+VuOBG8uKXUQpMwqAkSFl\nNdvEK63xVgymBwGLbkVBFEX6hSAIRqyOjUtVOrWyGunIQbi8yoWaf+7duxcvvPAChoeHjXt28skn\n433ve1/JYzSkoBBuBYUdhJVMJjE4OOhr/QoL26rd68Pv5XooXnLo6CHozXqRmADMrv1AH7pPOrHI\nuv0cZM3RzPdYLFbyPV4gy4pcaGyHgEwmY7ja2FRcWZEd/27j5bIphVfLigSUFlG/JlZ2dnTiwGsH\noMQUX3uNVRM/4lLjha7r49ZNgDZnfX19+OpXv4rXXnsNb731FpYvX44tW7bg4x//ON73vveVHDQ2\n8ZK9TZgHYVXi+y+1EJtbtVO1rBdKLfi0EI+OjiKZTCIlpxyHOh1PH/d0fjoHNeCMxWK+JyzQGAAA\nlqJLQdtYLGYEDQVBgKqoyGayyOVyhTYvWnH7HT/awwdBpYO3yHKh7xUJDWXbkT+8VDq4IAhYNHcR\npkvTEU6FERoNIZwKY7o0vabjT3YIQmHuCzuugCr4c7lcyXsTtIVidfzxTI8GgDfeeAPpdBpPPvkk\n3vWud+G///u/sXHjRtdC15AWiptCQLaC25yRVE6RotNrq5X9ZJV6XCrQqmPs/XESLHP2Wz6fdzWm\n1+3x2Uy0UChkWCB2sBlBHe0dOCAfgCiJBXFRCsFsKSRBUzVMjk32dJ3Vws/BW27qO5wKK/0K8JsJ\nanH22u7IrrFlLpczfs/ev2pB1tR4I8sy4vE4Dhw4YGwa9+/fj76+whydUtfYkIJC2AkKpemKomib\nkeSX5cB2JDafq9I6GfN5RkZGjM9ED1lICEHR7Vu2CHC/QyLXYDQaNayCcrLC7KAmmLST9NpqxqjJ\niNyyMvkAACAASURBVMuIRAs7UV3TkcvmEEqF0D673Qju11LA1s0sFRav99uqvsMqgF0LC1o1KdXY\nkjwIqqoG4h6rJQuF1qVZs2Zh1apV6OrqwtKlS/He974XLS0tY9qx2NHQggKMffjc1GL49Ud1qhb3\nE6fP1Bpvxf78fttA69TEVFfnMC/2fsJacGxRp6Zp6DvYB/WwiryShziSwqS+Q5ixtx+RN96A9MYb\nQCKB7L33Qu/utq3JmBafhq6TC/5/c8CWdqTjuZiWU+1ezneJtV7Y5o3s/SCLZjyr08cDq3uTz+eN\nKZ6A8zwcr1h932rhfnd1dWHSpElob2/HXXfdhZdeegltbW2YO3cuAJS03BpaUNg/EMUW3Ew69MNy\ncLMAV3oeN61aumd048gbR6DELQKt2bGBVvM1Be2us6tf0fr68Mdv34lM7ggSRw4hsvtNiIcPY1AH\nUkPA0gwM2yrywAPI3XGHcf1OLhs2YGvekZLFUm3rJajBW6UwB7CpoWU9BLCJoFxpJDA09ZUdE+1n\nY0t633hbh2SRbd++HY8++iguuOACzJ8/HwsXLvSUedaQgmKOoWiahlQqBV3XXU86LHehd4rN+Amd\nR1EUx6mHgiBg0ZxFGBwZxPHR49ChQ4CAqYmpJSup2fsWRLEiuR7H1K+kUjh82qlAu4pm0+VJAiC3\nAr15YObbXiLNRdM7M+YdKaXfmjPHqjEoys6yqmaHYBJQQRAQj8cdCyvL2aFXIwXXb9hrpuA+/dzv\nqZX5fD7QUoVS0DUvWbIEb775Jv793/8duq5jzZo1OP/887Fw4UJX5Q0NKSgEpZYODw97cjuV+8XX\ndR0jIyNGwLrUF6scCwUoLMSpVGpMvMTpPN0neQu0sunNTsWK5cZQyE0Xj8fHphwPDmJIVCHZfCxJ\nAAYjwMy34/WKS/9uqeuiWS2lYg1BWC9BBcPLuQ76Xy8TKyu9H/XaMgcob2qlWWDJmzGe6LqOyZMn\n45prrsE111yDP/7xj7jzzjvxmc98BnfddRf+8R//EaqqOrq9GlZQqAhOUZTAq96BE0WEtEC6fQjK\nEZR0Ou26LUw5Cz6JsFVzRz8gn72t67GzE/Ka1cDzT9keQ3v7Y+tNTQjt2AFl6lSgrc2X67OLNeTz\nebzV+xaGs8MQQgIkUcKkpknontFtu2jQ8eodcwDbvEOvpLCykpY5tWD52AX3vbgO0+k04nGLQGcV\nEQQBhw8fxhtvvIGDBw/izTffxMjICM477zyceeaZxmucaEhBofRZCi56NSW9LMIUx8jlcgiHw56+\nFF4fhGw2C1VVEYvFAvnysa1ngpgpT356TdMc3XQAoN1+O9Qn5yP8zW9a/l58+88jjI4iftVV0EMh\nqOecA2X1aiirV0OfOxcowy1jBVkvO/t2IhfLQYpLUDUVGTWDt1Jv4cD/HsCSeUsQDodrJnMsSEql\n33otrKzVljnliJVV2raV69B8XD9b15cDxVC2bt2K733ve4jH41i5ciXuv//+osaSpTYLDSkoZHYm\nk0mjz08QsHUf8Xjccz2GW+Fi4yXsg+z3OeizUKqpn8en9GlN0xCNRktmi7Qn2tF38cXIhSUkv/F/\nIDCFZ4oOTM2brkNVIT3zDKRnngFuuQXanDmGuKjnnAOU2FS4XfRocyKGCjvSaDSKfDiP3gO9mDF1\nBgBU5EuvR5wmVrKz5O3mytdryxw32LkOZVk2nuv169ejpaXF9Sbxqaeewk033QRVVfGpT30KX/jC\nF4p+v3XrVlx88cWYM2cOAODSSy/FP//zPzsek76rPT09eOSRRzB9+nTjd2zCyptvvonu7m7bTXpD\nCgpVb1O/J6+4WSTNLefJveY35kJCyojyE/azNDU1GVXqfh6fbTfjZtfXNaMLh14/hKHz34PopMmQ\nbrsVgqxA0YHwENCtAnoyifyNN0L65S8R+v3vi94v/vnPiHz3u4h897vQm5uhrFwJZdUqqB/4APSp\n7lKlWewWPUEQEI1HkU1lkUgkxsReABjtaSaCwDgVVtIO3RxfqKSwM0iXVxCZVyS+giAYgfihoSE8\n9thjeP3117Fv3z6sWrUKq1evxrx588a8X1VV3HjjjfjVr36Fzs5OnH322bjooouwYMGCotetWLEC\nGzdu9Hx9S5cuNc5D10njxyVJwq233oq7774bJ510kuX7G1JQgMrS8UoJil8THEudx6q+xO+Hx3wO\nvx8iOj7FY9xajIIgYEnPEry++3VoZ66EfGsMiS/8E6YOZdGtFlKG5Q98APlbbkH+llsgHDqE0NNP\nQ3rqKUj/7/9BSKVOHGtkBOGf/Qzhn/0MuiBAO+ssw3rRTj/dlWvMzaJnjr1QJ9zxyBwrhyAWZ9qh\n53I5S8ENhUJQZRW6pgOCtaU4ni1zgs7ukyQJN998M975znfi+eefx9lnn40tW7bgD3/4Ax588MEx\n79m+fTvmzp2L2bNnAwAuu+wyPPHEE2MEpdznmDwUZkuS7kOpbLSGFBQ2U8VPnGpZys3YsoPml1jV\nl3gNstu93u4cpY6vaRr6D/bjePo4FE1BJp3BzGkzi9rhszUy5bbnF0URnR2daG9vR27mqQjNeQcS\nl14KYXAQAKBccMGJa+7ogPKJT0D5xCeAXA6h3/62IC5btkDcs+fE/dB1hF58EaEXX0T0y1+G1tlZ\nyBJ73/sKrjGbJpdeq9mBE98/EmqnzLGJZr2wyQ7NsWbsH90PKSwhJIYQkk4Er2u5y3ElmMU7k8lg\n8uTJ+PCHP4wPf/jDtu+zmhf/wgsvFL1GEAQ899xzWLx4MTo7O3H33Xdj4cKFrq7JqfwAKKwZTs9y\nQwoKUe4ib/U+N7UsfrRRYetYrALXpUSSXex16NBUDRFEitKLS52j1PH/sPsPyMfyCDeFoakaFEHB\nAeVEO3wAjjUy5f5N1LPOQnrLFoTXrYPa1QXlQx+yfnE0CnXlSqgrVyJ3110Q33gD0lNPIbRlC0LP\nP18UjxH7+xF58EFEHnwQTfE41BUrCtbLqlXQmbGplc5ut1tMrar2S1kvtZDZ5AW766Ud+imzTsHo\nzlHkxBwEUSgkbqgF8Y3lY5gxb4btMYIsCNR1vWpC7zZt2M3f/YwzzkBvby8SiQQ2b96MSy65BDt3\n7nR17N/97neYOXMmpjJu4ZGRESOMMKEFhSin0SPbfZRtb29Xk+HHA87GS1pbWz0f07zYA4Cmajg4\ndBD5XXks6VliVKa7rZUx03+wH3LMPiNn3/59aG9uN47PfgZW7KKxaFmDvrQFCzDy8MPQdR1RN0Io\nCNDmz0d+/nzgppuAY8cg/epXBevlV78yrB0AEDKZws+fKqQrq4sWQVm1Csrq1eg64wwc/fOJanZF\nVnCk/wCO/uF1SIdGkF+wGOrSPDpnznRljbHB2oluvQiCgMXz3i7sfLsORYCA5mgzpndNN2a/2BVW\n1pO42pFKpdDc3FzydeZ58b29vejqKu6kwB5nzZo1+Lu/+zscO3YMkyZNsj0uZXmtXbsWp512Gj73\nuc+hp6cHAHDjjTfi9ttvx6xZs4z7b0dDC4ofXzRqoVKqJqMca4h9j9t5707nsV3swxLkqIw9fXvQ\n3tzuqsjTToSPp49DamK+NgJTbyEK6DvSh6ntU8ccn8RuBCOQmiRIscIx/Br05ZpJk6B85CNQPvIR\nQFEQeuGFguWyeXOhNxhD6NVXEXr1VUTvvhvalClY9v73Y8+7zsbWg/vRdOAgZioyzmtqw+TWdsh/\n+hP6fvc7/C4ahTxvHs67/HLXl+TVemlEShV22hVWlprPUauYn69sNluUWWXHWWedhV27dmHPnj04\n6aST8J//+Z9jJjgeOnQI06ZNgyAI2L59O3RddxQT83Wl02l87Wtfw7XXXotly5Zh586dxiZpy5Yt\nju9vSEEx717KtVBSqVTgLVQA53iJF8Ys9oCx4OuCjv0D+3HStJNKCqMTVu3ugYIgZjIZJCNJy3x6\nQ+y0cNEx7AZ9sVASBO3qfXNzSBLUc8+Feu65kG+9FfqbbyK5dWvBPfbMMxDentMNAOLAACIbNuDk\nDRtwQBRxXnc3tJ4eqGfMAgCEQyGc3NyMkwH8ZudOyLJc9nemlPVCyRn1upiWg11hJf0j/7+f6drV\ndC26rUORJAn33XcfVq1aBVVVcfXVV2PBggV44IEHABRmyv/kJz/B/fffb7Q08jLaN5VK4ZFHHsH6\n9evxxS9+EXfffbdRsO2GhhQUlnIsB0p1lCTJtVuo3HgNpVO6jWU4ncdysdcL/7LZLJoTzRVXvpvb\n3dPxM5kMkokkolnr45PYqVl1zPVLEQnHR4+P2Z3SZ02lUkZLFNqlEn5mTGmzZ0O+7jrI110HjIxA\n2roVIQrsHz4MAOgDMFPTIO7dC3HvXghHjkBZs6boOF25HPr37cOst+sAKsHKesnlcsZoZMC/zLGg\nFlC/j2sWXArgVzqxsppYBeXdtl5Zs2YN1pi+c9dee63x/2+44QbccMMNnq6HrqWrqwupVApXXXUV\nenp6cOONN6K3t5cLCmuZeFnoaactCAKamppcfxm9nocsIABlxUssr8G02FNWGlAo8pTS7v7cTlZd\ne6IdB/IHIEWkouM3NTVBUzS0J9otj0liJwgCrHXPOjkBKMyRoV1oOBw2qvkpl9+P5nxjaG6GcuGF\nUC68EDlNg/jyy5Ceegp7HnsMy/fuNV4m9PePeWt3IoHfvvKKL4Jihk3pZAvlJmLshaBCXKfCynK+\nG7VooQTNPffcg2QyCV3XsXz5cvz85z/HD37wA9cjvhtWUFjcVopTmmssFoMsy4F9mdg5KZT37RZz\nwgALu9hrqoZ0Jn2iHbzDYu+FrhldGNg1gJyWK8woEU4c36odvnHdZsvG4ffsUDKgYIWwXQjofkUi\nEWPXTsVzQTQuhChCO/NM5OfPR/6VVyD19wNvW0nCwACEY8egMz7qcCgEdWCgsnO6wM/MsUbBqbDS\nbePGamDOIKsVQaFiSrovU6ZMwec//3nX72/4LYybLwy5VXK5HFpaWoydTjmUeh/NsE8kEr734+qa\n0YVwNoxsOovR1Cgi4UhBHBW5sNjPqHyuhiAIOP3k09GUbUI8F0dSS0JKSZghzXAMrLcn2qHkrTsJ\nKHnFEDuaJ09V+26vyWqmOs0Nz2azrmaq26IoCK9fj+TSpYhv2VLkchOAoiJKAJBVFaEp1a+dIFdQ\nLBZDIpEwkjvY2fJsBX8jUMqKYL8bpe5JkCnIpfDi8qplGtZCcevyMrdQEQShrBYqJYPZFrUfQVTx\nz++ej917dkMRFYiyCEEW0CF04PS5p/vivqMHcd6cecau+Pjx4yWzSE7qOAmvPf8aDqmHoIs64rE4\nWmItmNQyCZFcBF09XWNa2pd7f9gdakVt13Ud0i9+gciXvoTQrl0AgG4U4ignv/0Sdd48aKa0zd50\nGp1Llni+dj+pJetlPBdqFjf3hHWPBd3WhT12LbSv94OGFRTCaXFkFzC2hUqlBZHmL6G5H5fZj+vH\nF5dt7rhw3sKiAP+xY8d8OX42m0UulyvKemOLJe3OoWkadry5A23dbcgdyWEwNQhd03F86DgwDKx6\n1yrk83mk02nLqnrz38LJ7WfGqe06mxlkPkdo2zZEb70VIVMVcieAbSgIijZrFpSLLx7TuqUvGsWZ\nM2e6ur5q4abuhV4X1PlrDfM9IfcYtZ0HYGTrBT2xslZcXpXS8IJihVMLFcDfCnunufLlfEGtzqFp\nGkZGRmwHbnlNnTafgxWrSoohI5EIOqZ1YLIy2Xh45JyM3W/txrTJ08Zkuvn9ALMLCFBsvVCMRn31\nVSTvuAPhzZuL3qsnEkAuh4haaMCydepUdHzgA+gGEEbBzdWbTqPv7TqUStympah0A2K3UyeRTaVS\nNRFncINfVgSlYrNTGakzRlAz5c11KFxQ6gCrxZHaqLsdB1wuXubKl/sFJcGKRqOeBnu5RdM0DA0N\n4dDAIeSRh35E91zhblkfg7eHoCkyjo4exdyT51Y9K4m1XpS9exH9+tcR37ChqDWLHg5D/uAHEd68\nGcLborNizhwMbdqEvkwGv33lFagDAwhNmYLOJUtwpstK+VqChJZElf7/RM8cA2B4LoKeWFnNNi9B\n0rCCYuW+YtuoO6UEV2qhVNIry+05AHeCVQmKomBoaAi7+ncBrUAkeuIc5gp3J1EcUx+jw+jEK4oi\n4ol4YOOSSzI0hMg3v4mm734Xwtt+dCL3oQ8hdfnlaL32WggjIwAAbfp0pH/2M0gnnYTZAGafckrZ\np67FsbdBxF5qJYbiBfM1+z2x0vy81Ft/NjsaVlAIWogomOxlrG05f2RaKO3iJXbX5wUSrHw+76qK\n3+s5KAsml8thcHQQYps4pikiW+HeFHfOxmJTggWhMP9idHQU0UgUkWgEYmocdma5HMLf/z6i//qv\nEI4fL/qV8t73IrduHfSODrR94AMQjxwBAGitrTj26KNQpk6FlMtV5BKqZOxtNXETe3FjvVQruO03\nVse2c52WW1hZj4JrR8MLiq4XZsu7XXyByr78VNVdqldWJVDtSjnxjFKwu6/m5mb0Hu21dFcBJyrc\nSwkKWx+jqio0VUM8ES+4mvIKpiWm+foZHNE0SD/+MaJ33AGRKVAEAHnRIsh33AH1Pe8BBgeR+Mu/\nNFrf67EYso8/jsiZZ0KyWFS9Fs4FMfY2aIunljLHagk3EyvN3w+zEFIMp95paEHRNA35fB66bt9y\n3g6vsQ1qh0H57l7P4wZVVY2eVs3Nzb6kAbNQfEnX9UJlvSTZ9u4y3oPSqdldM7pwZOcRpHIpqLqK\nUChkiIlTMaSXa3dD6P/+X0T/5V8Q2rGj6Ofa7NlI33wzMhddhFgiAWQyiH/0owi9+mrhM4ZCyPzw\nh1Df9S4IwJhF1a6o0unv4/fY2/GweNxaL/VIuZaP28JK8zkaxUqp/yiQDYqiGAVy5QQTvSzCVCDl\ndd47e4xS5PN5DA8PG0FCvxcHKigURbFoMfRS4e5Ez0k9mKRNQpPShFAqBGm0dDGkX4ivvIL4xRcj\n8cEPFomJNnkysnfeidSLLyJ/6aWAKAKKgtgnPwnp2WeN12W/8x2opt5JhFNRJbWOsSqqrGTsrRWO\nFk+8YPGUohL3ES2kkUgEiUQCyWQS4XDY2NRRMFtRFF8Xz1qPPVgVVhLpdBrf/va3ce+99xqbk1I8\n9dRTmD9/Pnp6enDnnXdavmbt2rXo6enB4sWL8fLLL/v2WdzQsBaKpmmGpUDzFII4B1tfkk6nPT8s\nbvyrbIqzKIqeP08pcTTX47BtT1h3lRklr2Bqwnk+O90jURSxcN5Cwz3S0tLi6TOUg/DWW4h++csI\n/+QnRT/X43Hkb7gB+ZtuAug6ZBnQdUT//u8RfvJJ47XZr3wFistW9ObdKTVwtMoMKiXEXsfe+m3x\nEOW60Vjrxa732kTMHCO3lyzLSCaTmD9/Pn7605/ipZdewuzZs7F69WqsXr0aF1988Zj74mae/KZN\nm7B7927s2rULL7zwAq6//nps27atap+xYQUlGo0afsxyKLUIO9WX+HUetv6DXHZ+t4ig1vnmehxN\n09C7vxfHU8fx1r63oEZVtDW3oWNaBwRBKHJXDQ0NWR7br3tkptTfRhgYQOSuuxB+8MGiFvR6KAT5\niiuQ/+IXoc+YMeZ9yTvuQORHPzL+O3fTTZA//emyr5MWhHg8XhSbymaziCCC4dFhRGKRMfGGcsbe\n+m3xAP650eg1bO+1Wo+9VMPyEQQB73//+7F06VIMDg7irrvuwlNPPYWf/vSnuOSSS8a83s08+Y0b\nN+LKK68EACxbtgyDg4M4dOgQOjo6Av0sRMMKil9V71bYpev66e+3agnjJ06pzbquY8euHdBbdYSb\nw5i7cC4ODxzG8ZHjGHltBPNnzcfU5FR09XQZ7jfz5y4nq65iUilEvvtdRL75TSPNl5AvvBD5f/kX\naG83vzMT+853kPj2t0+8/uMfR37dOt8ujd2xR6NRzJ09FyM7R5BFtlDHIBZ2r7qqI5qNomuefVzJ\n6jtWzsz7UgSROAD4lzlWr3EHq7YriUQCCxYsKBIHM27myVu9pq+vjwuKX1SyyJvfV6q+pJxzWb3H\naXqjH+dgu/laZYrtP7Qf+XgeiUjCeH/H1A50TO2AklcwSZpkOwxL1090bbbqQkCvKffaLVEUhH/0\nI0S+9jWIBw8W/+ov/gK5L38Z2rJltm+XHn0U8dtuM/5bvuACZO+9d0xLFT8JhUI4c/6Z6DvYh8H0\nIBRZga7pSIaT6OzsRC6XM3btdqmrLJXOvLciKDcai1XmGAWx3VovQVgS1YzNuG0M6fZ6rFoVVQsu\nKA7vYynVj8sv/JreaAdb3JlIJCy/bEPZIUgtzqnCVgsJCa6iKLYFneV+ucnVV/R+i+aNhHrqqcit\nW1cIpjucM/TUU4gxw4iUc85Bdv16IMAJnYQgjB17a9VTys2OvWt6F47uOjHz3vg8eQXhjHMmHXtu\nFr/caF7b/phnm9hZL7XgGisHOwulFG7myZtf09fXh87OTh+u2h0NLyjlwgqR21hAJdaD1+r6cnpz\nmbv52h7bRaqw+fjmgk4/H/Z8Pm/sVinnX3rhBcS/8hVIJpNfmzED+VtugXz55SVFIbRtG+JXXmm0\nVJEXLkT2sccAn8cKeIFciGxPKXO8QRAEiKJY9B0QBOH/s/fmYVJU5/f4qeplpnt2dhgIq2Eg7Cgo\nUQMCbiwzKMIQ5ONCEEQ/qF+MATdQjEticMO4xQ/y/BRUdsImLg9GiCyiEjUioCIDDAgya+9L/f5o\n3uJ2TVV3VXVV9WznefJEoKfvrZqqe+593/OeF/0v6I9jJ4+hynM+gd7K1UoMTaodn2BGGE0L1Jxe\ngNj7WV9yL3pAoeFkUNNPfvz48ViyZAlKS0uxa9cu5OfnWxbuAhoxoaSaQwHOh2+02JvoGUsQBNTU\n1Kg6/eh5aYhMQqGQYhgqbgxwCUlFrjOkx+MRJaM0x2g0iuMnj6PCWxGrVwGHnIwcFOSoa/RFO9Q4\n47z//heZjzyCjPfei/9sbi6C99yD4O23AypeTv6bb+CaNEm0W4l07oyqt99GRn6+qrlZBbl8A9U8\neTyeOkVz0hNPKjAjjJYKpKcXEjiYoRwzM+Ql/W6fz2dYP/lrr70WmzdvRo8ePZCVlYWlS5eacg2K\nc7R0tDQgFUKhB9XMCnuSBWuprtdSdEkvniAIqn3FCtwFOBU8FefdRZBKhUOhECKRCDIyMuLiwNFo\nFPsP70cwMwhH9nkCO+k7iWPfH8Olgy5NOH8iKSDWXpgvL4f9scfgePPNePNGpxPeW25BzZ13gm/T\nJra4RqOJSfmnn+CaMAFcZWVsrq1bo3b1akQt3MnpAbtjp8XVzE6VRoTRzAKd0jiOg9vt1pV7qS8w\nsp88ACxZssSwuWlFoycUgpYdB1knAPJJayVoJa9gMIhgMCjmM4wGm3zPzMxUXbVc2K4QZ78/i3BG\nuO5CwlS2U76HKt9ZkGW9VCHkcDrgdXlxrPyYYmKf7PhtNhtstbVwLl4Mx4svxpk3ChyH8KRJCDz4\nIITOneFOULHOLq7c6dNwl5SIyXshJwe+NWsQ7dYtVovSgCCXb6CaFz2GhXLfb0QYzSwnXfZd05J7\n0WPeaPS82e9WG/JqCGj0hKL1oaB8CYUazHoRqPUo29hLLdQQF5v3iUajmsbgOA79evTDL5W/oKL2\nfLiqtbu1SCZkTkkFnVIoWdYDgN1hR4VXPrFPogGnICD7jTdge/JJ8BLzxuCIEai+/37YBg+O5VSg\ncnH1eJB33XXgv/8eQOx043v7bUT79xd7xDdUSIsq5ezW2dCYlpyKkWE0o6Gk+kpVOWYlvF4v8vLy\n0joHo9BoCUVOapvswWHzJRQm0jpmsp9h/bJyc3MRDAbFPhRGQVoDorWCn66jU4e6C4l0/kqEqzWx\nD5yTS1dXI2/TJmQ+9hi4o0fj/j0yYAA8Dz0E77BhcDqd4DhOXDQBiIsD6/YKnFtcPR5kT5sG2/79\nsfF5Ht7XX0fk0ktVmsc0LCjZrSdqFqXmGamPlvvJYPTpJVVI1yK/32+pEstMNFpCYZFsoWcVVpQv\n8fv9qtvMqh2HihXtdruiZDeVcaQ2LUY3etIy/0TWInLk7vf7EdmyBa2feKKueWPnzvDcfz9qx4wB\neB52ZgEghVwkEhF/X+FwWFxQeZ4HLwhwz54Nx44d4nfWPv00PKNGAV5vnFlfY4S0qJJOb9LTS7Lr\nbyiW+4mg9vQSTZKHMxJerxeuNCoLjUSjJhT2ZKL0sijVlxhZ9Q5AUbKrZ5xoNIqy8jLUBGrEcFS+\nOx8FOQWIRqOyrXS1jiH9fDgcRk1NjepiS0UPMA4Ih8IoKCgQxwl++ikyFy5Exr/+FT+Hli0RmjcP\noenT4Q+HwUejcLlcYp7Ee44M7HY7HA6HaE1D5BKJRBAJh+G+91441q8XvzewYAHwhz/AzexWQ6GQ\nGIrUakWv9h7qgdyJwGVzoWM7/QlxnufryJLpRE4GjnJFlXor583KRxjxvUqnF/b/jT69yNWhqE3K\n13c0akJJBqO9puQWVjWV41oQjUbx9Q9fgy/g4cp2iX/3fdX3cJxyYFj/YSk/+NL7oKczZMf2HXHm\n0BlZhZDT60TH3h2BH34AHnwQuWvWxP2s4HYjdOedCN9zD6LZ2WJnR+qySTttkkPTTpsWB7vdLu4+\nbY8+ip//vzdQ6QKiHBC64Qa4Jl2PjpFIXBMknucRDAbF9rdGqaZSeaaUTgRVtVWo+KECg4sGG/LM\nEimHw2HxvskVVVpROZ9OsKcXeo95njc996JWNtwQ0CQIRW6hT7ZIGnFCYc0dE1WOaxnn+MnjCLvD\nyHLGdjSRcARenxcZrgzY3DYcP3lcVj2ltz6GxANqpdMEjuMw4IIBOFZ+LC6x39LVErl5AdjnzoXt\ntdfqmjfedBPC998PtG8fS9BXV+NMxRl4I14InAAePPLd+WLMXslwUBAEuF9/HQeX/BXB1oCDX+uC\nNAAAIABJREFUA8JXjoZ//u2oCJTj9MEz6Ne9nxgWozkrJfYFQYir+bAitKN4InDYEeL1e2kpgc0/\nAXWLKj1eDzgHB97GyxKsHgPK+gr6fSfLveg5zUpVb80nlAYCuZCX2kUylap34Lz0led5QyvHK7wV\nsDvs4i7S5/MhMzNTJEU5WxQ9KrJoNBpHhsmKLeXuFcdx8Yl9jwf8c8/BtngxeMYiHwDC48bFQlFF\nReA4DqFQCB6PB4eOH4KQI8Dhii2qUURRHorvZ09j0U47MzMT/Dvv4OcFDyJ0jkyCQy6C/49/hM1m\ngzvLgZAjhPLT5ejYrqMY8qEFQymxr2SHQtXtRiPpicBn7olAWlSZmZGJABeIhQejAnjbuXvE28Dx\nnOmV81JY6beVKPfCNs7Sc3pRa73SENCoCYUF7TASmSKmClpYE+UblH5GLUgdRQWFWe4s2Oy2Ov+e\nCmjxdDgcxpBhOAx+6VLY//xncBLzxuiwYQgsWoTIkCHiwhwMBuH3+1FRUwEhV6gTJnQ4HGLMvuuy\nt2B7/32E77kHkbFjAQD8tm3IuO02VDoBOwdE+vRB8JFHEeV5BH0+cXGo9lfHvutci2hqCAXEBAi0\nC6dTTCI7FDNCIWZY0idCogWa4zi0yG6Bk+GTyMzMPC+EiEQRCsaexQ6ODnH3Tc331lckm7Ma5Zja\n04uWwsb6jiZBKCQv9fl8qvMlekNeZKNilrkjJ3CICBFwAoesrKw6D6ucukrLtYTDYfj9MUv1rKys\n1BYCQQC/YQNsDz0E/uDBuH+K9uqF8KJFCF55JcCd96aihlRZWVn46fRPYu5ACofDgarPd8O5aBEA\ngC8tReiZZxAdMAAZU6eCC4cRdQLRrl0Q+stTsOfkwA5AcAqICjHC9Af8qK6uBhDr1ZGRkVEnsU/k\nyqrGpDt3pcUk1Q1Lur20pJBWztvtdsAOhAIhZAYyUdixULaosrFD6+mlOSnfwEFtSNkWrcmg+eRw\nbjEEoCnfoGWcaDQKW9QWO5nIkImaDoqJQPUrSYshqW7m3GIhdw3czp2wP/AAeEm3uGj79qieOxfO\nGTMQPbc4089TvQxdWxSJd+DczvMyYE4Q4Lz7bggu1/mK+rZtEVy8GMg9XzTGcRxsnA28g4dgj805\nIyNDLKgkMqDkPksYrBpKruZFrsc8ANGKXmtiP5mXVp7L2mK4hJXzPc/XoUiLKoHYiRqAIZYwhPp6\n8kl2eqHPCELs9O33+5tlww0FXq9X9Joyq9ETG0oDYMqujMJoXTt1RcV3FQg7w3FeW1JbFBZq6nCo\nfiUnJ0c0IJTF2bNwjBsH7ssvEf6//0N08uT4sb79FraHHoJt48a4v4/m5iJy770Iz54NXzAIHoDt\nHJmQUzHP83H1LTwSk4r935/WvdZzZCK0bAn3K0tRme+C9IwjCAI8tR60srdCTk6OSMwUxgmFQiK5\nSVVj0poXNudCiyUtJqw6iC0oVJvYV/TSCoWREcxAxy7We2mpqZyXFlWSk0Kiosr6BqPISu70Qs/W\nc889h7feegstW7bE+++/j+HDhyd0ASecPXsWkydPxk8//YQuXbrg3XffRb6MqWmXLl1EMZDD4cCe\nPXtSvp5kaNTNnGtra0UppJ7EtJqTQyQSQXV1NWw2G3JycjTPUc04gUBADKO53W4MuGAA2trawl5r\nh63WBnutHe3t7eOS1GpBSjSyUUl4shIE2P/3f8Hv2wcuEoH9rruAs2dj13H8OOyzZsExeHAcmQhO\nJ3y3347gf/+LyB//CMHlgsPhgNfrRW1tLbxer3gykIYi89354s5WitAvv6DF518rTjXavz8KL7wY\nDp8j7jsEQUBtTS1sXht6du8Zd8qjUJbL5UJ2drZ4UgoEAqiurhbDcZT4dzqdcf3jydGZQmV0+iLj\nTJfLJfYT93g8ojhEqYCWTgTt7O3g8Dhgq7XB4XGgra0t+nXvV28XYxY0R6fTGXcPwuEwPB6PaOGj\nx5miIYKeCafTiXvuuQf/+Mc/EAgE8Oijj6JNmzYYN24cTkryjFI8+eSTGD16NA4ePIiRI0fiySef\nVBxr+/bt+OKLLywhE6CRn1CysrJE+3MzbFTk2tyyyrJUx1FSpNEuUc1uJhGkRZ2sYkpuTvzy5bCt\nXn1+7pWVsC1aBFdGBjJefhncuR0oEDNv9F9/PUIPPQTnuba7tGjQ8Z6S76TqEgRBDDdxHIeO7c7X\nsrCJ+VAohMx/fYlfJbDfsn30ETInTsSA5ctxrLYSlZ5KRKIRBP1BtMtqhx59eyRVrtHOUm3NCxEJ\nuzjS3+tN7MudCOieNUQoFVXqOcGZGfKy4rt5nsegQYOQnZ2NTz75BBUVFdi2bRtatmyZ8Oc3bNiA\njz/+GABw0003Yfjw4YqkYjVJN2pCYZsQabVRIcg9WNIQkZb6DC3jKnlmac3vyH1eNGFUW9R55Ajs\nd99d569tL71U5yEKjxyJynnzkDF0KDKYGhG6l6TkCgQCyMrKEq0uaIfPOhj37dYX5afLUempRBRR\n8ODRyt0K3T7/LqkHl+2jj+D8y1/QadEidIh0EPNDeg05E9W8sBX7RCIkbqBFUxoaU5PY11LjoMZn\nK9FnrM5JsPeAzT9p6VTZGED3vUWLFigtLU36+VOnTolNs9q2bYtTp07Jfo7jOIwaNQo2mw0zZ87E\njBkzDJ23HBo1oSTbcav5WSnYYsW8vLy6KiuDFnsjPL+UQDYw7MlKirg5RSJwTJ8Orqam7vyZ/44O\nGgTvggWoHTJEJFpaJGgxJTIOhULIysoSQ0Y8z4t5LnZhCQQCyM/OR6v8VnA4HLGdqyDA/sEH6i42\nGEQ4HIbX642r10kF0poXOTKkUwmpd4hQk5lZkiAikVOw3MKvxmdLEISEn+nevnvK90Yv2FAQYJ00\nOx1QQ9yjR4+WDX39+c9/jvtzohqonTt3on379jh9+jRGjx6NoqIiXHbZZfonrgKNmlBY6Dn6ScNX\ntNDbbDbF+gy9cmMC6/mltJNOhbSoh0kiGxjpmLZnngG/c6fi9wsAvA8/jMD//i/C0Shys7Nhs9nE\n5DWr5PL5fIhGo7IqNXZ8qUqGdq3RaBQZ33wD988/J7xmoW1bhP/nf+D9f/8PvnPme0abZRJYMqRO\ninQq9ng8dVRj0sQ+28KWlScrOQUDsWeRXVjV+GwBSPiZ46eOo2d2T8Pvj56Tj5oTHJ0MzYBVpzVp\n1Tzh/fffV/yZtm3b4uTJk2jXrh3Ky8vRpk0b2c+1b98eANC6dWtMmDABe/bsMZ1QGu85koERD0Yo\nFEJ1dbWYXDTqYaPvEYSY51dtbS2ysrKSFkRqBZ2s/H4/cnNzVS+u3JdfwrZwYeLPALDv2IGIIIiq\nKSmZ0OIKICGZ1Pnuc7mMzMxMZGdnx5Ll51qe1rlGux3hcePgX7UK3u++Q+38+fCdG88sMmFBZOJ0\nOpGdnY2cnBzxhOn3+8XEfiQSiUvs06IpTezT9ZN3GSW12bEox1bhqZCVFwPnq+qrfFUJP1Ptrzbn\nxqQIegaoxTSFSQVBQDAYhNfrFdsi1/fEvnR+5HShBePHj8eyZcsAAMuWLUNJSUmdz5DYBYg18Nq2\nbRv69u2rc9bq0ahPKKmEvNifo129mmJFvWORfb6aNr16ckK0w1PjECBeg9cLx9VXg1PRfCrjo4+Q\nu38/hEsvFceiXEEkEoHX64XD4dCVv2DB8zxs5eVxfxf+9a/hnTIFgYkTwbdvD7vdLjoJZGdnWxJ/\nVwqrKdm3UGgsWc0LXbPc6YVOgeFwGD6/DxF7BHbbuYQ2Hx8KUVNVn6zup76ATrD0jNlsNkM7VVpB\nSvS70WO7Mm/ePEyaNAmvv/66KBsGgBMnTmDGjBnYtGkTTp48ieuuuw5A7NmcOnUqrrzySmMvQgaN\nmlAIqYShqI5FbT92rWDrGcywg6EwHRAruNSymPMvvCD2XVf1+V27ELzkEvEYz3Gc4fkLAAi8+CIy\npkwBsrMReuwxRIcNgw1A5rnQGNU9kIOu2UldIohkYTVSOLGJ/WQ1L0QwwPmaF3qW2bCQ2+VG0BmT\n3wZDQQjRWPEl+W1RVb1S5b0gxIw3GxLoOTOjUyVgTGRDbs7s9+ohlBYtWuADmRxihw4dsGnTJgBA\nt27d8OWXX6Y2WR1oEoSiByQB5XkeeXl5hsiApSClFaA9DKRmDMrHZGRkiFJXLYiOGAFh4UJwiYoi\n7XYgMxPhXr0QmjSpjpLL7/fD7XYbG+vu0QOBvXvj/ooDRAKjkxAt2KxqLBUrejkEAgEEAgHN18iS\nAYC4RVDa54U8xlg7GArv0LXku/NxMnwSDqcDDjggRAVEohHxdNje1h52mx2n/afhyHDUuf5wMIzc\nTONMTAlWh6DUdKq00jE6GRqTdT3QRAhF6wmF7SuvNZehdbF3uVxxyVajwNrz2+125cp3GYjXMGQI\ngocPgztwAGjbFsjMRNTpRIDn4QeQ3aoV7JmZYr+XjIwMOM7dK7/fL9rdWOHnJBdWk9qhUDEdLeai\nakzHwkI5L6laTS+kNS+syo1CPDzPw+/3w+l0iiQTjUYhCALatmyL0z+cRlAIwpnhBMdzsPN2IArk\nRfPQtUtXRCIR/Pzdz6h1xzYZNnts1x4JReD0OVHYwbw2tOlYvFnSZjtVksBD6fRiZX1LY3IaBho5\noejJobDFimTsZjSkSivqt6EWWosh9dbgAAAKCyGc63dNthHhcBg5jJKLFrxgMAjfOTdfAHC73ZaQ\nSbKwGqsaY2W+fr8fkUhEPLmoDY2pVavphVTlRuom2hRQKIz+HYgRat/ufXGs/BgqKysBDrDxNrTK\naoWOv+4ofueQvkNQVl6GszVnEY6GEY6GUZBVgF91+ZWiK0F9hdbTj9qiSivJj9aaxoJGTSgENYQi\ntxDrIZRki72W5LtWKBVDpiplBupW1QMQQzA8z4sLNSm5eJ6Hx+OJSzwbGWoiqM1fEOjkkihRnig0\nxnpTGan2SzRfIEaaRNByBaBEiN06dxPDYbSRCIVCcbLkzoWd0RmdxeshM0sgtmNOtUulldA7v0RF\nlXQvqIOnkRsGOZVXY3EaBpoIoRCUjrJmLsQEpd71esaR+zw19LLZbGKrXL2Qfr+00JLGk1NykRyW\nvoPyGEQ07OKX6mJF+YtUQk7SRDkbGpPOl8iE53lDWkarAREHm6ORFoDKhfIS1bxIrfjp8+FwGBkZ\nGbKKKb2/L6ur7/VAWlTJXr8ZRZXNIa8GjkQPQKKqdD2EIvczmm1ONIJyPhkZGQlzPnpebnI5drlc\ncY2V1Ci52F0gG2piE8/saUAtSModDocNlQUrhcZovgDEeLwVi2QywkwWypPeXzaxz8qS2R7qZimm\nGhKIYOh5N6r1rxyaCaUBQY4c2L9jE+OpGi1KxyHIGUgm+xktY9D3J6qR0fvis4l9ZwJPLurnkCjk\nlGqoiUCnBEEQUj6JJQI7X3bTAUB0SzArlKcn4a90f8m6RKnmhSUZoK4dfyLFVLqtUMw6/bDfy95X\nuX43JFtWGyKUS8q3aNHC8GtIFxo1obBgF2F6YdVYkOgNedEu2u/3JxxDLyjnEwgETDOo9Hq9ST25\n9Ci5yKCw0hszfOQEDtnObLRr1U5UNcmpsJT6ppgJNuREv8NkobFU5sWevlJJ+CereWElyaxCLlGf\nFzbnYOauvT5DKpgg4tYbIiRZfWNBoycUKSmQBYmaYkW9IS+yxVBbEKlnHOpCqbYYUu6EJge6PwDE\n707kyaU15BSNRrH/8H6EMkNx7X3PhM6g6lgV+veImRiy3l20+wsGg7rdgvVAqY4mWWgslVAee1+N\nusZkNS8AxLAkGxpjTyWCoL5LJbtrbwg5FCnUzlnuVJgsRCj9boouNBY0ekIh0EKfzNxRCq0LPS2G\ndrtd9RhawCqpjP5+VjjA/p2UTCgBrEflJJoYSk5sDodDNCjs1L5T3EtKuQQA4imJQk1mgDyi1CT8\n1YTy1ITGIpEIDh85jCpfFTIyM8BzPPLd+XHW80aBtYWvra0VSYF+91IhgjSxz4oxpF0q5XbtAMR3\nwujQYH0iKzVFlVI0tsLGxns2lQEZ96ldCPUksKn5kZYdptoTSjgcRnV1dVyjLbVINgbbeZLmLiUT\nIhybzaY75FTprVQM/zkcDlR6461eKFTjdruRm5srVsDX1taipqZGDA8ZpcZjQ3nZ52pttIBCTVlZ\nWcjNzRUTux6PBzU1NfD5fGIzMUI4HMbur3bjVOQU7C3tiGZHEc4Kozxcji8PfWlKtTmF69xuN1wu\nF9xuN3JyckTzSZ/PJ95fqtVhu1Sy9TFSM0sq0KS8IQk3pF0qra6itxJ0KpR266QTzOHDh/H000/D\ne84JWy1WrlyJ3/zmN7DZbPj8888VP7d161YUFRXhggsuwFNPPWXEJalCoz+hcBwnvhSZmZmafnla\nQlGUHKf4stEnhx/LfsTJsyfhzHDC6XCCD/MoKCgwZBypOIGu2e/3x0lKvV6vKFnVfS1JDAjZf5ez\nNZEW/EmbXNF89UpcjUz4y6ncpPYqNpsNPxz9AdHsKLKz4sekU9uxk8fQqb1yD3etUKrdUVLlKdW8\nsAqoRGaWHMfB5XLV+Z0B6U/sy8GMkw9tNOjd4nkeZWVl2LRpE9avX4/i4mJce+21uOKKKxKGwPr2\n7Yu1a9di5syZip+JRCK488478cEHH6CwsBAXXXQRxo8fj169ehl6TXJo9ITi8XgQCATiYshqoYZQ\n2OR7Tk6OGKIxapxoNIq9X+9Fta0aea3zYLPbEBbCOHv2LMKHwqr7yCuNoaTkcrvd4omLdp+U5E0F\nPPiEpMLjfMI/kSxYafEjO3PWC0tt9bvH4zEt4c+GxsgGhMJqVb4qcLkcgqFzhXTc+dCYw+FApacy\nrgVwKtDirybX9Exa8yI1s5SGxliXBvZnUpXj0rNcX0hILSgX1a1bNzz33HOoqanBbbfdhv379+OZ\nZ56Bw+HA1VdfrfjzRUVFScfYs2cPevTogS5dugAASktLsX79+mZCMQJ07KSdp5FgE/zUvVEazlAD\npcVeEAQc+uEQPA4PCnILwNvOv2QOuwOhzBCOlR9Dpw7aFxtatFmVGKvkohcbiJEOhZoo5KZlsWaR\n785HeahcNuwVCoXQ0tVSV2JauvjJ9X9XymOwjbCM7kOjBCIUl8sFd1bMKZgInE5bZEVvlK18KoWg\nWoUIrGwZgGjrwp5ejJTjGgkrQ3F+vx8DBgzA6NGjce+99xryncePH0enTufXhI4dO2L37t2GfHcy\nNHpCod2gXsVWopMDVaZLk+NGPJCUr6jwViC3lbySy+awocJToXn3KlW6kWBBTskViUTEpln0s6xx\nISlZ1NZjdGzXEWcOnUEI8Yn5UCgEu8eOgsICAKnZmnBc3f7vcjbx5HPm8XiQkZEBp9NpqRSZQk48\nx8NuixGIIAiIClHRhj7qjyLDn5GyDYiRZp1qa15IHUZJZ3rGKKSkJrGfLpdgs8aQq0ORhriU2v8+\n/vjjGDduXNIx0nlqa/SEwhYoGUUoiSrT9fwyKeFNoMp6h8OBTFcmony0zucJAtRdE12LnCdXIiWX\n9JQgffETLdZy94LjOAy4YACOnTyGSk+sDoUHjxaZLVDQocCQJlzS8ZJJZul60iVFZk9tHMfBxtlg\n421wOpwIBoJo5WglW6CotpDODFcBFnL2NZTX4jgOgUAg7plhiyop7CXNuUjDg6xLcGOqdfH7/XVy\nkona/6pBYWEhysrKxD+XlZWhY8eOKX2nWjR6QjEa0pyDFHqIi4U0Qc5zCjkH7txuB+oXQdqNkwUM\n/Z1cq1414R+5mDgbBiFykS7WHMehU/tO4snKqIS/GrCd/Lxer7gI0mnTTCNLpZBTolObM+BE1wu6\nis+VFgJn61rMcEVWAp2mXC6XrBCBLaqU1rxQiIyteZFzCaYQGj2rRib2BUG+z7sRkJ5Q6Br1fpcc\nLrzwQhw6dAhHjhxBhw4d8M4772DFihW6xtCKJkMoqZ5Q6OVk3YiNnhu9dGxlfYG7AOXBctle4OFg\nGG3dbVWNQQomOU8uIpNUFnY19RhsHoOg1S3YCNDCzsqC2YWKrX5PpWcKIdkpQenU1srdCh0vOF+H\nkuy0JVW5sWRixemLFTaQZ52aPi+Jal7kzCwp9Ef+cU2pYn/t2rWYM2cOzpw5gzFjxmDgwIHYsmVL\nXPtfu92OJUuW4KqrrkIkEsH06dMtScgDACc0ZjE4ICb6SDqspSo1Go2iqqoK+fn5ohtxsrAB/UxB\nQYHqcUglBsTa9LK7V0EQ8OWhLxHKDMWRSsXZCuRxeRhcNDjpYhEIBODxeJCZmQm32y1LJmYu7OxC\nwhYmUgEhNQEzG0Ta5JGl9HtkT1v0/GjtmcJ+Fy3sbrfbtEWOzWPQ7p3jONHy3mxCIVscm82mStjA\nnkhIyMKeXui0zOZdCFQHQ5Jydg70nVR8qcfMksJqZmxwPB6PWJMiCAKuueYa7Nixo8Gp1ZTQ6E8o\nqeRQgNiDLy34SzaelnHoxRAEQVSKSb9vwAUDcKz8GCpqKyAgFuZqy7dFUY+ihPNhT1WsKSCFFeih\nNsIGPhGkeRdWjsxxMYNJWlDMTIaqDf+oPW2xSjilMa3qnUJhIfLmomswqkYnEShMqiX/pbfmRUoy\nWsws1Sb2ra7AbyxkAjQBQkkFVKjldDo1y0nVPJRU8U0vv9Iix3EcOnXoFKfmqqqqSjq+x+NBNBpF\nbm4uvF6v+PKxyXezE7ZyCIVC4DgOOTk5IsGk6oOVCKku7Il6ptDCKA2NyYV/zIZS/itRv/pU77Ee\nMpGD2poXPWaWSol9VpZsFeRyKI0JTYZQtJ4cWBWQFjJR+znqM5KZmQmbzWZoX3lScvE8j5ycHPHv\nqQMl7eDo+sy0gZfOi9yC2YVdTs2j5SSgdkwjFnalegz2JGCz2URlk5V1LUoLuzSPIVejo0eSSyao\nRosplO6xVJmXkZGhaGYJ1K3Ylyb2lSr2rTqhRKPRRpfnafSEojXkxYaJcnNzk54E9ECqFNNTDElz\nlULazAuIPbgUl6a+7wBS8uTSCjXqMT0ngURgd7JmOBSzoTFa+EgWTONTuNHMhUPLws5x8jU6WkNj\nNKa0qZrRYO8xnegptyGnzFOq2JfWvEhDaeFwWEzsA+fFAEY+M9L31efzGdaHqb6g0RMKi2SLtiDU\nbQVMRKTlwVL6GbnqdPq8Vsj9DEmOyZSPTb6zxWZssyh6KeUUWEZBz05WzUkg0cJnpRSZwFa/OxwO\nRUWTkUlypW6ZaqBGNSYXGrOKTFjQmNK+NIn6vEgT+0QcUtWYNF9GBb0UstST2E8E+g65osaGjiZD\nKGrzGXZ7fCvgVOXGBGl1OvuCpiIYIPj9/riGYYmUXHLNoqQLn1G1GEaox+ROAol8u9IhRaaFnR1T\nWgAaDAZx6MdDMe8uGwen3YmWOS3RqX0nXfdZbsxUoCY0xnGcWJiZznsLaCNEyrdIzSxps8WGxoDz\nYW69iX010Oo03BDQpAhFadE2oxUwi0Q2LXrBJn/ZEB3FgJWUXImaRempfE8ELUaEWpDIt4vuicvl\nskSKDCS/Tlqsvjv2XayxWHbs9OINe1FRXYFjp49hUM9BcDqdqk+I7ObAjOuUC42RVT2ND8BUZR4Q\nTyY2mw1l5WVip08e8T1j1Na8JDKzlCbMpQaYqST2pVGLxtZPHmgChJLspCHd2cv9fConFLJpoZyG\n3MuXygmFDdHRjkpqo6JWySUXW1ZT+S43L6090fWCFj6HwyH6VdF/k/2+EcWJSlAruZY2FnM6Ym0I\nXJku+H1+HD1xFO1atVPljWYWUSuBniO2LXEqzs5qQWRC9TvSTp9RRFEeKseZQ2fquG7LbZSkrQ7k\nal6otw7b7pr9fzaxT/UuJPrQambZ2JprAU2AUAjSRZtUTqFQKGGb3lQWe+qRQjkNo+Hz+WC325Gd\nnQ1A3pNLr5JLLrbM1gkoLSJa6j2MAkuaZGTJEiLbJEoNIaodk0hTjeS60lsZ1/KYwHEcXG4XAp5Y\nXi3ZCdHsmiE5yBGYVOJrdK5IegIrKy9L2OkzUc8YdqPE9qWRqglJtEKFh/Q+0clCS5dKun72BCc9\noTS29r9AEyIUAh11WYNEMxa9YDAodv1LFmvWSlr0MjgcDvGBVPLkstlshshl5eoEpI7DdrsdPp+v\njizYTBBpkosBeyLVYwWjdkwiMLWkqaaxmJL6iE6IRJRU/W4FiEyUCEzNSUBrQaVcOE+JkAHtPWPk\n1ITBYFA8lVDoS2pmSXLkRGaWgHJveel73hzyaoBgFxjgfPLd4XCoksxqXezZnXGik4/SzyabD516\n6EUFUCf5zqqqzLBkl1tEaF4ARDWZ2ZYfbPFgst+l3CKiZ1fNnsA09WtR0ViMBbtIOZ1O+Hw+hMNh\n2Gw2caNgppEloL1/itxJQGtoTCk3pKXTpxaw7wzlaZT6vGgxs5Sr2KfyAL/fj927d6OmpkYzoaxc\nuRILFy7EgQMHsHfvXgwaNEj2c126dBHXH4fDgT179ui6P1rR6AlFCvolapGvqiUUKigEID6casdQ\nAzbfQ3YlVnpyyYHGDYfDyMjIiIUgdNQ1aEUqTbGS7aqVhAhEYBzHaT6BJWss1srdSvbnWALLycmJ\ny2ekUqOTDH6/X3U4TwmJTrVyJJ7oNKSVkNVCTkGWrM9LopoXIn02NMZ6wBHBPv744/j666/RtWtX\nZGdnY8yYMaos5tW0AAZiz/j27dvRokULXfdFL5oMoZDsz6x8BltQaPRuUS7fQ4obOk4D8j3YzYYc\ngSWS9xphq2JkhbZ0V63k4MvzvKjs0VP9nsii3uFzoOMFdRcTJcsYlhDZ+2xErkgqqDAqHJyMxHme\nF81b5TZiegk5EZLJrqWnWq01LxQiY22VeJ5Hbm4u3nvvPfz973/H0aNHsWPHDjzwwAO455578MAD\nDyScs5oWwAQ9ud9U0egJhXaVbGtbLVBzQpHKjj0ej25lmHQBUFJy2e120VaEzZukO1n3JDcaAAAg\nAElEQVTLQkneq6dRFCGVQj41UGrsxD4/ZJOuBRynzqKewJ6GEoXz1OaK1NjX6MkN6YGUxKnYlw3n\nSeesh5ATQWsNDztn4HzNi1w4T6nmhaIJZLkSDocxYsQITJw4UQzFGwWO4zBq1CjYbDbMnDkTM2bM\nMOy7E6HREwpw3mKkurrakCJFFslkx6mMw9avSJVcdE0U+qEjN7urNiuHoUcWTJLLVGxVzK69kIKk\noNRVz2azpRRm4rj4xmJKSMV/LFmuSGnOenNDqSIQCIjiFbaGSm7O/Xv0x/FTx1URciIYURCarOaF\n5iyt4yELmUgkgl9++UWse7PZbMjLywOQegtgANi5cyfat2+P06dPY/To0SgqKsJll12m61q1oNET\nCsdxcLlc4u7fqGNgItmxEeNI2wwDyZVc9BkzcxhGyIKVQjaJ5pwOuazcaUivFYxapJIbkkKtAotI\n08pmXEB8ozN6jpLNuWVeS7Rt2Va39NtodwE1cyYSIdfyaDSKn3/+GRs3bsQVV1xR5/tSbQEMAO3b\ntwcAtG7dGhMmTMCePXuaCcUosAu8EScUaRjKiNAAOw4ppsg8Ui75TnkEp9MZZ3woZ1EizQfofRlT\nSUonuu5kcwZiIQarLfaVxA1Kc041V2SUFbwclBRYgUBAlMHSbtsKQmFPJonaNsjNWa8bNVsoadYJ\nVzpnGpPjOFRWVuLmm2/GZZddhvfeew+vvvoqhg8frnsspbWMWlXk5OTA4/Fg27ZtWLBgge5xtKDR\nd2wEYosDhY9ISqsW0k6PSp5fLGhnokUSWFVVhaysLHFnQ+aRiZRcWvII0nyA1upmI3fOakGhHza5\nqWUB0YtUKtHZXBEZEarJFZllBZ9srrRBcDgc4py1yKj1gBRkqeRp2DATm99SCkFaQSZSsBuEzMxM\nBINB/POf/8Q//vEPHDhwAFlZWRg7dixuvvlmRfmvFGwL4Ly8PNkWwD/88AOuu+46ALHrnjp1KubP\nn2/mpYpoUoRC9SdaXliWUNjke6IdpJ52w1VVVWJ1rjSeDEB88YxQcklfxmSLntl1LUpzJIUTETPb\n4tasRc/I0BqrDCLvKzkrGLOFBkpzk2sAxs6ZbEiMCueZpSBjw0xy7YTJHiVdZEJrRVVVFUpLS/HA\nAw9g9OjR+Prrr7Fx40b06dNHdW6kvqNJEQrlG7QYQNIL4HA44nqYJIJWQhEEAZWVlWJDLMqPKHly\nGVkpLV30pDs9OjFZ6dybLCmttICksuiZrXBiC17D4bBoz8HzvLhBsPL+qj1tsveZ1IV6wnlWKcgA\nxN1n2pCRUMGK/BuFxFkyqampwZQpU3Dvvffi2muvNX0O6UKTIBQycdNLKNSQKjs7W9UOh/V4SgYK\noQlCzCHX6XQqenJRGM2sl5Fd9IiEgfO+TVacTPQ0xUp10WOFBmbeXxbRaFTMIwAwzWBRbly9eRq9\n4Twik0gkYtn9BSAq8lgJuBlFoCzo5MfWK3k8HpSWlmLOnDkoLi42dLz6hiaRlCdoVV/REV0QBOTl\n5WnekSUD2waYQiJySi7arZvdXZGSzXSd5NxLhX6pJvWTQW/oR6l2RI1nl1LxoNmgOVJS2opmXNKY\nvlZIpd9qWh2wZGL1/aWIAm0C2Q0TqdpovqkW29L3S8nE6/Vi6tSpmD17dqMnE6CZUBRBSXyyUNDy\nsKl5aaRKLtKm004vkZLLTEjrEei6jTRXlINRljFaPLuITIzqN68WcnkaqeyUlSQrWcFogdFJf1bN\nRAu1XHMrysOkg0zkev+oLQLV6o8mRyY+nw/Tpk3D9OnTcf311xt+nfURTSLkRSERtbkNtgbEbrfD\n6/WKRUdqQA9obm5unX+jHZvf749Tcvl8Pvj9/jjTR7/fb3milk2EJwphaEnqJ4MV/T3kks2UeyG7\ncrOhJyltRA7D6pa9rCSZ6jD0LtRaoVfNxRbbyuUSE81ZjkwCgQCmTZuGKVOmYOrUqUZcWoNAkzqh\nqIH05EBJPSNAC3Y4HK7TXZF21VTPQKcV1qrBTGhJ1MoVcoVCIc0V5LTABoNBSxpxsbtmulZBEFBT\nU5OS/5Ua6E1KqwnnJZJRp0NBRqdrKrilKvHvf/oe1YHq2CnS4USL7Ba62x/LIRUnBaViW6k/mpTI\nWbUcvTfBYBA333wzJk6ciN///veGXFtDQZMilEQhL7mTQ7Kf0TIOyZY5jhNPLnLdFamhT1ZWlpgE\nNaPXO4tUZMFKxWfJKsjZBdbKgkW2UpoWWOlCbXSC3ChbE7lwXiIrGDOqwpNB6ZR78PhBBDOCsGef\nI/SIBxXVFTh+5rjY/jiVZ9pIWx61oTGbzSb+mUKmoVAI06dPx9ixY3HTTTdZFuarL2hSIa9gMIhA\nINYZjwXtMqi6lF1EotEoqqqqUFBQoHo8Cpnl5+eL47PFkPS9apVcyaS9qTy0Zu5gWcWYNFxDhGNl\nbF1NnkauYC4VIlcbRkwFcjJqcu9lidNsKF1rWXkZysN1nYKjQhQBXwAthZZo16qd7sJVKz3e2OeD\nhDS1tbX473//i2HDhuGOO+7A7373O8yePbvJkQnQRE4o9ItVc3KQPgR6TygEUnKREzGdQrQoufSe\nApLB7NwF6zYs3eVZbfWh9loThfMA+cJEJSgVDxoN6fMRCATg9/vB8zx8Pp9YR2WEkkkJRCYcx9W5\nVqVuizzHw+V2IegJIjc3V5fSzWrDULrXwWAQdrsdGRkZOHToEB599FEcPHgQ3bt3x5gxY3DmzBm0\nbt3a9PnUNzQJQlEC28PEyBeeSCgVT65E3836SEn7d6jJBViZuyBQ4j4QCIhzpHmbGc4D9Fe/KxE5\nKzlVInLaJOjtn6IXdApn3RaMaBuQCMmIU237YzVGluy9tppMAPlT2MCBA9GnTx+MHz8eHTt2xPr1\n6zFnzhysWrUKo0ePtmRe9QVNIuTFVs56PB7k5eWJNipqGm6dPXsWBQUFql++SCQiWqlQMSRLJrRL\nNDrcJOfXJd2ZUjyf1G5W5S6UZKtmhvPMsvoA6lZjs3kXAKaZPCZCsv7vaq1gtEDNKeyr779COEtZ\n3GL32NG3e1/Ff5e715SvYOtMzIYcmUSjUdx1113o0aMH5s2bJ16/3+8XT+FNCU3qhEInB609TOjn\n1LxwtGADEJ2IKe5KNS2AOeEmadJWbmdK87Cy50Ui4jQrnGe21YdS8zDqDMqSixVQcwpTc+LSonST\nk8vKIdVui9J77ff7RYcBn89nqpElgX2vWTKZO3cuOnfuHEcmAHQVjjYGWLM9TTPYX3Q0GoXf70du\nbq7hLzwVQ7KHPjq6s8l36lBn5u6K42JVzW63G7m5uXA6naJVOdl+0InJTJClu9vtTnoKo3BeZmYm\ncnJyxLBNIBBAdXU1PB4PgsGgaAmjBNpJWmV5T/eadqNOpxM8z8Pj8aC2thY+n0+sfTEa7AJL90vt\nnOleZ2dniz8bCoXEex0IBBTvNeUe1YT0OrbrCIfPIZ6KCGK3xXbquy3SCTwrKwu5ubliryOfz4ea\nmhqxR5GR95q+nwQzRCbz5s1D69at8dBDD6VEZGVlZRgxYgR+85vfoE+fPnj++efrfGb79u2iu/DA\ngQPx2GOPpXJJpqFJhLzopautrUU4HEZ+fr6mRaayshI5OTkJX1bKxzgcDrjdblRUVCA3NzcuX5IO\nzyiaG+VpyCvMjBCTFEY690rDeUqV+rRr5rjErXONhpxEV+qNlsqJSw5mhfSSKd3oHmsJ6QmCEGt/\n7D3fbTHfnY+O7dR3W0yWMzHKyFI6bzkyefjhh+FwOPDEE0+kfN9PnjyJkydPYsCAAaitrcXgwYOx\nbt069OrVS/zM9u3bsXjxYmzYsCGlscxGkwh50WJPIR+tD0AypZe0pzyRCCWgyZaelFzpsKFgw02U\nIDer86AZNSZqLFWoLoCK09ItR5YKKJQanulZ8KQeWUZuTpSUbiRrJzsYLbUjHKeu/bES1CTg5YpA\nUxEjsBtAemcFQcCiRYsgCIIhZAIA7dq1Q7t27QDEDGh79eqFEydOxBEKzae+o0kQChUeUdjHSKkq\nLQ5SJRcZPgYCAXFXZ/VClyxPY4RiTArpS2jGKUxuwSN1E4Eqtc2+11pyYUp5F63dB+UWOrPA5l3Y\nMBeFd404BSSDHjWXdAMiJ/9O5I+mRCZPPPEEPB4Pnn/+eVOu98iRI/jiiy8wdOjQuL/nOA7//ve/\n0b9/fxQWFuLpp59G7969DR8/VTQJQqEYN/23VkKRO6GwuRC57oqslQrJR6VHcbPkunplwYlsPtQs\nHKwKxqpTGIUTw+EwMjIy4HA4TOn1Lodkqqpk89ZS9U5gQzBWnnTJmodV6emxgtEK+u5UwqZKYgSl\nkyK921Iyefrpp3H69Gm89NJLppBJbW0tJk6ciOeee65O64tBgwahrKwMbrcbW7ZsQUlJCQ4ePGj4\nHFJFk8ihALGXXxAEVFRUaLail7YOlqusj0ajYm9uesmlu1c5iazR9RdmyILZ3XQoFJLNX6SjRTCQ\nWEGWqFI/1ftiZH6IhVzVO0suUqWRFVDjVMySolEdNY0gk2SQy80BEAmbCOb555/H4cOH8eqrr5oy\nl1AohLFjx+Kaa67B3XffnfTzXbt2xb59+9CiRQvD55IKmsQJhYWeyncWaj255E4I0p2SXD+JVGsC\n6IRgpCxYbjfN5i+octjpdKYld6EUCklUqa/Xfp9NhJuhIJN7RigMSRsWKx0G1DoVs5sjdt56T4pW\nkAkQHxqLRqPiZgwAFi1aJPYr+vnnn7Fs2TJT5iIIAqZPn47evXsrksmpU6fQpk0bcByHPXv2QBCE\nekcmQBM8oVRVVWmW61I7T7vdHldZD8h7cmlVchmhBmJbHFvV24PcAKiIy0zFmBSp1PEkUzElchhI\nR+dBVrlGwpJESjejYJTtvdaTolVkwkIqJAGA//znP3j55Zexbds2BAIBXHPNNRg3bhwmTZpk6P3e\nsWMHLr/8cvTr10989h5//HEcPXoUADBz5ky8+OKLeOmll0Q/wMWLF+Piiy82bA5GoUkSitb+3ZTI\nCwaDqjy5UpWsSl9AWjSUyCUdjbiAeHUTJW3NksgSiMSMCjeprR63MhHOQimUqESKRhX4mdVDRS58\nyqqv6FRjNZlI5deCIGDp0qX45JNP8Oabb+Lnn3/Gxo0bsXv3brz++uuW/f4bGpoMoYRCsR7p1dXV\nmu28q6urEQ6HkZOTE6csYmtMqBe60TkEOdsJdneXjn4XQPITgrQmwIh+I2ZXvyudFCmkZ3Vti9r+\n7ywpUgFlMhVTIhCZmG17L8270N/Rs2zVffb7/XXI5M0338S2bduwYsUKS9+rho4mRyjSBHsi0K40\nEAjA6XSKPUqUPLmMaq+aaD602FE9TTQatdyiXKuCTI3HmJpxrT4hRKPRODmyFRJZdmy9/d9TIfN0\n9FABIDokUzvsZOabRkGOTN5++21s2LAB7777bpPz4koVTcJ6hYXapDzFrUOhkLg7pIURQJwnF72A\nZj98rJ0KJZrt9lhvkdraWjFxaxbohEAJabUhCUp8kl2Gw+EQbf1p3onsVEhsYLVUFohtRJxOp+j7\nFgqFVM9bL6h/DokctIKk39nZ2aKknSxVEs07XWTCOiS7XK44K5hgMKjKCkYPpGQCAKtXr8aaNWvw\nzjvvpPw+q7FUAYA5c+bgggsuQP/+/fHFF1+kNGa60WRUXrQIqSEUUnLxPI/c3FwxEcvKgvXWeqQK\nNuxDkmWlynGj5chGKMiSKcak82YdBqwSGwDy4SabzaZ63nphdO5CjcOAw+EQFU5WWsEDyrU80iJQ\no++3nGXNunXrsHz5cqxdu9YQc0eHw4FnnnkmzlJl9OjRcRXwmzdvxuHDh3Ho0CHs3r0bt99+O3bt\n2pXy2OlCkyEUtZD2SCGwCVue58XCJyvb1yot6kpWGVp7vCvBrEU92bxtNpsYIrOSTJLVXSSaN6Df\nEt7sfFiieVO+CIBlkmS1haHJrGC05ovYjSC9uxs3bsTSpUuxbt26uPc+FaixVNmwYQNuuukmAMDQ\noUNRWVmJU6dOoW3btobMwWo0OUJJdEKR9kihJK3NZoPb7RYVKKTssnrHrGZRV6oKpnoArYudVQWL\n0nmznR3pvpsdTwe0nxCS3W+1eQCrw000b1LNuVwu0Ylbj5W9Vuh1GWDvN72fcnZBSnkuKkhlN4Lv\nvfceXnnlFaxbtw5ZWVmGXSMLJUuV48ePo1On8/5mHTt2xLFjx5oJpaFAiVDogaRYuTT5znGxXibU\n+tNms8Hv9xtSkJgMemXBtMtnvbrUdhxkxzVbbCA3rt/vF8UGRniMqUGqi7r0fqs1g0xH50F2XGld\nFqt0I9sdVtqbKlKxrGHB3u9Exav0vsqRyYcffojnnnsO69evR05OTsrXJodElipAXdPHhixJbjKE\nIvVDYv/b5/MhGIz1taa2qWqUXGxFsNpFWiuMDIPQywegzmInXaTTJUeWc+5N1WNMy7hGNzxLVqkP\nxDYz9SV3IZ03WzdCRqdaXXvVjpsqEuWLgPOSZHr/P/74Y/z1r3/F+vXrkZeXZ+hcCKFQCNdffz1u\nvPFGlJSU1Pn3wsJClJWViX8+duwYCgsLTZmLFWgyhEKQEkttbS0EQRC7K7KeXNLuinI7V+liJ12k\nUyGXROOmikSLHd0HrQWgqUJN9XuyrpR6KsfN6J6ZbN6snQrVE9EzZ/YOVcuiLhVRpJKfM5NM5OZN\nzwJJkh0OBz777DNMnToVl156Kb799lu8//77KCgoMGUOaixVxo8fjyVLlqC0tBS7du1Cfn5+gw13\nAU2oDoUNm4RCIbjdbtTU1MBms4lxUzkbFb1KLqWCRDVhGqOrwbWAHJRtNptoAW+mvQchVbNFvXYq\nZpk8JgNLYgDqFCWaFUI1alHXahdkJZkkG3f9+vV46aWXIAgC9u/fjxEjRmDevHm45JJLDB1bjaUK\nANx5553YunUrsrKysHTpUgwaNMjQeViJJkco9IBFo1FkZGSI8kAlTy4jXHu1FPaZXQ2uBLlxpYs0\nG+4walGQs70w4julrs7SnbQZ46qFEokZ4emmZ1wjkMivi0LC9YFM9u7di/nz52Pt2rVo27YtKioq\nsHnzZvTp0wf9+/e3bG6NFU2GUOiB93q94kPGKrmkZGJWG1k5LyP25JKOAj41hpZyi3SqtQB6jDT1\njCG3SNP1WC371kJiRtrvyyWkzYL0GQcghs2sIhQ5g8nPP/8cf/zjH7FmzRq0b9/eknk0NTQpQqmp\nqRFzBHl5ebKeXFb29WBPAPTi8TwPt9ttaaGkVvJU8o7SEqZha2qs7u3h9XrFimuzFGNSpHrylOvb\noTYUKVd3YQWCwSB8Pl+c4s2IuqhkkCOT/fv34+6778aaNWsadNK7vqPJEIrf7xedhn0+H3Jzc9Pm\nySUFyXMpISzNAZjZXChV8pQ7ASQrNCMSs7r6XUpi0pCeWV5dRCZG2d5ryRfJ2YtYAblwE21E5JqH\nGaWKlCOTb775BnfccQdWrlyJzp07pzzGrbfeik2bNqFNmzb46quv6vz79u3bUVxcjG7dugEArr/+\nejz44IMpj9sQ0GQIhYz+6KRCISV6iOXkqlZATp5rRnhJCrMs79kFQ05Gna7OjslORIlCkaksxGab\nWiZyGiZBSH0gEzkY3VFTTvr97bff4vbbb8c777yDrl276r4mFp988gmys7PxP//zP4qEsnjxYmzY\nsMGQ8RoSmoxsmF5kQRDExYV98dKh9FEiMWn1tdGdHc2sMUkko7bZbIhGo6KDrpVkkuxEpNVjTO24\nRGJm5cTkKsellfrS1tRmQouaS02dDhUlJoMcmRw8eBCzZs3CihUrDCMTALjssstw5MiRhJ9pIvv0\nOmgyhEIvmyAIyM7ORiQSER9+AJY2ptIiC062YGglFytPYuyCEQ6HxUWdTopGVl8rQc+JyAhvtHTk\niKiOhcK4tBlJVqlvFFJRkakxsVRqHkZ1SCyZfP/995gxYwbefPNN9OjRw7BrVAOO4/Dvf/8b/fv3\nR2FhIZ5++mn07t3b0jmkC02GUP75z3/ihRdewNixYzF+/HhkZmZi3rx5ePDBB9GmTRuEw2HRYdjM\nugs2OatVcaNkpaLWN8qKAj450ImICiXZBcPv95tW66K2QVUi6PHqSmeOiHI1dCKy2+1xFe/SE4BR\n99xISbIcobP96dkcHYks2Gf6yJEjuPXWW7Fs2TL07Nkz5WvTikGDBqGsrAxutxtbtmxBSUkJDh48\naPk80oEmk0MRBAFnzpzB2rVrsWLFChw4cABDhgzBE088gc6dO4tyYTPrLmjXaoYsOFHbYABxBZ3p\nCOspkZjegsRksMKHTKmRFRWGWk0manM1Rt9zKyXJ0nsOQCRMl8uFsrIyTJs2Da+//jr69u1r2jyO\nHDmCcePGyeZQpOjatSv27duHFi1amDaf+oImc0LhOA6tW7fG4MGD8cgjj2D27NkoLCzEn/70J9TU\n1OCqq65CcXExOnfurBjqSEV1xboFmxECkcaj2dwFjVUfCsukSBZeShTqUIJVPmTSfBHJZIHY7yMU\nClnS3VFr4l/pnuvJ0VlJJsD5e26z2URRSSgUwqBBg9C1a1f88ssv+Nvf/mYqmSTDqVOn0KZNG3Ac\nhz179kAQhCZBJkATOqEAsRdv3LhxmD59OiZMmCD+fVVVFf75z39i9erVOHPmDK688koUFxeje/fu\n4sklFdUVHctTCb3oAYVeKKZupjRWOm6qzcfkJKZqFrp0dR1kw2tOpzOuV7qZ9jVEJoIgpLxRYXN0\n4XA4qdmp1WRCkPsd//jjj7jvvvtgs9mwa9cudOjQAbfddhtmz55t+PhTpkzBxx9/jDNnzqBt27Z4\n5JFHxDqymTNn4sUXX8RLL70Eu90Ot9uNxYsX4+KLLzZ8HvURTYpQgOTNg2pqarBp0yasXr0aJ06c\nwMiRI1FSUoKePXsmJJdECcN0uPbK9U9h4+hai+PUwizrGPaeK+Uu0mUDTx0+5cJrZoX06LvNTPwr\n+dFRS+F0kAmFMlky+fnnn1FaWopnn30WF198MSKRCD799FNUVFRg3Lhxls2tGU2QULTA4/Fgy5Yt\nWL16NY4cOYLhw4djwoQJ6N27t6imkSvqo100JRLTuVtWOhFJq/SNIBezay4IcvkiIEYoWnrdGwEt\nuRo1HmNqYbWKTLoZAWK5C6fTaRmhyJHJmTNnUFpair/+9a/47W9/a8k8mqGMZkJRCZ/Ph23btmH1\n6tX47rvvcPnll2PChAno16+fLLmQtQc9/FZai2hNRhshRkiXlQr1QqdFzoqQHiGV/u+pGEHSveY4\na7uGAhCt4F0ul3hyMaPwVgo5Mjl79iwmT56Mxx9/HL/73e8MH7MZ2tFMKDoQDAbx4YcfYtWqVfjq\nq6/w29/+FiUlJRg8eDAEQcArr7yCyZMni22DjShGVAMj8gd68kVm9ZxXM1fWbJHjONNDegSjczVK\nijHpZiRdkmRA3hPMCF+3ZJAj7srKSkyePBkLFy7EyJEjUx4jmZ0KAMyZMwdbtmyB2+3GG2+8gYED\nB6Y8bmNDM6GkiFAohI8//hgrV67Evn37xBdt9erVaNmyJYDkdiRGwIwaEzUhGiNqPfTOLVGuRu7U\npaXyOhHMTvwrtTuw2WyiuWl9IBMptCb11UCOTKqqqlBaWor7778fV111VUrXRUhmp7J582YsWbIE\nmzdvxu7du3HXXXdh165dhozdmNBMKAbhzJkzGD9+PFwuF4qKirBnzx5ceOGFKC4uxrBhw8RFXhoW\nM4JcrGgSpRSiCYVCcX1lrIDWXA2RCy3SqYRorE78S3MXrEWMVbkLvW7FiZL6ar5HjkxqampQWlqK\ne++9F2PGjNF9TXJIVFsya9YsjBgxApMnTwYAFBUV4eOPP27Q3RXNQJOpQzEbkydPxuWXX47HH38c\nPM+LSpNVq1bh4YcfRr9+/VBSUoLLLrtMsV6ELUZUawGvt+peK6RV+lRzwXEcgsGgSDBGnrrkoMcf\niyUQ1mHA4/EAgOoQTTpUZHQqDAQCcd5ztbW1luQuUrG+V+pNr6ZSX45MPB4Pfv/73+Ouu+4ynEyS\n4fjx4+jUqZP4544dO+LYsWPNhCJBM6EYhJUrV8YVL9lsNlx66aW49NJLEY1GsXfvXqxatQqLFi1C\nr169UFxcjOHDh9chl2AwGOe7pJTQZ3fp2dnZloY/yDKFrFTY9so+n8+UkB5gTP4gmZUKa+vBfn+6\nWtjKhRSN6O+uBkb2UdFivkm/Z5ZMvF4vpk6dittvvx0lJSUpX5seSIM5Vr5zDQXNhGIQElXC8jyP\noUOHYujQoYhGo9i/fz9WrlyJp556Ct27d0dxcTFGjhwJl8sl67wqJRd64TiOs7SzIyCfq0nkMKyU\nXNYKSvzTCcmIa5bzRpMjRjISrQ9kws5dq8eYFpjZlCtZpT6b2AdiCstp06Zh+vTpmDhxoqFzUYvC\nwkKUlZWJfz527Fhzoy4ZNBOKxeB5HgMHDsTAgQMhCAK+/vprrFy5Es8++yw6duyIkpISXHnllXC7\n3eJuTmrqR7mXdCRmk+VqElmSJzt1KcGqxL8cMfr9fkSjUdhsNkQiEdNCS1Kw15wsP5WIGPWQupVN\nuVhiZBvNRaNRXHHFFfjVr36FM2fOYOrUqWL+Ih0YP348lixZgtLSUuzatQv5+fnN4S4ZNCfl6wkE\nQcCBAwewatUqvPfee2jTpg2Ki4tx9dVXIycnBwBw+PBhFBQUwOl0iqRihQW8VJ6rZyxpclnt3K0w\neVSaL12zy+WKSzCbXetCZELNz1L9Li1dKdPV4VHumn/44QcsWLAABw8exE8//YThw4fjhhtuwLRp\n0wwfP5mdCgDceeed2Lp1K7KysrB06VIMGjTI8Hk0dDQTSj2EIAg4fPgwVq9ejc2bN6OgoACDBw/G\nCy+8gDfeeAMjRowwpdJdaS6UqzGifS19p5q5p1I4mOr8lCTJbHLZjPtuJoEmm70pf9wAACAASURB\nVHt9IpNQKIRbb70VV111FWbMmIGqqips2bIFP/74I+6//37L5tYMbWgmlHoOQRDw6quvYu7cuWI1\n8Lhx4zB27FgUFBQo2u4bschZUf2uNHeO4+D3+9NGJmr6vxvd7sBKApXOneByuUxX6rGQC+2Fw2HM\nmDEDl19+OWbPnt2c/G5AaCaUeo5ly5Zh/vz52LBhAwYPHoxjx45hzZo12LBhA+x2O8aNG4dx48ah\nVatWhvZ0SUdFNs09GAzG1VyYKYuVjq/Xi0yraagU6TqNAbGkN1nt0303WjEmBzkyiUQimDVrFoYM\nGYI5c+Y0k0kDQzOh1HP85z//QVZWFrp37x7394Ig4NSpU1izZg3Wr1+PSCQidqNs27ZtUtv9ROSi\np22uUWBbFLNWKnp7o6iFkacxrdb76SQTaZgrFY8xLZATWkQiEdx5553o06cP7r33XkPG2rp1K+6+\n+25EIhH84Q9/wJ/+9Ke4f9++fTuKi4vRrVs3AMD111+PBx98MOVxmyoaHaGsXLkSCxcuxIEDB7B3\n717FxFmXLl2Qm5srxpH37Nlj8UyNg8B0o1y3bh38fj+uvfZajB8/HoWFhZp6uqSrdwugXOuhtzeK\nWpgZ2ku2QNPCarUjNaAuAa/WY0wLBEFAbW1t3IYlGo3i7rvvRrdu3TB//nzDPMB69uyJDz74AIWF\nhbjooouwYsUK9OrVS/zM9u3bsXjxYmzYsCHl8ZrRCGXDffv2xdq1a0VlhhI4jsP27dsbRSc1jot1\no7zttttw22234ezZs1i/fj3mzp2L6upqXH311WI3SnqJ5Toj8jwPn8+HzMxMSxVVQGJJMistZSW9\nbDGiXnIxO7QnlfRK63QAwOl0Wtq/BVCv5pJKqeVk4FrUbnS/pWRy7733olOnToaRCQDs2bMHPXr0\nQJcuXQAApaWlWL9+fRyh0JyaYQwaHaEUFRWp/mxjfZBatGiBW265BbfccovYjfKBBx6o042SJRda\n0OkFJ7deK/IWJM9VYx+jVHNB9SJawjNmFEsmA9XpUAtbh8OBaDSK6upqS7tp6lFz8TwfV+2uxUqF\nxvZ4PHH3OxqNYv78+WjZsiUefvhhQ38HcnYpu3fvjvsMx3H497//jf79+6OwsBBPP/00evfubdgc\nmhoaHaGoBcdxGDVqFGw2G2bOnIkZM2ake0qmIC8vDzfeeCNuvPFGsRvlokWLcPz4cYwaNQolJSX4\n5ptvsHz5crz99ttiL3Qjdv/JwCqq9EpVk1XpK5FLOvNE5FZM1jVAfJ0O7f6NrjEyop6IoMVKhXV3\nkJLJww8/DJfLhUWLFplyOkyGQYMGoaysDG63G1u2bEFJSQkOHjxo6DyaEhokoYwePRonT56s8/eP\nP/646pafO3fuRPv27XH69GmMHj0aRUVFuOyyy4year1CTk4OSktLUVpaCo/Hg61bt2LmzJk4dOgQ\nbr31Vnz33Xfo3bs3MjMz48JiZpCLGd0dpVX6St5otLilI0+kZDCZaIE2wnrfSDKRQslKhfUYI8Uh\nkYkgCFi0aBGi0SiefPJJU05kUruUsrIydOzYMe4zVDQMANdccw1mz56Ns2fPagqFC0xbcfa/myIa\nJKG8//77KX9H+/btAQCtW7fGhAkTsGfPnkZPKCzcbje+/fZbnD17Fjt27MD333+PJUuWiN0oS0pK\n0L9//zrkoie0JIUex2CtSGQBA8Q6OzqdznpBJlJIF2iyf2fzXVqk1GaSidzcWY8xEnmQR9eCBQsw\ndOhQfPHFF6itrcULL7xg2nwuvPBCHDp0CEeOHEGHDh3wzjvvYMWKFXGfOXXqFNq0aQOO47Bnzx4I\ngqCJTMh9IBKJWBIiru9okISiFko5Eq/Xi0gkgpycHHg8Hmzbtg0LFiyweHbpRXV1Nfbt24cdO3ag\nffv26NOnD4qLi8VulP/3f/9Xpxsl1QqwoSWt7sLpqG+h2L/NZkNtba0YZqqpqTG1qyMLvdb3iaz3\n1dSLWEkmcvD7/aLvXCgUQl5eHh5//HF8++23KC4uxsqVK3HttdfGnRSMgt1ux5IlS3DVVVchEolg\n+vTp6NWrF1555RUAMUuVVatW4aWXXoLdbofb7cbbb7+t+vsjkQjsdjuCwSBmz56NyZMnY/To0YZf\nR0NCo5MNr127FnPmzMGZM2eQl5eHgQMHYsuWLThx4gRmzJiBTZs24YcffsB1110HILbDmDp1KubP\nn5/we9XKkZPp3hsS2G6Un3/+OYYOHYqSkhIMHTpUDL2wkliSldbHvIVcrYdZDgNSmGF9LydHloYk\n00kmdArluPN97wVBwPPPP4+DBw/isccew6ZNm7Bu3TpEo1Fs3brVsrkZiWg0it/97ne44oor8Mgj\nj9T5N6sJPN1odIRiFg4cOACe5zFz5kz87W9/kyUUNbr3hopwOIwdO3Zg1apV2L17d9JulLR7qw95\nCzUte6XkorYINBms6qPC9nWnkCTlM8xuviaFEpm89NJL2L9/P9544424e9EQF17Klbz//vt4+eWX\nsXr1anz44YfYsmULvv32W2zYsMHSVgf1BQ3rt5hGFBUV4de//nXCz7C6d4fDIereGwPsdjuGDx+O\nJUuWYNeuXZg6dSq2bt2KkSNHYs6cOfjoo48QiUSQkZGB7Oxs5OTkwOFwIBQKobq6Wgwv1UcyAc6H\nltxuN3JycuByuUQSrKmpEdVoWvZfVjblIvVUdnY2srKyxLwRKemoq6bZYPNjLJn84x//wOeff46l\nS5fWuRcNiUwikQiA8wqyiy66COXl5SgqKsLGjRvRt29fZGdn47XXXkvnNNOGRp1DsRpqdO+NAUrd\nKB999FH06tULJSUlYjfKr776CqFQCP369YMgCJbVWwCp5S2kiWW2AZQatZua3jFmQBAEkTwoL5Fq\nMaKWsaWOA4Ig4I033sDOnTvx1ltvGVbAqSa0PGfOHGzZsgVutxtvvPEGBg4cmNKYlHgHgPnz56Oo\nqAj5+fn44IMPsGvXLlxxxRXi3LKzs1Maq6GimVAYpCpHbooKj0TdKFu2bIndu3dj8eLFuPjiiwFY\nU28BGNf/nSUXNm+RSEpNZJKOUJOc7X4qxYhaxiYFHUsmb731Fj788EO8/fbbhlnLkOcXG1oeP358\nXGh58+bNOHz4MA4dOoTdu3fj9ttvx65du1Ial8hk7Nix6NWrF8rLy/HMM8+gT58+uOKKK1BVVYWJ\nEyeiS5cuuPHGG1Maq6GimVAYpCpHVqN7b8xgu1Fu2rQJ06ZNw3XXXYeXX34ZGzduRElJCUaPHo2s\nrKw69RZ+v9+wBc6sUJNclb5USg3ETgTpIhPKmchtbpLVuui13icyEQQhzgvt7bffxsaNG7Fy5UpD\nTS/VWKps2LABN910EwBg6NChqKysxKlTp1Lusvj555+jb9++eOKJJzBy5EhMmzYN3bt3R1lZGex2\nO6699lrcc889AOJPNE0FzYSiA0qxaDW696aAnTt3Yvr06diyZQuGDh0a143yxRdfRNu2beO6UbL1\nFtJiPq3kYmWoicgFOG/jQjF2v99vuEOvEqSOA2rGS1aMqLbWRYlMVq1ahTVr1mD16tWG+8KpCS3L\nfebYsWOaCYUVDFCTuX/9618YNmwYSkpKMHfuXADAm2++iVtuuaVJkwnQnJRXjbVr16JTp07YtWsX\nxowZg2uuuQYAcOLECYwZMwZAvO69d+/emDx5clKF19mzZzF69Gj8+te/xpVXXonKykrZz3Xp0gX9\n+vXDwIEDMWTIEGMvzmAMGTIEO3fuxNChQwHEFq9evXrhoYcewo4dO/DUU0+hvLwcN9xwA6ZMmYLl\ny5ejqqoqLimekZGBSCSC2tpa1NbWIhAIiIu1EthQUzrzFjk5ObDZbAgEAqiurobH4zEtKa6HTKSg\nsJ7L5YoTJHi9XtTU1MDn84kJfunYbDdPGnvdunVYvnw5Vq1aJdYuGQm11yidr557Q2Ty7LPP4oMP\nPkDPnj1FZeOsWbMAAFOnTsVXX32Fdu3aiT/XFMkEaJYNpx333XcfWrVqhfvuuw9PPfUUKioq8OST\nT9b5XNeuXbFv375G4Y5MEAQBR44cwerVq7Fp0ya43W7ZbpTJerqku95CqV0woL2nu56xUyGTZN8v\nV+tCFjAU6mPH3rhxI1577TWsW7cOWVlZhs6HsGvXLixcuFCsXXniiSfA83xcYn7WrFkYPnw4SktL\nAcRUmh9//LHqE4r0hPHAAw/g4MGDuOOOO5CZmYn3338fr7/+Oi666CIAsTo1oGFKoI1EM6GkGeyD\nfvLkSQwfPhwHDhyo87muXbvis88+Q8uWLdMwS/MhCIKqbpRScqGeIumqt0hEJnKfp7mTm7PenJHZ\nZCIHaW8U9v5nZ2fjvffewwsvvID169ebUvlOCIfD6NmzJz788EN06NABQ4YMqVPvtXnzZixZsgSb\nN2/Grl27cPfdd+tKyn/22We48MILAQB/+ctf8MUXX+APf/gDRo4ciW+++QaZmZli87umGuZi0Uwo\naUZBQQEqKioAQPQRoj+z6NatG/Ly8hq9OzIg341yzJgxKC4ujutGSfmWaDSalnbBqSzobM4oFApp\nIpd0kIl07HA4DKfTiX379mHChAkYMmQITpw4ga1bt6Jz586mz2PLli2ibHj69OmYP39+nKUKANx5\n553YunUrsrKysHTpUkV3CxbLly+H0+nExIkT8a9//QvPPfccJk2ahMmTJwMAHn30USxduhTPPfcc\nrrrqKjE/1EwmMTQTigVQkiP/+c9/xk033RRHIC1atMDZs2frfLa8vDzOHfmFF15oEmaWSt0or732\nWixYsAAXXngh7rjjjrjQkhW2+0Y6JWup0q8PZCIde/Pmzfj73/8Ol8uFTz75BJdccgnmzp2LK6+8\n0rK5GYUVK1Zg4cKF+Nvf/oaxY8fitddew+7duzFy5EhMmTIFADB48GDccMMNmDdvXppnW//QrPKy\nAInkyBTqateuHcrLy9GmTRvZzzVVd2S5bpSrVq3ClVdeiRYtWqB///44evSo2I3S6I6OUphhu69W\nccVxnChOSOfJhJUl79ixA88++yzWr1+Pli1bora2Flu3boXb7bZsbkZiypQpyMrKwrx58xCJRDBj\nxgzYbDZs2bIFR48eRWVlJS666CKRTJq6Xb0UtoULFy5M9ySaMo4ePYqDBw/i0ksvxYsvvoguXbpg\n1KhRcZ/xer3w+/3IyMiAx+PBwoULMWnSJDF225RAFujdunXDu+++i19++QVLlizBK6+8IlqRt2zZ\nUvQMoxg/KcAoPEb/0zo2kZRZCzrHcaJkmhySI5EI/H6/OP/MzExLwnoEEj1Ic0WffvopFixYgHXr\n1qFVq1YAYkWUvXv3xq9+9StL5mYEIpFIXJixZ8+eKCwsxAMPPIC2bdti6tSpyM7OxrZt21BdXY3X\nXnsNPM/X+blmNIe80o6zZ89i0qRJOHr0KLp06YJ3330X+fn5KbsjN1bs2bMHr732mmg5TqBulKtX\nrxa7URYXF6OoqEhceOUMFLXY7kttRawCERkZbpKE18ywHgu5/vN79+7FvHnzsG7dupSLBaU4e/Ys\nJk+ejJ9++inunZCiS5cuyM3NFfNPe/bs0TwWq8p65513kJGRgV69eqFnz57YuHEj7r//fsybNw+/\n//3v4z5Pir1mxKOZUBoh0uFzVJ9A3ShXrVqFH3/8ESNGjMCECRPQu3fvuCI1SognI5f6QCbSEBur\ndhMEIaWGZ4kgRyZffPEF5s6di7Vr14qhWCORDin9ww8/jN27d2P06NFYvHgxNm7ciEGDBuG9997D\nzTffjBdeeAETJ04E0BzmSoRmQmlkUGOhz0oqd+/ejbvuuitln6P6Cp/Ph23btmH16tV1ulHKkYu0\npwuAOlbsVkFtvoaV86baTZOFHJn85z//wZw5c7BmzRrTbIWskNKzpLB161Y888wz2Lx5M+677z5s\n374d33zzDT766CMMGzYMu3fvRr9+/eByuVK+tsaOZkJpZPj000/xyCOPiEVftLNjFSmzZs3CiBEj\nRCmk1qKvhgrqRrlq1SqxG2VxcTEuvPBCRXIBYlXPbrfb8hoXPcl/OXIkgtFCLoFAAMFgMI5Mvvnm\nG9xxxx1YuXKlqdJgK6X0hw4dEr/jrbfewkcffYR169bhtttuEy33BwwYAKBZGqwGzUHARgYrfY4a\nGpxOJ6655hpcc801YjfKFStW4I9//GNcN8qMjAz4/X58/fXX6N+/P4BYjoZtGGbmSSUVJRnP88jI\nyBDVbnLW9cnmL0cm3377LWbPno133nnHEDJJJKVnkUg8sXPnzjgpfVFRkSbl42effYZnnnkGb731\nFgCgqqpKbOHbt29f3HbbbXHX2kwmydFMKI0MVvocNWQ4HA6MGjUKo0aNiutGOX/+fPTp0wdffPEF\nLrnkEgwbNiyukNLsviJGypJ5nq9jXZ+sbYCc9f7Bgwcxa9YsLF++HN26dUv5GoH0SOmluY9Bgwbh\n6NGjeOihh7Bo0SK0bNkSe/fuRWlpKX744Qd88MEHyM3NbU7Aa0Cz5q2RQY2FvvQzx44dQ2FhoWVz\nrG9gu1Fu3rwZn376KbKysrB3717MmTMHH374oVgZnpWVhdzcXLEbZU1NDTwejyjpTQVm1LgQyEmA\n5u90OhGJRFBTUyOab5I0mSWT77//HjNmzMCbb76JCy64wLD5JML48eOxbNkyAMCyZctQUlJS5zNk\nXAnERBjbtm1D3759E34v3c+jR4/ixIkT4HkeL7/8Ms6cOYOTJ09i2rRpmDBhAn77299i3bp1yM3N\njWtL0IzkaM6hNDJY6XPU2FBVVYXLL78cV199NZ588kkIgiB2o/z444/rdKMEUrNQYWEmmSQbNxwO\niwWTPM9j37596NChA5xOJ2666SYsW7YMvXv3tmQ+gHlSemqjcP/996NNmza49NJLMWHCBMyaNQsl\nJSWiiovQfDLRjmZCaYQwy+comRx5+/btKC4uFsMi119/PR588EGDr848RKNRbNy4EePGjauzoLPd\nKD/66CN069YNJSUlGDlypKj+0Usu6SITAjUko+r2v/zlL3j11VcBABMnTsTs2bPxm9/8ptGERf/7\n3//i5MmTmDNnDm699Vbs3LkTX375JT788EOxaVcz9KGZUJqhCmrkyNu3b8fixf9/e/cfVfP9B3D8\nebultGjNQToatqIy1DLRYQz5FSWxfmjZZTjMZTZsO44dvqix2MyP2XKc1umc0HDKr2Qjc5ja0pIf\n20IoUUjaLdKPz/ePdj/rJ3eVW93ej3P84X7ePp/355b7uu/P+/1+vTYSFxfXjD19/iRJ4sKFC8TE\nxPDjjz/SvXt3vL29GTNmjJyyvWZ+Lu3ud23q96rnqqtAlb7UVd0yJyeH6dOnM3fuXNLT09m3bx9m\nZmYkJydjaWmp1/41pZojjtu3b5OYmMjp06fZu3cv6enp8o5/oWFEQBF0osty5MTERDZs2MCBAwea\npY/NoWo1yvj4+FrVKLVt6qrpYmxsLBfeainB5M6dOwQEBLB161Y5bbskSaSnp9O/f3+99q+pXL16\nlV69elUbJdasW5KXl0eXLl3afD2TxhLvnKCTupYa37p1q1obhULBmTNnGDBgABMmTODSpUv67qbe\nPa0apb+/v1yNsmZFxIqKCoqKiigtLcXIyIiKiornUtGxPqWlpbWCSV5eHoGBgXz11VdyMNHeY2sN\nJjdu3GDjxo1ypgPte6wNGtq9Rp06dRLBpAmId0/QiS7fnl9//XWysrJIS0tDrVbXuTrHkCkUCuzt\n7fnkk084efIkmzZtoqCggOnTpzNt2jQiIyPJz8+noqKCFStWkJubK89bFBUVodFo5PTwzzO4aJcO\nVw0m9+7dIzAwkLCwMIYMGdKk14uJiaFv374olUrOnTtXb7v4+HgcHBywt7dn3bp1TXJtKysr0tLS\n5Dmh+n6PlUqlCCZNQLyDgk50WY7coUMH+QNSu3mwrtoubYFCoaBXr14sWbKE48ePs337dkpKSggO\nDsbd3Z20tDTat2/foFrujVFXMMnPzycwMJCQkBCGDh3aZNfS6tevH/v37+fNN9+st015ebm8UOTS\npUtER0dz+fLlBl/z9u3bZGVl0bFjRzZv3syFCxe4fv16tfdSu/P90qVLhIWFNfhawr9EQBF0MnDg\nQDIyMrh+/TpPnjxh9+7deHl5VWuTm5sr/4dNTk6W02a0dQqFAltbW95//326dOmCtbU1/v7+qNVq\nvLy85NT7SqWS9u3bY2FhIa/2evToUZMFF20wMTc3l4NJQUEBAQEBrFy5khEjRjTRHVfn4OBA7969\nn9omOTkZOzs7evbsiYmJCf7+/sTGxjboeg8ePCA0NJQZM2awd+9eFAoFSqWS3NzcaqWklUolV69e\nZebMmbV+l4WGEYusBZ0YGxuzZcsWxo4dKy9HdnR0rLYc+YcffpDTypubm7Nr165m7nXLsm7dOjQa\nDYcPH8bMzAy1Wi1Xo1ywYAGPHz9m/PjxeHl50b17d8zMzDAzM5Mn9BtTMKxqMNGudCosLCQwMJDl\ny5fXqsGjb7qkDNKVlZUVa9eu5cyZM3z33Xe4uLgQExNDRkYGMTExdO7cGaVSSWZmJsHBwURGRj4z\n4Am6Eau8hBZh5syZHDp0iC5dupCenl5nm9aecr+oqAilUomZmVmdx/Pz84mNjWXfvn0UFhYybtw4\nvL296dGjR6NqupSVlVFcXFwtmGg0Gvz9/fnwww+ZOHFio++tvtxcISEhTJo0CYC33nqLDRs21Lnn\nae/evcTHxxMeHg5AVFQUSUlJbN68uVH9ysvL48mTJ2zdupWMjAyWL1+Oi4sL9+/f56233iI6Opq+\nffs26hrCv8QIRWgRVCoVarWa4ODgOo8fPnyYK1eukJGRQVJSEvPmzWt1u/u1e1Tq89JLL6FSqVCp\nVDx8+JADBw6wfPly7t69y5gxY/D29sbOzk4OSNrMwiUlJbXyi2mDS13BpKioiMDAQNRqdZMEE3h6\nbi5d6DJH1xDaPGChoaEsX76cnTt3snnzZoyMjIiPj8fGxqbR1xD+JeZQhBZh2LBhWFlZ1Xs8Li6O\nGTNmAODm5kZBQQG5ubn66p7eWVpaEhQUxP79+zly5Ai9e/dmzZo1eHh4EBoayuXLl1EoFJiammJh\nYYGFhQVKpZKSkhIKCwvlstFFRUXVgklxcbG8adHHx0fv91XfAxFd5ugae017e3syMzN58uQJVlZW\nIpg8ByKgCK1CfSn324IOHTrg7+9PTEwMx44dw9nZmbCwMEaNGsXq1au5cOECgBxctBsqS0pKgMo6\nJrt27eLu3bu88847qFQqpk2bprf+79+/H1tbW86ePYunpyfjx48HKnfke3p6AtXn6JycnPDz86uW\nhaExtBPxlpaWhIWF0a5duyY5r1CbeORlwG7cuIGtrS2SJBlELYe2nnIfKh+b+fr64uvrK1ej3LJl\nS7VqlCUlJSxbtoyjR49iampKcXExUVFRqNVqHB0dKS8v5+HDh3pLo+Lj41PnaMjGxoZDhw7Jf9fW\nqnkeFApFs4zI2hoxQjFgoaGhfPrppyiVSm7fvk1paWlzd6nBRMr92tq3b4+3tzeRkZGcOnWKkSNH\nsn79erkKpXZxg6urKx07duTzzz9HrVazZ88ebG1tiY6ObuY7EAyNCCgGzNvbG0mSSEhIQKVSERIS\nUu14a1rg5+XlRWRkJABnz57lxRdfNPgKk/9Fu3bt6NatG0lJSURERDB16lSio6MZMWIEgwcPZvz4\n8SxYsIAZM2YQFxdHdnY248aNa+5uCwZGLBs2YBqNhiFDhmBjY8OsWbOYNGmSnGpdu7ErJSWFfv36\nyVX9tM+b9f04KSAggJMnT3Lv3j26du3KqlWr5BFVY1LutyXa/GG+vr7ya2VlZcTHx+Pp6dkmHxEK\neiYJBunGjRvSxo0bJYVCIS1btkySJEmqqKio1qa8vFwKDg6Wdu/eLZWXl0uSJEmPHz+u1aasrEw/\nnX5OVCqV1KVLF+m1116r8/iJEyekjh07Ss7OzpKzs7O0evVqPfewadT8+T5Pe/bskZycnCQjIyMp\nJSWl3nY9evSQ+vXrJzk7O0tvvPGG3vonNA/xyMsA/f777wQFBWFsbMxHH30kPxrSZlaFf9N3u7u7\nc/78eYyMjMjJySE4OJjjx49TWFjI/fv3MTIyqjWhf+XKFb3eT2OpVCo57X59hg8fTmpqKqmpqa2q\nKFhV+hyB6JKfCyr7lJiYSGpqKsnJyXrqndBcREAxQKampgQEBKBWq1m8eDF79uwhPz+/WnEh6Z8n\nnWfOnJHzbX399deYmJgwfPhwLl68yKhRoxg9erRc3xsqg8nw4cMpLCysdp6W7Fl7XKB13EdLokt+\nLi3x3rYdIqAYIEdHR+bNmwdULjMdPXo09+7dq9ZGO+ro2rUrDg4ObNu2jQcPHrBkyRKUSiWvvvoq\n586dY9OmTZw7d47bt28DlUW03Nzc6NixI1D9W3Fr/eBoi3Vc9EWhUDB69GgGDhwop1URDJfYh2KA\nqhYKsrS0ZM2aNfLr0j97UqR/Jt5dXFwIDw8nLy+Pbdu2MWDAAA4ePEhERARXr17F3d2dAwcO4Ofn\nR7du3YiLi8Pf35+ioiJOnTrFsGHD5GqDrXXSV1vHxdzcnCNHjjB58mT++uuv5u5Ws9MlP9eznD59\nmm7dunH37l08PDxwcHBg2LBhTd1VoYUQIxQDVLVQUHZ2Nr/88ov8unZkoh1N/Pnnn8TGxuLj48OA\nAQNISUkhMjKSadOmkZqaip2dHY8ePcLd3Z2srCyuXbuGp6cnJ0+eJDw8nOzsbPk5ec3aJ9I/acJb\n+shF1HGp27Fjx0hPT6/1R9dgAtCtWzcAOnfujI+Pj5hHMXAioBg4U1NTvv32W9zc3FiwYAEnTpwA\nkMvOrly5kgsXLjBnzhygcgOhubm5nL4jLS2NwYMHA5UJGu3s7LC0tOSPcyu/DgAABeBJREFUP/7A\n3t6ePn36ALBixQr53MXFxVy7dk2uQ1F15FJRUaG3e9eVqOPSOPV9YdAWCoPKhJQJCQn069dPn10T\n9Ew88jJwnTt3JiIigvLycs6fP8/27ds5ePAgGzZskD/onZyc5PbW1tb06dOHjz/+mMTERCIjIzl4\n8CAACQkJ+Pj48PDhQ27evImrqysAp06dwsbGBldXVzIzMwkPD+e3336juLiYd999l/fee08+f9Va\n3vpKB1N1j4utrW2tPS6ijst/t3//fhYuXMi9e/fw9PTExcWFI0eOkJOTw+zZszl06BB37txhypQp\nQOV+mOnTpzNmzJhm7rnwPImNjW2Y9IwNjFlZWezYsYNVq1aRnZ2Nq6sraWlpFBcXM3/+fL755ht6\n9erFZ599homJCW+//TZhYWFcvXqV48ePk5SUxL59+1i3bh1///03iYmJdO3alUGDBunxLp+vrKws\ngoODycvLQ6FQMGfOHBYuXFirXWuv5SIIuhAjlDasrmCinfcwNjaWv81LksQLL7xASEgI1tbW3Lp1\ni7t371JYWEhBQQHR0dGEhYWRl5dHfn4+HTp0YNCgQZiamqJQKEhPT+fw4cP8+uuv5ObmYmpqyooV\nKxg+fHgz3HXTMjEx4csvv8TZ2RmNRoOrqyseHh7VMuUaQi0XQdCFCChCNQqFQt6vUlFRIa/esrKy\nYtasWUiSRKdOnQgODmbx4sUYGxtjZGSEi4sLubm5ZGZmcu7cOQCOHj1KRkYGTk5OzJ07l6CgIObP\nn8/58+flOZpnjZJaOmtra6ytrQGwsLDA0dGRnJycagGlvlouIheZYGhEQBHqVXW1mHYpskKhwMzM\njEWLFrFo0SKys7O5efMmVlZWtGvXDnt7e44fP87IkSMZO3YsY8eOBeB///sfu3btIioqiqCgIPm8\nrTmY1HT9+nVSU1Nxc3Or9np9tVxEQBEMjVjlJeikanCRJImysjKg8sPR3d2dDh06YG1tzZQpU1i5\nciUODg6sX7+eW7duodFoGD16NEuXLuX7779nx44dzXUbz41Go2Hq1Kls2rQJCwuLWsdrTlW2tEC6\ndOlSHB0dGTBgAFOmTOHhw4d1touPj8fBwQF7e3vWrVun514KLZ0IKMJ/VvWxWM0PSj8/P37++WcS\nEhIYN24cVlZWzJ49G5VKhSRJSJJEQUFBnf+2tSotLcXX15egoCAmT55c63hrqOUyZswYLl68SFpa\nGr179yY0NLRWm/Lycjnj86VLl4iOjuby5cvN0FuhpRIBRWiUmt+0y8rKkCSJl19+mf79+2Nubs6G\nDRtwcXFBrVbj5eUlp4Vpad/SG0KSJGbNmoWTkxMffPBBnW1aQy0XDw8PeRTq5uZWZ3nl5ORk7Ozs\n6NmzJyYmJvj7+xMbG6vvrgotmJhDEZpU1QSUWjY2NixcuJCFCxe2+kn4mk6fPk1UVBT9+/eXlwKH\nhIRw8+ZNoHKfy4QJE+RNodpaLrrSZVlyYmIi3t7evPLKKwD4+vo2KmPyzp07CQgIqPV6XXNBSUlJ\nDb6OYHhEQBGeO+1S5Jq75g3B0KFDddr9v2XLlgadX5dlyVCZfj8uLu6p59IlN9fatWtp164dgYGB\ntdoZ2s9OaHoioAjPXdU5F+G/0WVZMug2H3Xs2LGnHo+IiODw4cP89NNPdR6vOReUlZVF9+7dn3ld\noe0QcyiC0ErUtyy5KdLvx8fH88UXXxAbG4uZmVmdbQYOHEhGRgbXr1/nyZMn7N69Gy8vrwbdi2CY\nREARhFbgacuSten309LSUKvVda40exa1Wo1Go8HDwwMXFxfmz58PQE5ODp6enkDl/NiWLVsYO3Ys\nTk5O+Pn51RopCW2byOUlCC1caWkpEydOZPz48fWuJKuqV69epKSkiIzJgt6JEYogtGC6LEsW6feF\nlkLMlApCC6bLsmSRfl9oKcQjL0EQBKFJiEdegiAIQpMQAUUQBEFoEiKgCIIgCE1CBBRBEAShSYiA\nIgiCIDQJEVAEQRCEJvF/lNiJlviBL3cAAAAASUVORK5CYII=\n", - "text": [ - "" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "#5.1. Sorting the eigenvectors by decreasing eigenvalues\n", - "We started with the goal to reduce the dimensionality of our feature space, i.e., projecting the feature space via PCA onto a smaller subspace, where the eigenvectors will form the axes of this new feature subspace. However, the eigenvectors only define the directions of the new axis, since they have all the same unit length 1, which we can confirm by the following code:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "for ev in eig_vec_sc:\n", - " numpy.testing.assert_array_almost_equal(1.0, np.linalg.norm(ev))\n", - " # instead of 'assert' because of rounding errors" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 12 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "So, in order to decide which eigenvector(s) we want to drop for our lower-dimensional subspace, we have to take a look at the corresponding eigenvalues of the eigenvectors. Roughly speaking, the eigenvectors with the lowest eigenvalues bear the least information about the distribution of the data, and those are the ones we want to drop. \n", - "The common approach is to rank the eigenvectors from highest to lowest corresponding eigenvalue and choose the top $k$ eigenvectors." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Make a list of (eigenvalue, eigenvector) tuples\n", - "eig_pairs = [(np.abs(eig_val_sc[i]), eig_vec_sc[:,i]) for i in range(len(eig_val_sc))]\n", - "\n", - "# Sort the (eigenvalue, eigenvector) tuples from high to low\n", - "eig_pairs.sort()\n", - "eig_pairs.reverse()\n", - "\n", - "# Visually confirm that the list is correctly sorted by decreasing eigenvalues\n", - "for i in eig_pairs:\n", - " print(i[0])" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "55.3988559573\n", - "34.6549343281\n", - "32.4275480129\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#5.2. Choosing *k* eigenvectors with the largest eigenvalues\n", - "For our simple example, where we are reducing a 3-dimensional feature space to a 2-dimensional feature subspace, we are combining the two eigenvectors with the highest eigenvalues to construct our $d \\times k$-dimensional eigenvector matrix $\\pmb W$." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "matrix_w = np.hstack((eig_pairs[0][1].reshape(3,1), eig_pairs[1][1].reshape(3,1)))\n", - "print('Matrix W:\\n', matrix_w)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Matrix W:\n", - " [[-0.84190486 0.30428639]\n", - " [-0.39978877 -0.90640489]\n", - " [-0.36244329 0.29298458]]\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "#6. Transforming the samples onto the new subspace\n", - "In the last step, we use the $2 \\times 40$-dimensional matrix $\\pmb W$ that we just computed to transform our samples onto the new subspace via the equation $\\pmb y = \\pmb W^T \\times \\pmb x$." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "transformed = matrix_w.T.dot(all_samples)\n", - "assert transformed.shape == (2,40), \"The matrix is not 2x40 dimensional.\"" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 15 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "plt.plot(transformed[0,0:20], transformed[1,0:20], 'o', markersize=7, color='blue', alpha=0.5, label='class1')\n", - "plt.plot(transformed[0,20:40], transformed[1,20:40], '^', markersize=7, color='red', alpha=0.5, label='class2')\n", - "plt.xlim([-4,4])\n", - "plt.ylim([-4,4])\n", - "plt.xlabel('x_values')\n", - "plt.ylabel('y_values')\n", - "plt.legend()\n", - "plt.title('Transformed samples with class labels')\n", - "\n", - "plt.draw()\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEaCAYAAAAYOoCaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVHXeB/APF7mogBgCCiiKmqDcwkTRZFDxFpSpqbhh\nlrW1Pvlk25b6mGlbaOljrm5l1pqEPbXZajc1BZQxKw3vmhoICoG3UBEdQQaG3/MHyyyXAQaYmXOG\n83m/Xr5iDufMfM8M/b5nfpfvsRFCCBARkeLYSh0AERFJgwmAiEihmACIiBSKCYCISKGYAIiIFIoJ\ngIhIoZgAFOjq1asYOXIkXF1d8dJLL0kdTh15eXmwtbVFVVWV1KE0avbs2ViyZIkkrz1x4kRs3ry5\n0d+bKjZLnmNLPnO1Wg0/P79WvU5bjm2v7KUOQGk6d+4MGxsbAMCdO3fg5OQEOzs7AMAHH3yAhIQE\ns8fwwQcfwNPTE7du3TL7a7VHNjY2+s/Q0nbu3Kn/OTk5GRs3bsT+/fv120wVm5TnSJbDBGBhGo1G\n/3Pv3r2xceNGjBo1qsF+lZWVsLc3z8eTn5+PwMDAVh1rzrisiRLWTyrhHJWOXUAyoVar4evri5Ur\nV6J79+6YM2cObt68ibi4OHh6eqJr166Ij4/HxYsX9ceoVCq8+uqrGDFiBFxdXTFu3Dhcv34dAHD3\n7l089thj8PDwgLu7O4YMGYLff/8ds2fPRkpKClauXAkXFxfs3bsXWq0W8+fPh4+PD3x8fPDCCy9A\nq9UajOvJJ5/Ea6+9hkcffRSJiYlwdXVFSEgIzp07hxUrVsDLywu9evVCWlqaPs6SkhLMmTMHPXr0\ngK+vL5YsWaL/ul9VVYW//OUv6NatGwICArBjx44m36e33noLvr6+cHV1xYABA7B3714AQGZmJoYN\nGwZ3d3f06NED8+bNQ0VFhf44W1tbrF+/Hv369YOrqyteffVV5ObmYtiwYejSpQtmzJih37/mnFes\nWIFu3bqhd+/e+PTTTxuNafv27QgLC4O7uzuGDx+OU6dONRtvbRcuXIC7u7v+8dNPPw0vLy/948TE\nRKxdu1b/mW/cuBG//vornn32WRw4cAAuLi7o2rWrfv8bN24gLi4Orq6uGDp0KM6fP99o7D/88AOi\noqLg7u6Onj17IiUlpcE+xcXFTf4dJicnIyAgAK6urujTp4/+vcrJyUF0dDS6dOmCbt26YcaMGY3G\nUdumTZsQFBQEV1dXBAQE4IMPPmiwT2OfTXl5Of7yl7+gV69e8Pb2xp/+9CfcvXvX4OsY89m0e4Ik\n4+/vL/bs2SOEECIjI0PY29uLhQsXCq1WK8rKysT169fFtm3bRFlZmbh9+7Z49NFHxaRJk/THR0dH\ni759+4pz586JsrIyoVKpxMKFC4UQQrz//vsiPj5elJWViaqqKnH06FFx69YtIYQQs2fPFkuWLNE/\nz5IlS8SwYcNEUVGRKCoqElFRUfrfG4pr6dKlwsnJSaSmporKykoxa9Ys0atXL7F8+XJRWVkpPvzw\nQ9G7d2/980+aNEk8++yzorS0VPz+++9iyJAhYsOGDUIIIdavXy8GDBggCgsLxY0bN4RKpRK2trZC\np9M1eL9+/fVX4efnJy5fviyEECI/P1/k5uYKIYQ4cuSI+Pnnn4VOpxN5eXkiMDBQ/O1vf9Mfa2Nj\nIyZNmiRu374tTp8+LRwcHERMTIy4cOGCKCkpEUFBQeLjjz+uc84vvvii0Gq1Yt++faJTp04iOztb\n//698sorQgghjh49Kjw9PUVmZqaoqqoSH3/8sfD39xdarbbJeOvr2bOnOHr0qBBCiP79+4uAgABx\n9uxZ/e+OHz8uhBBCpVKJjRs3CiGESE5OFiNGjKjzPI8//ri45557xKFDh0RlZaX4wx/+IGbMmGHw\nNfPy8oSLi4v45z//KSorK8X169f1r1P7HJv6O9RoNMLV1VX/3ly5ckWcPn1aCCHEjBkzxPLly4UQ\nQpSXl4sff/zRYBwXLlwQNjY2+s98x44d4vz580IIIfbt2yc6duyof28a+2yysrKEEELMnz9fPPzw\nw6K4uFjcvn1bxMfHi0WLFumP9fX1FUI0/bekJEwAEqqfABwcHER5eXmj+x87dky4u7vrH6tUKpGU\nlKR//N5774nx48cLIYT46KOPRFRUlDh58mSD56n9P7cQQgQEBIjvvvtO/3j37t3C39+/0biWLl0q\nxo4dq3/8zTffiM6dO4uqqiohhBC3bt0SNjY2oqSkRFy5ckU4OjqKsrIy/f6ffvqpiImJEUIIERMT\no08GQgiRmppapzGo7dy5c8LT01Okp6cLrVbb6PskhBBr1qwRjzzyiP6xjY2N+Omnn/SPIyIixMqV\nK/WPX3zxRTF//nz9Odvb24vS0lL976dNmyZef/11/ftXkyCfffbZOslUCCHuvfdesW/fPpGTk2N0\nvImJieLtt98Wly9fFvfee69YsGCBeP/998X58+dFly5d9PvVTgCbNm1qkABmz54tnn76af3jnTt3\nigEDBhh8zeXLl4vJkycb/F39v5Haav8dajQa0aVLF7F169Y675cQQsyaNUv88Y9/FIWFhU2ee/0E\nUN+kSZPE2rVrhRBNfzZVVVWiU6dOdRryn376SX8xUjsBtORvqT1jF5CMdOvWDQ4ODvrHpaWleOaZ\nZ+Dv7w83NzdER0ejpKSkTt+st7e3/mdnZ2f9GENiYiLGjRuHGTNmwMfHBwsWLEBlZaXB17106RJ6\n9eqlf9yzZ09cunSp0bgAwNPTs87renh46AcNnZ2dAVSPd+Tn56OiogLdu3eHu7s73N3d8eyzz6Ko\nqAgAcPny5TozM3r27Nno+9O3b1/87W9/w7Jly+Dl5YWEhARcvnwZAJCdnY24uDh0794dbm5uWLx4\nsb47rEbtbhVnZ+c6j52cnOqMz7i7u+vPAwB69eqlf63a8vPzsXr1av25ubu7o7CwEJcvX0ZAQECj\n8dYXHR0NtVqN/fv3Y+TIkYiOjsa+ffvw/fff44EHHmj0PTGk/nnWPq/aCgsL0adPn2afr6m/w06d\nOuHzzz/H+++/jx49eiAuLg5ZWVkAgJUrV0IIgSFDhmDQoEHYtGmTUfF/9913GDp0KO655x64u7tj\n586ddT7Lxj6ba9euobS0FBEREfrPYsKECbh27VqD12jqb0lJmABkpP6si9WrVyM7OxuZmZkoKSnB\nvn37IKq/tTX7XPb29nj11Vdx+vRp/PTTT9i+fbvB/l0A6NGjB/Ly8vSPf/vtN/To0aPRuFoyO8TP\nzw+Ojo64fv06iouLUVxcjJKSEn0/effu3fHbb7/Vee2mJCQkYP/+/cjPz4eNjQ0WLFgAAPjTn/6E\noKAg5OTkoKSkBElJSS2aSlr/nIqLi1FaWqp/nJ+fX+c9qdGzZ08sXrxYf27FxcXQaDSYPn16k/HW\nFx0djf3790OtVkOlUmHEiBH48ccfsW/fPqhUKqNibik/Pz/k5uY2+vua52/u73Ds2LFITU3FlStX\nMGDAADz99NMAqhPRBx98gIsXL2LDhg2YO3duk+MRQHUf/pQpU/Dyyy/j999/R3FxMSZOnFjnb76x\nz8bDwwPOzs44c+aM/rO4efNmo7PdjP1s2jMmABnTaDRwdnaGm5sbbty4gddee63BPo0lg4yMDJw6\ndQo6nQ4uLi7o0KGDfrpp/WMSEhLwxhtv4Nq1a7h27Rr++te/IjExsdG4jElANbp3746xY8fiz3/+\nM27fvo2qqirk5ubi+++/BwBMmzYN69atw8WLF1FcXIw333yz0efKzs7G3r17UV5eDkdHxzpTaDUa\nDVxcXNCxY0f8+uuvWL9+fbOx1T4PQ+e0dOlSVFRUYP/+/dixYwceffRR/b41+z/99NN4//33kZmZ\nCSEE7ty5gx07dkCj0TQZb319+/aFk5MTPvnkE0RHR8PFxQWenp7YunUroqOjDR7j5eWFwsLCOoPd\nLfls/vCHPyA9PR1ffPEFKisrcf36dZw4caLBOTb1d/j777/j66+/xp07d9ChQwd06tRJf45ffPEF\nCgsLAQBdunSBjY0NbG2bbnK0Wi20Wi08PDxga2uL7777DqmpqQ32M/TZ2NjY4Omnn8b8+fP13zAv\nXrxo8PiWfDbtGROAjNS/ops/fz7Kysrg4eGBqKgoTJgwocmr8dpzt69evYpHH30Ubm5uCAoKgkql\n0jfq9ed4v/LKKxg8eDBCQkIQEhKCwYMH45VXXmk0LkNzxJt6nJKSAq1Wi6CgIHTt2hWPPvoorly5\nAqC6AR03bhxCQ0MxePBgTJkypdEr2/LycixatAjdunVD9+7dce3aNaxYsQIA8L//+7/49NNP4erq\nij/+8Y+YMWNGg/emvsbeO6C6a61mRlFiYiI2bNiA/v37N9g3IiICH374IZ577jl07doV/fr103/T\naipeQ1QqFTw8PODj46N/DAD33Xefwf1Hjx6NgQMHwtvbW98lZ8xnU8PPzw87d+7E6tWrcc899yA8\nPBwnT55s8DxN/R1WVVVhzZo18PHxwT333IP9+/frk+/hw4cxdOhQuLi44OGHH8a6devg7+9vMJaa\n53NxccG6deswbdo0dO3aFZ999hkefvjhOvvWdCca+mzeeust9O3bF0OHDoWbmxtiY2ORnZ3d4HVa\n+tm0VzaiJZcMZqLT6TB48GD4+vri22+/lTocUji1Wo3ExEQUFBRIHQqRWcniG8DatWsRFBTElYdE\nRBYkeQIoLCzEzp078dRTT3HlIckGL0ZICSRPAC+88AJWrVrV7OAQkaWoVKpmZyMRtQeStrrbt2+H\np6cnwsPDefVPRGRpFlx01sCiRYuEr6+v8Pf3F97e3qJjx44iMTGxzj4BAQECAP/xH//xH/+14F9A\nQECzbbBsSkGo1WoRFxfXYDsgmxCbtHTpUqlDMArjNC1riNMaYhSCcZqaMW2nrDreOfBGRGQ5sins\nHh0d3eiKRyIiMj1ZfQOwZo3Va5Ebxmla1hCnNcQIME4pyGIlcFNsbGw4Q4iIDOratSuKi4ulDkNy\n7u7uuHHjRp1txrSdTABEZLXYPlQz9D4Y896wC4iISKGYAIiIFIoJgIjIhJYtW4bVq1eb7PmefPJJ\neHl5ITg42GTPWUM200CJiEwhKysf6em5qKiwRYcOVRgzJgD33tvLbMfVZ+r1TE888QTmzZuHWbNm\nmfR5AX4DIKJ2JCsrH8nJOSgqGoWbN1UoKhqFlJTzSE8/apbjgOobHoWGhiIsLKxBI/3hhx9iyJAh\nCAsLw9SpU1FWVgag+m5pwcHBCAsL069/On36NCIjIxEeHo7Q0FDk5OQAAB544AG4u7u35u1oFhMA\nEbUb6em5cHQcXWdbhw4xSE11a7Ixb+1xp0+fRlJSEjIyMnD8+HGsXbu2zu+nTJmCzMxMHD9+HIGB\ngdi4cSMA4PXXX0dqaiqOHz+uvwnWhg0b8Pzzz+PYsWM4cuQIfH19W3TurcEEQETtRkWF4SatY8cA\nnD1bYvLj9u7dq799JYAGV+qnTp3CAw88gJCQEPzf//0fzpw5AwAYPnw4Hn/8cfzjH/9AZWUlAGDY\nsGFYvnw5Vq5ciby8PDg5OTV+oibCBEBE7UaHDlUGt5eW5iIw0M3kxzU2175mHGD27Nl47733cPLk\nSSxdulTfBbR+/Xq88cYbKCgoQEREBG7cuIGEhAR8++23cHZ2xsSJE5GRkdHo65oKEwARtRtjxgSg\noqJuw1lRocbYsSUYM+Y+kx83atQofPHFF/pVuDX/rUkKGo0G3t7eqKiowCeffKI/Ljc3F0OGDMFr\nr72Gbt26obCwEBcuXIC/vz/mzZuHhx9+GKdOnWrZybcCEwARtRv33tsLMTFuKC3NBVB9BR8T49pk\nI96W44KCgrB48WJER0cjLCwML774IoD/fAN4/fXXERkZiREjRiAwMFC//eWXX0ZISAiCg4MxfPhw\nhISEYMuWLQgODkZ4eDhOnz6tH1BOSEhAVFQUsrOz4efnh02bNrX+DaqHpSCIyGo11j6kpx/F2bMl\nCAx0a7YRN8VxUmttKQgmACKyWmwfqrEWEBERtQgTABGRQjEBEBEpFBMAEZFCSZoA7t69i8jISISF\nhSEoKAiLFi2SMhwiIkWRNAE4OTnpa2icPHkSGRkZ+OGHH6QMiYjaidbODmrrrCJTloMuKChATEwM\nBg4ciEGDBmHdunUmed4akncBdezYEQCg1Wqh0+n0NTWIiNoiddu2VjXmrT2uhinLQXfo0AFr1qzB\n6dOncfDgQbz77rs4e/asyZ5f8gRQVVWFsLAweHl5ISYmBkFBQVKHRERW7lJBAURaGk4dOGD248xZ\nDtrb2xthYWEAgM6dOyMwMBCXLl1q0Tk1RfIEYGtri+PHj6OwsBDff/891Gq11CERkZU7u2sXYj09\ncXX3bmi1WrMdZ8ly0Hl5eTh27BgiIyONPp/myOaOYG5ubnjwwQdx+PBhqFSqOr9btmyZ/meVStXg\n90RENTQaDZxycmDn7Iwh5eU4tGMHhj/yiFmOM6Yc9CuvvIKSkhJoNBqMHz8ewH/KQU+bNg2TJ08G\nUF0OOikpCYWFhZg8eTL69u1bJ7apU6di7dq16Ny5s8FY1Gp1iy+gJU0A165dg729Pbp06YKysjKk\npaVh6dKlDfarnQCIiJpyIi0NYXZ2AAA3R0eIgwdREhMDty5dTH6cMeWgv/nmGwQHB+Pjjz/WN9Dr\n169HZmYmduzYgYiICBw5cgQJCQkYOnQotm/fjokTJ2LDhg2IiYlBRUUFpkyZgsceewyTJk1qNJb6\nF8evvfZak+cLSNwFdPnyZYwaNQphYWGIjIxEfHw8Ro8e3fyBREQG6HQ6lB0/jk4ODvptQxwckPn5\n52Y5zhLloOfMmYOgoCDMnz+/Be+EcST9BhAcHIyjR5u/5yZZjhDC5De1JrKUs4cPI6i0FOjUSb/N\nwc4OXufOoeD8efj16WPS42qXg7azs0N4eDj8/f0blIPu1q0bIiMjodFoAFSXgz537hyEEBgzZgxC\nQkLw1ltvYfPmzejQoQO6d++OxYsX44cffsAnn3yCkJAQhIeHAwBWrFih70pqK1YDpTp2b92KsZMn\nMwmQVajfPuzZsgV2BmbJCCFQ6eOD2GnTDD5Pa4+TC5aDpja7VFCAk0lJ6DFrFkKioqQOh6hZbB+q\nsRw0tVlrp84RkXViAiAAtabA2dpiiFaLQzt2SB0SEZkZEwABaGQK3M2bEkdFRObEBECtngJHRNZN\nNiuBSTqtnQJHJDV3d3fOWEPDFcjGYgIgXM3PxzUfH2TX2y7c3HD18GEmAJKtmoVX1DqcBkpE1A5x\nGigRETWKCYCISKGYAIiIFIoJgIhIoZgAiIgUigmAiEihmACIiBSKCYCISKGYAIiIFIoJgIhIoSRN\nAAUFBYiJicHAgQMxaNAgrFu3TspwiIgURdJaQFeuXMGVK1cQFhYGjUaDiIgIfPXVVwgMDPxPgKwF\nRETUYrKvBeTt7Y2wsDAAQOfOnREYGIhLBm7MTEREpiebMYC8vDwcO3YMkZGRUodCRKQIsrgfgEaj\nwdSpU7F27Vp07ty5we+XLVum/1mlUkGlUlkuOCIiK6BWq6FWq1t0jOT3A6ioqEBcXBwmTJiA+fPn\nN/g9xwCIiFrOmLZT0gQghMDjjz+Oe+65B2vWrDG4DxMAEVHLyT4B/PDDDxg5ciRCQkL09/VcsWIF\nxo8f/58AmQCIiFpM9gnAGEwAREQtJ/tpoEREJB0mACIihWICICJSKCYAIiKFYgIgIlIoJgAiIoVi\nAiAiUigmAKJmcB0KtVdMAETNSN22jUmA2iUmAJIFuTawlwoKINLScOrAAalDITI5JgCSBbleZZ/d\ntQuxnp64uns3tFqt1OEQmRQTAElOrlfZGo0GTjk5sLO1xRCtFod27JA6JCKTYgJoR+R4BW0MuV5l\nn0hLQ5idHQDAzdER4uBBlNy8KXFURKbDBNCOyLUbpSlyvcrW6XQoO34cnRwc9NuGODgg8/PPJYzK\nOFlZ+Xj33b3429/UePfdvcjKypc6JJIpJoB2Qq7dKM2R61X22cOHEVRaWmebg50dvM6dQ8H58xJF\n1bysrHwkJ+egqGgUbt5UoahoFFJSziM9/ajUoZEMyeKewNR2Nd0oe3fvhnbwYDjUunKVq8ausvd9\n/jlin3lGwsiAq/n5uObjg+x624WbG64ePgy/Pn0aHJOVlY/09FxUVNiiQ4cqjBkTgHvv7WWZgP8t\nPT0Xjo6j62zr0CEGqam5AI5izJj7LBoPyRsTQDug70ZxdsaQ8nIc2rEDwx95ROqwmqW/yu7USb+t\n9lW2oUbWUkZPm9ai/WuuvGs3vikpGYiJuW7RRreiwvCX+o4dA3D2bAbGjLFYKGQFmADaAYPdKDEx\ncOvSReLImtaaq2y5ksuVd4cOVQa3l5bmYsQIN4vEQNaDCcDKybkbpTktvcqWM7lceY8ZE4CUlAx0\n6BBTKzY1xo51ZfcPNSD5IPCTTz4JLy8vBAcHSx2KVbLWwcr2pqkr78BAy11533tvL8TEuKG0NFf/\n+jExbPzJMMlvCr9//3507twZs2bNwqlTpxr8njeFb9qeLVtgd+lSg+1CCFT6+CC2HV1ly1lWVj5S\nUs43uPKWqvFNTz+Ks2dLEBjoxsZfoYxpOyVPAACQl5eH+Ph4JgCyaunpR5Ga6oaOHQNQWpqLsWNL\n2PiSZIxpOzkGQG0mhICNjY3UYUiuurE/irNnMzBiBK+8Sf6sIgEsW7ZM/7NKpYJKpZIsFmoodds2\njJ08mUkA1UmAUy1JCmq1Gmq1ukXHsAuI2uRSQQFOJiWhx6xZCImKkjocIvo3Y9pOyWcBkXWTayE3\nImqe5AkgISEBUVFRyM7Ohp+fHzZt2iR1SGQkuRZyIyLjyKILqCnsApKvH7/8EmGHDukXof1QVobg\nRYtkvwJZKnKoFUTKYTXTQJvCBCBPOp0OGX/9K8bUGvjV6nTY5+sr+xXINSzZIBuqFVRRkYGYGM4W\nIvPgNFAym5YUcpPjla+li7fJpVYQUW1MANQqxhZyk0uVzPos3SDLpVYQUW1MANQqxhZyk+uVr6Ub\nZFbpJDkyahbQSy+9hFu3bqGiogKjR4+Gh4cHNm/ebO7YqB1ouqEtsXA0/2Hp4m1jxgSgoiKjzrbq\nKp0sF0HSMSoBpKamwtXVFdu3b4e/vz9yc3OxatUqc8dGEjHlPWXlUiWzPks3yKzSSXJkVBdQZWUl\nAGD79u2YOnUq3NzcuOy/narps3dwGKX/jNvSZ19Tn76kJBznzxejqsoGQAamT/fCmDETTRy98aob\n5OtITc2tVbytbQ1yc4PdjdUKqn/c6NF9MGCAfxvPkKh5Rk0DXbhwIb766is4OTkhMzMTN2/eRHx8\nPH7++WfzB8hpoBb17rt7UVQ0Cr+d2Qq/wP/U92lLdctNm3ZiwwZHODmNhlabi759S+DnVyKLKZCm\nKpvc2mmeho47f+o1JD4bh9jYiFbHQ2SyaaBvvvkmXn75Zbi5ucHOzg6dOnXC119/bZIgSV4qKmxx\nu6QAvXPTUOTSHV39quv7GBocNXZ6Z2mpE/r374Kiogz07OmGPn2qG0SpB4IB0xVva+1gd/3jbpcU\noF/eZXyRnAsbGxvJEyS1b0aNAdy5cwfvvvsunn32WQDApUuXcPjwYbMGRtLo0KEKlTm7ENXZEy45\nu6HTVdf3qd9nX3PlWlQ0CjdvqlBUNAopKeeRnn60wXNWVNiiT5/7EBkZo2/8AekHgk2ptYPd9Y+r\nee+7FZ7GqVPXTBojUX1GJYAnnngCDg4O+OmnnwAAPXr0wOLFi80aGLVNa7vNhg3zhte1PbCzscVQ\nnRY3s3cYHBxt/IrXrUESkOtAsCm19hxrH6fVatDjRg7sbGwx+O5VOJacNHmcRLUZlQByc3OxYMEC\nOPy75kunWqs/SZ5St21rVRIoy8/CQ/4dUVFxAy72jvDM+w5D7m/YFdGSK14lTIFs7TnWPu52bhpC\nbO2g0+Uh9F6BkLIilNy8ada4SdmMSgCOjo4oKyvTP87NzYWjo6PZgqK2uVRQAJGWhlMHDrToOJ1O\nh7LjxzHo3p4ICCiHs/MFPNq3Ch2v/tpg35Zc8SphCmRrz7HmOI0mG25XjsO+SoPevR3Rp093DHFw\nQObnn1sifFIoowaBly1bhvHjx6OwsBAzZ87Ejz/+iOTkZDOHRq1VU6N/7+7d0A4erP/m1uxxter7\n9OnTHTXlfLQG6vvUTO+sfxP0xqZStvV2iXKsJ1Rfa89xzJj78NvZj9HtWBYCermhT5/uAP5TW0md\nvh+nsypkfe5knYyuBnrt2jUcPHgQADB06FB4eHiYNbAanAbaMhqNBidefx3DnZ1RUl6OX4YMwfBH\nHjHq2D1btsDu0qUG24UQqPTxQWy98g+Wugm6EippNvbeX7l6HbvPAr3CXtdva2/nTuZhsnLQ+/bt\nq/NkNXPDR44caYIwm8YE0DKWrtFvqnn0TalZm1CfOZOOXCj53KltTLYOYNWqVfpG/+7du8jMzERE\nRAT27t3b9ijJZGr68DvV6vIZ4uCAfZ9/blSNfiFEi1d4W+Im6EqupKnkcyfzMyoBbN++vc7jgoIC\nPP/882YJiFqvJTX6DUndtg1jJ0+WXZkPqSppymHcgVVEyZxadU9gX19fnD171tSxUBtdzc9Hto8P\n1F261Pl33ccHvzazcK+1M4csQYpppC1Z6GZOSphCS9Ix6hvAvHnz9D9XVVXh+PHjiIgwTZ2SXbt2\nYf78+dDpdHjqqaewYMECkzyvEhlbo9+Q1s4csgRzFG5rjlzuYyDFuZNyGJUAajf29vb2SEhIwIgR\nI9r84jqdDs899xzS09Ph4+OD+++/Hw899BACAwPb/Nxy1Jo+dkvQaDRwysmBnbMzhpSX49COHUbP\nHLKUtk4jbSk59b1b+txJOYxKALNnzzbLi2dmZqJv377w9/cHAMyYMQNff/11u00ALe1jt1Qf9Im0\nNITZ2QEA3BwdIQ4exE2VCl3c3U3+Wm1hiQHnGnLre7fkuZNyNJkAgoODG/2djY0NTp5sW62Sixcv\nws/PT//BfSMbAAATlUlEQVTY19fXIiWmpaDvY+/eHSFRUc3ub6l76TY2c+i9hQvx/Pvvy/IbiyW0\ndKGbpchhYJrajyYTwLfffmvWFze2cVm2bJn+Z5VKBZVKZZ6AzKilfeyW6oM2NHOoXKNB74MHkbZ1\nK8ZOnWqS17E2cux7t9RFAVkntVoNtVrdomOaTAA1XTPm4uPjg4KCAv3jgoIC+Pr6NtivdgKwRq3p\nY7dUH/TV/Hxc8/FBdq1tWWfPIsDLCyf++U+oHnrIJAPCch3/aIrc+t7lMjBN8lT/4vi1115r9hij\nxgAOHDiA//7v/8aZM2eg1Wqh0+nQuXNn3Lp1q9XBAsDgwYNx7tw55OXloUePHvj888/x2Weftek5\n5chQH3tJTEyTq3Mt1Qddf+aQRqNBh8uXMTwwEPebcEBYrmsMmmPJvvfmkqScBqapfTBqHcBzzz2H\nTz/9FP3798fdu3exceNGzJ07t80vbm9vj3feeQfjxo1DUFAQpk+f3u4GgBvrY2+uyqNU878NJqs2\nliSW8xoDOWmuhLcS7qtAlmX0QrB+/fpBp9PBzs4OTzzxBHbt2mWSACZMmICsrCzk5ORg0aJFJnlO\nOdH3sddSe3VuY6QoodzaZNWcmvGPq7t3Q6vVtjXMdsmYJMlFYWRqRnUBderUCeXl5QgNDcXLL78M\nb29vFmgzkqE+dgAQbm64evhwk+UZLN0H3dZSEoZYwxoDOTBmkoAcB6ZrcHaSdTKqGmh+fj48PT2h\n1WqxZs0a3Lp1C3PnzkXfvn3NHyCrgVpMS8tBG8PS1UmtUUtLeFuiAmtLKKFctzUyWTnorVu3Ii4u\nTpK7gDEBWC+dToeMv/4VY2oNbGp1Ouzz9TWqOqlSWHuSZMlqeTKm7TRqDODbb79Fv379kJiYiO3b\nt6OystIkAVL71trxDyUx17iLJbXk/tAkL0YlgOTkZOTk5GDq1Kn47LPP0KdPH8yZM8fcsZGVa0t1\nUqVoD0mSs5Osl9G3hAQArVaL3bt346OPPsL333+P69evmzM2AOwCovbNHOMulpaVlY+UlPMNymaY\ne9YaNc1kYwA7d+7Eli1bkJGRAZVKhenTp2Ps2LGwtzdqElGbyD0BWOMKVyJTs9T9ocl4JksACQkJ\nmD59OsaPHw8nJyeTBWgMuSeA3Vu3WuUKVyJTk9vsJKUzWQJozrBhw3DATKs85ZwALhUU4GRSEnrM\nmmVUhU8iIksx2Syg5ty9e9cUT2N1uMKViKyZ+Tvx2ymucCVrw9W6VJ9JvgEokTmKphGZi1xuck/y\nYlQCWLduHYqLi80di9VoD4t3SFkav5eAG5OAghmVAK5evYr7778f06ZNw65duxoMLKSkpJglOLlq\nD4t32kKug/LUOK7WJUOMSgBJSUnIzs7Gk08+ieTkZPTr1w//8z//g9zc6lLFTd07uD1S+grX5urW\nk/xwtS4ZYvQgsK2tLby9veHl5QU7OzsUFxdj6tSpGDNmDFatWmXOGGWn/l20zEluC81aenN7kge5\n3uSepGXUN4C1a9ciIiICL7/8MoYPH45ffvkF69evx5EjR7Bt2zZzx6hocrva5tRX6yTFDYZI/oz6\nBnDjxg1s27YNvXrVnTJma2uLb7/91iyBkfyutjn11brJ7Sb3JD2TrAQ2JzmvBDa3PR9+CFVBAfba\n2CB68WKDd4myJGuvW0+kJBZbCdwaX3zxBQYOHAg7OzscPcppaPXpr7ZtbTFEq8WhHTskjYdTX4na\nH8kSQHBwML788kuMHDlSqhBkTcqFZoauGpQ+9ZWoPZIsAQwYMAD9+/eX6uVlTeqrbUMDz0qf+krU\nHrEWkAzpr7Y7ddJvq3217denj9leu7GBZ1NMfWUtGiJ5MWsCiI2NxZUrVxpsX758OeLj441+nmXL\nlul/VqlUUKlUJohOvq7m5+Oajw+y620Xbm64eviwWRNAzTTPvbt3Qzt4sMkGnmtq0dQuR5CSkoGY\nmOucjUJkAmq1Gmq1ukXHSD4LKCYmBqtXr8Z99xluBJQ8C8jSNBoNTrz+OoY7O6OkvBy/DBlismme\n7767F0VFoxps592jiMxD1rOAamMDLw/mHHhmLRoi+ZEsAXz55Zfw8/PDwYMH8eCDD2LChAlShUIw\n/8Aza9EQyY/kXUDNYReQZfzy88/o+q9/oUetgWcAOKnRwH3uXIPjDi2pU5SVlY+UlPMNatGwHAGR\neRjTdnIWEAFo3cBz6rZtGDt5slFJoLoWzXWkpuaiY8eAf/f9y7vxt/SsJbkV/qP2j98AqFUuFRTg\nZFISesya1aI6RenpR3H2bAkCA+Vdi8bQrKWKigzExJgv7t1btxqdUImaw28AZDatnS46Zsx9GDPG\nzMG1Uu0r/gMHzqJbt4lwdPzP76vvoJUL4KjJk4DcCv+RMshiFhBZF7nVKTKF+vfMLSmZgBMnzuP8\n+bp1qsw1a4lltkkKTADUYlLWKTKX+vfMtbUVsLOLQU6OW50kYI5ZS+0xoZJ1YAKgFpG6TpG51F+n\n0KePO3S6C3BwCEBRUcm/91GbZdFae0yoZB2YAKhF2mtV0PrrFDw8uqB3byeUlh5Gt25uZruDVntN\nqGQdOAhMLSJlnSJzMnTPXD+/LAwceBUdO3oiMBBmmf0jZeE/Ik4DJfq39PSjSE11q7VOwfw1ivZs\n2QK7S5cabBdCoNLHB7EmqMJKymRM28kEQFSLtaxTIGoOEwARkUJZTTVQIiKyPCYAIiKFYgIgIlIo\nJgAiIoViAqB2hRMGiIzHBEDtSuq2bUwCREZiAqB2Q19S+cABqUMhsgpMANRusKQyUctIlgBeeukl\nBAYGIjQ0FJMnT0ZJielrrJNysKQyUctJlgDGjh2L06dP48SJE+jfvz9WrFghVSjUDrCkMlHLSZYA\nYmNjYWtb/fKRkZEoLCyUKhSyciypTNQ6shgD+OijjzBx4kSpwyAr1V7vUUBkbma9H0BsbCyuXLnS\nYPvy5csRHx8PAEhKSoKDgwNmzpzZ6PMsW7ZM/7NKpYJKpTJ1qGTF2us9CohaQq1WQ61Wt+gYSauB\nJicn48MPP8SePXvg5ORkcB9WAyUiajlj2k7J7gi2a9curFq1Cvv27Wu08SciIvOR7BtAv379oNVq\n0bVrVwDAsGHD8N577zXYj98AiIhajjeEISJSKN4QhoiIGsUEQESkUEwAREQKxQRARKRQTABERArF\nBEBEpFBMAERECsUEQESkUEwAREQKxQRARKRQTABERArFBEBEpFBMAERECsUEQESkUEwAREQKxQRA\nRKRQTABERArFBEBEpFCSJYAlS5YgNDQUYWFhGD16NAoKCqQKhYhIkSS7J/Dt27fh4uICAPj73/+O\nEydO4B//+EeD/XhPYCKilpP1PYFrGn8A0Gg08PDwkCoUIiJFspfyxRcvXozNmzejY8eOOHjwoJSh\nEBEpjlm7gGJjY3HlypUG25cvX474+Hj94zfffBNZWVnYtGlTwwDZBURE1GLGtJ1m/QaQlpZm1H4z\nZ87ExIkTG/39smXL9D+rVCqoVKo2RkZE1L6o1Wqo1eoWHSPZIPC5c+fQr18/ANWDwJmZmdi8eXOD\n/fgNgIio5YxpOyVLAFOnTkVWVhbs7OwQEBCA9evXw9PTs8F+TABERC0n6wRgLCYAIqKWk/U0UCIi\nkhYTABGRQjEBEBEpFBMAEZFCMQEQESkUEwARkUIxARARKRQTABGRQjEBEBEpFBMAEZFCMQEQESkU\nEwARkUIxARARKRQTABGRQjEBEBEpFBMAEZFCMQEQESkUEwARkUIxARARKZTkCWD16tWwtbXFjRs3\npA6FiEhRJE0ABQUFSEtLQ69evaQMwyTUarXUIRiFcZqWNcRpDTECjFMKkiaAP//5z1i5cqWUIZiM\ntfxRME7TsoY4rSFGgHFKQbIE8PXXX8PX1xchISFShUBEpGj25nzy2NhYXLlypcH2pKQkrFixAqmp\nqfptQghzhkJERPXYCAla3l9++QWjR49Gx44dAQCFhYXw8fFBZmYmPD096+zbt29f5ObmWjpEIiKr\nFhAQgJycnCb3kSQB1Ne7d28cOXIEXbt2lToUIiLFkHwaKADY2NhIHQIRkeLI4hsAERFZniy+ARhL\n7ovGlixZgtDQUISFhWH06NEoKCiQOqQGXnrpJQQGBiI0NBSTJ09GSUmJ1CEZ9MUXX2DgwIGws7PD\n0aNHpQ6ngV27dmHAgAHo168f3nrrLanDMejJJ5+El5cXgoODpQ6lSQUFBYiJicHAgQMxaNAgrFu3\nTuqQDLp79y4iIyMRFhaGoKAgLFq0SOqQGqXT6RAeHo74+PimdxRW4rfffhPjxo0T/v7+4vr161KH\nY9CtW7f0P69bt07MmTNHwmgMS01NFTqdTgghxIIFC8SCBQskjsiws2fPiqysLKFSqcSRI0ekDqeO\nyspKERAQIC5cuCC0Wq0IDQ0VZ86ckTqsBr7//ntx9OhRMWjQIKlDadLly5fFsWPHhBBC3L59W/Tv\n31+W76cQQty5c0cIIURFRYWIjIwU+/fvlzgiw1avXi1mzpwp4uPjm9zPar4BWMOiMRcXF/3PGo0G\nHh4eEkZjWGxsLGxtqz/2yMhIFBYWShyRYQMGDED//v2lDsOgzMxM9O3bF/7+/ujQoQNmzJiBr7/+\nWuqwGnjggQfg7u4udRjN8vb2RlhYGACgc+fOCAwMxKVLlySOyrCamYtarRY6nU6WE1cKCwuxc+dO\nPPXUU81Or7eKBGBNi8YWL16Mnj174uOPP8bChQulDqdJH330ESZOnCh1GFbn4sWL8PPz0z/29fXF\nxYsXJYyo/cjLy8OxY8cQGRkpdSgGVVVVISwsDF5eXoiJiUFQUJDUITXwwgsvYNWqVfoLvaaYdSFY\nS1jLorHG4ly+fDni4+ORlJSEpKQkvPnmm3jhhRewadMm2cUIVL+vDg4OmDlzpqXD0zMmTjnirDXz\n0Gg0mDp1KtauXYvOnTtLHY5Btra2OH78OEpKSjBu3Dio1WqoVCqpw9Lbvn07PD09ER4eblTJCtkk\ngLS0NIPbf/nlF1y4cAGhoaEAqr/eREREGFw0ZgmNxVnfzJkzJbu6bi7G5ORk7Ny5E3v27LFQRIYZ\n+17KjY+PT50B/oKCAvj6+koYkfWrqKjAlClT8Nhjj2HSpElSh9MsNzc3PPjggzh8+LCsEsBPP/2E\nb775Bjt37sTdu3dx69YtzJo1CykpKYYPsMiIhAnJeRA4Oztb//O6devEY489JmE0hn333XciKChI\nFBUVSR2KUVQqlTh8+LDUYdRRUVEh+vTpIy5cuCDKy8tlOwgshBAXLlyQ/SBwVVWVSExMFPPnz5c6\nlCYVFRWJ4uJiIYQQpaWl4oEHHhDp6ekSR9U4tVot4uLimtzHKsYAapPz1+9FixYhODgYYWFhUKvV\nWL16tdQhNTBv3jxoNBrExsYiPDwcc+fOlTokg7788kv4+fnh4MGDePDBBzFhwgSpQ9Kzt7fHO++8\ng3HjxiEoKAjTp09HYGCg1GE1kJCQgKioKGRnZ8PPz0+S7khj/Pjjj/jkk0+QkZGB8PBwhIeHY9eu\nXVKH1cDly5cxatQohIWFITIyEvHx8Rg9erTUYTWpufaSC8GIiBTK6r4BEBGRaTABEBEpFBMAEZFC\nMQEQESkUEwARkUIxARARKRQTABGRQjEBELVBXl6e7OvtEzWGCYCISKGYAEgRDh06hNDQUJSXl+PO\nnTsYNGgQzpw502C/hIQE7Ny5U/949uzZ2Lp1K/Lz8zFy5EhEREQgIiICBw4caHBscnIy5s2bp38c\nFxeHffv2AQBSU1MRFRWFiIgITJs2DXfu3AEALFy4EAMHDkRoaCheeuklU582UZNkUw2UyJzuv/9+\nPPTQQ3jllVdQVlaGxMREg7Xcp0+fji1btmDixInQarXYu3cvNmzYgKqqKqSlpcHR0RHnzp3DzJkz\ncejQoSZf08bGBjY2Nrh27RqSkpKwZ88eODs746233sLbb7+N//qv/8JXX32FX3/9FQBw69Yts5w7\nUWOYAEgxXn31VQwePBjOzs74+9//bnCf8ePH4/nnn4dWq8V3332H6OhoODo6oqSkBM899xxOnDgB\nOzs7ZGdnG/WaQggcPHgQZ86cQVRUFIDqu0lFRUXBzc0NTk5OmDNnDuLi4hAXF2eycyUyBhMAKca1\na9dw584d6HQ6lJWV6W/vV5uTkxNUKhV2796NLVu2ICEhAQCwZs0adO/eHZs3b4ZOp4OTk1ODY+3t\n7VFVVaV/fPfuXf3PsbGx+PTTTxsck5mZiT179uBf//oX3nnnHcnv0UDKwjEAUoxnnnkGb7zxBmbO\nnIkFCxY0ut/06dPx0UcfYf/+/Rg/fjyA6u4Zb29vAEBKSgp0Ol2D4/z9/XH8+HEIIVBQUIDMzEzY\n2Nhg6NCh+PHHH5GbmwsAuHPnDs6dO4c7d+7g5s2bmDBhAt5++22cOHHCDGdN1Dh+AyBFSElJgaOj\nI2bMmIGqqipERUU1eju/sWPHIjExEZMmTYK9ffX/InPnzsWUKVOQkpKC8ePH17llYU3N9REjRqB3\n794ICgpCYGAgIiIiAAAeHh5ITk5GQkICysvLAVTfktPFxQUPP/ww7t69CyEE1qxZY+Z3gagu3g+A\niEih2AVERKRQ7AIiRTp16hRmzZpVZ5uTk5PB+f1E7RW7gIiIFIpdQERECsUEQESkUEwAREQKxQRA\nRKRQTABERAr1/wwI0f9gOZGWAAAAAElFTkSuQmCC\n", - "text": [ - "" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "#Using the PCA() class from the matplotlib.mlab library\n", - "\n", - "Now, that we have seen how a principal component analysis works, we can use the in-built `PCA()` class from the `matplotlib` library for our convenience in future applications.\n", - "Unfortunately, the original documentation ([http://matplotlib.sourceforge.net/api/mlab_api.html#matplotlib.mlab.PCA](http://matplotlib.sourceforge.net/api/mlab_api.html#matplotlib.mlab.PCA)) is very sparse; \n", - "a better documentation can be found here: [https://www.clear.rice.edu/comp130/12spring/pca/pca_docs.shtml](https://www.clear.rice.edu/comp130/12spring/pca/pca_docs.shtml). \n", - "\n", - "And the original code implementation of the `PCA()` class can be viewed at: \n", - "[https://sourcegraph.com/github.com/matplotlib/matplotlib/symbols/python/lib/matplotlib/mlab/PCA](https://sourcegraph.com/github.com/matplotlib/matplotlib/symbols/python/lib/matplotlib/mlab/PCA)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Class attributes of `PCA()`\n", - "\n", - " Attrs:\n", - "\n", - " a : a centered unit sigma version of input a\n", - "\n", - " numrows, numcols: the dimensions of a\n", - "\n", - " mu : a numdims array of means of a\n", - "\n", - " sigma : a numdims array of atandard deviation of a\n", - "\n", - " fracs : the proportion of variance of each of the principal components\n", - "\n", - " Wt : the weight vector for projecting a numdims point or array into PCA space\n", - "\n", - " Y : a projected into PCA space" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Also, it has to be mentioned that the `PCA()` class expects a `np.array()` as input where: `'we assume data in a is organized with numrows>numcols')`, so that we have to transpose our dataset. \n", - "\n", - "`matplotlib.mlab.PCA()` keeps all $d$-dimensions of the input dataset after the transformation (stored in the class attribute `PCA.Y`), and assuming that they are already ordered (\"Since the PCA analysis orders the PC axes by descending importance in terms of describing the clustering, we see that fracs is a list of monotonically decreasing values.\", [https://www.clear.rice.edu/comp130/12spring/pca/pca_docs.shtml](https://www.clear.rice.edu/comp130/12spring/pca/pca_docs.shtml)) we just need to plot the first 2 columns if we are interested in projecting our 3-dimensional input dataset onto a 2-dimensional subspace." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from matplotlib.mlab import PCA as mlabPCA\n", - " \n", - "mlab_pca = mlabPCA(all_samples.T) \n", - "\n", - "print('PC axes in terms of the measurement axes scaled by the standard deviations:\\n', mlab_pca.Wt)\n", - "\n", - "plt.plot(mlab_pca.Y[0:20,0],mlab_pca.Y[0:20,1], 'o', markersize=7, color='blue', alpha=0.5, label='class1')\n", - "plt.plot(mlab_pca.Y[20:40,0], mlab_pca.Y[20:40,1], '^', markersize=7, color='red', alpha=0.5, label='class2')\n", - "\n", - "plt.xlabel('x_values')\n", - "plt.ylabel('y_values')\n", - "plt.xlim([-4,4])\n", - "plt.ylim([-4,4])\n", - "plt.legend()\n", - "plt.title('Transformed samples with class labels from matplotlib.mlab.PCA()')\n", - "\n", - "plt.draw()\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "PC axes in terms of the measurement axes scaled by the standard deviations:\n", - " [[ 0.65043619 0.53023618 0.54385876]\n", - " [-0.01692055 0.72595458 -0.68753447]\n", - " [ 0.75937241 -0.43799491 -0.48115902]]\n" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAEaCAYAAAAhXTHBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX3P/AXO6gwoIggICi4gMoSJokLMwq4JGnuWBhl\nq5/8avVR86cmZmhqZtpiZiWiLWpalpoiypilhoigIiKgELijiAzbsLx/f/DhxjIDg8zcewfO8/Hw\nIffOXc69M/M+c+99LwaMMQZCCCGEJ4ZCB0AIIaR9ocRDCCGEV5R4CCGE8IoSDyGEEF5R4iGEEMIr\nSjyEEEJ4pReJ586dOxgxYgSsrKywYMECocOpJzs7G4aGhqiurhY6FLUiIiKwbNkyQfY9btw47Nix\nQ+3r2oqNz2NsyXsul8vh7Oz8WPt53HVLS0sRGhoKa2trTJ8+/bH2ra9a+32USqX45ptvAADfffcd\nRo8ezb1maGiIa9euaSXOhlxdXXHs2DGNltVlHI9j8eLF2LhxIwDgwoULGDp0aLPrNJt4OnXqBEtL\nS1haWsLQ0BAdOnTgpn/44YfWR62Br776CnZ2dnj06BHWrVvHyz7bEgMDAxgYGAiy70OHDiE8PBwA\nEB0djeHDh9d7XVuxCXmMYvPTTz/h7t27ePDgAXbt2iV0OK0SGRnJfX742Hbdz9Fzzz2HI0eO6GTf\nDenq8xsREQEzMzNYWlqiS5cuCAkJQXp6Ovf61atXMXXqVHTt2hXW1tbw9vbGhg0b6iVuhUKBTp06\nYdy4cY22f+/ePezYsQOvv/46AMDLywvW1tY4cOBAk3E1m3gUCgWKiopQVFQEFxcXHDhwgJsOCwvj\nlqusrGz+LDymnJwceHh4PNa6uoxLn7SHdsLt4Rg1kZOTgz59+sDQUPXXu6qqiueIiFAMDAywaNEi\nFBUVIS8vD3Z2doiIiAAAZGVlwd/fHy4uLrh06RIePnyIPXv24Ny5cygqKuK2sXfvXvTo0QNyuRx3\n7typt/3o6Gg8/fTTMDMz4+Y999xz2LJlS5NxPfatNrlcDicnJ6xduxYODg6YPXs2Hj58iPHjx8PO\nzg6dO3dGaGgobty4wa0jlUrx3nvvYdiwYbCyssLo0aNx//59AEBZWRmef/552NrawsbGBoMHD8bd\nu3cRERGBmJgYrF27FpaWljh+/DiUSiXmz58PR0dHODo64q233oJSqVQZ10svvYQVK1Zg6tSpCA8P\nh5WVFby8vJCRkYHVq1ejW7ducHFxwdGjR7k4CwsLMXv2bHTv3h1OTk5YtmwZ9wuguroa//3vf9G1\na1e4ubnh4MGDTZ6nNWvWwMnJCVZWVujXrx+OHz8OAEhISMCQIUNgY2OD7t27Y+7cuaioqPj3jTE0\nxObNm9G7d29YWVnhvffeQ1ZWFoYMGQJra2vMmDGDW772mFevXo2uXbuiZ8+e+P7779XGdODAAfj4\n+MDGxgZDhw7FxYsXm423ruvXr8PGxoabfuWVV9CtWzduOjw8nLv0rr11ceXKFbz++us4ffo0LC0t\n0blzZ275Bw8eYPz48bCyssJTTz3V5G2EP//8EwEBAbCxsUGPHj0QExPTaJmCgoImP4fR0dFwc3OD\nlZUVevXqxZ2rzMxMBAYGwtraGl27dsWMGTPUxlHXtm3b4OnpCSsrK7i5ueGrr75qtIy696a8vBz/\n/e9/4eLiAnt7e7zxxhsoKytTuR9N3pvly5dj5cqV2LVrFywtLfHtt98iOjoaQ4cOxdtvvw1bW1us\nWLECjx49wqxZs2BnZwdXV1dERUVxibvu8jY2NnB3d8epU6ewbds29OjRA926dVN53mtJpVIsW7YM\nQ4cOhaWlJZ555hnk5+fjueeeg0QiweDBg5GTk8MtP2/ePPTo0QMSiQSDBg3Cn3/+CQA4fPgwVq9e\nzR2Lr68vt/3FixfD398fEokEEydOREFBgcpYbt68iWeeeQZdunRB79698fXXXze57bpUXaEfPHgQ\nbm5u6Nq1KxYuXKj2x05ERATmzJmDcePGwdLSEsOHD8ft27cxb9482NjYwMPDA8nJySrXba5saEkc\ndVlYWCAsLAyXLl0CUPNZGTZsGD766CPu+9unTx/s3LkTEomEW2/79u14+eWXMXToUOzcubPeNg8f\nPozAwMB68wIDA3Hs2LFGMdfDWsDV1ZUdO3aMMcZYfHw8MzY2Zu+++y5TKpWstLSU3b9/n+3bt4+V\nlpayoqIiNnXqVDZx4kRu/cDAQObu7s4yMjJYaWkpk0ql7N1332WMMfbll1+y0NBQVlpayqqrq1lS\nUhJ79OgRY4yxiIgItmzZMm47y5YtY0OGDGH37t1j9+7dYwEBAdzrquJavnw5Mzc3Z7GxsayyspLN\nmjWLubi4sFWrVrHKykq2detW1rNnT277EydOZK+//jorKSlhd+/eZYMHD2ZbtmxhjDG2efNm1q9f\nP5aXl8cePHjApFIpMzQ0ZFVVVY3O15UrV5izszO7desWY4yxnJwclpWVxRhj7Ny5c+zvv/9mVVVV\nLDs7m3l4eLBPPvmEW9fAwIBNnDiRFRUVsdTUVGZqaspkMhm7fv06KywsZJ6enmz79u31jvmdd95h\nSqWSnThxgnXs2JFdvXqVO39Lly5ljDGWlJTE7OzsWEJCAquurmbbt29nrq6uTKlUNhlvQz169GBJ\nSUmMMcb69OnD3NzcWFpaGvdacnIyY4wxqVTKvvnmG8YYY9HR0WzYsGH1tvPCCy+wLl26sLNnz7LK\nykr23HPPsRkzZqjcZ3Z2NrO0tGQ//vgjq6ysZPfv3+f2U/cYm/ocKhQKZmVlxZ2b27dvs9TUVMYY\nYzNmzGCrVq1ijDFWXl7O/vrrL5VxXL9+nRkYGHDv+cGDB9m1a9cYY4ydOHGCdejQgTs36t6b9PR0\nxhhj8+fPZxMmTGAFBQWsqKiIhYaGssWLF3PrOjk5Mcaa/iw1FBkZycLDw7npbdu2MWNjY/bZZ5+x\nqqoqVlpaysLDw9nEiROZQqFg2dnZrE+fPtz7VLt8dHQ0q66uZkuXLmWOjo7szTffZEqlksXGxjJL\nS0tWXFyscv+BgYGsd+/e7Nq1a9xn1d3dnR07doz7/r344ovc8jt37mQPHjxgVVVVbP369cze3p6V\nl5erPJba7Ts6OrLU1FRWXFzMJk+ezJ5//nmV783w4cPZf/7zH1ZeXs6Sk5NZ165d2fHjx9Vuu+7n\nddu2bfU+rwYGBmzkyJGsoKCA/fPPP6xPnz7s66+/VnkOXnjhBWZra8uSkpJYWVkZGzlyJHNxcWE7\nduzgzqlMJuOWr1u2alI2aBpH3e9FUVERCwsLYyNGjGCMMdatWzcWHR2tcr1a2dnZzMjIiOXm5rKv\nvvqKeXl51Xu9a9euLDExsdF6VlZW7OLFi2q326rEY2pqyn1AVDl//jyzsbHhpqVSKYuKiuKmv/ji\nCzZmzBjGGGPffvstCwgIYBcuXGi0nbonjzHG3Nzc2O+//85NHzlyhLm6uqqNa/ny5SwkJISb/vXX\nX1mnTp1YdXU1Y4yxR48eMQMDA1ZYWMhu377NzMzMWGlpKbf8999/z31IZDIZl4QYYyw2NrbeB72u\njIwMZmdnx+Li4phSqVR7nhhjbMOGDezZZ5/lpg0MDNipU6e4aT8/P7Z27Vpu+p133mHz58/njtnY\n2JiVlJRwr0+bNo2tXLmSO3+1ifn111+vl8QZY6xv377sxIkTLDMzU+N4w8PD2ccff8xu3brF+vbt\nyxYtWsS+/PJLdu3aNWZtbc0t19QXuTa2V155hZs+dOgQ69evn8p9rlq1ik2aNEnlaw0/I3XV/Rwq\nFApmbW3N9u7dW+98McbYrFmz2Kuvvsry8vKaPPaGhVtDEydOZBs3bmSMNf3eVFdXs44dO9ZLIKdO\nneJ+BNVNPC35LC1fvpwriBmrOe89evTgpisrK5mpqSn3Q4ExxrZs2cKkUim3fO/evbnXLly4wAwM\nDNjdu3e5eV26dGEpKSkq9y+VSrkEzljNZ3XcuHHc9G+//cZ8fHzUxm9jY8OVAw2PpXb7tcmZMcYu\nX77MTE1NWXV1db335p9//mFGRkZMoVBwyy5evJhFREQ0ue2mEs+RI0e46S+++IKNGjVK5TFERESw\nV199lZv+9NNPmaenJzd94cKFet+TumVrQ6rKBk3jeOGFF5i5uTmztrZm9vb2bMKECdyPJBMTk3rb\nUWXlypVsyJAhjDHG8vPzmbGxMTt//jz3uomJCfcjqi5HR0d28uRJtdttVa22rl27wtTUlJsuKSnB\na6+9BldXV0gkEgQGBqKwsLDeZaC9vT33t4WFBRQKBYCa2zOjR4/GjBkz4OjoiEWLFql9PnPz5k24\nuLhw0z169MDNmzfVxgUAdnZ29fZra2vLPcyzsLAAUPM8KycnBxUVFXBwcICNjQ1sbGzw+uuv4969\newCAW7du1atp1KNHD7Xnx93dHZ988gkiIyPRrVs3hIWF4datWwBqHuqNHz8eDg4OkEgkWLJkCXfb\nsVbd21cWFhb1ps3NzblzBwA2NjbccQCAi4sLt6+6cnJysH79eu7YbGxskJeXh1u3bsHNzU1tvA0F\nBgZCLpfj5MmTGDFiBAIDA3HixAn88ccfjW5PNKfhcdY9rrry8vLQq1evZrfX1OewY8eO2LVrF778\n8kt0794d48eP5x62rl27FowxDB48GAMGDMC2bds0iv/333/HU089hS5dusDGxgaHDh2q916qe2/y\n8/NRUlICPz8/7r0YO3Ys8vPzG+2jqc+SJup+ZvPz81FRUdHoO1T3dmTD9wSo+V7VnafufWq4vrm5\neb3vX8PP7kcffQRPT09YW1vDxsYGhYWFKs+BuuPp0aMHKioqGq1z8+ZNdO7cGR07dlR7nC3VcL91\ny52GGh5zwzJI3fnTpGzQNA4DAwMsWLAABQUFuHXrFn755Rf07NkTANClS5cm4weAmJgYTJ06lVte\nKpVi+/bt3Os2Njb1ngfVKioqgrW1tdrttirxNKyFsX79ely9ehUJCQkoLCzEiRMnwGquqprdlrGx\nMd577z2kpqbi1KlTOHDggNr7yN27d0d2djY3/c8//6B79+5q42pJbRFnZ2eYmZnh/v37KCgoQEFB\nAQoLC7nnIA4ODvjnn3/q7bspYWFhOHnyJHJycrgHfQDwxhtvwNPTE5mZmSgsLERUVFSLqoA2PKaC\nggKUlJRw0zk5OfXOSa0ePXpgyZIl3LEVFBRAoVBw1W7VxdtQYGAgTp48CblcDqlUimHDhuGvv/7C\niRMnIJVKNYq5pZydnZGVlaX29drtN/c5DAkJQWxsLG7fvo1+/frhlVdeAVBTWH711Ve4ceMGtmzZ\ngjlz5jRbbbW8vByTJ0/GwoULcffuXRQUFGDcuHH1PvPq3htbW1tYWFjg8uXL3Hvx8OFDPHr0SOW+\nNH1vVJ3nuvNsbW1hYmLS6Dvk5OTU5LE+rqbe95MnT2LdunXYs2cPHj58iIKCAkgkEu78qVu34XfQ\nxMQEtra29Zbp3r07Hjx4UK+Ar3ucj/N5bLhfR0fHFm+jOZqUDS2JQ135GxQUhL1796pd79SpU8jM\nzMQHH3wABwcHODg44PTp0/j++++5eLy8vOrVkgOAGzduQKlUom/fvmq3rdV2PAqFAhYWFpBIJHjw\n4AFWrFjRaBl1JyE+Ph4XL15EVVUVLC0tYWJiAiMjI5XrhIWF4YMPPkB+fj7y8/Px/vvvN1nlUpPE\nV8vBwQEhISF4++23UVRUhOrqamRlZeGPP/4AAEybNg2bNm3CjRs3UFBQgA8//FDttq5evYrjx4+j\nvLwcZmZmMDc3545JoVDA0tISHTp0wJUrV7B58+ZmY6t7HKqOafny5aioqMDJkydx8OBB7pdK3UL3\nlVdewZdffomEhAQwxlBcXIyDBw9CoVA0GW9D7u7uMDc3x86dOxEYGAhLS0vY2dlh7969jR421urW\nrRvy8vLqPXRsyXvz3HPPIS4uDnv27EFlZSXu37+PlJSURsfY1Ofw7t272L9/P4qLi2FiYoKOHTty\nx7hnzx7k5eUBAKytrWFgYKC2ZlgtpVIJpVIJW1tbGBoa4vfff0dsbGyj5VS9NwYGBnjllVcwf/58\n7or6xo0bKtdvyXvT3Dk1MjLCtGnTsGTJEu4qf8OGDXj++eebXK8lmvus1ioqKoKxsTFsbW2hVCrx\n/vvv10u89vb2yM7ObrS9nTt3Ii0tDSUlJXjvvfe481mXs7MzAgICsHjxYpSXl+PChQv49ttvueNU\nte3mfPTRR3j48CFyc3OxadMmte2kWrLNhjQpG7QRx4oVK3Dq1CksXLiQq62WmZmJ8PBwFBYWYvv2\n7QgJCUFaWhpSUlKQkpKCS5cuobS0FIcOHQJQ007vxIkT9bZ74sQJjBo1CiYmJmr3rdUrnvnz56O0\ntBS2trYICAjA2LFjm7z6qFt3/c6dO5g6dSokEgk8PT0hlUq5ZNKwjvvSpUsxaNAgeHl5wcvLC4MG\nDcLSpUvVxqWqjnxT0zExMVAqlfD09ETnzp0xdepU3L59G0BNwT169Gh4e3tj0KBBmDx5stpfTuXl\n5Vi8eDG6du0KBwcH5OfnY/Xq1QBqPjjff/89rKys8Oqrr2LGjBmNzk1D6s4dUPMlqq0FEx4eji1b\ntqBPnz6NlvXz88PWrVvx5ptvonPnzujduzd3ZdlUvKpIpVLY2tpyv7Zqr3SeeOIJlcuPGjUK/fv3\nh729PXfbQZP3ppazszMOHTqE9evXo0uXLvD19cWFCxcabaepz2F1dTU2bNgAR0dHdOnSBSdPnuS+\n2ImJiXjqqadgaWmJCRMmYNOmTXB1dVUZS+32LC0tsWnTJkybNg2dO3fGDz/8gAkTJtRbtva2rar3\nZs2aNXB3d8dTTz0FiUSC4OBgXL16tdF+WvLeNDynqs7xp59+io4dO6JXr14YPnw4nnvuObz44otq\nl2/p1UFz+6+dHjNmDMaMGYM+ffrA1dUVFhYW9W5f173NM2jQIG7d8PBwREREwMHBAUqlEps2bVK5\n7x9++AHZ2dno3r07Jk2ahPfffx8jR45Uu+2GMTaMe8KECfDz84Ovry/Gjx+P2bNnA6i5crO0tFS7\nbkvOaXNlQ2viqKtXr144ffo0srOz0b9/f1hbW2PKlCl48sknYWJigj179mDu3Lmws7Pj/rm6uiI8\nPJwrM8LDw3Ho0KF6NTG/++47rl2POgasNalZS6qqqjBo0CA4OTnht99+EzocvSOXyxEeHo7c3Fyh\nQyFE52QyGcLDw/HSSy8JHQoBsGTJEtjZ2WHevHm4cOEC3njjDfz1119NrmPMU2xN2rhxIzw9PVU+\npCKEkIZE8HuZ/E9UVBT3t5eXV7NJBxBBX215eXk4dOgQXn75ZfowtQJ1F0PaE/q86zfBr3jeeust\nrFu3Tm1NHtI8qVTabO06QtqK+Ph4oUMgrSToFc+BAwdgZ2cHX19futohhJB2QtDKBf/v//0/7Nix\nA8bGxigrK8OjR48wefLkeu133N3dm2y7QQghpDE3NzdkZmYKHYZqTfaXwCO5XM7Gjx/faL6IQmzS\n8uXLhQ5BIxSndulDnPoQI2MUp7aJuewUvHJBXfTAkBBC2j7BKxfUCgwMVNvinRBCSNshqisefaau\nfzKxoTi1Sx/i1IcYAYqzPRFFzwVNMTAwoBpvhBCVOnfurHYQuPbExsYGDx48qDdPzGUnJR5CiN6i\n8qGGqvMg5nNDt9oIIYTwihIPIYQQXlHiIYQQLYqMjMT69eu1tr2XXnoJ3bp1w8CBA7W2TaGJpjo1\nIYRoQ3p6DuLislBRYQgTk2oEBbmhb18Xna3XkLbbI7744ouYO3cuZs2apdXtComueAghbUZ6eg6i\nozNx795IPHwoxb17IxETcw1xcUk6WQ+oGTjS29sbPj4+jZLD1q1bMXjwYPj4+GDKlCkoLS0FUDPa\n7cCBA+Hj48O1X0xNTYW/vz98fX3h7e3NdXczfPhw2NjYPM7pEC1KPISQNiMuLgtmZqPqzTMxkSE2\nVtJkEnnc9VJTUxEVFYX4+HgkJydj48aN9V6fPHkyEhISkJycDA8PD3zzzTcAgJUrVyI2NhbJycnc\n4JdbtmzBvHnzcP78eZw7dw5OTk4tOnZ9QomHENJmVFSoLtI6dHBDWlqh1tc7fvw4N+w5gEZXJhcv\nXsTw4cPh5eWF7777DpcvXwYADB06FC+88AK+/vprVFZWAgCGDBmCVatWYe3atcjOzoa5ubn6A9Vz\nlHgIIW2GiUm1yvklJVnw8JBofT11bWVqn/NERETgiy++wIULF7B8+XLuVtvmzZvxwQcfIDc3F35+\nfnjw4AHCwsLw22+/wcLCAuPGjWvT4w5R4iGEtBlBQW6oqKhfYFdUyBESUoigoCe0vt7IkSOxZ88e\nrteA2v9rk5FCoYC9vT0qKiqwc+dObr2srCwMHjwYK1asQNeuXZGXl4fr16/D1dUVc+fOxYQJE3Dx\n4sWWHbweocRDCGkz+vZ1gUwmQUlJzRheJSVZkMmsmkwerVnP09MTS5YsQWBgIHx8fPDOO+8A+PeK\nZ+XKlfD398ewYcPg4eHBzV+4cCG8vLwwcOBADB06FF5eXti9ezcGDhwIX19fpKamchUVwsLCEBAQ\ngKtXr8LZ2Rnbtm17/BMkEtRlDiFEb6krH+LikpCWVggPD0mzyUMb6wlN37rMocRDCNFbVD7U0LfE\nQ7faCCGE8IoSDyGEEF5R4iGEEMIrSjyEEEJ4JWjiKSsrg7+/P3x8fODp6YnFixcLGQ4hhBAeCJp4\nzM3NuT6OLly4gPj4ePz5559ChkQIaSMet0ZXa2uCaXNYhNzcXMhkMvTv3x8DBgzApk2btLJdoQl+\nq61Dhw4AAKVSiaqqKq7PI0IIaY3YffseK4k87nq1tDksgomJCTZs2IDU1FScOXMGn3/+OdLS0rS2\nfaEInniqq6vh4+ODbt26QSaTwdPTU+iQCCF67mZuLtjRo7h4+rTO19PlsAj29vbw8fEBAHTq1Ake\nHh64efNmi45JjARPPIaGhkhOTkZeXh7++OMPyOVyoUMihOi5tMOHEWxnhztHjkCpVOpsPT6HRcjO\nzsb58+fh7++v8fGIlWhGIJVIJHj66aeRmJgIqVRa77XIyEjub6lU2uh1QgippVAoYJ6ZCSMLCwwu\nL8fZgwcx9NlndbKeJsMiLF26FIWFhVAoFBgzZgyAf4dFmDZtGiZNmgSgZliEqKgo5OXlYdKkSXB3\nd68X25QpU7Bx40Z06tRJZSxyuVxvfrgLmnjy8/NhbGwMa2trlJaW4ujRo1i+fHmj5eomHkIIaUrK\n0aPwMTICAEjMzMDOnEGhTAaJtbXW19NkWIRff/0VAwcOxPbt27nEsHnzZiQkJODgwYPw8/PDuXPn\nEBYWhqeeegoHDhzAuHHjsGXLFshkMlRUVGDy5Ml4/vnnMXHiRLWxNPxRvmLFiiaPV0iC3mq7desW\nRo4cCR8fH/j7+yM0NBSjRo1qfkVCCFGhqqoKpcnJ6Ghqys0bbGqKhF27dLIeH8MizJ49G56enpg/\nf34LzoS4CXrFM3DgQCQlNT+mOSGEaCItMRGeJSVAx47cPFMjI3TLyEDutWtw7tVLq+vVHRbByMgI\nvr6+cHV1bTQsQteuXeHv7w+FQgGgZliEjIwMMMYQFBQELy8vrFmzBjt27ICJiQkcHBywZMkS/Pnn\nn9i5cye8vLzg6+sLAFi9ejV3y05fUe/UhBC91bB8OLZ7N4xU1PpijKHS0RHB06ap3M7jricW+tY7\nNSUeQojeovKhhr4lHsGrUxNCCGlfKPEQQgjhFSUeQgghvKLEQwghhFei6bmAEEJaysbGRqudcuqr\nhj0miB3VaiOEkDZIzGUn3WojhBDCK0o8hBBCeEWJhxBCCK8o8RBCCOEVJR5CCCG8osRDCCGEV9SO\nh4heenoO4uKyUFFhCBOTagQFuaFvXxehwyKEPCZqx0NELT09B9HRmTAz+3eAwIqKeMhkEgQFPSFg\nZISIm5jLTrrVRkQtLi6rXtIBABMTGWJjJYiLo0EECdFHlHiIqFVUqP6IdujghrS0Qp6jgWh/QRKi\nTyjxEFEzMalWOb+kJAseHhKeowFi9+2j5ENIKwmaeHJzcyGTydC/f38MGDAAmzZtEjIcIkJBQW6o\nqIivN6+iQo6QkELen/HczM0FO3oUF0+f5nW/hLQ1giYeExMTbNiwAampqThz5gw+//xzpKWlCRkS\nEZm+fV0gk0lQUpIFoOZKRyazEqRiQdrhwwi2s8OdI0egVCp53z8hbYWgicfe3h4+Pj4AgE6dOsHD\nwwM3b94UMiQiQkFBTyAkpBBdusQLcqUDAAqFAuaZmTAyNMRgpRJnDx7kPQZC2grRVKfOzs5GYGAg\nUlNT0alTJ26+mKsEkvbjr59/hs/Zs+hoagoA+LO0FAMXL4bE2lrgyAhRTcxlpygakCoUCkyZMgUb\nN26sl3RqRUZGcn9LpVJIpVL+giPtXlVVFUqTk7mkAwCDTU1xYtcuBL/2moCREfIvuVwOuVwudBga\nEfyKp6KiAuPHj8fYsWMxf/78Rq+LOWuT9uHS33+j808/oXvHjvXmX1AoYDNnDpx79dLq/hhjNKom\naTUxl52CXvEwxjB79mx4enqqTDqEiMGdnBzkOzriaoP5TCLBncRErSee2H37EDJpEiUf0mYJesXz\n559/YsSIEfDy8uK+ZKtXr8aYMWP+DVDEWZsQbbuZm4sLUVHoPmsWvAIChA6H6DExl52C32prjphP\nHiHadmzrVkhzc3HcwACBS5bAtM5zJUJaQsxlJ/VcQIhIUJVt0l5Q4iFEJFKOHoWPkREAQGJmBnbm\nDAofPhQ4KkK0jxIPISKgrsp2wq5dAkZFiG5Q4iGCEOu9Z6GkJSbCs6Sk3jxTIyN0y8hA7rVrAkVF\niG6IogEpaX+oynB9fFfZJkRIlHgI77henh0cqMrw/4yaNk3oEAjhDd1qI7yjXp4Jad8o8RBeUZVh\nQgglHsIrqjJMCKHEQ3hDVYYJIQBVLiA84qoM1+nluW6V4bZccys9PQdxcVmoqDCEiUk1goLc0Lev\ni9BhESJI/jlxAAAczUlEQVQI6quN8ObY7t0wUjHCLGMMlY6OCG6jNbvS03MQHZ0JM7NR3LyKinjI\nZBJBRlMl7YOYy05KPITo2OefH8e9eyMbzS8pyRJsKG/S9om57KRnPIToWEWF6q9Zhw5uSEsr5Dka\nQoRHiYcQHTMxqVY5v6QkCx4eEp6jIUR4lHgI0bGgIDdUVMTXm1dRIafbbKTdosRDiI717esCmUyC\nkpIsADVXOjKZFSUd0m5R5QJCeBIXl4S0tEJ4eFBtNqJ7Yi47KfEQQkgbJOayU/AGpC+99BIOHjwI\nOzs7XLx4UehwSDtDDTsJ4Z/gVzwnT55Ep06dMGvWLJWJR8xZm+g3athJ2jIxl52CVy4YPnw4bGxs\nhA6DtENxcVn1kg4AmJjIEBsrQVxckkBREdL2CZ54CBEKNewkRBiCP+PRRGRkJPe3VCqFVCoVLBbS\ndjTVsHPYMGrYSfSLXC6HXC4XOgyNCP6MBwCys7MRGhpKz3gIr9LTcxATcw0mJjJuXkWFnNrYkDZB\nzGUn3Woj7RY17CREGIInnrCwMAQEBODq1atwdnbGtm3bhA6JtCNBQU8gJKQQXbrEi7ILG7H+YiWk\nNURxq60pYr5cJETXjuzdi5BJk2BgYCB0KETPiLnsFPyKhxCi2s3cXLCjR3Hx9GmhQ2k1sRaARBh6\nUauNELHTRQ8IaYcPI9jODsePHIFy0CCYmppqKVr+xe7bR1duhEOJR8SoOxf9oKoHhJiYeMhk9x/7\nmZFCoYB5ZiaMLCwwuLwcZw8exNBnn9VWyLzirtwcHOAVECB0OEQE6FabSNUWZvfujcTDh1LcuzcS\nMTHXqEW9COmiB4SUo0fhY2QEAJCYmYGdOYPChw9bHasQaq/c7hw5AqVSKXQ4RAQ0SjwLFizAo0eP\nUFFRgVGjRsHW1hY7duzQdWztGnXnoj+03QNCVVUVSpOT0bHOrbXBpqZI2LXrsWMUCnflZmiIwUol\nzh48KHRIRAQ0SjyxsbGwsrLCgQMH4OrqiqysLKxbt07XsbVr1J2L/tD20NZpiYnwLCmpN8/UyAjd\nMjKQe+3aY8UolLZ05Ua0R6PEU1lZCQA4cOAApkyZAolEQg8JdUzbhRnRHW0PbX0nJwdXHR0ht7au\n9+++oyOuJCZqK2yda0tXbkS7NKpcEBoain79+sHc3BybN2/G3bt3YW5uruvY2rWgIDfExMQ36s4l\nJIRa1otNTQ8I9xEbm4UOHdxQUpLVqvdp1LRpWo5QGNyVW8eO3Ly6V27OvXoJGB0RksYNSB88eACJ\nRAIjIyMUFxejqKgI9vb2uo5P1I2gdC0uLgmxsZI6hZn4WtaTf9HQ1vUd270bRjdvNprPGEOloyOC\n20iCFSsxl50aJZ7i4mJ8/PHH+Oeff7B161ZkZGQgPT0d48eP132AIj55fBBjYdbaat6MMbpVS4iO\nibns1CjxTJs2DX5+foiJiUFqaiqKi4sREBCAlJQU3Qco4pPXHmlj1E7qBqb1KHmT5oi57NSockFW\nVhYWLVrEtZzuWOeeLWlfWlvNuy11AyOk2H37RFuoENIcjSoXmJmZobS0lJvOysqCmZmZzoIi4tV0\nNe94BAU1vX5b6gZGKEL0BEC9aBBt0uiKJzIyEmPGjEFeXh5mzpyJkSNHYs2aNbqOjYhQa6p5U2NC\n7eC7JwDqRYNom0aJJyQkBHv37sW2bdswc+ZMnDt3DjKZrPkVSZvTmjYr1Jiw9YRI3tSLBtE2jRLP\niRMncPnyZVhaWsLS0hKXL1/GH3/8oevYiAg97qid7bkxYXp6Dj7//Dg++USOzz8/jvT0nMfelhDJ\nm3rRINqm0TOedevWcTVoysrKkJCQAD8/Pxw/flynwRFxqkkySUhLi8ewYZrVZmuvjQm12XO1uuR9\nYtcuBL/2mtZibqip26vDhlEvGqTlNEo8Bw4cqDedm5uLefPm6SQgoh+Cgp5otiJBXXdycpDv6Iir\nDeYziQR3EhPbbOJRf5sqC0BSi5KPUMlbH3vRoOrm4vZY4/E4OTkhLS1N27GQNqytdAPTUq2tBViX\nUMlb210C8YEGnhM3jRLP3Llzub+rq6uRnJwMPz8/rQRw+PBhzJ8/H1VVVXj55ZexaNEirWyXEDHQ\n5m0qIZP349xeFQoNPCd+GvVcEB0dzf1tbGwMV1dXDBs2rNU7r6qqQt++fREXFwdHR0c8+eST+OGH\nH+Dh4fFvgCJufUtIc9LTcxATc63RbSpNKmSQx3Ns61ZIc3Nx3MAAgUuWtNu2YmIuOzW64omIiNDJ\nzhMSEuDu7g5XV1cAwIwZM7B///56iYcQfabN21SteW4h9mce2oqvLQ0Z3pY1WZ164MCBav95eXm1\neuc3btyAs7MzN+3k5IQbN260eruEiElQ0BMICSlEly7xrephvDXd5AjVxY6m+9RWfNRWTD80ecXz\n22+/6XTnmv7CiYyM5P6WSqWQSqW6CYgQHWlpLcCGWvPcQshnHpo85NdWfEJVNxcLuVwOuVwudBga\naTLx1N4C0xVHR0fk5uZy07m5uXBycmq0XN3EQ0h71Jo+7oTqH0/ThKKt+NprW7FaDX+Ur1ixQrhg\nmqFRzwWnT5/Gk08+iY4dO8LExASGhoawsrJq9c4HDRqEjIwMZGdnQ6lUYteuXXjmmWdavV0iHG22\n0ic1WtNNjra72GnJ7TBN+pTTZnxtZcjw9kCjygVvvvkmfvzxR0ybNg2JiYmIiYlBenp663dubIzP\nPvsMo0ePRlVVFWbPnk0VC/SYNlvp6xtd9t6s8rmFTAaJtbVO11VF0/Yxmj7k12Z87bWtmD7S6IoH\nAHr37o2qqioYGRnhxRdfxOHDh7USwNixY5Geno7MzEwsXrxYK9skwoiLy0JRkR8SEq7jzJlsJCRc\nR2Ghryg6k9TVlVh6eg6WLfsR//nPMRw82BOZmT5a7b25NX3cabt/vJaMpaTJQ/723H9fe6dR4unY\nsSPKy8vh7e2NhQsX4uOPPxZt/XAinLy8h0hOfoCSkp4oK3NFSUlPpKQU4PbtDoJ2Jqmrbv1rt3vu\nnB0qK1/ijvfatVta672Ze25RR93nFrpaV+X2NByOQdOEou34iP7Q6Fbbjh07UF1djc8++wwbNmxA\nXl4e9u7dq+vYiJ65du0OjI3rP8A1MuqJK1cS0b//XW4e34OKabO/NFXbra6Wc/OMjHoiK+sBgFvo\n1avl3eI01JpucrTZxU5L2sdo+pC/vfbfRzRMPImJiRg/fjwkEgnVMCNq9erVBTdvxsPI6N9W+lVV\ncvTrZ4UOHewACPMcSJv9panarqFh/W5xTEw6496967C3b33vza15bqHNZx4teRajaUKhZzLtl0aJ\n57fffsNbb72FwMBATJ8+HWPGjIGx8WP1L0raMCcnW/TsKUFmZhZMTd2gVGbB3d0K9vYS1NYZ0dXV\nR1NXUbrq1r92u716uSEl5d+EW1HxAN27n0FISN82Uamipe1jKKGQ5mj0jCc6OhqZmZmYMmUKfvjh\nB/Tq1QuzZ8/WdWxEzwQFucHZuRDu7oWwsIiHu3shnJ0f1Wutr4tBxZp7htOaUVObUrtdW1sX9Owp\ngVKZhaqqbDg6puGll9pG0gHoWQzRPo0vW0xNTTF27FgYGhqipKQEv/zyC7755htdxkb0zL/9kknQ\nq9cT/xudFPUKYF1cfWhyFaWLbv3r9sPWq9cTKCs7gK5d7+PZZwe2maQD0LMYon0a9U596NAh7N69\nG/Hx8ZBKpZg+fTpCQkJ4ud0m5h5WiWpxcUlISyuEh0fj7vMfp7fm5iojfPKJHA8fSlWu26VLPObO\nlTUbV2voarutJfaOQYluibns1CjxhIWFcc92zM3N+YiLI+aTR1ouPT0Hn30Wj9TUjjA37wIHBxOE\nhXVsMuk0rIxQUREPmezfQv7zz4/j3r2RjdatubJp3e00fXZk714aDK0dE3PZqdEznh9++AETJ05U\nm3SGDBmi1aBI21SbRLp0iYCT0zAw1hOlpblNrqP+NppE589w9FlLGnsSwjeNey5oSllZmTY2Q9q4\nukmkVy8H+Pv3RJ8+M5tsaKlJZYSaZy0SlJRkAcD/ni2174HWNG3sSYgQtJJ4CNHE49Roa6oygofH\nv5URtDXmTS2x3qLQhLY7BiVE2yjxEN5omkTqaslttKCgJzB3rkwrVzpCDZymDTQYGhE7jRLPpk2b\nUFBQoOtYSBv3OM9ihLiNps/PR6jjTaIPNEo8d+7cwZNPPolp06bh8OHDjX4JxsTE6CQ40rY8bhLR\n9m205gj9fKQ1PWlTY0+iDzSqTg0A1dXViI2NRXR0NBITEzFt2jTMnj0bbm5uug1QxFUCyeMRa7sX\noOb5SMrKlRhqYYHC8nJcGjxYbWeYuqBJ9fGmHNu9G0Y3bzaazxhDpaMjgqk7m3ZDzGWnxi1ADQ0N\nYW9vj27dusHIyAgFBQWYMmUKgoKCsG7dOl3GSNqYoKAnWtVjsy5pe+C0lmptX3bUTxrRBxrdatu4\ncSP8/PywcOFCDB06FJcuXcLmzZtx7tw57Nu3T9cxEsILMTwf0UVfdoSIjUZXPA8ePMC+ffvg4lJ/\nzBRDQ0P89ttvOgmMEL5pOo6MLqmr+VdcnNnqIRYIEQuNn/EIRcz3KUnbIobnI+r6spMYn8WCyP9S\n9zdEY2IuOwVLPHv27EFkZCSuXLmCs2fP4oknVN+7FvPJI0QX4uKSEBsr4XrSfsInHdZ//Irus2bB\nKyBA6PCInhBz2SlYA9KBAwfi559/xogRI4QKgRBRalh9vGvxDer+hrQpgg0j2q9fP6F2TYjo1db8\nUygUSDm6C0YWFhhcXo6zBw/yWr2bEF2gLnMIETHq/oa0RTq94gkODsbt27cbzV+1ahVCQ0M13k5k\nZCT3t1QqhVQq1UJ0hIibuurdJ3btQvBrrwkYGREjuVwOuVwudBgaEbxWm0wmw/r166lygUg0N9on\n4c+lv/9G559+Qvc61bsB4IJCAZs5c2jIadIkMZedgj3jqUusJ6e9UdVdS0xMPGSy+6Lr2qY9uJOT\ng3xHR1xtMJ9JJLiTmKiTxEPDZRM+CHbF8/PPP+P//u//kJ+fD4lEAl9fX/z++++NlhNz1m5raAhp\nQsNltx1iLjsFq1zw7LPPIjc3F6Wlpbh9+7bKpEP4Rd21tG/6PBwE0S+iuNVGxKGpgdqE7K6luedO\ndHtIO2qHgzh+5AiUgwbBtE6lBkK0iapTE87jDNSma7XPne7dG4mHD6W4d28kYmKuIS4uiVtGn0cL\nFQsaLpvwiRIP4Qgx2mdz1A8TIEFcXBLdHtISai9E+ESJh9TD92ifzWnuuZPQo4W2BWIYDoK0L5R4\nSCNBQU9g7lyZ4EkHaPq5k6urCd0e0gIaLpvwjRIPEbWmnjt1rryn8vYQPe9pmTs5Objq6Ai5tXW9\nf/cdHXElMVHo8EgbJHjPBc0Rc110wo+GwwSEhBRCJvNG/PvvI6hObTZlVRVOODmh2taW2qKQdk/M\nZSdVpyaiV3PLLwlpafEYNkyCoKAncOnvv1WOFtohKQnXHz3CRQcHGruGEJGiKx6il9SNFpp+6hRc\nqqpgNGAAApcsobYopN0Sc9lJiYe0GQqFAikrV2KohQUKy8txafBgGruGtFtiLjupcgFpM6gtCiH6\ngRIPaROoLQoh+oMSD2kTqC0KIfqDarWRNkGIsWsIIY+HKhcQQkgbJOayk261EUII4RUlHkIIIbyi\nxEMIIYRXlHgIIYTwSrDEs2DBAnh4eMDb2xuTJk1CYWGhUKEQQgjhkWCJJyQkBKmpqUhJSUGfPn2w\nevVqoUIhhBDCI8EST3BwMAwNa3bv7++PvLw8oUIhhBDCI1E84/n2228xbtw4ocMghFdibWNBiK7p\ntOeC4OBg3L59u9H8VatWITQ0FAAQFRUFU1NTzJw5U+12IiMjub+lUimkUqm2QyWEd7H79tGAdURr\n5HI55HK50GFoRNCeC6Kjo7F161YcO3YM5ubmKpcRc+tbQh7XzdxcXIiKQvdZs2jAOqITYi47BbvV\ndvjwYaxbtw779+9Xm3QIaavSDh9GsJ0d7hw5AqVSKXQ4hPBKsMQzd+5cKBQKBAcHw9fXF3PmzBEq\nFEJ4pVAoYJ6ZCSNDQwxWKnH24EGhQyKEV4L1Tp2RkSHUrgkRlMoB62QySKytBY6MEH6IolYbIe0F\nDVhHCCUeQnhFA9YRQgPBEcIrGrCOEBoIjhBC2iQxl510q40QQgivKPEQQgjhFSUeQgghvKLEQwgh\nhFeUeAghhPCKEg8hhBBeUeIhhBDCK0o8hBBCeEWJhxBCCK8o8RBCCOEVJR5CCCG8osRDCCGEV5R4\nCCGE8IoSDyGEEF4JlniWLVsGb29v+Pj4YNSoUcjNzRUqFEIIITwSbDyeoqIiWFpaAgA+/fRTpKSk\n4Ouvv260nJjHlCCEELESc9kp2BVPbdIBAIVCAVtbW6FCIYQQwiNBh75esmQJduzYgQ4dOuDMmTNC\nhkIIIYQnOr3VFhwcjNu3bzeav2rVKoSGhnLTH374IdLT07Ft27bGAYr4cpEQQsRKzGWnTq94jh49\nqtFyM2fOxLhx49S+HhkZyf0tlUohlUpbGRkhhLQtcrkccrlc6DA0IljlgoyMDPTu3RtATeWChIQE\n7Nixo9FyYs7ahBAiVmIuOwVLPFOmTEF6ejqMjIzg5uaGzZs3w87OrtFyYj55hBAiVmIuOwVLPJoS\n88kjhBCxEnPZST0XEEII4RUlHkIIIbyixEMIIYRXlHgIIYTwihIPIYQQXlHiIYQQwitKPIQQQnhF\niYcQQgivKPEQQgjhFSUeQgghvKLEQwghhFeUeAghhPCKEg8hhBBeUeIhhBDCK0o8hBBCeEWJhxBC\nCK8o8RBCCOEVJR5CCCG8osRDCCGEV4InnvXr18PQ0BAPHjwQOhRCCCE8EDTx5Obm4ujRo3BxcREy\nDK2Qy+VCh6ARilO79CFOfYgRoDjbE0ETz9tvv421a9cKGYLW6MuHkeLULn2IUx9iBCjO9kSwxLN/\n/344OTnBy8tLqBAIIYQIwFiXGw8ODsbt27cbzY+KisLq1asRGxvLzWOM6TIUQgghImHABCjxL126\nhFGjRqFDhw4AgLy8PDg6OiIhIQF2dnb1lnV3d0dWVhbfIRJCiF5zc3NDZmam0GGoJEjiaahnz544\nd+4cOnfuLHQohBBCdEzw6tQAYGBgIHQIhBBCeCKKKx5CCCHthyiueDQl9samy5Ytg7e3N3x8fDBq\n1Cjk5uYKHVIjCxYsgIeHB7y9vTFp0iQUFhYKHZJKe/bsQf/+/WFkZISkpCShw2nk8OHD6NevH3r3\n7o01a9YIHY5KL730Erp164aBAwcKHUqTcnNzIZPJ0L9/fwwYMACbNm0SOiSVysrK4O/vDx8fH3h6\nemLx4sVCh6RWVVUVfH19ERoaKnQoqjE98c8//7DRo0czV1dXdv/+faHDUenRo0fc35s2bWKzZ88W\nMBrVYmNjWVVVFWOMsUWLFrFFixYJHJFqaWlpLD09nUmlUnbu3Dmhw6mnsrKSubm5sevXrzOlUsm8\nvb3Z5cuXhQ6rkT/++IMlJSWxAQMGCB1Kk27dusXOnz/PGGOsqKiI9enTR5TnkzHGiouLGWOMVVRU\nMH9/f3by5EmBI1Jt/fr1bObMmSw0NFToUFTSmysefWhsamlpyf2tUChga2srYDSqBQcHw9Cw5m33\n9/dHXl6ewBGp1q9fP/Tp00foMFRKSEiAu7s7XF1dYWJighkzZmD//v1Ch9XI8OHDYWNjI3QYzbK3\nt4ePjw8AoFOnTvDw8MDNmzcFjkq12pq4SqUSVVVVoqwQlZeXh0OHDuHll18WbTMVvUg8+tTYdMmS\nJejRowe2b9+Od999V+hwmvTtt99i3LhxQoehd27cuAFnZ2du2snJCTdu3BAworYjOzsb58+fh7+/\nv9ChqFRdXQ0fHx9069YNMpkMnp6eQofUyFtvvYV169ZxPzDFSKcNSFtCXxqbqotz1apVCA0NRVRU\nFKKiovDhhx/irbfewrZt20QXI1BzXk1NTTFz5ky+w+NoEqcYUS1M3VAoFJgyZQo2btyITp06CR2O\nSoaGhkhOTkZhYSFGjx4NuVwOqVQqdFicAwcOwM7ODr6+vqLu2kc0iefo0aMq51+6dAnXr1+Ht7c3\ngJrLSD8/P5WNTfmgLs6GZs6cKdjVRHMxRkdH49ChQzh27BhPEamm6bkUG0dHx3oVR3Jzc+Hk5CRg\nRPqvoqICkydPxvPPP4+JEycKHU6zJBIJnn76aSQmJooq8Zw6dQq//vorDh06hLKyMjx69AizZs1C\nTEyM0KHVI95rsf8ZMGAA7ty5g+vXr+P69etwcnJCUlKSIEmnORkZGdzf+/fvh6+vr4DRqHb48GGs\nW7cO+/fvh7m5udDhaERs96kHDRqEjIwMZGdnQ6lUYteuXXjmmWeEDktvMcYwe/ZseHp6Yv78+UKH\no1Z+fj4ePnwIACgtLcXRo0dF9x1ftWoVcnNzcf36dfz4448YOXKk6JIOoAeJpyEx3+ZYvHgxBg4c\nCB8fH8jlcqxfv17okBqZO3cuFAoFgoOD4evrizlz5ggdkko///wznJ2dcebMGTz99NMYO3as0CFx\njI2N8dlnn2H06NHw9PTE9OnT4eHhIXRYjYSFhSEgIABXr16Fs7OzILd9NfHXX39h586diI+Ph6+v\nL3x9fXH48GGhw2rk1q1bGDlyJHx8fODv74/Q0FCMGjVK6LCaJNbykhqQEkII4ZXeXfEQQgjRb5R4\nCCGE8IoSDyGEEF5R4iGEEMIrSjyEEEJ4RYmHEEIIryjxEEII4RUlHkJaITs7W/Tj3RAiNpR4CCGE\n8IoSD2kXzp49C29vb5SXl6O4uBgDBgzA5cuXGy0XFhaGQ4cOcdMRERHYu3cvcnJyMGLECPj5+cHP\nzw+nT59utG50dDTmzp3LTY8fPx4nTpwAAMTGxiIgIAB+fn6YNm0aiouLAQDvvvsu+vfvD29vbyxY\nsEDbh02IKImmd2pCdOnJJ5/EM888g6VLl6K0tBTh4eEqx1KZPn06du/ejXHjxkGpVOL48ePYsmUL\nqqurcfToUZiZmSEjIwMzZ87E2bNnm9yngYEBDAwMkJ+fj6ioKBw7dgwWFhZYs2YNPv74Y/znP//B\nL7/8gitXrgAAHj16pJNjJ0RsKPGQduO9997DoEGDYGFhgU8//VTlMmPGjMG8efOgVCrx+++/IzAw\nEGZmZigsLMSbb76JlJQUGBkZ4erVqxrtkzGGM2fO4PLlywgICABQM3plQEAAJBIJzM3NMXv2bIwf\nPx7jx4/X2rESImaUeEi7kZ+fj+LiYlRVVaG0tJQbxrguc3NzSKVSHDlyBLt370ZYWBgAYMOGDXBw\ncMCOHTtQVVWlckgJY2NjVFdXc9NlZWXc38HBwfj+++8brZOQkIBjx47hp59+wmeffSb4GEmE8IGe\n8ZB247XXXsMHH3yAmTNnYtGiRWqXmz59Or799lucPHkSY8aMAVBzG8ze3h4AEBMTg6qqqkbrubq6\nIjk5GYwx5ObmIiEhAQYGBnjqqafw119/ISsrCwBQXFyMjIwMFBcX4+HDhxg7diw+/vhjpKSk6OCo\nCREfuuIh7UJMTAzMzMwwY8YMVFdXIyAgQO2wxSEhIQgPD8fEiRNhbFzzFZkzZw4mT56MmJgYjBkz\npt7QzLVjngwbNgw9e/aEp6cnPDw84OfnBwCwtbVFdHQ0wsLCUF5eDqBm6HFLS0tMmDABZWVlYIxh\nw4YNOj4LhIgDjcdDCCGEV3SrjRBCCK/oVhtply5evIhZs2bVm2dubq6yfQ4hRLvoVhshhBBe0a02\nQgghvKLEQwghhFeUeAghhPCKEg8hhBBeUeIhhBDCq/8PZLjPbFfekBsAAAAASUVORK5CYII=\n", - "text": [ - "" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## Differences between the step by step approach and matplotlib.mlab.PCA()\n", - "\n", - "When we plot the transformed dataset onto the new 2-dimensional subspace, we observe that the scatter plots from our step by step approach and the `matplotlib.mlab.PCA()` class do not look identical. This is due to the fact that `matplotlib.mlab.PCA()` class ***scales the variables to unit variance*** prior to calculating the covariance matrices. This will/could eventually lead to different variances along the axes and affect the contribution of the variable to principal components. \n", - "\n", - "One example where a scaling would make sense would be if one variable was measured in the unit **inches** where the other variable was measured in **cm**. \n", - "However, for our hypothetical example, we assume that both variables have the same (arbitrary) unit, so that we skipped the step of scaling the input data." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - " \n", - "# Using the PCA() class from the sklearn.decomposition library to confirm our results" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In order to make sure that we have not made a mistake in our step by step approach, we will use another library that doesn't rescale the input data by default. \n", - "Here, we will use the PCA class from the `scikit-learn` machine-learning library. The documentation can be found here: \n", - "[http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html](http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html). \n", - "\n", - "For our convenience, we can directly specify to how many components we want to reduce our input dataset via the `n_components` parameter. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - " n_components : int, None or string\n", - " \n", - " Number of components to keep. if n_components is not set all components are kept:\n", - " n_components == min(n_samples, n_features)\n", - " if n_components == \u2018mle\u2019, Minka\u2019s MLE is used to guess the dimension if 0 < n_components < 1, \n", - " select the number of components such that the amount of variance that needs to be explained \n", - " is greater than the percentage specified by n_components" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we just need to use the `.fit_transform()` in order to perform the dimensionality reduction." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from sklearn.decomposition import PCA as sklearnPCA\n", - "\n", - "sklearn_pca = sklearnPCA(n_components=2)\n", - "sklearn_transf = sklearn_pca.fit_transform(all_samples.T)\n", - "\n", - "plt.plot(sklearn_transf[0:20,0],sklearn_transf[0:20,1], 'o', markersize=7, color='blue', alpha=0.5, label='class1')\n", - "plt.plot(sklearn_transf[20:40,0], sklearn_transf[20:40,1], '^', markersize=7, color='red', alpha=0.5, label='class2')\n", - "\n", - "plt.xlabel('x_values')\n", - "plt.ylabel('y_values')\n", - "plt.xlim([-4,4])\n", - "plt.ylim([-4,4])\n", - "plt.legend()\n", - "plt.title('Transformed samples with class labels from matplotlib.mlab.PCA()')\n", - "\n", - "plt.draw()\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAEaCAYAAAAhXTHBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVFX/B/APO6hssgsoCqigbGGSqDEo4JKkuaNhqFnm\nk49Wj5mPmaihmZlpq20immZmZakhLgyZy0NuuBEKCoIrKCLDNjCc3x/8uLHMwAAz996B7/v18iX3\nzl2+987M+c4999xz9BhjDIQQQghP9IUOgBBCSMdCiYcQQgivKPEQQgjhFSUeQgghvKLEQwghhFeU\neAghhPBKJxLPvXv38PTTT8PCwgKLFi0SOpx6srOzoa+vj+rqaqFDUSkmJgbLli0TZN+jR4/Gtm3b\nVL6uqdj4PMaWvOdSqRSurq6t2k9r1y0rK0NkZCSsrKwwZcqUVu1bV7X1+yiRSPDNN98AAL777juM\nGDGCe01fXx/Xr1/XSJwNubm54ciRI2otq804WmPJkiXYuHEjAODChQsYPHhws+s0m3i6dOkCc3Nz\nmJubQ19fH506deKmd+7c2fao1fDll1/C3t4ejx8/xrp163jZZ3uip6cHPT09QfZ94MABREdHAwDi\n4+MxdOjQeq9rKjYhj1FsfvzxR9y/fx8PHz7Erl27hA6nTWJjY7nPDx/brvs5mj59Og4ePKiVfTek\nrc9vTEwMTExMYG5uDhsbG0RERCAjI4N7/erVq5g0aRLs7OxgZWUFPz8/bNiwoV7ilslk6NKlC0aP\nHt1o+/n5+di2bRvmzp0LAPD19YWVlRX27dvXZFzNJh6ZTIbi4mIUFxejR48e2LdvHzcdFRXFLVdV\nVdX8WWilnJwceHl5tWpdbcalSzrCc8Id4RjVkZOTg969e0NfX/nXW6FQ8BwREYqenh4WL16M4uJi\n5OXlwd7eHjExMQCArKwsBAUFoUePHrh06RIePXqE3bt348yZMyguLua2sWfPHnTv3h1SqRT37t2r\nt/34+Hg888wzMDEx4eZNnz4dmzdvbjKuVle1SaVSuLi44P3334eTkxNmz56NR48eYcyYMbC3t0fX\nrl0RGRmJW7ducetIJBK88847GDJkCCwsLDBixAg8ePAAAFBeXo7nn38etra2sLa2xsCBA3H//n3E\nxMQgISEB77//PszNzXH06FHI5XIsXLgQzs7OcHZ2xmuvvQa5XK40rlmzZmHFihWYNGkSoqOjYWFh\nAV9fX1y7dg1r1qyBg4MDevTogUOHDnFxFhUVYfbs2ejWrRtcXFywbNky7hdAdXU1/vOf/8DOzg7u\n7u7Yv39/k+dp7dq1cHFxgYWFBfr27YujR48CAFJTUzFo0CBYW1ujW7dumD9/PiorK/95Y/T18fnn\nn8PT0xMWFhZ45513kJWVhUGDBsHKygpTp07llq895jVr1sDOzg49e/bEjh07VMa0b98++Pv7w9ra\nGoMHD8bFixebjbeuGzduwNrampueM2cOHBwcuOno6Gju0ru26uLvv//G3LlzcfLkSZibm6Nr167c\n8g8fPsSYMWNgYWGBp556qslqhD///BPBwcGwtrZG9+7dkZCQ0GiZwsLCJj+H8fHxcHd3h4WFBXr1\n6sWdq8zMTISEhMDKygp2dnaYOnWqyjjq2rJlC7y9vWFhYQF3d3d8+eWXjZZR9d5UVFTgP//5D3r0\n6AFHR0e88sorKC8vV7ofdd6b5cuXY9WqVdi1axfMzc3x7bffIj4+HoMHD8brr78OW1tbrFixAo8f\nP8aMGTNgb28PNzc3xMXFcYm77vLW1tbw8PDAiRMnsGXLFnTv3h0ODg5Kz3stiUSCZcuWYfDgwTA3\nN8ezzz6LgoICTJ8+HZaWlhg4cCBycnK45RcsWIDu3bvD0tISAwYMwJ9//gkASExMxJo1a7hjCQgI\n4La/ZMkSBAUFwdLSEuPGjUNhYaHSWG7fvo1nn30WNjY28PT0xNdff93ktutSdoW+f/9+uLu7w87O\nDm+++abKHzsxMTGYN28eRo8eDXNzcwwdOhR3797FggULYG1tDS8vL5w/f17pus2VDS2Joy4zMzNE\nRUXh0qVLAGo+K0OGDMEHH3zAfX979+6N7du3w9LSkltv69atePHFFzF48GBs37693jYTExMREhJS\nb15ISAiOHDnSKOZ6WAu4ubmxI0eOMMYYS05OZoaGhuytt95icrmclZWVsQcPHrCffvqJlZWVseLi\nYjZp0iQ2btw4bv2QkBDm4eHBrl27xsrKyphEImFvvfUWY4yxL774gkVGRrKysjJWXV3Nzp49yx4/\nfswYYywmJoYtW7aM286yZcvYoEGDWH5+PsvPz2fBwcHc68riWr58OTM1NWVJSUmsqqqKzZgxg/Xo\n0YOtXr2aVVVVsa+++or17NmT2/64cePY3LlzWWlpKbt//z4bOHAg27x5M2OMsc8//5z17duX5eXl\nsYcPHzKJRML09fWZQqFodL7+/vtv5urqyu7cucMYYywnJ4dlZWUxxhg7c+YM+9///scUCgXLzs5m\nXl5e7KOPPuLW1dPTY+PGjWPFxcXs8uXLzNjYmIWGhrIbN26woqIi5u3tzbZu3VrvmN944w0ml8tZ\nSkoK69y5M7t69Sp3/t5++23GGGNnz55l9vb2LDU1lVVXV7OtW7cyNzc3JpfLm4y3oe7du7OzZ88y\nxhjr3bs3c3d3Z+np6dxr58+fZ4wxJpFI2DfffMMYYyw+Pp4NGTKk3nZeeOEFZmNjw/766y9WVVXF\npk+fzqZOnap0n9nZ2czc3Jx9//33rKqqij148IDbT91jbOpzKJPJmIWFBXdu7t69yy5fvswYY2zq\n1Kls9erVjDHGKioq2PHjx5XGcePGDaanp8e95/v372fXr19njDGWkpLCOnXqxJ0bVe9NRkYGY4yx\nhQsXsrFjx7LCwkJWXFzMIiMj2ZIlS7h1XVxcGGNNf5Yaio2NZdHR0dz0li1bmKGhIfvkk0+YQqFg\nZWVlLDo6mo0bN47JZDKWnZ3Nevfuzb1PtcvHx8ez6upq9vbbbzNnZ2f26quvMrlczpKSkpi5uTkr\nKSlRuv+QkBDm6enJrl+/zn1WPTw82JEjR7jv38yZM7nlt2/fzh4+fMgUCgVbv349c3R0ZBUVFUqP\npXb7zs7O7PLly6ykpIRNmDCBPf/880rfm6FDh7J//etfrKKigp0/f57Z2dmxo0ePqtx23c/rli1b\n6n1e9fT02LBhw1hhYSG7efMm6927N/v666+VnoMXXniB2drasrNnz7Ly8nI2bNgw1qNHD7Zt2zbu\nnIaGhnLL1y1b1Skb1I2j7veiuLiYRUVFsaeffpoxxpiDgwOLj49Xul6t7OxsZmBgwHJzc9mXX37J\nfH19671uZ2fHTp8+3Wg9CwsLdvHiRZXbbVPiMTY25j4gypw7d45ZW1tz0xKJhMXFxXHTn332GRs5\nciRjjLFvv/2WBQcHswsXLjTaTt2Txxhj7u7u7Pfff+emDx48yNzc3FTGtXz5chYREcFN//rrr6xL\nly6surqaMcbY48ePmZ6eHisqKmJ3795lJiYmrKysjFt+x44d3IckNDSUS0KMMZaUlFTvg17XtWvX\nmL29PTt8+DCTy+UqzxNjjG3YsIE999xz3LSenh47ceIENx0YGMjef/99bvqNN95gCxcu5I7Z0NCQ\nlZaWcq9PnjyZrVq1ijt/tYl57ty59ZI4Y4z16dOHpaSksMzMTLXjjY6OZh9++CG7c+cO69OnD1u8\neDH74osv2PXr15mVlRW3XFNf5NrY5syZw00fOHCA9e3bV+k+V69ezcaPH6/0tYafkbrqfg5lMhmz\nsrJie/bsqXe+GGNsxowZ7KWXXmJ5eXlNHnvDwq2hcePGsY0bNzLGmn5vqqurWefOneslkBMnTnA/\nguomnpZ8lpYvX84VxIzVnPfu3btz01VVVczY2Jj7ocAYY5s3b2YSiYRb3tPTk3vtwoULTE9Pj92/\nf5+bZ2Njw9LS0pTuXyKRcAmcsZrP6ujRo7np3377jfn7+6uM39ramisHGh5L7fZrkzNjjF25coUZ\nGxuz6urqeu/NzZs3mYGBAZPJZNyyS5YsYTExMU1uu6nEc/DgQW76s88+Y8OHD1d6DDExMeyll17i\npj/++GPm7e3NTV+4cKHe96Ru2dqQsrJB3TheeOEFZmpqyqysrJijoyMbO3Ys9yPJyMio3naUWbVq\nFRs0aBBjjLGCggJmaGjIzp07x71uZGTE/Yiqy9nZmR07dkzldtvUqs3Ozg7GxsbcdGlpKV5++WW4\nubnB0tISISEhKCoqqncZ6OjoyP1tZmYGmUwGoKZ6ZsSIEZg6dSqcnZ2xePFilfdnbt++jR49enDT\n3bt3x+3bt1XGBQD29vb19mtra8vdzDMzMwNQcz8rJycHlZWVcHJygrW1NaytrTF37lzk5+cDAO7c\nuVOvpVH37t1Vnh8PDw989NFHiI2NhYODA6KionDnzh0ANTf1xowZAycnJ1haWmLp0qVctWOtutVX\nZmZm9aZNTU25cwcA1tbW3HEAQI8ePbh91ZWTk4P169dzx2ZtbY28vDzcuXMH7u7uKuNtKCQkBFKp\nFMeOHcPTTz+NkJAQpKSk4I8//mhUPdGchsdZ97jqysvLQ69evZrdXlOfw86dO2PXrl344osv0K1b\nN4wZM4a72fr++++DMYaBAweif//+2LJli1rx//7773jqqadgY2MDa2trHDhwoN57qeq9KSgoQGlp\nKQIDA7n3YtSoUSgoKGi0j6Y+S+qo+5ktKChAZWVlo+9Q3erIhu8JUPO9qjtP1fvUcH1TU9N637+G\nn90PPvgA3t7esLKygrW1NYqKipSeA1XH0717d1RWVjZa5/bt2+jatSs6d+6s8jhbquF+65Y7DTU8\n5oZlkKrzp07ZoG4cenp6WLRoEQoLC3Hnzh388ssv6NmzJwDAxsamyfgBICEhAZMmTeKWl0gk2Lp1\nK/e6tbV1vftBtYqLi2FlZaVyu21KPA1bYaxfvx5Xr15FamoqioqKkJKSAlZzVdXstgwNDfHOO+/g\n8uXLOHHiBPbt26eyHrlbt27Izs7mpm/evIlu3bqpjKslrUVcXV1hYmKCBw8eoLCwEIWFhSgqKuLu\ngzg5OeHmzZv19t2UqKgoHDt2DDk5OdyNPgB45ZVX4O3tjczMTBQVFSEuLq5FTUAbHlNhYSFKS0u5\n6ZycnHrnpFb37t2xdOlS7tgKCwshk8m4Zreq4m0oJCQEx44dg1QqhUQiwZAhQ3D8+HGkpKRAIpGo\nFXNLubq6IisrS+Xrtdtv7nMYERGBpKQk3L17F3379sWcOXMA1BSWX375JW7duoXNmzdj3rx5zTZb\nraiowIQJE/Dmm2/i/v37KCwsxOjRo+t95lW9N7a2tjAzM8OVK1e49+LRo0d4/Pix0n2p+94oO891\n59na2sLIyKjRd8jFxaXJY22tpt73Y8eOYd26ddi9ezcePXqEwsJCWFpacudP1boNv4NGRkawtbWt\nt0y3bt3w8OHDegV83eNszeex4X6dnZ1bvI3mqFM2tCQOVeVvWFgY9uzZo3K9EydOIDMzE++++y6c\nnJzg5OSEkydPYseOHVw8vr6+9VrJAcCtW7cgl8vRp08fldvW6HM8MpkMZmZmsLS0xMOHD7FixYpG\ny6g6CcnJybh48SIUCgXMzc1hZGQEAwMDpetERUXh3XffRUFBAQoKCrBy5comm1yqk/hqOTk5ISIi\nAq+//jqKi4tRXV2NrKws/PHHHwCAyZMnY9OmTbh16xYKCwvx3nvvqdzW1atXcfToUVRUVMDExASm\npqbcMclkMpibm6NTp074+++/8fnnnzcbW93jUHZMy5cvR2VlJY4dO4b9+/dzv1TqFrpz5szBF198\ngdTUVDDGUFJSgv3790MmkzUZb0MeHh4wNTXF9u3bERISAnNzc9jb22PPnj2NbjbWcnBwQF5eXr2b\nji15b6ZPn47Dhw9j9+7dqKqqwoMHD5CWltboGJv6HN6/fx979+5FSUkJjIyM0LlzZ+4Yd+/ejby8\nPACAlZUV9PT0VLYMqyWXyyGXy2Frawt9fX38/vvvSEpKarScsvdGT08Pc+bMwcKFC7kr6lu3bild\nvyXvTXPn1MDAAJMnT8bSpUu5q/wNGzbg+eefb3K9lmjus1qruLgYhoaGsLW1hVwux8qVK+slXkdH\nR2RnZzfa3vbt25Geno7S0lK888473Pmsy9XVFcHBwViyZAkqKipw4cIFfPvtt9xxKtt2cz744AM8\nevQIubm52LRpk8rnpFqyzYbUKRs0EceKFStw4sQJvPnmm1xrtczMTERHR6OoqAhbt25FREQE0tPT\nkZaWhrS0NFy6dAllZWU4cOAAgJrn9FJSUuptNyUlBcOHD4eRkZHKfWv0imfhwoUoKyuDra0tgoOD\nMWrUqCavPuq2Xb937x4mTZoES0tLeHt7QyKRcMmkYRv3t99+GwMGDICvry98fX0xYMAAvP322yrj\nUtZGvqnphIQEyOVyeHt7o2vXrpg0aRLu3r0LoKbgHjFiBPz8/DBgwABMmDBB5S+niooKLFmyBHZ2\ndnByckJBQQHWrFkDoOaDs2PHDlhYWOCll17C1KlTG52bhlSdO6DmS1TbCiY6OhqbN29G7969Gy0b\nGBiIr776Cq+++iq6du0KT09P7sqyqXiVkUgksLW15X5t1V7pPPHEE0qXHz58OPr16wdHR0eu2kGd\n96aWq6srDhw4gPXr18PGxgYBAQG4cOFCo+009Tmsrq7Ghg0b4OzsDBsbGxw7doz7Yp8+fRpPPfUU\nzM3NMXbsWGzatAlubm5KY6ndnrm5OTZt2oTJkyeja9eu2LlzJ8aOHVtv2dpqW2Xvzdq1a+Hh4YGn\nnnoKlpaWCA8Px9WrVxvtpyXvTcNzquwcf/zxx+jcuTN69eqFoUOHYvr06Zg5c6bK5Vt6ddDc/mun\nR44ciZEjR6J3795wc3ODmZlZverrutU8AwYM4NaNjo5GTEwMnJycIJfLsWnTJqX73rlzJ7Kzs9Gt\nWzeMHz8eK1euxLBhw1Ruu2GMDeMeO3YsAgMDERAQgDFjxmD27NkAaq7czM3NVa7bknPaXNnQljjq\n6tWrF06ePIns7Gz069cPVlZWmDhxIp588kkYGRlh9+7dmD9/Puzt7bl/bm5uiI6O5sqM6OhoHDhw\noF5LzO+++457rkcVPdaW1KwhCoUCAwYMgIuLC3777Tehw9E5UqkU0dHRyM3NFToUQrQuNDQU0dHR\nmDVrltChEABLly6Fvb09FixYgAsXLuCVV17B8ePHm1zHkKfYmrRx40Z4e3srvUlFCCENieD3Mvl/\ncXFx3N++vr7NJh1ABH215eXl4cCBA3jxxRfpw9QG1F0M6Ujo867bBL/iee2117Bu3TqVLXlI8yQS\nSbOt6whpL5KTk4UOgbSRoFc8+/btg729PQICAuhqhxBCOghBGxf897//xbZt22BoaIjy8nI8fvwY\nEyZMqPf8joeHR5PPbhBCCGnM3d0dmZmZQoehXJP9JfBIKpWyMWPGNJovohCbtHz5cqFDUAvFqVm6\nEKcuxMgYxalpYi47BW9cUBfdMCSEkPZP8MYFtUJCQlQ+8U4IIaT9ENUVjy5T1T+Z2FCcmqULcepC\njADF2ZGIoueCpujp6VGLN0KIUl27dlU5CFxHYm1tjYcPH9abJ+aykxIPIURnUflQQ9l5EPO5oao2\nQgghvKLEQwghhFeUeAghRINiY2Oxfv16jW1v1qxZcHBwgI+Pj8a2KTTRNKcmhBBNyMjIweHDWais\n1IeRUTXCwtzRp08Pra3XkKafR5w5cybmz5+PGTNmaHS7QqIrHkJIu5GRkYP4+Ezk5w/Do0cS5OcP\nQ0LCdRw+fFYr6wE1A0f6+fnB39+/UXL46quvMHDgQPj7+2PixIkoKysDUDParY+PD/z9/bnnFy9f\nvoygoCAEBATAz8+P6+5m6NChsLa2bs3pEC1KPISQduPw4SyYmAyvN8/IKBRJSZZNJpHWrnf58mXE\nxcUhOTkZ58+fx8aNG+u9PmHCBKSmpuL8+fPw8vLCN998AwBYtWoVkpKScP78eW7wy82bN2PBggU4\nd+4czpw5AxcXlxYduy6hxEMIaTcqK5UXaZ06uSM9vUjj6x09epQb9hxAoyuTixcvYujQofD19cV3\n332HK1euAAAGDx6MF154AV9//TWqqqoAAIMGDcLq1avx/vvvIzs7G6ampqoPVMdR4iGEtBtGRtVK\n55eWZsHLy1Lj66l6Vqb2Pk9MTAw+++wzXLhwAcuXL+eq2j7//HO8++67yM3NRWBgIB4+fIioqCj8\n9ttvMDMzw+jRo9v1uEOUeAgh7UZYmDsqK+sX2JWVUkREFCEs7AmNrzds2DDs3r2b6zWg9v/aZCST\nyeDo6IjKykps376dWy8rKwsDBw7EihUrYGdnh7y8PNy4cQNubm6YP38+xo4di4sXL7bs4HUIJR5C\nSLvRp08PhIZaorS0Zgyv0tIshIZaNJk82rKet7c3li5dipCQEPj7++ONN94A8M8Vz6pVqxAUFIQh\nQ4bAy8uLm//mm2/C19cXPj4+GDx4MHx9ffHDDz/Ax8cHAQEBuHz5MtdQISoqCsHBwbh69SpcXV2x\nZcuW1p8gkaAucwghOktV+XD48FmkpxfBy8uy2eShifWEpmtd5lDiIYToLCofauha4qGqNkIIIbyi\nxEMIIYRXlHgIIYTwihIPIYQQXgmaeMrLyxEUFAR/f394e3tjyZIlQoZDCCGEB4ImHlNTU66PowsX\nLiA5ORl//vmnkCERQtqJ1rboamtLME0Oi5Cbm4vQ0FD069cP/fv3x6ZNmzSyXaEJXtXWqVMnAIBc\nLodCoeD6PCKEkLZI+umnViWR1q5XS5PDIhgZGWHDhg24fPkyTp06hU8//RTp6eka275QBE881dXV\n8Pf3h4ODA0JDQ+Ht7S10SIQQHXc7Nxfs0CFcPHlS6+tpc1gER0dH+Pv7AwC6dOkCLy8v3L59u0XH\nJEaCJx59fX2cP38eeXl5+OOPPyCVSoUOiRCi49ITExFub497Bw9CLpdrbT0+h0XIzs7GuXPnEBQU\npPbxiJVoRiC1tLTEM888g9OnT0MikdR7LTY2lvtbIpE0ep0QQmrJZDKYZmbCwMwMAysq8Nf+/Rj8\n3HNaWU+dYRHefvttFBUVQSaTYeTIkQD+GRZh8uTJGD9+PICaYRHi4uKQl5eH8ePHw8PDo15sEydO\nxMaNG9GlSxelsUilUp354S5o4ikoKIChoSGsrKxQVlaGQ4cOYfny5Y2Wq5t4CCGkKWmHDsHfwAAA\nYGliAnbqFIpCQ2FpZaXx9dQZFuHXX3+Fj48Ptm7dyiWGzz//HKmpqdi/fz8CAwNx5swZREVF4amn\nnsK+ffswevRobN68GaGhoaisrMSECRPw/PPPY9y4cSpjafijfMWKFU0er5AErWq7c+cOhg0bBn9/\nfwQFBSEyMhLDhw9vfkVCCFFCoVCg7Px5dDY25uYNNDZG6q5dWlmPj2ERZs+eDW9vbyxcuLAFZ0Lc\nBL3i8fHxwdmzzY9pTggh6kg/fRrepaVA587cPGMDAzhcu4bc69fh2quXRterOyyCgYEBAgIC4Obm\n1mhYBDs7OwQFBUEmkwGoGRbh2rVrYIwhLCwMvr6+WLt2LbZt2wYjIyM4OTlh6dKl+PPPP7F9+3b4\n+voiICAAALBmzRquyk5XUe/UhBCd1bB8OPLDDzBQ0uqLMYYqZ2eET56sdDutXU8sdK13ako8hBCd\nReVDDV1LPII3pyaEENKxUOIhhBDCK0o8hBBCeEWJhxBCCK9E03MBIYS0lLW1tUY75dRVDXtMEDtq\n1UYIIe2QmMtOqmojhBDCK0o8hBBCeEWJhxBCCK8o8RBCCOEVJR5CCCG8osRDCCGEV5R4CCGE8IoS\nDyGEEF5R4iGEEMIrSjyEEEJ4RYmHEEIIrwRNPLm5uQgNDUW/fv3Qv39/bNq0SchwCCGE8EDQTkLv\n3r2Lu3fvwt/fHzKZDIGBgfjll1/g5eX1T4Ai7uiOEELESsxlp6BXPI6OjvD39wcAdOnSBV5eXrh9\n+7aQIRHSiFi/vIToKtHc48nOzsa5c+cQFBQkdCiE1JP000+UfAjRIFEMBCeTyTBx4kRs3LgRXbp0\nafR6bGws97dEIoFEIuEvONKh3c7NBTt0CBednOAbHCx0OISoJJVKIZVKhQ5DLYIPBFdZWYkxY8Zg\n1KhRWLhwYaPXxVxPSdq/I199BUluLo7q6SFk6VIYGxsLHRIhahFz2SloVRtjDLNnz4a3t7fSpEOI\nkGQyGUwzM2Ggr4+Bcjn+2r9f6JAIaRcETTzHjx/H9u3bkZycjICAAAQEBCAxMVHIkAjhpB06BH8D\nAwCApYkJ2KlTKHr0SOCoCNF9gle1NUfMl4uk/VIoFEheuRJhenrcPLlCgRQXF4S//LKAkRGiHjGX\nnaJp1UaImKSfPg3v0tJ684wNDOBw7Rpyr18XKCpC2gdRtGojRGzu5eSgwNkZVxvMZ5aWuHf6NFx7\n9RIkLkLaA6pqI4SQdkjMZSdVtRFCCOEVJR5CCCG8osRDCCGEV5R4CCGE8IpatZF2KSMjB4cPZ6Gy\nUh9GRtUIC3NHnz49hA6LEAJq1UZ4whiDXp2HMbUpIyMH8fGZMDEZzs2rrExGaKglwsKe4CUGQoQm\n5rKTEg/hxcE9exAxfrzWkk/dK5yTJ9NhZxcFW1uresuUlmYhIqJI55MPn0mc6C4xl510j4doHTe0\nwMmTWtl+7RVOfv4wPHokQVGRF9LSCnH9+p16y3Xq5I709CKtxMAnGh+I6DpKPETr0hMTEW5vj3sH\nD0Iul2t8+4cPZ9WrVtPXr4aBQU9kZZnUSz6lpVnw8rLU+P75pO0kTggfKPEQreJjaIHKyvof4169\n3KFQJMPIqCvy88v/fxlpu6hm03YSJ4QPlHiIVvExtICRUXW9aVvbHujZ0xKlpadhZ2eK0tIshIZa\n6HzSofGBSHtBiYdojUKhQNn58+hcZ9TOgcbGSN21S6P7CQtzR2Vlcr15rq6PMWFCFp588u92caUD\n0PhApP08uGarAAAchklEQVSgxEO0hq+hBfr06YHQUEuUlmYBAHeFs3jxFMyfH9oukk5rkzg1QiBi\nRA+QEq3hc2iBmuRyFunpyRgyRNzP67Tm4VYuiXfuzM2rm8RVncukn37SajN2QlqDnuMhhEetfbj1\nyA8/wOD27UbzGWOocnZG+OTJjV67nZuLC3Fx6DZjBnyDgzVzAERniLnspMRDCI8+/fQo8vOHNZqv\njYdbj3z1FSS5uTiqp4eQpUthXKeajrR/Yi47Bb/HM2vWLDg4OMDHx0foUAjRuoZNv2tp+uFWagFH\nxEzwxDNz5kwkJiYKHQYhvGjY9LuWph9uFbIFnFh/ZRPxEDzxDB06FNbW1kKHQQgvlDX91vTDrXw1\nY1eFuvQhzRE88RDSkahq+q3Jezt8NWNXhrr0IerQiebUsbGx3N8SiQQSiUSwWAhpK002/VbWUzWf\nzdgbqu3S5+jBg5APGEANGngklUohlUqFDkMtomjVlp2djcjISFy8eLHRa2JumUGI0LQ93ERLyGQy\npK1ahcFmZiiqqMClgQMx+LnnhA6rwxJz2UlVbYToKLFVa1GXPkRdgieeqKgoBAcH4+rVq3B1dcWW\nLVuEDokQnSCmnqqFbtBAdIvg93h27twpdAiE6BzuOR0zMwysqMBf+/cLWq3V2i59SMckeOIhwmhN\nf2FEPJRWa4WGwtLKqpk1tUPIBg1E94iicUFTxHyDTFe1tr8wIg4KhQLJK1cirE6DArlCgRQXF4S/\n/LKAkRExEXPZKfg9HsK/hkNFA4CRUSiSkixx+PBZgaIi6hLyOR0xEGthStRHiacD4qu/MKId93Jy\ncNXZGVIrq3r/Hjg74+/Tp4UOT+uoZwTdp9Y9nkWLFmHZsmUwMzPDyJEjkZaWhg0bNiA6Olrb8REt\naKq/sCFDNNdfGNGO4UqGQOgouCbkTk401IMOU+uKJykpCRYWFti3bx/c3NyQlZWFdevWaTs2oiV8\n9BdGiDaIqQk5aT21Ek9VVRUAYN++fZg4cSIsLS1F8aQ0aR0++gsjRNNoqIf2Q63EExkZib59++LM\nmTMYPnw47t+/D1NTU23HRrQoLOwJREQUwcYmma50iE6gnhHaD7WbUz98+BCWlpYwMDBASUkJiouL\n4ejoqO34RN0kkBDCD2pC3nJiLjvVuuIpKSnBp59+irlz5wIAbt++jdMdoPUMIUQcOnoT8vZGrVZt\nM2fORGBgIE6cOAEA6NatGyZOnIgxY8ZoNbiOrD31LKCs635CWoJ6Rmhf1KpqCwwMxJkzZxAQEIBz\n584BAPz8/JCWlqb9AEV8uagt7a1nATF13S9mlKCJJom57FSrqs3ExARlZWXcdFZWFkxMTLQWVEfX\nnnoWEFvX/WJGD0aSjkKtxBMbG4uRI0ciLy8P06ZNw7Bhw7B27Vptx9ZhtaeeBei5C/VQgiYdiVr3\neCIiIvDEE0/g1KlTAIBNmzbB1tZWq4F1ZO2lZwGxdd0vZjRkNOlI1LriSUlJwZUrV2Bubg5zc3Nc\nuXIFf/zxh7Zj67DaS88C9NyFerT1YCRV2xGxUuuKZ926ddxNz/LycqSmpiIwMBBHjx7VanAdVU3P\nAg+QlJSFTp3cUVqahYgI8fQsoE6LO1UjUqbs2kXPXTSgrbF1kn76SScadVCjio5HrcSzb9++etO5\nublYsGCBVgIiNWqSzFmkpydjyBDxtGZT1uIuISEZoaEP6sVII1KqR1sJmu/ONNvS/F9XEiTRnFaN\nQOri4oL09HRNx0IaCAt7AmFhQkdRn+oWd1kAznLJh567UI+2EjSf94zU/TGiDPU23TGplXjmz5/P\n/V1dXY3z588jMDBQIwEkJiZi4cKFUCgUePHFF7F48WKNbJdoR9Mt7pK5RNmRu+5vCW0kaL4bdaj7\nY0QZalTRMamVeOomGUNDQ0RFRWHIkCFt3rlCocCrr76Kw4cPw9nZGU8++SSeffZZeHl5tXnbRDva\nS4s7sdBGgm54z6j65EmN3DNSRd0fIw1Rq8eOS63EExMTo5Wdp6amwsPDA25ubgCAqVOnYu/evZR4\nRCwszB0JCckwMgrl5tW0uBO28UN76mKoLZTdMyq6fh3/+/57RPx/X4ua1tofI9pqVEHEr8nm1D4+\nPir/+fr6tnnnt27dgqurKzft4uKCW7dutXm7RHvEOJZP7T2G/PxhePRIgvz8YUhIuK5zvTxoQsPO\nNG8XFcHwxg0Up6RorTPN1jT/V9WoInXXLq3ESMSlySue3377Tas7V7cVS2xsLPe3RCKBRCLRTkBE\nLWJrcdeWewztTcN7RpfT0zHS1hZHHj7ExVOntNKoozXN/6nVo+ZJpVJIpVKhw1BLk4mntgpMW5yd\nnZGbm8tN5+bmwsXFpdFydRMPEYewsCfg6lpTvXXpklTQ6q3W3mNoKzFW79W9ZySTyWB05w7czcxg\nW1GBS2ZmWttvS3+MUKtHzWv4o3zFihXCBdMMtXqnPnnyJP7973/jypUrkMvlUCgU6NKlCx4/ftym\nnVdVVaFPnz44cuQIunXrhoEDB2Lnzp317vGIuYfVjkxMPWh/+ulR5OcPazS/5pe3dnp7ENPxq3L8\n55/h/9dfXHXWn2Vl8FmyhO6hdBBiLjvV6jLn1VdfxY4dO9C7d2+Ul5fjm2++wbx589q8c0NDQ3zy\nyScYMWIEvL29MWXKFGpYoCPE1IO2EF0Mien4lWnrPRSxFlikfVAr8QCAp6cnFAoFDAwMMHPmTCQm\nJmokgFGjRiEjIwOZmZlYsmSJRrZJtE9MPWgL0eBBTMevTFtH7KQhGog2qdWcunPnzqioqICfnx/e\nfPNNODo60oeygxPb8zx8N3gQ2/E31JZ7KNSbANE2te7x5OTkwN7eHnK5HBs2bMDjx48xb948eHh4\naD9AEddTdmQZGTlISLje6HkeoZtW80Xsx9+WjjePfPUVJLm5OKqnh5ClS6k3AR0l5rJTrcSzZ88e\njBkzRpBRR8V88jq6w4fPIinJsk4T2vr3VNp7r8PNHb8mtbQFXWuHG5fJZEhbtQqDzcxQVFGBSwMH\nUm8COkrMZada93h+++03eHp6Ijo6Gvv27UNVVZW24yI6ICzsCUREFMHGJllpoduW+wQZGTn49NOj\n+OgjKT799CgyMnI0EbJGNXf8mtLSB2TbMpopjaFE+KDWFQ8AyOVy/P777/jhhx9w7NgxhIeH45tv\nvtF2fKLO2kS127m5uBAXh0pJOG4+sG7Rsy660FRZE9S9imlpc/HWVpUpFAokr1yJsDpXSXKFAiku\nLjSGkg4Sc9mpdqs2Y2NjjBo1ClOnTkVgYCB++eUXbcZFdFx6YiIC9I3x5ye/4O7dIS3qykbsTZU1\noSVXMeq2oMvIyMGHH+7Hxe+P4szpHLjfyW/RaKZtbQlHiLrUSjwHDhxATEwMPD098eOPP2LOnDm4\nd++etmMjOqq21+Gc7CIMgQseXf2n8FMngYi9qbImtCS5NtWCzsurpgVdbSK78T85+sh7orS0J26k\nl+D697+oXVV2LycHV52dIbWyqvfvgbMz/j59uhVHSYhyajWn3rZtG6ZMmYIvvvgCpqam2o6J6Lja\n+wQXq/VgbmgC57xTeOQWClOzmifmm+vKRuxNlTWhJd38qNMj+OHDWTAyksDy7kqYGdRUrRkY9ITN\nzXxsjV2Hf38U12xMNIYS4YtaVzw7d+7EuHHjVCadQYMGaTQoorvqPjGvr19TvxxoYIzSy/88MV/3\nl7oyQvREwDd1rmJqqfOAbGWlPopun4ZvZf2qsk4mdrC4kElVZURUWjX0dUPl5eWa2AxpB+r2Otyr\nlzXS0m7AyKAnvB5eQ+bD6zA1v9lsz8Wt6e1Y14SFuePDD3chN9cO1dX60NevhqtrASZN8lB6nM09\nIGtkVI3yohyctXCuN18uz0efPi74mzreJCKikcRDSK16T8xbWSFTYYCMjEoYmTujIHsfov89BK6u\nNvj006NNtubSZE8EYuxFGgAeP65EUZE/jIy6orLyIaysmu6GKizsCZXVk2Fh7rh9Ww9GRv9Ul1VW\nSjFaJA+0ElKX2s2pmxIQEIBz585pIp5GxNwkkKjn8OGzSE8vgpeXJVxdbXhtKi3Wptm1TaSvX7+D\n/Pxy2NmZolcvpzY9iMrnA61E/MRcdqp1j2fTpk0oLCzUdiyknQoLewLz54ciLOwJ3ptKi7Vpdm3j\ngl69nBAU1BO9ejkBaFvLPb4eaCWkrdRKPPfu3cOTTz6JyZMnIzExsVEWTUhI0EpwpP3hu6m0WJtm\nt6RxQUvUTfKEiJVaiScuLg5Xr17FrFmzEB8fD09PT/z3v/9FVlZNKxsfHx+tBknaD20VuGLZn7pa\n03JPrNUmhLSU2j0X6Ovrw9HREQ4ODjAwMEBhYSEmTpyIRYsWaTM+0s7w3VRarE2zWzOGEI2RQ9oL\ntRoXbNy4EQkJCbCxscGLL76I5557DkZGRqiuroanpyd35aOVAEV8g4y0Dt83wcV8071uw4umYqrt\n+67bjBk0Rg5Ri5jLTrUSz/LlyzFr1iz06NG4CeqVK1fg7e2tleAAcZ880nrqFri6uj9NozFySEuJ\nuezUSHNqbRLzySOEDzRGDmkNMZedat/j0bTdu3ejX79+MDAwwNmz7aPHYUK0gcbIIe2NYInHx8cH\nP//8M55++mmhQiBE9Or2fVdroLExUnftamItQsRNsMTTt29f9O7dW6jdE6ITaIwc0h5RX21EdMTa\nt5oQ6vV9VweztMQ96viT6CitJp7w8HDcvXu30fzVq1cjMjJS7e3ExsZyf0skEkgkEg1ER8RIWd9q\nCQnJCA19oJOt0dqKxsgh6pJKpZBKpUKHoRbBW7WFhoZi/fr1eOIJ5YWKmFtmEM2r7TyzIbE9f9PR\nMMagp6cndBikBcRcdoqiqk2sJ6ejEUMVV0tG5iT8SfrpJ0SMH0/Jh2iEYI0Lfv75Z7i6uuLUqVN4\n5plnMGrUKKFCIfiniis/fxgePZIgP38YEhKu896Ds1j7VuvIbufmgh06hIsnTwodCmknBK9qa46Y\nLxfbE7FUcWVk5CAh4TqMjEK5eZWV0mb7MdMFulpdRb0m6CYxl52CXfEQcRHL8AGt6TxTV+hiJ58y\nmQymmZkw0NfHQLkcf+3fL3RIpB2gxEMAiKuKqy0Dmom1YNfV6irqNYFoAyUeAkB8wwe0dkAzsV5V\npCcmItzeHvcOHoRcLhc6HLVQrwlEWyjxEADto4pLrFcVulpdRb0mEG0RRXNqIg41SeYs0tOTMWSI\n7g0fUHtVcfTgQcgHDBDNTXCl1VWhobC0shI4sqZRrwlEW6hVG2kXxDp0gEKhQPLKlQir05pNrlAg\nxcUF4S+/LGBkpL0Tc9lJVW2kXRDrTXCqriKkMapqIzpP1U3wlF27BL+qoOoqQhqjxEN0HndV0bkz\nN6/uVYWQhTt18klIY5R4iM6jqwpCdAs1LiCEkHZIzGUnNS4ghBDCK0o8hBBCeEWJhxBCCK8o8RBC\nCOEVJR5CCCG8osRDCCGEV5R4CCGE8IoSDyGEEF4JlngWLVoELy8v+Pn5Yfz48Sgq4m94ZUIIIcIR\nLPFERETg8uXLSEtLQ+/evbFmzRqhQiGEEMIjwRJPeHg49PVrdh8UFIS8vDyhQiGEEMIjUdzj+fbb\nbzF69GihwyCEEMIDrfZOHR4ejrt37zaav3r1akRGRgIA4uLiYGxsjGnTpqncTmxsLPe3RCKBRCLR\ndKiEEKLTpFIppFKp0GGoRdDeqePj4/HVV1/hyJEjMDU1VbqMmHtYJYQQsRJz2SnYeDyJiYlYt24d\nUlJSVCYdQggh7Y9gVzyenp6Qy+Xo2rUrAGDQoEH47LPPGi0n5qxNCCFiJeaykwaCI4SQdkjMZaco\nWrURQgjpOCjxEEII4RUlHkIIIbyixEMIIYRXlHgIIYTwihIPIYQQXlHiIYQQwitKPIQQQnhFiYcQ\nQgivKPEQ0o6J9cl10rFR4iGkHUv66SdKPkR0KPEQ0k7dzs0FO3QIF0+eFDoUQuqhxENIO5WemIhw\ne3vcO3gQcrlc6HAI4VDiIaQdkslkMM3MhIG+PgbK5fhr/36hQyKEQ4mHkHYo7dAh+BsYAAAsTUzA\nTp1C0aNHAkdFSA1KPIS0MwqFAmXnz6OzsTE3b6CxMVJ37RIwKkL+QYmHkHYm/fRpeJeW1ptnbGAA\nh2vXkHv9ukBREfIPQ6EDIIRo1r2cHBQ4O+Nqg/nM0hL3Tp+Ga69egsRFSC3Bhr5etmwZfv31V+jp\n6cHGxgbx8fFwdXVttJyYh28lhBCxEnPZKVjiKS4uhrm5OQDg448/RlpaGr7++utGy4n55BFCiFiJ\nuewU7B5PbdIBapp+2traChUKIYQQHgl6j2fp0qXYtm0bOnXqhFOnTgkZCiGEEJ5otaotPDwcd+/e\nbTR/9erViIyM5Kbfe+89ZGRkYMuWLY0DFPHlIiGEiJWYy06tXvEcOnRIreWmTZuG0aNHq3w9NjaW\n+1sikUAikbQxMkIIaV+kUimkUqnQYahFsMYF165dg6enJ4CaxgWpqanYtm1bo+XEnLUJIUSsxFx2\nCpZ4Jk6ciIyMDBgYGMDd3R2ff/457O3tGy0n5pNHCCFiJeayU7DEoy4xnzxCCBErMZed1GUOIYQQ\nXlHiIYQQwitKPIQQQnhFiYcQQgivKPEQQgjhFSUeQgghvKLEQwghhFeUeAghhPCKEg8hhBBeUeIh\nhBDCK0o8hBBCeEWJhxBCCK8o8RBCCOEVJR5CCCG8osRDCCGEV5R4CCGE8IoSDyGEEF5R4iGEEMIr\nSjyEEEJ4JXjiWb9+PfT19fHw4UOhQyGEEMIDQRNPbm4uDh06hB49eggZhkZIpVKhQ1ALxalZuhCn\nLsQIUJwdiaCJ5/XXX8f7778vZAgaoysfRopTs3QhTl2IEaA4OxLBEs/evXvh4uICX19foUIghBAi\nAENtbjw8PBx3795tND8uLg5r1qxBUlISN48xps1QCCGEiIQeE6DEv3TpEoYPH45OnToBAPLy8uDs\n7IzU1FTY29vXW9bDwwNZWVl8h0gIITrN3d0dmZmZQoehlCCJp6GePXvizJkz6Nq1q9ChEEII0TLB\nm1MDgJ6entAhEEII4YkorngIIYR0HKK44lGX2B82XbZsGfz8/ODv74/hw4cjNzdX6JAaWbRoEby8\nvODn54fx48ejqKhI6JCU2r17N/r16wcDAwOcPXtW6HAaSUxMRN++feHp6Ym1a9cKHY5Ss2bNgoOD\nA3x8fIQOpUm5ubkIDQ1Fv3790L9/f2zatEnokJQqLy9HUFAQ/P394e3tjSVLlggdkkoKhQIBAQGI\njIwUOhTlmI64efMmGzFiBHNzc2MPHjwQOhylHj9+zP29adMmNnv2bAGjUS4pKYkpFArGGGOLFy9m\nixcvFjgi5dLT01lGRgaTSCTszJkzQodTT1VVFXN3d2c3btxgcrmc+fn5sStXrggdViN//PEHO3v2\nLOvfv7/QoTTpzp077Ny5c4wxxoqLi1nv3r1FeT4ZY6ykpIQxxlhlZSULCgpix44dEzgi5davX8+m\nTZvGIiMjhQ5FKZ254tGFh03Nzc25v2UyGWxtbQWMRrnw8HDo69e87UFBQcjLyxM4IuX69u2L3r17\nCx2GUqmpqfDw8ICbmxuMjIwwdepU7N27V+iwGhk6dCisra2FDqNZjo6O8Pf3BwB06dIFXl5euH37\ntsBRKVfbElcul0OhUIiyQVReXh4OHDiAF198UbSPqehE4tGlh02XLl2K7t27Y+vWrXjrrbeEDqdJ\n3377LUaPHi10GDrn1q1bcHV15aZdXFxw69YtASNqP7Kzs3Hu3DkEBQUJHYpS1dXV8Pf3h4ODA0JD\nQ+Ht7S10SI289tprWLduHfcDU4y0+gBpS+jKw6aq4ly9ejUiIyMRFxeHuLg4vPfee3jttdewZcsW\n0cUI1JxXY2NjTJs2je/wOOrEKUbUClM7ZDIZJk6ciI0bN6JLly5Ch6OUvr4+zp8/j6KiIowYMQJS\nqRQSiUTosDj79u2Dvb09AgICRN21j2gSz6FDh5TOv3TpEm7cuAE/Pz8ANZeRgYGBSh825YOqOBua\nNm2aYFcTzcUYHx+PAwcO4MiRIzxFpJy651JsnJ2d6zUcyc3NhYuLi4AR6b7KykpMmDABzz//PMaN\nGyd0OM2ytLTEM888g9OnT4sq8Zw4cQK//vorDhw4gPLycjx+/BgzZsxAQkKC0KHVI95rsf/Xv39/\n3Lt3Dzdu3MCNGzfg4uKCs2fPCpJ0mnPt2jXu77179yIgIEDAaJRLTEzEunXrsHfvXpiamgodjlrE\nVk89YMAAXLt2DdnZ2ZDL5di1axeeffZZocPSWYwxzJ49G97e3li4cKHQ4ahUUFCAR48eAQDKyspw\n6NAh0X3HV69ejdzcXNy4cQPff/89hg0bJrqkA+hA4mlIzNUcS5YsgY+PD/z9/SGVSrF+/XqhQ2pk\n/vz5kMlkCA8PR0BAAObNmyd0SEr9/PPPcHV1xalTp/DMM89g1KhRQofEMTQ0xCeffIIRI0bA29sb\nU6ZMgZeXl9BhNRIVFYXg4GBcvXoVrq6uglT7quP48ePYvn07kpOTERAQgICAACQmJgodViN37tzB\nsGHD4O/vj6CgIERGRmL48OFCh9UksZaX9AApIYQQXuncFQ8hhBDdRomHEEIIryjxEEII4RUlHkII\nIbyixEMIIYRXlHgIIYTwihIPIYQQXlHiIaQNsrOzRT/eDSFiQ4mHEEIIryjxkA7hr7/+gp+fHyoq\nKlBSUoL+/fvjypUrjZaLiorCgQMHuOmYmBjs2bMHOTk5ePrppxEYGIjAwECcPHmy0brx8fGYP38+\nNz1mzBikpKQAAJKSkhAcHIzAwEBMnjwZJSUlAIC33noL/fr1g5+fHxYtWqTpwyZElETTOzUh2vTk\nk0/i2Wefxdtvv42ysjJER0crHUtlypQp+OGHHzB69GjI5XIcPXoUmzdvRnV1NQ4dOgQTExNcu3YN\n06ZNw19//dXkPvX09KCnp4eCggLExcXhyJEjMDMzw9q1a/Hhhx/iX//6F3755Rf8/fffAIDHjx9r\n5dgJERtKPKTDeOeddzBgwACYmZnh448/VrrMyJEjsWDBAsjlcvz+++8ICQmBiYkJioqK8OqrryIt\nLQ0GBga4evWqWvtkjOHUqVO4cuUKgoODAdSMXhkcHAxLS0uYmppi9uzZGDNmDMaMGaOxYyVEzCjx\nkA6joKAAJSUlUCgUKCsr44YxrsvU1BQSiQQHDx7EDz/8gKioKADAhg0b4OTkhG3btkGhUCgdUsLQ\n0BDV1dXcdHl5Ofd3eHg4duzY0Wid1NRUHDlyBD/++CM++eQTwcdIIoQPdI+HdBgvv/wy3n33XUyb\nNg2LFy9WudyUKVPw7bff4tixYxg5ciSAmmowR0dHAEBCQgIUCkWj9dzc3HD+/HkwxpCbm4vU1FTo\n6enhqaeewvHjx5GVlQUAKCkpwbVr11BSUoJHjx5h1KhR+PDDD5GWlqaFoyZEfOiKh3QICQkJMDEx\nwdSpU1FdXY3g4GCVwxZHREQgOjoa48aNg6FhzVdk3rx5mDBhAhISEjBy5Mh6QzPXjnkyZMgQ9OzZ\nE97e3vDy8kJgYCAAwNbWFvHx8YiKikJFRQWAmqHHzc3NMXbsWJSXl4Mxhg0bNmj5LBAiDjQeDyGE\nEF5RVRshhBBeUVUb6ZAuXryIGTNm1Jtnamqq9PkcQohmUVUbIYQQXlFVGyGEEF5R4iGEEMIrSjyE\nEEJ4RYmHEEIIryjxEEII4dX/AewBtG7FkgqCAAAAAElFTkSuQmCC\n", - "text": [ - "" - ] - } - ], - "prompt_number": 29 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The plot above seems to be the exact mirror image of the plot from out step by step approach. This is due to the fact that the signs of the eigenvectors can be either positive or negative, since the eigenvectors are scaled to the unit length 1, both $we can simply multiply the transformed data by $\\times(-1)$ to revert the mirror image." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "sklearn_transf = sklearn_transf * (-1)\n", - "\n", - "# sklearn.decomposition.PCA\n", - "plt.plot(sklearn_transf[0:20,0],sklearn_transf[0:20,1], 'o', markersize=7, color='blue', alpha=0.5, label='class1')\n", - "plt.plot(sklearn_transf[20:40,0], sklearn_transf[20:40,1], '^', markersize=7, color='red', alpha=0.5, label='class2')\n", - "plt.xlabel('x_values')\n", - "plt.ylabel('y_values')\n", - "plt.xlim([-4,4])\n", - "plt.ylim([-4,4])\n", - "plt.legend()\n", - "plt.title('Transformed samples via sklearn.decomposition.PCA')\n", - "plt.show()\n", - "\n", - "# step by step PCA\n", - "plt.plot(transformed[0,0:20], transformed[1,0:20], 'o', markersize=7, color='blue', alpha=0.5, label='class1')\n", - "plt.plot(transformed[0,20:40], transformed[1,20:40], '^', markersize=7, color='red', alpha=0.5, label='class2')\n", - "plt.xlim([-4,4])\n", - "plt.ylim([-4,4])\n", - "plt.xlabel('x_values')\n", - "plt.ylabel('y_values')\n", - "plt.legend()\n", - "plt.title('Transformed samples step by step approach')\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEaCAYAAAAYOoCaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdUFOf6B/AvvShVpQgIChpBEQhGImpcBKyQGAsKR43R\n5KbpT3NzjXJtGFs0UaMpxhgbJibRa4sdFFbNjUrsigpCBEHUWFcWkF12398fXCaUBRbYZWaZ53MO\nR3bqM+Myz8zbxogxxkAIIUR0jPkOgBBCCD8oARBCiEhRAiCEEJGiBEAIISJFCYAQQkSKEgAhhIgU\nJQAduH//Pl555RXY2tpixowZfIdTRU5ODoyNjaFWq/kOpVYTJ07E3Llzm21/S5cuxdtvv63TbW7e\nvBn9+vVr8Dy+SSQSbNiwge8w9OrkyZPo2rVrrfNv374NGxsbiLFFvMEngNatW8PGxgY2NjYwNjaG\ntbU19/mnn35qlhi+++47ODk54dmzZ/jss8+aZZ8tiZGREYyMjJptf/Hx8Vi/fn2z7U/Imvvc86Ff\nv364ceMG99nLywspKSnc5w4dOqCwsFDn56Hi5qvietSxY0csW7aMm88Yw5o1a+Dv74/WrVvDw8MD\nMTExuHr1apXtJCQkwNjYGGlpaTqNDwBMdb7FZiaXy7nfO3bsiA0bNmDAgAE1lisrK4OpqX4ONzc3\nF76+vo1aV59xGRIx3n01FX13GsfIyKhZv28ymQzGxsY4ffo0wsPDERgYiEGDBmHatGk4ePAgvv/+\ne/Tp0wdlZWXYvXs3Dhw4gO7duwMo/7tITEyEv78/EhMT0atXL53GZvBPALWRSqVwd3fH8uXL4erq\nismTJ+Pp06eIioqCk5MTHB0dER0djTt37nDrSCQSzJs3D3379oWtrS0GDRqER48eAQCeP3+OcePG\noW3btnBwcECvXr3w119/YeLEiUhMTMTy5cthY2ODlJQUKBQKTJ8+HW5ubnBzc8OHH34IhUKhMa5J\nkyZhwYIFGD16NMaPHw9bW1v06NEDN2/exNKlS+Hs7AxPT08kJydzccpkMkyePBnt27eHu7s75s6d\nyxXxqNVq/Otf/0K7du3g7e2NAwcO1Hmeli1bBnd3d9ja2qJr167cnVFaWhp69+4NBwcHtG/fHlOn\nToVSqeTWMzY2xtq1a9G5c2fY2tpi3rx5yM7ORu/evWFvb4+xY8dyy1cc89KlS9GuXTt07NgR27Zt\nqzWm/fv3IzAwEA4ODujTpw+uXLlSb7yVnTlzBq6urlX+yHfv3o2AgAAA5XdU48eP5+aNHj0arq6u\nsLe3R//+/XHt2rVaY9u8eTO8vb1ha2uLTp061XocM2bMQL9+/fDs2bMa827cuIHIyEi0adMGXbt2\nxY4dO7h5Bw4cQFBQEOzs7NChQwcsWLCAm1dxR7lx40Z4enoiPDwcW7ZsQd++fTFjxgw4OjqiU6dO\nOHz4cK3xJycno2vXrrC3t8fUqVPBGKtynjZu3Ag/Pz84Ojpi8ODBuH37NjcvPT2di9vFxQVLly4F\nAJSWltb7ff/ss8/g5OSE9u3bY8+ePTh48CC6dOmCNm3a4NNPP+X2kZCQgFGjRmHs2LGwtbVFcHAw\nLl++zM2/fv06JBIJHBwc0L17d+zbt4+bd/DgQXTr1g22trZwd3fHihUruBg8PDwAAOPHj8ft27cR\nHR0NGxsbfP755zWKSQsKCvDqq6+iTZs26Ny5M77//vsq8cXExOCNN96Ara0tunfvjnPnztV6vit7\n+eWX0a1bN6Snp+PmzZv45ptv8PPPP0MikcDMzAxWVlaIi4vDzJkzuXVOnjyJZ8+eYfXq1fj555+r\n/A3qBGtBvLy82LFjxxhjjKWmpjJTU1M2a9YsplAoWElJCXv06BHbtWsXKykpYYWFhWz06NFs+PDh\n3Pr9+/dnPj4+7ObNm6ykpIRJJBI2a9Ysxhhj3377LYuOjmYlJSVMrVaz8+fPs2fPnjHGGJs4cSKb\nO3cut525c+ey3r17swcPHrAHDx6w0NBQbr6muObPn88sLS1ZUlISKysrYxMmTGCenp5syZIlrKys\njK1fv5517NiR2/7w4cPZu+++y4qLi9lff/3FevXqxdatW8cYY2zt2rWsa9euLD8/nz1+/JhJJBJm\nbGzMVCpVjfN148YN5uHhwe7evcsYYyw3N5dlZ2czxhg7d+4cO3PmDFOpVCwnJ4f5+vqyL774glvX\nyMiIDR8+nBUWFrL09HRmbm7OwsLC2K1bt5hMJmN+fn5sy5YtVY75o48+YgqFgh0/fpy1atWKZWZm\ncudvzpw5jDHGzp8/z5ycnFhaWhpTq9Vsy5YtzMvLiykUijrjrc7b25slJydzn0eNGsWWLVvGGGNs\n/vz5bNy4cdy8TZs2MblczhQKBZs+fToLDAzUuE25XM5sbW25uO/du8fS09O5bfTt25ep1Wr21ltv\nscGDB7OSkpIq8yq24e7uzjZv3sxUKhW7cOECa9u2Lbt27RpjjDGpVMquXr3KGGPs8uXLzNnZme3Z\ns4cxxtitW7eYkZERe+ONN1hxcTErKSlhmzZtYmZmZuz7779narWarV27lrVv315j/A8ePGA2NjZs\n586drKysjK1atYqZmpqyDRs2MMYY27NnD/Px8WE3btxgKpWKLVq0iIWGhjLGGHv27BlzcXFhK1eu\nZKWlpaywsJCdOXOGMabd933hwoXcd7lNmzYsLi6OyeVylp6ezqysrFhOTg73f2NmZsbF+Pnnn7OO\nHTuysrIyplAomLe3N1u6dClTKpUsJSWF2djYcP8fLi4u7LfffmOMMfb06VN2/vx5LgZ3d3fuPFS+\nTlQ+rxV/I/369WMffPABKy0tZRcvXmTt2rVjKSkpXHyWlpbs0KFDTK1Ws/j4ePbyyy9rPN8V2y0r\nK2NqtZr99ttvzNramqWkpLC1a9cyT09PjetVNmnSJPbWW28xxhhzd3dnO3furHedhmjRCcDc3JyV\nlpbWuvyFCxeYg4MD91kikbDFixdzn7/55hs2ePBgxhhjGzduZKGhoezy5cs1tlP5AsZY+cXn0KFD\n3OcjR44wLy+vWuOaP38+GzhwIPf5119/Za1bt2ZqtZoxVv7HZ2RkxGQyGbt37x6zsLDgLi6MMbZt\n2zYWFhbGGGMsLCyMSwaMMZaUlFTly13ZzZs3mZOTEzt69ChTKBS1nifGGFu1ahV7/fXXuc9GRkbs\n999/5z4HBwez5cuXc58/+ugjNn36dO6YTU1NWXFxMTc/JiaGLVy4kDt/FReMd999t0oyZYyxF154\ngR0/fpxlZWVpHe+cOXPYpEmTGGPl569Vq1bs9u3bjLGaCaCyJ0+eMCMjIy65VyaXy5m9vT3buXNn\nlWNhrPwiHxISwmJiYtioUaOYUqmsMq8iAfz888+sX79+Vdb9xz/+wRYsWKAxnmnTprEPP/yQMfb3\nBeXWrVtVtu3j48N9LioqYkZGRuz+/fs1trVlyxbWu3fvKtPc3d25BDB48GDud8YYU6lUzNramuXm\n5rJt27axF198UWOM9X3fraysanyX09LSuOWDg4PZ3r17GWPl/zeVY1Sr1czV1ZWdPHmSnThxgrm4\nuFTZd2xsLEtISGCMMdahQwe2bt06JpPJqizTkARw+/ZtZmJiwuRyOTc/Pj6eTZw4kYsvMjKSm1eR\nwDSp2K69vT1zcHBgvr6+7Msvv2SMMbZo0aJaE0eFoqIiZmtry44cOcIYK/8uvPbaa3Wu01AttggI\nANq1awdzc3Puc3FxMd555x14eXnBzs4O/fv3h0wmq/II7OLiwv1uZWXF1TGMHz8egwYNwtixY+Hm\n5oaZM2eirKxM434LCgrg6enJfe7QoQMKCgpqjQsAnJycquy3bdu2XKWUlZUVgPL6jtzcXCiVSri6\nusLBwQEODg5499138eDBAwDA3bt3ucfdin3XxsfHB1988QUSEhLg7OyM2NhY3L17FwCQmZmJqKgo\nuLq6ws7ODrNnz+aKwyo4OztXibnyZ0tLyyr1Mw4ODtxxAICnpye3r8pyc3OxYsUK7tgcHByQn5+P\nu3fvwtvbu9Z4q4uLi8OuXbugUCiwa9cuBAcHVzkvFVQqFWbNmgUfHx/Y2dmhY8eOMDIywsOHD2ss\n26pVK/zyyy/49ttv0b59e0RFRSEjI4Obn5WVhX379mHevHm1ls3n5ubizJkzVY5v27ZtuH//PoDy\n4quwsDA4OTnB3t4e69atq3Heqx9H5e+stbU1gKp1YxUKCgrg7u5e67Zyc3Mxbdo0Lq42bdoAAO7c\nuYP8/Hx06tRJ4zHV931v06ZNje9y9e9O5Xgrx2hkZAR3d3cUFBTU+G4D5d+jimLcnTt34uDBg/Dy\n8oJEIsHp06c1xluXgoICODo6olWrVlWOp3JRceXYra2t8fz58zpb2T169AiPHz/GtWvXMGXKFADl\n56S2726F3bt3w8zMDOHh4QDKiyoPHTqk8bvZWC06AVSv1V+xYgUyMzORlpYGmUyG48eP1ygDrY2p\nqSnmzZuH9PR0/P7779i/fz8SExM1Ltu+fXvk5ORwn2/fvo327dvXGldDWh94eHjAwsICjx49wpMn\nT/DkyRPIZDKunNzV1bVKuW3l3zWJjY3FyZMnkZubCyMjI6788b333oOfnx+ysrIgk8mwePHiBjUl\nrX5MT548QXFxMfc5Nze3yjmp0KFDB8yePZs7tidPnkAul2PMmDF1xludr68vPD09cejQIWzbtg1x\ncXEal9u2bRt+/fVXHDt2DDKZDLdu3arzOzFw4EAkJSXh3r176Nq1a5XmpL6+vti4cSOGDBmCzMxM\njet36NAB/fv3r3J8hYWF+PrrrwGUJ67hw4cjPz8fT58+xbvvvlvjvDe2tUr79u2Rl5fHfWaMVfnc\noUMHfPfdd1ViKyoqQu/eveHh4YE///yz1u3W9X1vqMoxqdVq5Ofnw83NjYu/8v9Nbm4ulzB69uyJ\nPXv24MGDBxg+fDhiYmI0br+u89e+fXs8fvy4SkK6fft2jcTZVOHh4cjPz6+z/mDLli0oLCyEu7s7\nXF1dMXLkSCiVyjrrzxqqRSeA6uRyOaysrGBnZ4fHjx9XqWCrUNsffmpqKq5cuQKVSgUbGxuYmZnB\nxMRE4zqxsbFYtGgRHj58iIcPH+KTTz6pUumo7T41cXV1xcCBA/HPf/4ThYWFUKvVyM7OxokTJwAA\nMTExWLNmDe7cuYMnT55UqWCrLjMzEykpKSgtLYWFhQUsLS25Y5LL5bCxsYG1tTVu3LiBtWvX1htb\n5ePQdEzz58+HUqnEyZMnceDAAYwePZpbtmL5t99+G99++y3S0tLAGENRUREOHDgAuVxeZ7yaxMXF\n4YsvvsDJkye5fVUnl8thYWEBR0dHFBUV4d///net2/vrr7+wd+9eFBUVwczMDK1ataqx/7Fjx2LJ\nkiWIiIjQeMEcNmwYMjMz8cMPP0CpVEKpVOKPP/7gminK5XI4ODjA3NwcaWlp2LZtm86aJw4bNgzp\n6enYvXs3ysrKsGbNGty7d4+b/+6772LJkiVcJbhMJuMqqKOionD37l2sXr0apaWlKCws5JolNvT7\nXp9z585xMX7xxRewtLTEyy+/jF69esHa2hrLly+HUqmEVCrF/v37uQYHP/74I2QyGUxMTGBjY1Pr\nd8PZ2RnZ2dka53l4eCA0NBTx8fEoLS3F5cuXsXHjRowbN67Rx6NJ586d8f777yM2NhbHjx+HQqHA\n8+fP8fPPP2PZsmW4c+cOUlJScODAAVy6dIn7mTlzZq03no3RohNA9T+c6dOno6SkBG3btkVoaCiG\nDBlS59145TbS9+/fx+jRo2FnZwc/Pz9IJBLuS169LfWcOXPQs2dP9OjRAz169EDPnj0xZ86cWuPS\n1Ba7rs+JiYlQKBRca43Ro0dzf8hvv/02Bg0ahICAAPTs2RMjR46s9QJSWlqK+Ph4tGvXDq6urnj4\n8CHXsuPzzz/Htm3bYGtri3/84x8YO3ZsjXNTXW3nDigvpqhoUTR+/HisW7cOXbp0qbFscHAw1q9f\njylTpsDR0RGdO3fmvvB1xatJbGwsTpw4gfDwcDg6OmqMbcKECfD09ISbmxu6d++O3r1713q+1Go1\nVq1aBTc3N7Rp0wYnT57kEmP1bc6bNw8DBgzgnlQq5tnY2CApKQk///wz3Nzc4Orqivj4eK7VzDff\nfIN58+bB1tYWCxcu5J58ajvv9X133nvvPbz33nsAyosdduzYgVmzZqFt27bIyspC3759uWWHDx+O\nmTNnYuzYsbCzs4O/vz+OHDkCoLy/TXJyMvbt2wdXV1d06dIFUqkUQOO+77UxMjLCa6+9hl9++QWO\njo748ccfsWvXLpiYmMDc3Bz79u3DoUOH0K5dO0yZMgVbt27lvkc//PADOnbsCDs7O3z33Xf48ccf\nNe4zPj4eixYtgoODA1auXFlj/k8//YScnBy0b98eI0aMwCeffMI1La/vfA8dOrTKTVddx7pmzRpM\nmTIFH3zwARwcHODj44O9e/fi1VdfxdatWxEUFISIiAg4OTnByckJzs7O+L//+z9cuXKlzpZqDWHE\nGnL7qScqlQo9e/aEu7t7lWZdpGWQSqUYP358lUd7QjRZsGABsrKysHXrVr5DEQVBPAGsXr0afn5+\nLb5HIiGkbgK4HxUV3hNAfn4+Dh48iLfeeov+81swSu5EG2IYmkJIeC8CGj16NP7973/j2bNn+Pzz\nz6kIiBBCmgmvTwD79++Hk5MTgoKC6O6fEEKam067lTVQfHw8c3d3Z15eXszFxYVZW1uz8ePHV1nG\n29ubAaAf+qEf+qGfBvx4e3vXew0WzFAQUqmURUVF1ZgOCCbEOs2fP5/vELRCceqWIcRpCDEyRnHq\nmjbXTt4rgSujyh9CCGk+ghlMvH///ujfvz/fYRBCiGgI6gnAkEkkEr5D0ArFqVuGEKchxAhQnHzg\nvRlofZr77T2EEMPh6OiIJ0+e8B0G7xwcHPD48eMq07S5dlICIIQYLLo+lNN0HrQ5N1QERAghIkUJ\ngBBCRIoSACGE6FBCQgL3QnpdmDRpEpydneHv76+zbVYQTDNQQgjRhYyMXBw9mg2l0hhmZmpERHjj\nhRc89bZedbruz/Tmm29i6tSpmDBhgk63C9ATACGkBcnIyMXmzVl48GAAnj6V4MGDAUhM/BNHj57X\ny3pA+QuaAgICEBgYWOMivX79evTq1QuBgYEYNWoUSkpKAAA7duyAv78/AgMDuf5P6enpCAkJQVBQ\nEAICApCVlQUA6NevHxwcHBpzOupFCYAQ0mIcPZoNC4vwKtPMzMKQlGRX58W8seulp6dj8eLFSE1N\nxcWLF7F69eoq80eOHIm0tDRcvHgRvr6+2LBhAwBg4cKFSEpKwsWLF7kRkNetW4dp06bhwoULOHfu\nnM7fQ6wJJQBCSIuhVGq+pFlbe+P6dZnO10tJSUFMTAz3ytHqd+pXrlxBv3790KNHD/z444/cqxz7\n9OmDN954A99//z3KysoAAL1798aSJUuwfPly5OTkwNLSsvYD1RFKAISQFsPMTK1xenFxNnx97XS+\nXm1t7SvqASZOnIhvvvkGly9fxvz587kioLVr12LRokXIy8tDcHAwHj9+jNjYWOzbtw9WVlYYOnQo\nUlNTa92vrlACIIS0GBER3lAqq144lUopBg6UISLiRZ2vN2DAAOzYsYPrhVvxb0VSkMvlcHFxgVKp\nxA8//MCtl52djV69emHBggVo164d8vPzcevWLXh5eWHq1Kl47bXXcOXKlYYdfCNQAiCEtBgvvOCJ\nsDA7FBdnAyi/gw8Ls63zIt6U9fz8/DB79mz0798fgYGB+OijjwD8/QSwcOFChISEoG/fvvD19eWm\nf/zxx+jRowf8/f3Rp08f9OjRA9u3b4e/vz+CgoKQnp7OVSjHxsYiNDQUmZmZ8PDwwKZNmxp/gqqh\noSAIIQartuvD0aPncf26DL6+dvVexHWxHt8aOxQEJQBCiMGi60M5GguIEEJIg1ACIIQQkaIEQAgh\nIkUJgBBCRIrXBPD8+XOEhIQgMDAQfn5+iI+P5zMcQggRFV4TgKWlJTeGxuXLl5GamorffvuNz5AI\nIS1EY1sHNbVVkS6Hg87Ly0NYWBi6deuG7t27Y82aNTrZbgXei4Csra0BAAqFAiqVihtTgxBCmiJp\n165GXcwbu14FXQ4HbWZmhlWrViE9PR2nT5/G119/jevXr+ts+7wnALVajcDAQDg7OyMsLAx+fn58\nh0QIMXAFeXlgycm4cuqU3tfT53DQLi4uCAwMBAC0bt0avr6+KCgoaNAx1YX3BGBsbIyLFy8iPz8f\nJ06cgFQq5TskQoiBu374MCKdnHD/yBEoFAq9rdecw0Hn5OTgwoULCAkJ0fp46iOYN4LZ2dlh2LBh\nOHv2LCQSSZV5CQkJ3O8SiaTGfEIIqSCXy2GZlQUTKyv0Ki3FHwcOoM/rr+tlPW2Gg54zZw5kMhnk\ncjkGDx4M4O/hoGNiYjBixAgA5cNBL168GPn5+RgxYgR8fHyqxDZq1CisXr0arVu31hiLVCpt8A00\nrwng4cOHMDU1hb29PUpKSpCcnIz58+fXWK5yAiCEkLpcSk5GoIkJAMDOwgLs9GnIwsJgZ2+v8/W0\nGQ76119/hb+/P7Zs2cJdoNeuXYu0tDQcOHAAwcHBOHfuHGJjY/Hyyy9j//79GDp0KNatW4ewsDAo\nlUqMHDkS48aNw/Dhw2uNpfrN8YIFC+o8XoDnIqC7d+9iwIABCAwMREhICKKjoxEeHl7/ioQQooFK\npULJxYtoZW7OTetlbo60X37Ry3rNMRz05MmT4efnh+nTpzfgTGiH1ycAf39/nD9f/zs3CSFEG9fP\nnoVfcTHQqhU3zdzEBM43byLvzz/h0amTTterPBy0iYkJgoKC4OXlVWM46Hbt2iEkJARyuRxA+XDQ\nN2/eBGMMERER6NGjB5YtW4atW7fCzMwMrq6umD17Nn777Tf88MMP6NGjB4KCggAAS5cu5YqSmopG\nAyWEGKzq14dj27fDREMrGcYYytzcEBkTo3E7jV1PKGg4aEKI6ND1oRwNB01aHPrDJkS/KAEQwWpq\nj0xCSN0oARBBamxPTkKI9igBEEFqbE9OQoj2KAEQweF6ZBobo5dCgT8OHOA7JCJQDg4OMDIyEv1P\n9R7I2hLMUBCEVGhsT04iPhUdr0jj0BMAEZTG9sgkhDQcJQAiKFyPzEoq98gkhOgOFQERQbmfm4uH\nbm7IrDad2dnh/tmztXbJJ4Q0HPUEJoSQFoh6AhNCCKkVJQBCCBEpSgCEECJSlAAIIUSkKAEQQohI\nUQIghBCRogRACCEixWsCyMvLQ1hYGLp164bu3btjzZo1fIZDCCGiwmtHsHv37uHevXsIDAyEXC5H\ncHAw9uzZA19f378DpI5ghBDSYILvCObi4oLAwEAAQOvWreHr64sCDS9mJoQQonuCqQPIycnBhQsX\nEBISwncohBAiCoIYDE4ul2PUqFFYvXo1WrduXWN+QkIC97tEIoFEImm+4AghxABIpVJIpdIGrcP7\nYHBKpRJRUVEYMmQIpk+fXmM+1QEQQkjDaXPt5DUBMMbwxhtvoE2bNli1apXGZSgBEEJIwwk+Afz2\n22945ZVX0KNHDxgZGQEAli5disGDB/8dICUAQghpMMEnAG1QAiCEkIYTfDNQQggh/KEEQAghIkUJ\ngBBCRIoSACGEiBQlAEIIESlKAIQQIlKUAAghRKQoARBCiEhRAiCEEJGiBEAIISJFCYAQA0FDohBd\nowRASCVCvsgm7dol6PiI4aEEQEglQr3IFuTlgSUn48qpU3yHQloQSgCE/I+QL7LXDx9GpJMT7h85\nAoVCwXc4pIWgBEDI/wj1IiuXy2GZlQUTY2P0Uijwx4EDfIdEWghKAETnhFiEUh8hX2QvJScj0MQE\nAGBnYQF2+jRkT5/yHBVpCSgBEJ0Tajl6XYR6kVWpVCi5eBGtzM25ab3MzZH2yy88RqW9jIxcfP11\nCr74Qoqvv05BRkYu3yGRSigBEJ0Scjl6bYR8kb1+9iz8iourTDM3MYHzzZvI+/NPnqLSTkZGLjZv\nzsKDBwPw9KkEDx4MQGLinzh69DzfoZH/MeU7ANKyVJSjpxw5AkXPnjCvdFEVKu4i26oVN63yRdaj\nUyfeYrufm4uHbm7IrDad2dnh/tmztcaWkZGLo0ezoVQaw8xMjYgIb7zwgqf+A67k6NFsWFiEV5lm\nZhaGpKRsAOcREfFis8ZDauI9AUyaNAkHDhyAk5MTrly5wnc4pAm4cnQrK/QqLcUfBw6gz+uv8x1W\nvRp7kW0O4TExDV6n4s678sU3MTEVYWGPmvWiq1RqLmCwtvbG9eupiIhotlBILXhPAG+++SamTp2K\nCRMm8B0KaSKN5ehhYbCzt+c5sro15iIrZEK58zYzU2ucXlycjb597ZolBlI33usA+vXrBwcHB77D\nIE0k5HJ0san7zlvWbHFERHhDqUytMk2plGLgQBkV/wgE7wmAtAyGXFnZ0tR15+3r23x33i+84Imw\nMDsUF2dz+w8Ls6WLv4DwXgSkjYSEBO53iUQCiUTCWyxEMyGXo4tNRIQ3EhNTYWYWxk0rv/Nu/otv\n+f7O4/r1VPTta0cXfz2SSqWQSqUNWseICaDBdk5ODqKjozVWAhsZGRlcm3JC+Hb06HkkJdnB2tob\nxcXZVOwiQtpcOw3iCYAQbTHGYGRkxHcYvKM7b6IN3p8AYmNjcfz4cTx69AhOTk745JNP8Oabb3Lz\n6QmANMSRnTsxcMQISgJE9AziCeCnn37iOwTSQnC9kF1d0SM0lO9wCBE8agVEWgyhjuZJiFBRAiAt\ngpBH8yREqHgvAiJEFwy1F3KF5h67RwhjBRH+8V4JXB+qBCb1UalUSP3kE0RUqvhVqFQ47u6OyHfe\n4TEy7Wgau0epTEVYmH5a7zT3/gg/tLl2alUENGPGDDx79gxKpRLh4eFo27Yttm7dqpMgCWmqhvRC\nFuL49LWP3WOnl6GTm3t/RLi0SgBJSUmwtbXF/v374eXlhezsbHz22Wf6jo0QrdzPzUWmmxuk9vZV\nfh65ueFVTw+aAAAZWUlEQVTG2bPcckIdn765x+4RylhBhH9a1QGUlZUBAPbv349Ro0bBzs6O2lkT\nwdB2NE+hjJJZXXOPmkmjdJIKWj0BREdHo2vXrjh37hzCw8Px119/wdLSUt+xEaJTQr3zbe5RM2mU\nTlJB60rgx48fw87ODiYmJigqKkJhYSFcXFz0HR9VAoucLlurfP11Ch48GFBjuhDGymnusXtorKCW\nT5trp1YJoKioCCtXrsTt27exfv163Lx5ExkZGYiKitJZsLUGSAlAtCrK7M3NB3BFjk1prZKRkYtV\nqy7g9u0AqNVGMDZm8PS8jJEjPQRx8Tt69DyuX5fB17dprXG0TZrV96dpvS5dOlBxr4HSWQKIiYlB\ncHAwEhMTkZ6ejqKiIoSGhuLSpUs6C7bWACkBiFbFHfvtazvh4fv3+D6NvWPNyMjF/PnJuH07DObm\n3lAosuHlJcWkSUGCSAC60NgmnrWtZ2d6FjMS/kVJwADprBlodnY2Zs6cyb3gu1Wll2cToi9KpTEK\nZXnomJ2MJ/mnuOnVy+y1bdp59Gg2unZ9Cz4+MlhZpcLHR4YuXSa3qOaPjW3iqWm958U+KNp7ARvW\nbNZHqEQAtEoAFhYWKCkp4T5nZ2fDwsJCb0GRlqWxT3BmZmqUZR1GaGsn2GQdgUpVPr5P5TdbNaRp\nZ0UlcKdOLyIkJAydOpXfEfNdCaxLja3o1rReWdZhvGLng/uHU2lspRZKqwSQkJCAwYMHIz8/H3Fx\ncRgwYACWLVum79hIC5G0a1ejkkDv3i5wfngMJkbGeFmlwNPMAzVaqzTkjlcor0rUp8YeY/X1FAo5\n2j/OgrrsKYbZm9DYSi2UVglg4MCB2LlzJzZt2oS4uDicO3cOYWFh9a9IRI8bovnUqfoXrqYkNwOv\nellDqXwMG1MLOOUcQq+XjKqUZTfkjlcMzR8be4zV1yvMTkY3lg9v71IEvuBZPrbS06d6i5vwQ6sE\ncPz4cVy7dg02NjawsbHBtWvXcOLECX3HRlqAxg7RrFKpUHLxIrq/0AHe3qWwsrqF0T5qWN+/UWW5\nhtzxiuEl5Y09xsrrqdUqWOelwM+nNTp1cgUA9DI3R9ovv+g9ftK8tGoFFBUVxbUCeP78OdLS0hAc\nHIyUlBT9B0itgAyWXC7HpYUL0cfKCrLSUlzt1Qt9Xn9dq3WvnjkDx//8B+2rNTi4LJfD4f33uZfM\nZ2TkIjHxzxovQK/roteU5paGMopmY4/x6NHzOH7oFIbknUGoX6cq8y7L5Xg8+DWkZygFf/xEh81A\nq8vLy8O0adOwa9euRgenLUoAhuu/u3cj8I8/0Op/rcd+KymBf3y8VkM0H9u+HSYFBTWmM8ZQ5uaG\nyErDPzRXpyaxjKJZ27m/d/8RjlwHPAMXctNa4vG3FHpLAIwx+Pn54fr1640OTluUAAxTcw/RrKtO\nVHURck/i5iD24zc0Onsn8NSpU7nf1Wo1Ll68iODg4KZF9z+HDx/G9OnToVKp8NZbb2HmzJk62S7h\nFzdEc6UinMpDNFcU4dSGMdagzkcRES8iIqLR4Wql7grnVL3vn29iP/6WSKsEUPlib2pqitjYWPTt\n27fJO1epVJgyZQqOHj0KNzc3vPTSS3j11Vfh6+vb5G0Tft3PzcVDNzdkVpvO7Oxw/+zZehNA0q5d\nGDhihKB6oPI1iqZQ6h1oFNGWh9c3gp06dQoLFizA4cOHAQCffvopAGDWrFncMlQEJD4FeXm4vHgx\n2k+YgB6hoXyHw2lMhbMu9imUegc+jp80XpOLgPz9/evc+OXLlxsX2f/cuXMHHh4e3Gd3d3ecOXOm\nSdskhq+i6WjKkSNQ9OzJDUHCt/Kmko+QlJRdqcJZvxc/Ib3DgI/jJ/pVZwLYt2+fXneu7eN9QkIC\n97tEIoFEItFPQCLS0DL25iKXy2GZlQUTKyv0Ki3FHwcOaN10tDmUX+zO4/r1VPTtq/+7cKGVuzf3\n8RPtSaVSSKXSBq1TZwLw8vJqQjj1c3NzQ15eHvc5Ly8P7u7uNZarnACIbjSkjL05y6AvJScj0MQE\nAGBnYQH1qVOQhYVp1XS0uTRHhXMFIZa7N+fxE+1VvzlesGBBveto1RP41KlTeOmll9CqVSuYmZnB\n2NgYtra2jQ60Qs+ePXHz5k3k5ORAoVDgl19+wauvvtrk7ZK6NWR4huZ8j25F799WlYp82vz5J878\n/LPO92UohDp8hbYjsBJh0yoBTJkyBdu2bUOXLl3w/PlzbNiwAe+//36Td25qaoqvvvoKgwYNgp+f\nH8aMGUMtgJpBQ4ZnaOzwwo2Kq6Lp6P8UymQwz8mB8YkTyPvzT53uy1AIcfiK5rwpIPqlVQIAgM6d\nO0OlUsHExARvvvkm13KnqYYMGYKMjAxkZWUhPj5eJ9sktePK2I2N0UuhqHeUx+Z8j+793FxkurlB\nam8Pqb09thUUINfREVmPHjVqMDlNDLFFWUTEixg4UIY2bVJ5v/MHmvemgOiXVv0AWrVqhdLSUgQE\nBODjjz+Gi4uLQf4hkZpl7Oz06TrL2JuzDDq80vAOcrkcZnfvoo+vL3qWluKqtbVO9iHE/gXaaO5y\n97oaCQitYpo0nlZPAFu3boVarcZXX30Fa2tr5OfnY+fOnfqOjeiYpjL2+kZ55KsMWmOiauJwxE0Z\nmlps6nqHgxjeqyAWWiWAs2fPwtjYGHZ2dkhISMDKlSvh4+Oj79iIjlUvYweqDs+gCR9l0I1JVNpo\n7NDUYlNfohRqxTRpOK0SwL59+9C5c2eMHz8e+/fvR1lZmb7jInpQvYy94ueRmxtunD1b63rNXQbd\nmERVn4bWfYhZfYlSiBXTlVELJe1pPRSEQqHAoUOHsH37dpw8eRKRkZHYsGGDvuOjoSBEqCFDQWur\nKUNTi0lD3uHQHCOwNpSQhs7gm86Hg1YoFDhy5Ag2btyIEydO4NGjR00Osj6UAEhTNffQ1IbM0BMl\nDVn9N22unVoVAR08eBATJ05E586d8Z///Advv/027t+/r5MgCdE3fRQptUT6qntpTs3ZbLkl0KoZ\n6NatWzFmzBh8++23sLS01HdMhOhUU4emFoumvsNBCIQ4dIaQ6WQ46N69e+OUnprWUREQIc1DH3Uv\nzY2GrP6b3l4JWV1QUBAuXLjQ1M1oRAlAO0Id3ZOQ5tZc74gWOp3VARDhq6vjDiFiIrShM4RMqzoA\nImxcxx1XV0G9QYsQvtCQ1drR6glgzZo1ePLkib5jIY1EPVwJIY2h1RPA/fv38dJLL+HFF1/EpEmT\nMGjQoCrlzYmJiXoLkNRN6G/QIqQ6obzknjSgElitViMpKQmbN2/G2bNnERMTg8mTJ8Pb21u/AVIl\ncJ0MveMOERfqqdt8dFoJbGxsDBcXFzg7O8PExARPnjzBqFGjMGPGjCYHShqnJXTcIeJC7xIQFq0S\nwOrVqxEcHIyPP/4Yffr0wdWrV7F27VqcO3cOu3bt0neMpBZi7+FKT4aGh3rqCotWdQCPHz/Grl27\n4OlZtZzO2NgY+/bt00tgpH5i7+FqqC93ETPqqSssOukIpk9UByAMQutoVpCXh8uLF6P9hAnU9NWA\nUE/d5iPojmA7duxAt27dYGJigvPnqexP6ITW0Yyavhomob9LQGx4SwD+/v7YvXs3XnnlFb5CIFoS\n2qsU6eUuho166goHbz2Bu3btyteuSQNV3G2nHDkCRc+eMK/U6ogPDX2xPREe6qkrDDQWEKmT0O62\nqekrIbqj1yeAyMhI3Lt3r8b0JUuWIDo6WuvtJCQkcL9LJBJIJBIdREe0wefdtqaK55YwZj0h+iCV\nSiGVShu0Du+tgMLCwrBixQq8+KLmckBqBcQfvl+leGTnzhrNPHU1Zj0NR0BaOm2unYIYDZQu8MLE\n5912bSOchuvgpSSahiNITExFWNgjqpAkosJbHcDu3bvh4eGB06dPY9iwYRgyZAhfoZBa3M/NRaab\nG6T29lV+Hrm54cbZs3rdtz6bedJwBISU470IqD5UBCQ+crkclxYuRB8rK8hKS3G1Vy+djnD6xRdS\nPH0q0TivTZtUTJ0apnEeIYZE0B3BCKmNxornp091tv26hiPw9aXhCIh4UAIggtIczTwjIryhVKZW\nmaZUSqlTEhEdSgBEUBo7wmlDiglpOIK6UZGreAiiFRAhFRo7wmlDRwYtv9ifx/XrqejbV9gvI2nu\nJqs0yqp4UCUwMXgteWTQ5n6DVks+l2JjMP0ACGkKoY1V1FSV7/hPnbqOdu2GwsLi7/nlTVazAZzX\neRJoaeeS1I3qAIhBE9pYRU1Vccf/4MEAPH0qgUw2BJcu/Yk//6zaP0Efb9BqaeeS1I8SADFo+m4y\n2tyqd1IzNmYwMQlDVpZdlSSgjyarLe1ckvpRAiAGqyWODFr9nbmdOjlApboFc3NvPHgg+98yum+y\n2hLPJakfJQBisBrbZFTIqndSa9vWHh07WqK4+CzatbPTW5PVlnguSf2oEpgYrMY2GRWyiAhvJCam\nVnlnrodHBrp1uw9rayf4+kIvrX9a4rkk9aNmoIQIzNGj55GUZAdra28UF2dTD2XSKNpcOykBECJA\nR4+ex/XrMvj6CruTGhEuSgCEECJSNBooIYSQWlECIIQQkaIEQAghIkUJgBBCRIoSACF6QA0XiCHg\nLQHMmDEDvr6+CAgIwIgRIyCT6XZgK0L4lLRrFyUBIni8JYCBAwciPT0dly5dQpcuXbB06VK+QiFE\npwry8sCSk3Hl1Cm+QyGkTrwlgMjISBgbl+8+JCQE+fn5fIVCiE5VjKl//8gRKBQKvsMhpFaCqAPY\nuHEjhg4dyncYhDQZjalPDIleB4OLjIzEvXv3akxfsmQJoqOjAQCLFy+Gubk54uLiat1OQkIC97tE\nIoFEItF1qITohMYx9cPCYGdvz3NkpKWTSqWQSqUNWofXoSA2b96M9evX49ixY7C0tNS4DA0FQQyF\nSqVC6iefIKLSy9QVKhWOu7sj8p13eIyMiJGgh4I4fPgwPvvsM+zdu7fWiz8hhoTG1CeGhrcngM6d\nO0OhUMDR0REA0Lt3b3zzzTc1lqMnAGIojm3fDpOCghrTGWMoc3NDZEwMD1ERsaLRQAkhRKQEXQRE\nCCGEX5QACCFEpCgBEEKISFECIIQQkaIEQAghIkUJgBBCRIoSACGEiBQlAEIIESlKAIQQIlKUAAgh\nRKQoARBCiEhRAiCEEJGiBEAIISJFCYAQQkSKEgAhhIgUJQBCCBEpSgCEECJSlAAIIUSkeEsAc+fO\nRUBAAAIDAxEeHo68vDy+QiGEEFHi7Z3AhYWFsLGxAQB8+eWXuHTpEr7//vsay9E7gQkhpOEE/U7g\nios/AMjlcrRt25avUAghRJRM+dz57NmzsXXrVlhbW+P06dN8hkIIIaKj1yKgyMhI3Lt3r8b0JUuW\nIDo6mvv86aefIiMjA5s2baoZIBUBEUJIg2lz7dTrE0BycrJWy8XFxWHo0KG1zk9ISOB+l0gkkEgk\nTYyMEEJaFqlUCqlU2qB1eKsEvnnzJjp37gygvBI4LS0NW7durbEcPQEQQkjDaXPt5C0BjBo1ChkZ\nGTAxMYG3tzfWrl0LJyenGstRAiCEkIYTdALQFiUAQghpOEE3AyWEEMIvSgCEECJSlAAIIUSkKAEQ\nQohIUQIghBCRogRACCEiRQmAEEJEihIAIYSIFCUAQggRKUoAhBAiUpQACCFEpCgBEEKISFECIIQQ\nkaIEQAghIkUJgBBCRIoSACGEiBQlAEIIESlKAIQQIlKUAAghRKR4TwArVqyAsbExHj9+zHcohBAi\nKrwmgLy8PCQnJ8PT05PPMHRCKpXyHYJWKE7dMoQ4DSFGgOLkA68J4J///CeWL1/OZwg6YyhfCopT\ntwwhTkOIEaA4+cBbAti7dy/c3d3Ro0cPvkIghBBRM9XnxiMjI3Hv3r0a0xcvXoylS5ciKSmJm8YY\n02cohBBCqjFiPFx5r169ivDwcFhbWwMA8vPz4ebmhrS0NDg5OVVZ1sfHB9nZ2c0dIiGEGDRvb29k\nZWXVuQwvCaC6jh074ty5c3B0dOQ7FEIIEQ3em4ECgJGREd8hEEKI6AjiCYAQQkjzE8QTgLaE3mls\n7ty5CAgIQGBgIMLDw5GXl8d3SDXMmDEDvr6+CAgIwIgRIyCTyfgOSaMdO3agW7duMDExwfnz5/kO\np4bDhw+ja9eu6Ny5M5YtW8Z3OBpNmjQJzs7O8Pf35zuUOuXl5SEsLAzdunVD9+7dsWbNGr5D0uj5\n8+cICQlBYGAg/Pz8EB8fz3dItVKpVAgKCkJ0dHTdCzIDcfv2bTZo0CDm5eXFHj16xHc4Gj179oz7\nfc2aNWzy5Mk8RqNZUlISU6lUjDHGZs6cyWbOnMlzRJpdv36dZWRkMIlEws6dO8d3OFWUlZUxb29v\nduvWLaZQKFhAQAC7du0a32HVcOLECXb+/HnWvXt3vkOp0927d9mFCxcYY4wVFhayLl26CPJ8MsZY\nUVERY4wxpVLJQkJC2MmTJ3mOSLMVK1awuLg4Fh0dXedyBvMEYAidxmxsbLjf5XI52rZty2M0mkVG\nRsLYuPy/PSQkBPn5+TxHpFnXrl3RpUsXvsPQKC0tDT4+PvDy8oKZmRnGjh2LvXv38h1WDf369YOD\ngwPfYdTLxcUFgYGBAIDWrVvD19cXBQUFPEelWUXLRYVCAZVKJciGK/n5+Th48CDeeuutepvXG0QC\nMKROY7Nnz0aHDh2wZcsWzJo1i+9w6rRx40YMHTqU7zAMzp07d+Dh4cF9dnd3x507d3iMqOXIycnB\nhQsXEBISwncoGqnVagQGBsLZ2RlhYWHw8/PjO6QaPvzwQ3z22WfcjV5d9NoRrCEMpdNYbXEuWbIE\n0dHRWLx4MRYvXoxPP/0UH374ITZt2iS4GIHy82pubo64uLjmDo+jTZxCRK3W9EMul2PUqFFYvXo1\nWrduzXc4GhkbG+PixYuQyWQYNGgQpFIpJBIJ32Fx9u/fDycnJwQFBWk1ZIVgEkBycrLG6VevXsWt\nW7cQEBAAoPzxJjg4WGOnseZQW5zVxcXF8XZ3XV+MmzdvxsGDB3Hs2LFmikgzbc+l0Li5uVWp4M/L\ny4O7uzuPERk+pVKJkSNHYty4cRg+fDjf4dTLzs4Ow4YNw9mzZwWVAH7//Xf8+uuvOHjwIJ4/f45n\nz55hwoQJSExM1LxCs9RI6JCQK4EzMzO539esWcPGjRvHYzSaHTp0iPn5+bEHDx7wHYpWJBIJO3v2\nLN9hVKFUKlmnTp3YrVu3WGlpqWArgRlj7NatW4KvBFar1Wz8+PFs+vTpfIdSpwcPHrAnT54wxhgr\nLi5m/fr1Y0ePHuU5qtpJpVIWFRVV5zIGUQdQmZAfv+Pj4+Hv74/AwEBIpVKsWLGC75BqmDp1KuRy\nOSIjIxEUFIT333+f75A02r17Nzw8PHD69GkMGzYMQ4YM4TskjqmpKb766isMGjQIfn5+GDNmDHx9\nffkOq4bY2FiEhoYiMzMTHh4evBRHauO///0vfvjhB6SmpiIoKAhBQUE4fPgw32HVcPfuXQwYMACB\ngYEICQlBdHQ0wsPD+Q6rTvVdL6kjGCGEiJTBPQEQQgjRDUoAhBAiUpQACCFEpCgBEEKISFECIIQQ\nkaIEQAghIkUJgBBCRIoSACFNkJOTI/jx9gmpDSUAQggRKUoARBT++OMPBAQEoLS0FEVFRejevTuu\nXbtWY7nY2FgcPHiQ+zxx4kTs3LkTubm5eOWVVxAcHIzg4GCcOnWqxrqbN2/G1KlTuc9RUVE4fvw4\nACApKQmhoaEIDg5GTEwMioqKAACzZs1Ct27dEBAQgBkzZuj6sAmpk2BGAyVEn1566SW8+uqrmDNn\nDkpKSjB+/HiNY7mPGTMG27dvx9ChQ6FQKJCSkoJ169ZBrVYjOTkZFhYWuHnzJuLi4vDHH3/UuU8j\nIyMYGRnh4cOHWLx4MY4dOwYrKyssW7YMK1euxAcffIA9e/bgxo0bAIBnz57p5dgJqQ0lACIa8+bN\nQ8+ePWFlZYUvv/xS4zKDBw/GtGnToFAocOjQIfTv3x8WFhaQyWSYMmUKLl26BBMTE2RmZmq1T8YY\nTp8+jWvXriE0NBRA+dukQkNDYWdnB0tLS0yePBlRUVGIiorS2bESog1KAEQ0Hj58iKKiIqhUKpSU\nlHCv96vM0tISEokER44cwfbt2xEbGwsAWLVqFVxdXbF161aoVCpYWlrWWNfU1BRqtZr7/Pz5c+73\nyMhIbNu2rcY6aWlpOHbsGP7zn//gq6++4v0dDURcqA6AiMY777yDRYsWIS4uDjNnzqx1uTFjxmDj\nxo04efIkBg8eDKC8eMbFxQUAkJiYCJVKVWM9Ly8vXLx4EYwx5OXlIS0tDUZGRnj55Zfx3//+F9nZ\n2QCAoqIi3Lx5E0VFRXj69CmGDBmClStX4tKlS3o4akJqR08ARBQSExNhYWGBsWPHQq1WIzQ0tNbX\n+Q0cOBDjx4/H8OHDYWpa/ify/vvvY+TIkUhMTMTgwYOrvLKwYsz1vn37omPHjvDz84Ovry+Cg4MB\nAG3btsXmzZsRGxuL0tJSAOWv5LSxscFrr72G58+fgzGGVatW6fksEFIVvQ+AEEJEioqACCFEpKgI\niIjSlStXMGHChCrTLC0tNbbvJ6SloiIgQggRKSoCIoQQkaIEQAghIkUJgBBCRIoSACGEiBQlAEII\nEan/B8fN7sCf/x4sAAAAAElFTkSuQmCC\n", - "text": [ - "" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEaCAYAAAAYOoCaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYVOXaP/DvcAaFEULOKIKaoBwMkkTLQQEPSZlnfNVM\n29Vr+Wq7bWpmYoaaZh46mLkrQ7OfurUTkgLKmJZEeE4JBIVA1EBkcASZYXh+f7hZcRhggJlZa1j3\n57q8YoZ1uNeKee41z/Ose0kYYwyEEEJEx4zvAAghhPCDEgAhhIgUJQBCCBEpSgCEECJSlAAIIUSk\nKAEQQohIUQIwIbdu3cITTzwBBwcHLF68mO9wGikoKICZmRnq6ur4DqVFc+bMwYoVK/gOQy+60rGY\nKrlcDm9vb77D6BRKADrq3r077O3tYW9vDzMzM9jZ2XGvv/76a6PE8Omnn8LFxQWVlZXYsGGDUfbZ\nlUgkEkgkEqPsy9CNgzGOhZJM12fBdwCmQqlUcj/36dMHn332GUaOHNlsudraWlhYGOa0FhYWwt/f\nv0PrGjIuU9KV7nvsSsdiSPS33zL6BtBJcrkcXl5eWL9+Pdzd3TFv3jxUVFRg/PjxcHFxgZOTE2Jj\nY3H9+nVuHZlMhrfeegvDhw+Hg4MDRo8ejdu3bwMA7t+/j5kzZ8LZ2RmOjo4YMmQI/vrrL8yZMweJ\niYlYv3497O3tcezYMahUKixatAienp7w9PTEq6++CpVKpTWuuXPnYtWqVZgyZQpmzZoFBwcHBAUF\n4cqVK1i7di1cXV3Ru3dvpKamcnEqFArMmzcPHh4e8PLywooVK7gunrq6OvzrX/9Cz5494efnh0OH\nDrV6nt599114eXnBwcEBAwYMwLFjxwAAmZmZGDp0KBwdHeHh4YEFCxZArVZz65mZmWHbtm3o168f\nHBwc8NZbbyE/Px9Dhw5Fjx49MH36dG75+mNeu3YtevbsiT59+mDPnj0txpSUlISQkBA4Ojpi2LBh\nuHjxYpvxNpWcnIyBAwfCwcEBXl5eeP/991FVVYWxY8eipKQE9vb2cHBwwM2bN8EYw7p169C3b184\nOztj2rRpuHPnDoC/u9B27NgBT09PeHh4YOPGja2e07KyMsTExMDBwQEymQx//vknAODll1/Gv/71\nr0bLPvXUU9i8ebPW7bz66qtwdXWFVCpFUFAQLl26hE8//RR79uzh/t6efvppAEBJSQkmTZoEFxcX\n+Pr64oMPPuC2Ex8fj8mTJ2P69OlwcHBAaGgoLly40GL8CxcuRK9evSCVShEWFoaTJ0/qvC0fHx+s\nW7cOAwcOhJOTE+bOnYuamhoA2j+TrX1W2vq8lpeX47nnnoOnpyecnJzwzDPPNDqO999/H66urvDw\n8MDOnTtbPF5BYqTdfHx82NGjRxljjKWnpzMLCwu2dOlSplKpWHV1Nbt9+zY7ePAgq66uZnfv3mVT\npkxhEyZM4NYfMWIE69u3L7ty5Qqrrq5mMpmMLV26lDHG2CeffMJiY2NZdXU1q6urY2fOnGGVlZWM\nMcbmzJnDVqxYwW1nxYoVbOjQoay0tJSVlpayiIgI7vfa4lq5ciWzsbFhKSkprLa2ls2ePZv17t2b\nrVmzhtXW1rIdO3awPn36cNufMGECe+mll1hVVRX766+/2JAhQ9j27dsZY4xt27aNDRgwgBUXF7Py\n8nImk8mYmZkZ02g0zc7XH3/8wby9vdmNGzcYY4wVFhay/Px8xhhjp0+fZr/++ivTaDSsoKCA+fv7\ns82bN3PrSiQSNmHCBHb37l126dIlZmVlxSIjI9m1a9eYQqFgAQEB7Msvv2x0zK+99hpTqVTs+PHj\nrFu3biw3N5c7f2+++SZjjLEzZ84wFxcXlpmZyerq6tiXX37JfHx8mEqlajXeptzc3NjJkycZY4xV\nVFSwM2fOMMYYk8vlzMvLq9GymzdvZkOHDmXXr19nKpWKvfjiiywuLo4xxti1a9eYRCJhM2bMYFVV\nVezixYusZ8+eLC0tTet+n332WWZvb89OnDjBampq2MKFC9nw4cMZY4xlZmYyDw8PVldXxxhjrLS0\nlNnZ2bG//vqr2XYOHz7MQkNDmUKh4P5f1R930783jUbDHnnkEbZ69WqmVqvZ1atXma+vLzty5Ahj\njLGVK1cyS0tLduDAAVZbW8vee+891qdPH6ZWq7Uew+7du1l5eTnTaDRs48aNzM3NjdXU1LS6rdra\nWsYYY71792aBgYHc39+wYcO4/7fa/vZb+6y09XkdN24cmz59OquoqGBqtZr99NNPjfazcuVKVltb\ny5KTk5mdnR2rqKjQerxCRAmgA5omACsrK+4PV5uzZ88yR0dH7rVMJmMJCQnc648//piNGTOGMcbY\n559/ziIiItiFCxeabadhA8YYY35+fuzHH3/kXh85coT5+Pi0GNfKlStZTEwM9/r7779n3bt35xqK\nyspKJpFImEKhYDdv3mTW1tasurqaW37Pnj0sMjKSMcZYZGQklwwYYywlJYVJJBKtCeDKlSvMxcWF\npaWlMZVK1eJ5YoyxTZs2sWeeeYZ7LZFI2C+//MK9Dg0NZevXr+dev/baa2zRokXcMVtYWLCqqiru\n91OnTmWrV6/mzl/9h/6ll15q1LgxxtjDDz/Mjh8/zvLy8nSOt1evXmz79u1cA1ovPT29WQLw9/fn\n/m4YY6ykpIRZWloyjUbDJYCcnBzu96+//jqbN2+e1v0+++yzXPJgjDGlUsnMzc1ZcXExt6/U1FTG\nGGMffPABe/LJJ7Vu59ixY6x///4sIyOj2f+7pn9vGRkZrFevXo2WWbNmDXvuuecYYw/+voYOHcr9\nrq6ujrm7u7MTJ05o3XdTjo6O3N99S9uqT7Y+Pj6N/v6Sk5OZn58fY0z7335rn5WmGn5eS0pKmJmZ\nmdZGPT09ndna2jY6by4uLuzXX3/V6XiFgLqA9KBnz56wsrLiXldVVeHFF1+Ej48PpFIpRowYAYVC\n0ajP1s3NjfvZ1taWG2OYNWsWRo8ejenTp8PT0xNLlixBbW2t1v2WlJSgd+/e3OtevXqhpKSkxbgA\nwMXFpdF+nZ2ducFEW1tbAA/GOwoLC6FWq+Hu7g5HR0c4OjripZdeQmlpKQDgxo0bjQY5e/Xq1eL5\n6du3LzZv3oz4+Hi4uroiLi4ON27cAADk5uZi/PjxcHd3h1QqxfLly7nusHqurq6NYm742sbGptH4\njKOjI3ccANC7d29uXw0VFhZi48aN3LE5OjqiuLgYN27cgJ+fX4vxNnXgwAEkJyfDx8cHMpkMGRkZ\nLZ6HgoICPPPMM9z+AgICYGFhgVu3bnHLND2nDf9/NiSRSODl5cW97tatG5ycnLjlZ8+ejd27dwMA\ndu/ejVmzZmndTmRkJF555RW8/PLLcHV1xYsvvoi7d+9qXbawsBAlJSWNztnatWvx119/ccs0jKk+\nxpbO3XvvvYeAgAD06NEDjo6OUCgUKCsra3VbDc9Ha+eq6d9+a5+V1j6vRUVFcHJyglQq1XoMDz30\nEMzM/m5G7ezsGv09Ch0lAD1oOhtj48aNyM3NRWZmJhQKBY4fPw724NtWm9uysLDAW2+9hUuXLuGX\nX35BUlISEhMTtS7r4eGBgoIC7vWff/4JDw+PFuNqz6wRb29vWFtb4/bt27hz5w7u3LkDhULB9ZO7\nu7tzfc71+25NXFwcTpw4gcLCQkgkEixZsgQA8L//+78ICAhAXl4eFAoFEhIS2jWVtOkx3blzB1VV\nVdzrwsLCRuekXq9evbB8+XLu2O7cuQOlUolp06a1Gm9TYWFh+Pbbb1FaWooJEyZg6tSpWuOq3+fh\nw4cb7bOqqgru7u7cMk3PqaenZ4vHXlRUxP2sVCpRXl7OHevMmTPx3Xff4fz58/jjjz8wYcKEFrez\nYMECZGVl4fLly8jNzeVmmDU9hl69eqFPnz6N4q+srERSUpLWmOrq6lBcXKz1/J84cQIbNmzA/v37\nUVFRgTt37kAqlTb6jLS1rabnqrW/fW2flfpz29rn1dvbG+Xl5VAoFC2eP1NGCcAAlEolbG1tIZVK\nUV5ejlWrVjVbpqVkkJ6ejosXL0Kj0cDe3h6WlpYwNzfXuk5cXBzeeecdlJWVoaysDG+//XaLV3qt\n7VMbd3d3xMTE4J///Cfu3r2Luro65Ofn46effgIATJ06FVu3bsX169dx584drFu3rsVt5ebm4tix\nY6ipqYG1tTVsbGy4Y1IqlbC3t4ednR3++OMPbNu2rc3YGh6HtmNauXIl1Go1Tpw4gUOHDmHKlCnc\nsvXL/+Mf/8Ann3yCzMxMMMZw7949HDp0CEqlstV4G1Kr1fjqq6+gUChgbm4Oe3t7bjlXV1fcvn0b\nlZWV3PIvvfQS3njjDa7hKi0txffff99om++88w6qq6tx6dIl7Ny5k0tI2s5BcnIyfv75Z6hUKqxY\nsQJDhw7lGjUvLy+EhYVh9uzZmDx5MqytrbVuJysrC7/++ivUajXs7OwaHaurqyuuXr3KLTtkyBDY\n29tj/fr1qK6uhkajwe+//46srCxumdOnT+Obb75BbW0tNm/eDBsbGzz22GPN9nv37l1YWFjA2dkZ\nKpUKb7/9dqNz1da2GGP4+OOPcf36dZSXlyMhIQHTp0/XeoyA9s/KzJkzAbT+eXV3d8fYsWMxf/58\nVFRUQK1Wc5+BroASgB40vdpYtGgRqqur4ezsjIiICIwdO7bVq/GGc7pv3bqFKVOmQCqVIiAgADKZ\njGvUm879fvPNNxEWFoagoCAEBQUhLCwMb775ZotxaZs73trrxMREqFQqBAQEwMnJCVOmTMHNmzcB\nPGhAR48ejeDgYISFhWHSpEktfsOoqanBsmXL0LNnT7i7u6OsrAxr164F8KAbYM+ePXBwcMALL7yA\n6dOnNzs3TbV07oAHXWv1M4pmzZqF7du3o3///s2WDQ0NxY4dO/DKK6/AyckJ/fr1475ptRZvU7t3\n70afPn0glUrx6aef4quvvgIADBgwAHFxcfD19YWTkxNu3ryJhQsX4qmnnuJm7gwdOhSZmZmNtjdi\nxAj07dsXUVFRWLx4MaKiorTuVyKR4H/+53+watUqPPTQQzh79izX5VPv2WefxcWLF1u9KKisrMQL\nL7wAJycn+Pj4wNnZmbvJcN68ebh8+TIcHR0xceJEmJmZISkpCefOnYOvry969uyJF154gWu4JRIJ\nnn76aezduxdOTk746quvcPDgQa3Jc8yYMRgzZgz69+8PHx8f2NraNupGbGtbEokEM2bMQExMDPz8\n/NCvX79W//Zb+6y09XndtWsXLC0tMWDAALi6umLr1q0t7sfUSFh7LgsNRKPRICwsDF5eXvjhhx/4\nDoeYKLlcjlmzZjXqOjAVBQUF8PX1RW1tbaM+5c44ceIEZs6cicLCQr1sry2rVq1CXl4edu3aZfBt\ntXYvDtGdIL4BbNmyBQEBASafTQkRCrVajc2bN+Mf//iH0fapz2tJAVyXigLvCaC4uBjJycl4/vnn\n6X866TRTvojQV+zZ2dlwdHTErVu3sGjRIr1sUxf6LE9hzLIdYsZ7F9CUKVPwxhtvoLKyEu+99x51\nARFCiJHw+g0gKSkJLi4uGDx4MF39E0KIsRntljMtli1bxry8vJiPjw9zc3NjdnZ2bNasWY2W8fPz\nYwDoH/2jf/SP/rXjX/2d0a0RTCkIuVzOxo8f3+x9QDAhtmrlypV8h6ATilO/TCFOU4iRMYpT33Rp\nO3kfBG6IBn0IIcR4BFMke8SIERgxYgTfYRBCiGgI6huAKZPJZHyHoBOKU79MIU5TiBGgOPnA+zTQ\ntkgkEpohRAjRysnJiXuojpg5OjqivLy80Xu6tJ2UAAghJovahwe0nQddzg11ARFCiEhRAiCEEJGi\nBEAIIXoUHx+PjRs36m17c+fOhaurKwIDA/W2zXqCmQZKCCH6kJNTiLS0fKjVZrC0rENUlB8efri3\nwdZrSt/3Mz333HNYsGABZs+erdftAvQNgBDSheTkFGLnzjyUlo5ERYUMpaUjkZh4FWlpZwyyHvDg\nwUnBwcEICQlp1kjv2LEDQ4YMQUhICCZPnozq6moAwP79+xEYGIiQkBDu/qdLly4hPDwcgwcPRnBw\nMPLy8gAAjz/+OBwdHTtyOtpECYAQ0mWkpeXD2npUo/csLSORkiJttTHv6HqXLl1CQkIC0tPTce7c\nOWzZsqXR7ydNmoTMzEycO3cO/v7++OyzzwAAq1evRkpKCs6dO8dVQN6+fTsWLlyIs2fP4vTp0/Dy\n8mrXsXcEJQBCSJehVmtv0uzs/JCd3fKD3Tu63rFjxzB16lQ4OTkBQLMr9YsXL+Lxxx9HUFAQvvrq\nK1y+fBkAMGzYMDz77LP497//jdraWgDA0KFDsWbNGqxfvx4FBQWwsbFp+UD1hBIAIaTLsLSs0/p+\nVVU+/P2lel+vpbn29eMAc+bMwccff4wLFy5g5cqVXBfQtm3b8M4776CoqAihoaEoLy9HXFwcfvjh\nB9ja2mLcuHFIT09vcb/6QgmAENJlREX5Qa1u3HCq1XLExCgQFfWI3tcbOXIk9u/fz92FW//f+qSg\nVCrh5uYGtVqN3bt3c+vl5+djyJAhWLVqFXr27Ini4mJcu3YNPj4+WLBgAZ5++mlcvHixfQffAZQA\nCCFdxsMP90ZkpBRVVfkAHlzBR0Y6tNqId2a9gIAALF++HCNGjEBISAhee+01AH9/A1i9ejXCw8Mx\nfPhw+Pv7c++//vrrCAoKQmBgIIYNG4agoCDs27cPgYGBGDx4MC5dusQNKMfFxSEiIgK5ubnw9vbG\nF1980fET1ASVgiCEmKyW2oe0tDPIzlbA31/aZiOuj/X41tFSEJQACCEmi9qHB6gWECGEkHahBEAI\nISJFCYAQQkSKEgAhhIgUrwng/v37CA8PR0hICAICArBs2TI+wyGEEFHhNQHY2NhwNTQuXLiA9PR0\nnDx5ks+QCCFdREdnB3V2VpE+y0EXFRUhMjISAwcOxKBBg7B161a9bLce711AdnZ2AACVSgWNRsPV\n1CCEkM5IOXiwQ415R9erp89y0JaWlti0aRMuXbqEjIwMfPTRR8jOztbb9nlPAHV1dQgJCYGrqysi\nIyMREBDAd0iEEBNXUlQElpqKi6dOGXw9Q5aDdnNzQ0hICACge/fu8Pf3R0lJSbuOqTW8JwAzMzOc\nO3cOxcXF+OmnnyCXy/kOiRBi4rIPH0a0iwtuHTkClUplsPWMWQ66oKAAZ8+eRXh4uM7H0xbBPBFM\nKpXiySefRFZWFmQyWaPfxcfHcz/LZLJmvyeEkHpKpRI2eXkwt7XFkJoa/HboEIY984xB1tOlHPSb\nb74JhUIBpVKJMWPGAPi7HPTUqVMxceJEAA/KQSckJKC4uBgTJ05E3759G8U2efJkbNmyBd27d9ca\ni1wub/cFNK8JoKysDBYWFujRoweqq6uRmpqKlStXNluuYQIghJDWnE9NRYi5OQBAam0NlpEBRWQk\npD166H09XcpBf//99wgMDMSXX37JNdDbtm1DZmYmDh06hNDQUJw+fRpxcXF47LHHkJSUhHHjxmH7\n9u2IjIyEWq3GpEmTMHPmTEyYMKHFWJpeHK9atarV4wV47gK6ceMGRo4ciZCQEISHhyM2NhajRo1q\ne0VCCNFCo9Gg+tw5dLOy4t4bYmWFzL17DbKeMcpBz5s3DwEBAVi0aFE7zoRueP0GEBgYiDNn2n7m\nJjEexpjeH2pNiLFkZ2UhoKoK6NaNe8/K3ByuV66g6OpVePv66nW9huWgzc3NMXjwYPj4+DQrB92z\nZ0+Eh4dDqVQCeFAO+sqVK2CMISoqCkFBQXj33Xexa9cuWFpawt3dHcuXL8fJkyexe/duBAUFYfDg\nwQCAtWvXcl1JnUXVQEkjRw4cQMzEiZQEiElo2j4c3bcP5lpmyTDGUOvpieipU7Vup6PrCQWVgyad\nVlJUhAsJCfCYPRtBERF8h0NIm6h9eIDKQZNO6+jUOUKIaaIEQAA0mAJnZoYhKhV+O3SI75AIIQZG\nCYAAaGEKXEUFz1ERQgyJEgDp8BQ4QohpE8ydwIQ/HZ0CRwjfHB0dacYamt+BrCtKAAS3CgtR5umJ\n3CbvM6kUt7KyKAEQwaq/8Yp0DE0DJYSQLoimgRJCCGkRJQBCCBEpSgCEECJSlAAIIUSkKAEQQohI\nUQIghBCRogRACCEiRQmAEEJEihIAIYSIFCUAQggRKV4TQFFRESIjIzFw4EAMGjQIW7du5TMcQggR\nFV5rAd28eRM3b95ESEgIlEolQkND8e2338Lf3//vAKkWECGEtJvgawG5ubkhJCQEANC9e3f4+/uj\nRMuDmQkhhOifYMYACgoKcPbsWYSHh/MdCiGEiIIgngegVCoxefJkbNmyBd27d2/2+/j4eO5nmUwG\nmUxmvOAIIcQEyOVyyOXydq3D+/MA1Go1xo8fj7Fjx2LRokXNfk9jAIQQ0n66tJ28JgDGGJ599lk8\n9NBD2LRpk9ZlKAEQQkj7CT4BnDx5Ek888QSCgoK453quXbsWY8aM+TtASgCEENJugk8AuqAEQAgh\n7Sf4aaCEEEL4QwmAEEJEihIAIYSIFCUAQggRKUoAhBAiUpQACCFEpCgBEEKISFECIKQNdB8K6aoo\nARDShpSDBykJkC6JEgARBKE2sCVFRWCpqbh46hTfoRCid5QAiCAI9So7+/BhRLu44NaRI1CpVHyH\nQ4heUQIgvBPqVbZSqYRNXh7MzcwwRKXCb4cO8R0SIXpFCaALEeIVtC6EepV9PjUVIebmAACptTVY\nRgYUFRU8R0WI/lAC6EKE2o3SGqFeZWs0GlSfO4duVlbce0OsrJC5dy+PUekmJ6cQH310DJs3y/HR\nR8eQk1PId0hEoCgBdBFC7UZpi1CvsrOzshBQVdXoPStzc7heuYKiq1d5iqptOTmF2LkzD6WlI1FR\nIUNp6UgkJl5FWtoZvkMjAiSIZwKTzqvvRjl25AhUYWGwanDlKlQtXWUf37sX0S++yGNkwK3CQpR5\neiK3yftMKsWtrCx4+/o2WycnpxBpaflQq81gaVmHqCg/PPxwb+ME/F9pafmwth7V6D1Ly0ikpOQD\nOIOoqEeMGg8RNkoAXQDXjWJriyE1Nfjt0CEMe+YZvsNqE3eV3a0b917Dq2xtjayxjJo6tV3L1195\nN2x8ExPTERl526iNrlqt/Uu9nZ0fsrPTERVltFCICaAE0AVo7UaJjIS0Rw+eI2tdR66yhUooV96W\nlnVa36+qysfw4VKjxEBMByUAEyfkbpS2tPcqW8iEcuUdFeWHxMR0WFpGNohNjpgYB+r+Ic3wPgg8\nd+5cuLq6IjAwkO9QTJKpDlZ2Na1defv7G+/K++GHeyMyUoqqqnxu/5GR1PgT7Xh/KPyJEyfQvXt3\nzJ49GxcvXmz2e3oofOuO7tsH85KSZu8zxlDr6YnoLnSVLWQ5OYVITLza7Mqbr8Y3Le0MsrMV8PeX\nUuMvUrq0nbwnAAAoKChAbGwsJQBi0tLSziAlRQo7Oz9UVeUjJkZBjS/hjS5tJ40BkE5jjEEikfAd\nBu8eNPZnkJ2djuHD6cqbCJ9JJID4+HjuZ5lMBplMxlsspLmUgwcRM3EiJQE8SAI01ZLwQS6XQy6X\nt2sd6gIinVJSVIQLCQnwmD0bQRERfIdDCPkvXdpO3mcBEdMm1EJuhJC28Z4A4uLiEBERgdzcXHh7\ne+OLL77gOySiI6EWciOE6EYQXUCtoS4g4fr5m28Q8ttv3E1oJ6urEbhsmeDvQOaLEGoFEfEwmWmg\nraEEIEwajQbpb7+NqAYDvyqNBse9vAR/B3I9YzbI2moFqdXpiIyk2ULEMGgaKDGY9hRyE+KVr7GL\ntwmlVhAhDVECIB2iayE3oVTJbMrYDbJQagUR0hAlANIhuhZyE+qVr7EbZKrSSYRIp1lAixcvRmVl\nJdRqNUaNGgVnZ2fs2rXL0LGRLqD1hlZh5Gj+ZuzibVFRflCr0xu996BKJ5WLIPzRKQGkpKTAwcEB\nSUlJ8PHxQX5+PjZs2GDo2AhP9PlMWaFUyWzK2A0yVekkQqRTF1BtbS0AICkpCZMnT4ZUKqXb/ruo\n+j57K6uR3P/jzvTZ19enVygG4+rVO6irkwBIx7RproiKGqfn6HX3oEG+jZSU/AbF2zrXILc12N1S\nraCm640a5YsBA3w6eYSEtE2naaBLly7Ft99+CxsbG2RmZqKiogKxsbH49ddfDR8gTQM1qo8+OobS\n0pH48/IBePv/Xd+nM9Utv/giGdu3W8PGZhRUqnz07auAt7dCEFMg9VU2uaPTPLWtd/XiKsx6aTyi\no0M7HA8hepsGum7dOrz++uuQSqUwNzdHt27d8N133+klSCIsarUZ7iqK0Cc/FaX27nDyflDfR9vg\nqK7TO6uqbNC/fw+UlqajVy8pfH0fNIh8DwQD+ive1tHB7qbr3VUUoV/BDezfmQ+JRMJ7giRdm05j\nAPfu3cNHH32El156CQBQUlKCrKwsgwZG+GFpWYfavMOI6O4C+7wj0Gge1Pdp2mdff+VaWjoSFRUy\nlJaORGLiVaSlnWm2TbXaDL6+jyA8PJJr/AH+B4L1qaOD3U3Xqz/3PYsv4eLFMr3GSEhTOiWA5557\nDlZWVvjll18AAB4eHli+fLlBAyOd09Fus6FD3eBadhTmEjM8plGhIveQ1sHRlq94pc2SgFAHgvWp\no8fYcD2VSgmP8jyYS8wQdv8WrBUX9B4nIQ3plADy8/OxZMkSWP235ku3Bnd/EmFKOXiwQ0mgujAH\nT/nYQa0uh72FNVwKfsSQR5t3RbTnilcMUyA7eowN17ubn4ogM3NoNAUIfpghqLoUiooKg8ZNxE2n\nBGBtbY3q6mrudX5+PqytrQ0WFOmckqIisNRUXDx1ql3raTQaVJ87h0EP94KfXw1sba9hSt862N36\no9my7bniFcMUyI4eY/16SmUupDfPwaJOiT59rOHr644hVlbI3LvXGOETkdJpEDg+Ph5jxoxBcXEx\nZsyYgZ9//hk7d+40cGiko+pr9B87cgSqsDDum1ub6zWo7+Pr6476cj4qLfV96qd3Nn0IektTKTv7\nuEQh1hNrBXASAAAWH0lEQVRqqqPHGBX1CP7M/hI9z+bAr7cUvr7uAP6urSRPO4FLOWpBHzsxTTpX\nAy0rK0NGRgYA4LHHHoOzs7NBA6tH00DbR6lU4vzq1RhmawtFTQ1+HzIEw555Rqd1j+7bB/OSkmbv\nM8ZQ6+mJ6CblH4z1EHQxVNJs6dzfvHUbR7KB3iGrufe62rETw9BbOejjx4832lj93PAnnnhCD2G2\njhJA+xi7Rr++5tG3pv7ehKYMmXSEQszHTjpHb/cBbNiwgWv079+/j8zMTISGhuLYsWOdj5LoTX0f\nfrcGXT5DrKxwfO9enWr0M8bafYe3MR6CLuZKmmI+dmJ4OiWApKSkRq+LioqwcOFCgwREOq49Nfq1\nSTl4EDETJwquzAdflTSFMO5AVUSJIXXomcBeXl7Izs7Wdyykk24VFiLX0xPyHj0a/bvt6Yk/2rhx\nr6Mzh4yBj2mk7bnRzZDEMIWW8EenbwALFizgfq6rq8O5c+cQGqqfOiWHDx/GokWLoNFo8Pzzz2PJ\nkiV62a4Y6VqjX5uOzhwyBkMUbmuLUJ5jwMexE/HQKQE0bOwtLCwQFxeH4cOHd3rnGo0Gr7zyCtLS\n0uDp6YlHH30UTz31FPz9/Tu9bSHqSB+7MSiVStjk5cHc1hZDamrw26FDOs8cMpbOTiNtLyH1vRv7\n2Il46JQA5syZY5CdZ2Zmom/fvvDx8QEATJ8+Hd99912XTQDt7WM3Vh/0+dRUhJibAwCk1tZgGRmo\nkMnQw9FR7/vqDGMMONcTWt+7MY+diEerCSAwMLDF30kkEly40LlaJdevX4e3tzf32svLyyglpvnA\n9bG7uyMoIqLN5Y31LN2WZg59vHQpFn7yiSC/sRhDe290MxYhDEyTrqPVBPDDDz8YdOe6Ni7x8fHc\nzzKZDDKZzDABGVB7+9iN1QetbeZQjVKJPhkZSD1wADGTJ+tlP6ZGiH3vxrooIKZJLpdDLpe3a51W\nE0B914yheHp6oqioiHtdVFQELy+vZss1TACmqCN97Mbqg75VWIgyT0/kNngvJzsbfq6uOP///h9k\nTz2llwFhoY5/tEZofe9CGZgmwtT04njVqlVtrqPTGMCpU6fwf//3f7h8+TJUKhU0Gg26d++OysrK\nDgcLAGFhYbhy5QoKCgrg4eGBvXv34uuvv+7UNoVIWx+7IjKy1btzjdUH3XTmkFKphOWNGxjm749H\n9TggLNR7DNpizL73tpKkkAamSdeg030Ar7zyCvbs2YP+/fvj/v37+OyzzzB//vxO79zCwgIffvgh\nRo8ejYCAAEybNq3LDQC31MfeVpVHvuZ/a01WnSxJLOR7DISkrRLeYniuAjEunW8E69evHzQaDczN\nzfHcc8/h8OHDeglg7NixyMnJQV5eHpYtW6aXbQoJ18feQMO7c1vCRwnljiarttSPf9w6cgQqlaqz\nYXZJuiRJuimM6JtOXUDdunVDTU0NgoOD8frrr8PNzY0KtOlIWx87ADCpFLeyslotz2DsPujOlpLQ\nxhTuMRACXSYJCHFguh7NTjJNOlUDLSwshIuLC1QqFTZt2oTKykrMnz8fffv2NXyAVA3UaNpbDloX\nxq5OaoraW8LbGBVY20MM5bpNkd7KQR84cADjx4/n5SlglABMl0ajQfrbbyOqwcCmSqPBcS8vnaqT\nioWpJ0kqWS1MurSdOo0B/PDDD+jXrx9mzZqFpKQk1NbW6iVA0rV1dPxDTAw17mJM7Xk+NBEWnRLA\nzp07kZeXh8mTJ+Prr7+Gr68v5s2bZ+jYiInrTHVSsegKSZJmJ5kunR8JCQAqlQpHjhzB559/jp9+\n+gm3b982ZGwAqAuIdG2GGHcxtpycQiQmXm1WNsPQs9ZI6/Q2BpCcnIx9+/YhPT0dMpkM06ZNQ0xM\nDCwsdJpE1ClCTwCmeIcrIfpmrOdDE93pLQHExcVh2rRpGDNmDGxsbPQWoC6EngCOHDhgkne4EqJv\nQpudJHZ6SwBtGTp0KE4Z6C5PISeAkqIiXEhIgMfs2TpV+CSEEGPR2yygtty/f18fmzE5dIcrIcSU\nGb4Tv4uiO1yJqaG7dUlTevkGIEaGKJpGiKEI5SH3RFh0SgBbt27FnTt3DB2LyegKN+8QcWn5WQJS\nSgIiplMCuHXrFh599FFMnToVhw8fbjawkJiYaJDghKor3LzTGUIdlCcto7t1iTY6JYCEhATk5uZi\n7ty52LlzJ/r164c33ngD+fkPShW39uzgrkjsd7i2VbeeCA/drUu00XkQ2MzMDG5ubnB1dYW5uTnu\n3LmDyZMnIyoqChs2bDBkjILT9ClahiS0G83a+3B7IgxCfcg94ZdO3wC2bNmC0NBQvP766xg2bBh+\n//13bNu2DadPn8bBgwcNHaOoCe1qm6a+miY+HjBEhE+nbwDl5eU4ePAgevduPGXMzMwMP/zwg0EC\nI8K72qapr6ZNaA+5J/zTy53AhiTkO4EN7eiOHZAVFeGYRIIRy5drfUqUMZl63XpCxMRodwJ3xP79\n+zFw4ECYm5vjzBmahtYUd7VtZoYhKhV+O3SI13ho6ishXQ9vCSAwMBDffPMNnnjiCb5CEDQ+bzTT\ndtUg9qmvhHRFvCWAAQMGoH///nztXtD4vtrWNvAs9qmvhHRFVAtIgLir7W7duPcaXm17+/oabN8t\nDTzrY+or1aIhRFgMmgCio6Nx8+bNZu+vWbMGsbGxOm8nPj6e+1kmk0Emk+khOuG6VViIMk9P5DZ5\nn0mluJWVZdAEUD/N89iRI1CFhelt4Lm+Fk3DcgSJiemIjLxNs1EI0QO5XA65XN6udXifBRQZGYmN\nGzfikUe0NwJingVkbEqlEudXr8YwW1soamrw+5Ahepvm+dFHx1BaOrLZ+/T0KEIMQ9CzgBqiBl4Y\nDDnwTLVoCBEe3hLAN998A29vb2RkZODJJ5/E2LFj+QqFwPADz1SLhhDh4b0LqC3UBWQcv//6K5z+\n8x94NBh4BoALSiUc58/XOu7QnjpFOTmFSEy82qwWDZUjIMQwdGk7aRYQAdCxgeeUgwcRM3GiTkng\nQS2a20hJyYednd9/+/6F3fgbe9aS0Ar/ka6PvgGQDikpKsKFhAR4zJ7drjpFaWlnkJ2tgL+/sGvR\naJu1pFanIzLScHEfOXBA54RKSFvoGwAxmI5OF42KegRRUQYOroMaXvGfOpWNnj3Hwdr6798/eIJW\nPoAzek8CQiv8R8RBELOAiGkRWp0ifWj6zFyFYizOn7+Kq1cb16ky1KwlKrNN+EAJgLQbn3WKDKXp\nM3PNzBjMzSORlydtlAQMMWupKyZUYhooAZB24btOkaE0vU/B19cRGs01WFn5obRU8d9l5Aa5aa0r\nJlRiGigBkHbpqlVBm96n4OzcA3362KCqKgs9e0oN9gStrppQiWmgQWDSLnzWKTIkbc/M9fbOwcCB\nt2Bn5wJ/fxhk9g+fhf8IoWmghPxXWtoZpKRIG9ynYPgaRUf37YN5SUmz9xljqPX0RLQeqrAScdKl\n7aQEQEgDpnKfAiFtoQRACCEiZTLVQAkhhBgfJQBCCBEpSgCEECJSlAAIIUSkKAGQLoUmDBCiO0oA\npEtJOXiQkgAhOqIEQLoMrqTyqVN8h0KISaAEQLoMKqlMSPvwlgAWL14Mf39/BAcHY+LEiVAo9F9j\nnYgHlVQmpP14SwAxMTG4dOkSzp8/j/79+2Pt2rV8hUK6ACqpTEj78ZYAoqOjYWb2YPfh4eEoLi7m\nKxRi4qikMiEdI4gxgM8//xzjxo3jOwxiorrqMwoIMTSDPg8gOjoaN2/ebPb+mjVrEBsbCwBISEiA\nlZUVZsyY0eJ24uPjuZ9lMhlkMpm+QyUmrKs+o4CQ9pDL5ZDL5e1ah9dqoDt37sSOHTtw9OhR2NjY\naF2GqoESQkj76dJ28vZEsMOHD2PDhg04fvx4i40/IYQQw+HtG0C/fv2gUqng5OQEABg6dCg+/vjj\nZsvRNwBCCGk/eiAMIYSIFD0QhhBCSIsoARBCiEhRAiCEEJGiBEAIISJFCYAQQkSKEgAhhIgUJQBC\nCBEpSgCEECJSlAAIIUSkKAEQQohIUQIghBCRogRACCEiRQmAEEJEihIAIYSIFCUAQggRKUoAhBAi\nUpQACCFEpCgBEEKISPGWAFasWIHg4GCEhIRg1KhRKCoq4isUQggRJd6eCXz37l3Y29sDAD744AOc\nP38e//73v5stR88EJoSQ9hP0M4HrG38AUCqVcHZ25isUQggRJQs+d758+XLs2rULdnZ2yMjI4DMU\nQggRHYN2AUVHR+PmzZvN3l+zZg1iY2O51+vWrUNOTg6++OKL5gFSFxAhhLSbLm2nQb8BpKam6rTc\njBkzMG7cuBZ/Hx8fz/0sk8kgk8k6GRkhhHQtcrkccrm8XevwNgh85coV9OvXD8CDQeDMzEzs2rWr\n2XL0DYAQQtpPl7aTtwQwefJk5OTkwNzcHH5+fti2bRtcXFyaLUcJgBBC2k/QCUBXlAAIIaT9BD0N\nlBBCCL8oARBCiEhRAiCEEJGiBEAIISJFCYAQQkSKEgAhhIgUJQBCCBEpSgCEECJSlAAIIUSkKAEQ\nQohIUQIghBCRogRACCEiRQmAEEJEihIAIYSIFCUAQggRKUoAhBAiUpQACCFEpCgBEEKISFECIIQQ\nkeI9AWzcuBFmZmYoLy/nOxRCCBEVXhNAUVERUlNT0bt3bz7D0Au5XM53CDqhOPXLFOI0hRgBipMP\nvCaAf/7zn1i/fj2fIeiNqfxRUJz6ZQpxmkKMAMXJB94SwHfffQcvLy8EBQXxFQIhhIiahSE3Hh0d\njZs3bzZ7PyEhAWvXrkVKSgr3HmPMkKEQQghpQsJ4aHl///13jBo1CnZ2dgCA4uJieHp6IjMzEy4u\nLo2W7du3L/Lz840dIiGEmDQ/Pz/k5eW1ugwvCaCpPn364PTp03BycuI7FEIIEQ3ep4ECgEQi4TsE\nQggRHUF8AyCEEGJ8gvgGoCuh3zS2YsUKBAcHIyQkBKNGjUJRURHfITWzePFi+Pv7Izg4GBMnToRC\noeA7JK3279+PgQMHwtzcHGfOnOE7nGYOHz6MAQMGoF+/fnj33Xf5DkeruXPnwtXVFYGBgXyH0qqi\noiJERkZi4MCBGDRoELZu3cp3SFrdv38f4eHhCAkJQUBAAJYtW8Z3SC3SaDQYPHgwYmNjW1+QmYg/\n//yTjR49mvn4+LDbt2/zHY5WlZWV3M9bt25l8+bN4zEa7VJSUphGo2GMMbZkyRK2ZMkSniPSLjs7\nm+Xk5DCZTMZOnz7NdziN1NbWMj8/P3bt2jWmUqlYcHAwu3z5Mt9hNfPTTz+xM2fOsEGDBvEdSqtu\n3LjBzp49yxhj7O7du6x///6CPJ+MMXbv3j3GGGNqtZqFh4ezEydO8ByRdhs3bmQzZsxgsbGxrS5n\nMt8ATOGmMXt7e+5npVIJZ2dnHqPRLjo6GmZmD/63h4eHo7i4mOeItBswYAD69+/PdxhaZWZmom/f\nvvDx8YGlpSWmT5+O7777ju+wmnn88cfh6OjIdxhtcnNzQ0hICACge/fu8Pf3R0lJCc9RaVc/c1Gl\nUkGj0Qhy4kpxcTGSk5Px/PPPtzm93iQSgCndNLZ8+XL06tULX375JZYuXcp3OK36/PPPMW7cOL7D\nMDnXr1+Ht7c399rLywvXr1/nMaKuo6CgAGfPnkV4eDjfoWhVV1eHkJAQuLq6IjIyEgEBAXyH1Myr\nr76KDRs2cBd6rTHojWDtYSo3jbUU55o1axAbG4uEhAQkJCRg3bp1ePXVV/HFF18ILkbgwXm1srLC\njBkzjB0eR5c4hYhmrRmGUqnE5MmTsWXLFnTv3p3vcLQyMzPDuXPnoFAoMHr0aMjlcshkMr7D4iQl\nJcHFxQWDBw/WqWSFYBJAamqq1vd///13XLt2DcHBwQAefL0JDQ3VetOYMbQUZ1MzZszg7eq6rRh3\n7tyJ5ORkHD161EgRaafruRQaT0/PRgP8RUVF8PLy4jEi06dWqzFp0iTMnDkTEyZM4DucNkmlUjz5\n5JPIysoSVAL45Zdf8P333yM5ORn3799HZWUlZs+ejcTERO0rGGVEQo+EPAicm5vL/bx161Y2c+ZM\nHqPR7scff2QBAQGstLSU71B0IpPJWFZWFt9hNKJWq5mvry+7du0aq6mpEewgMGOMXbt2TfCDwHV1\ndWzWrFls0aJFfIfSqtLSUnbnzh3GGGNVVVXs8ccfZ2lpaTxH1TK5XM7Gjx/f6jImMQbQkJC/fi9b\ntgyBgYEICQmBXC7Hxo0b+Q6pmQULFkCpVCI6OhqDBw/G/Pnz+Q5Jq2+++Qbe3t7IyMjAk08+ibFj\nx/IdEsfCwgIffvghRo8ejYCAAEybNg3+/v58h9VMXFwcIiIikJubC29vb166I3Xx888/Y/fu3UhP\nT8fgwYMxePBgHD58mO+wmrlx4wZGjhyJkJAQhIeHIzY2FqNGjeI7rFa11V7SjWCEECJSJvcNgBBC\niH5QAiCEEJGiBEAIISJFCYAQQkSKEgAhhIgUJQBCCBEpSgCEECJSlAAI6YSCggLB19snpCWUAAgh\nRKQoARBR+O233xAcHIyamhrcu3cPgwYNwuXLl5stFxcXh+TkZO71nDlzcODAARQWFuKJJ55AaGgo\nQkNDcerUqWbr7ty5EwsWLOBejx8/HsePHwcApKSkICIiAqGhoZg6dSru3bsHAFi6dCkGDhyI4OBg\nLF68WN+HTUirBFMNlBBDevTRR/HUU0/hzTffRHV1NWbNmqW1lvu0adOwb98+jBs3DiqVCseOHcP2\n7dtRV1eH1NRUWFtb48qVK5gxYwZ+++23VvcpkUggkUhQVlaGhIQEHD16FLa2tnj33Xfx/vvv4+WX\nX8a3336LP/74AwBQWVlpkGMnpCWUAIhovPXWWwgLC4OtrS0++OADrcuMGTMGCxcuhEqlwo8//ogR\nI0bA2toaCoUCr7zyCs6fPw9zc3Pk5ubqtE/GGDIyMnD58mVEREQAePA0qYiICEilUtjY2GDevHkY\nP348xo8fr7djJUQXlACIaJSVleHevXvQaDSorq7mHu/XkI2NDWQyGY4cOYJ9+/YhLi4OALBp0ya4\nu7tj165d0Gg0sLGxabauhYUF6urquNf379/nfo6OjsaePXuarZOZmYmjR4/iP//5Dz788EPen9FA\nxIXGAIhovPjii3jnnXcwY8YMLFmypMXlpk2bhs8//xwnTpzAmDFjADzonnFzcwMAJCYmQqPRNFvP\nx8cH586dA2MMRUVFyMzMhEQiwWOPPYaff/4Z+fn5AIB79+7hypUruHfvHioqKjB27Fi8//77OH/+\nvAGOmpCW0TcAIgqJiYmwtrbG9OnTUVdXh4iIiBYf5xcTE4NZs2ZhwoQJsLB48BGZP38+Jk2ahMTE\nRIwZM6bRIwvra64PHz4cffr0QUBAAPz9/REaGgoAcHZ2xs6dOxEXF4eamhoADx7JaW9vj6effhr3\n798HYwybNm0y8FkgpDF6HgAhhIgUdQERQohIURcQEaWLFy9i9uzZjd6zsbHROr+fkK6KuoAIIUSk\nqAuIEEJEihIAIYSIFCUAQggRKUoAhBAiUpQACCFEpP4/3SdvqRCpxv8AAAAASUVORK5CYII=\n", - "text": [ - "" - ] - } - ], - "prompt_number": 32 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Looking at the 2 plots above, the distributions along the component axes look identical, only the center of the data is slightly different." - ] - } - ], - "metadata": {} - } - ] -} \ No newline at end of file diff --git a/dimensionality_reduction/projection/multiple_discriminant_analysis.ipynb b/dimensionality_reduction/projection/linear_discriminant_analysis.ipynb similarity index 100% rename from dimensionality_reduction/projection/multiple_discriminant_analysis.ipynb rename to dimensionality_reduction/projection/linear_discriminant_analysis.ipynb diff --git a/parameter_estimation_techniques/.ipynb_checkpoints/max_likelihood_est_distributions-checkpoint.ipynb b/parameter_estimation_techniques/.ipynb_checkpoints/max_likelihood_est_distributions-checkpoint.ipynb deleted file mode 100644 index e21fb0f..0000000 --- a/parameter_estimation_techniques/.ipynb_checkpoints/max_likelihood_est_distributions-checkpoint.ipynb +++ /dev/null @@ -1,1199 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:726968b006aa609b68fb91578fff0a688de7a80bb0c20ca67b411a106ab09cd8" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Sebastian Raschka \n", - "last updated: 05/01/2014 \n", - "\n", - "[Link to this IPython Notebook on GitHub](https://github.com/rasbt/pattern_classification/blob/master/stat_pattern_class/supervised/parametric/parameter_estimation/max_likelihood_est_distributions.ipynb)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "I am really looking forward to your comments and suggestions to improve and extend this tutorial! Just send me a quick note \n", - "via Twitter: [@rasbt](https://twitter.com/rasbt) \n", - "or Email: [bluewoodtree@gmail.com](mailto:bluewoodtree@gmail.com)\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# How to compute Maximum Likelihood Estimates (MLE) for different distributions" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "\n", - "\n", - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "#Sections\n", - "\n", - "- [Introduction](#introduction)\n", - "- [General Concept](#general_concept)\n", - "- [Multivariate Gaussian Distribution](#multi_gauss)\n", - "- [Univariate Rayleigh Distribution](#uni_rayleigh)\n", - "- [Univariate Poisson Distribution](#uni_poisson)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# Introduction" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The Maximum Likelihood Estimation (MLE) is a technique that uses the training data to estimate parameter values for a particular distribution. A popular example would be to estimate the mean and variance of a Normal distribution by computing it from the training data.\n", - "\n", - "MLE can be used on pattern classification tasks under the condition that the model of the distributions (and the number of parameters that we want to estimate) is known." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "An introduction about how to use the Maximum Likelihood Estimate for pattern classification task can be found in an [earlier article](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/parameter_estimation_techniques/maximum_likelihood_estimate.ipynb?create=1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**To summarize the problem:** Using MLE, we want to estimate the values of the parameters for a given distribution. For example, in a pattern classification task with a Bayes classifier and normal distributed class-conditional densities, those parameters would be the *mean* and *variance* ( $p(\\pmb x \\; | \\; \\omega_i) \\sim N(\\pmb\\mu, \\pmb\\sigma^2)$ ). " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "\n", - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "#General Concept" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For the Maximum Likelihood Estimate (MLE), we assume that we have a data set of *i.i.d.* (independent and identically distributed) samples \n", - "$D = \\left\\{ \\pmb x_1, \\pmb x_2,..., \\pmb x_n \\right\\} $." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### Likelihood" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The probability of observing the data set $D = \\left\\{ \\pmb x_1, \\pmb x_2,..., \\pmb x_n \\right\\} $ can be pictured as probability to observe a particular sequence of patterns, \n", - "where the probability of observing a particular patterns depends on $\\pmb \\theta$, the parameters the underlying (class-conditional) distribution. In order to apply MLE, we have to make the assumption that the samples are *i.i.d.* (independent and identically distributed).\n", - "
\n", - "
\n", - "$p(D\\; | \\; \\pmb \\theta\\;) \\\\\n", - "= p(\\pmb x_1 \\; | \\; \\pmb \\theta\\;)\\; \\cdot \\; p(\\pmb x_2 \\; | \\;\\pmb \\theta\\;) \\; \\cdot \\;... \\; p(\\pmb x_n \\; | \\; \\pmb \\theta\\;) \\\\ \n", - "= \\prod_{k=1}^{n} \\; p(\\pmb x_k \\pmb \\; | \\; \\pmb \\theta \\;)$ \n", - "
\n", - "Where $\\pmb\\theta$ is the parameter vector, that contains the parameters for a particular distribution that we want to estimate." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "and $p(D\\; | \\; \\pmb \\theta\\;)$ is also called the ***likelihood of $\\pmb\\ \\theta$***." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For convenience, we take the natural logarithm in order to compute the so-called ***log-likelihood***: \n", - "\n", - "\n", - "\n", - "$p(D|\\theta) = \\prod_{k=1}^{n} p(x_k|\\theta) \\\\\n", - "\\Rightarrow l(\\theta) = \\sum_{k=1}^{n} ln \\; p(x_k|\\theta)$ " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Goal:\n", - "Compute $\\hat{\\pmb \\theta}$, which are the values that maximize $p(D\\; | \\; \\pmb \\theta\\;)$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In pattern classification tasks we have multiple classes $\\omega_j$ with independent class-conditional densities $p(\\pmb x | \\omega_j)$, which are dependent on the parameters of the distribution $p(\\pmb x | \\omega_j, \\pmb \\theta_j)$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Approach:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In order to maximize $p(D\\; | \\; \\pmb \\theta\\;)$, we can apply the rules of differential calculus for every parameters to the ***log-likelihoods***:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$\\nabla_{\\pmb \\theta} \\equiv \\begin{bmatrix} \n", - "\\frac{\\partial \\; }{\\partial \\; \\theta_1} \\\\\n", - "\\frac{\\partial \\; }{\\partial \\; \\theta_2} \\\\\n", - "...\\\\\n", - "\\frac{\\partial \\; }{\\partial \\; \\theta_p}\\end{bmatrix}$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Which as to be done for every class $\\omega_j$ separately, and for our convenience, let us drop the class labels *j* for now, so that for a class $\\omega_j$:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$\\nabla_{\\pmb \\theta} l(\\pmb\\theta) \\equiv \\begin{bmatrix} \n", - "\\frac{\\partial \\; L(\\pmb\\theta)}{\\partial \\; \\theta_1} \\\\\n", - "\\frac{\\partial \\; L(\\pmb\\theta)}{\\partial \\; \\theta_2} \\\\\n", - "...\\\\\n", - "\\frac{\\partial \\; L(\\pmb\\theta)}{\\partial \\; \\theta_p}\\end{bmatrix}$\n", - "$= \\begin{bmatrix} \n", - "0 \\\\\n", - "0 \\\\\n", - "...\\\\\n", - "0\\end{bmatrix}$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# Multivariate Gaussian Distribution" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "####Probability Density Function:\n", - "\n", - "$p(\\pmb x) \\sim N(\\pmb \\mu|\\Sigma)$\n", - "\n", - "$p(\\pmb x) \\sim \\frac{1}{(2\\pi)^{d/2} \\; |\\Sigma|^{1/2}} exp \\bigg[ -\\frac{1}{2}(\\pmb x - \\pmb \\mu)^t \\Sigma^{-1}(\\pmb x - \\pmb \\mu) \\bigg]$\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**likelihood of $\\pmb\\ \\theta$:** \n", - "\n", - "$\\Rightarrow p(D\\; | \\; \\pmb \\theta\\;) = \\prod_{k=1}^{n} \\; p(\\pmb x_k \\pmb \\; | \\; \\pmb \\theta \\;)\\\\\n", - "\\Rightarrow p(D\\; | \\; \\pmb \\theta\\;) = \\prod_{k=1}^{n} \\; \\frac{1}{(2\\pi)^{d/2} \\; |\\Sigma|^{1/2}} exp \\bigg[ -\\frac{1}{2}(\\pmb x - \\pmb \\mu)^t \\Sigma^{-1}(\\pmb x - \\pmb \\mu) \\bigg]$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "####log-likelihood of $\\pmb\\ \\theta$ (natural logarithm):" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$l(\\pmb\\theta) = \\sum\\limits_{k=1}^{n} - \\frac{1}{2}(\\pmb x - \\pmb \\mu)^t \\pmb \\Sigma^{-1} \\; (\\pmb x - \\pmb \\mu) - \\frac{d}{2} \\; ln \\; 2\\pi - \\frac{1}{2} \\;ln \\; |\\pmb\\Sigma|$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The 2 parameters that we want to estimate are $\\pmb \\mu_i$ and $\\pmb \\Sigma_i$, are \n", - "\n", - "\n", - "$\\pmb \\theta_i = \\bigg[ \\begin{array}{c}\n", - "\\ \\theta_{i1} \\\\\n", - "\\ \\theta_{i2} \\\\\n", - "\\end{array} \\bigg]=\n", - "\\bigg[ \\begin{array}{c}\n", - "\\pmb \\mu_i \\\\\n", - "\\pmb \\Sigma_i \\\\\n", - "\\end{array} \\bigg]$ " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### Maximum Likelihood Estimate (MLE):" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In order to obtain the MLE $\\boldsymbol{\\hat{\\theta}}$, we maximize $l (\\pmb \\theta)$, which can be done via differentiation:\n", - "\n", - "with \n", - "$\\nabla_{\\pmb \\theta} \\equiv \\begin{bmatrix} \n", - "\\frac{\\partial \\; }{\\partial \\; \\theta_1} \\\\ \n", - "\\frac{\\partial \\; }{\\partial \\; \\theta_2}\n", - "\\end{bmatrix} = \\begin{bmatrix} \n", - "\\frac{\\partial \\; }{\\partial \\; \\pmb \\mu} \\\\ \n", - "\\frac{\\partial \\; }{\\partial \\; \\pmb \\sigma}\n", - "\\end{bmatrix}$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$\\Rightarrow \\nabla_{\\pmb \\theta} l(\\pmb\\theta) = \\sum\\limits_{k=1}^n \\nabla_{\\pmb \\theta} \\;ln\\; p(\\pmb x| \\pmb \\theta) = 0 $" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 1st parameter $\\theta_1 = \\pmb \\mu$\n", - "\n", - "${\\hat{\\pmb\\mu}} = \\frac{1}{n} \\sum\\limits_{k=1}^{n} \\pmb x_k$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2nd parameter $\\theta_2 = \\Sigma$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "${\\hat{\\pmb\\Sigma}} = \\frac{1}{n} \\sum\\limits_{k=1}^{n} (\\pmb x_k - \\hat{\\mu})(\\pmb x_k - \\hat{\\mu})^t$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Code for multivariate Gaussian MLE" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# loading packages\n", - "\n", - "%pylab inline\n", - "import numpy as np\n", - "from matplotlib import pyplot as plt\n", - "from mpl_toolkits.mplot3d import Axes3D\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Populating the interactive namespace from numpy and matplotlib\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def mle_gauss_mu(samples):\n", - " \"\"\"\n", - " Calculates the Maximum Likelihood Estimate for a mean vector\n", - " from a multivariate Gaussian distribution.\n", - " \n", - " Keyword arguments:\n", - " samples (numpy array): Training samples for the MLE.\n", - " Every sample point represents a row; dimensions by column.\n", - " \n", - " Returns a row vector (numpy.array) as the MLE mean estimate.\n", - " \n", - " \"\"\"\n", - " dimensions = samples.shape[1]\n", - " mu_est = np.zeros((dimensions,1))\n", - " for dim in range(dimensions):\n", - " mu_est = np.zeros((dimensions,1))\n", - " col_mean = sum(samples[:,dim])/len(samples[:,dim])\n", - " mu_est[dim] = col_mean\n", - " return mu_est" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 3 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def mle_gausscov(samples, mu_est):\n", - " \"\"\"\n", - " Calculates the Maximum Likelihood Estimate for the covariance matrix.\n", - " \n", - " Keyword Arguments:\n", - " x_samples: np.array of the samples for 1 class, n x d dimensional \n", - " mu_est: np.array of the mean MLE, d x 1 dimensional\n", - " \n", - " Returns the MLE for the covariance matrix as d x d numpy array.\n", - " \n", - " \"\"\"\n", - " dimensions = samples.shape[1]\n", - " assert (dimensions == mu_est.shape[0]), \"columns of sample set and rows of'\\\n", - " 'mu vector (i.e., dimensions) must be equal.\"\n", - " cov_est = np.zeros((dimensions,dimensions))\n", - " for x_vec in samples:\n", - " x_vec = x_vec.reshape(dimensions,1)\n", - " cov_est += (x_vec - mu_est).dot((x_vec - mu_est).T)\n", - " return cov_est / len(samples)" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 4 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Sample training data for MLE" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$\\pmb \\mu = \\Bigg[ \\begin{array}{c}\n", - "\\ 0 \\\\\n", - "\\ 0\n", - "\\end{array} \\Bigg]\\;, \\quad \\quad \n", - "\\pmb \\Sigma = \\Bigg[ \\begin{array}{ccc}\n", - "\\ 1 & 0 & 0 \\\\\n", - "\\ 0 & 1 & 0\n", - "\\end{array} \\Bigg] \\quad$\n" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# true parameters and 100 3D training data points\n", - "\n", - "mu_vec = np.array([[0],[0]])\n", - "cov_mat = np.eye(2)\n", - "\n", - "multi_gauss = np.random.multivariate_normal(mu_vec.ravel(), cov_mat, 100)\n", - "print('Dimensions: {}x{}'.format(multi_gauss.shape[0], multi_gauss.shape[1]))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Dimensions: 100x2\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Estimate parameters via MLE" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import prettytable\n", - "\n", - "# mean estimate\n", - "mu_mle = mle_gauss_mu(multi_gauss)\n", - "mu_mle_comp = prettytable.PrettyTable([\"mu\", \"true_param\", \"MLE_param\"])\n", - "mu_mle_comp.add_row([\"\",mu_vec, mu_mle])\n", - "print(mu_mle_comp)\n", - "\n", - "# covariance estimate\n", - "cov_mle = mle_gausscov(multi_gauss, mu_mle)\n", - "mle_gausscov_comp = prettytable.PrettyTable([\"covariance\", \"true_param\", \"MLE_param\"])\n", - "mle_gausscov_comp.add_row([\"\",cov_mat, cov_mle])\n", - "print(mle_gausscov_comp)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "+----+------------+-----------------+\n", - "| mu | true_param | MLE_param |\n", - "+----+------------+-----------------+\n", - "| | [[0] | [[ 0. ] |\n", - "| | [0]] | [-0.04300124]] |\n", - "+----+------------+-----------------+\n", - "+------------+-------------+-----------------------------+\n", - "| covariance | true_param | MLE_param |\n", - "+------------+-------------+-----------------------------+\n", - "| | [[ 1. 0.] | [[ 1.29511268 0.1386421 ] |\n", - "| | [ 0. 1.]] | [ 0.1386421 0.72096049]] |\n", - "+------------+-------------+-----------------------------+\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "### Implementing the Multivariate Gaussian Density Function\n", - "\n", - "def pdf_multivariate_gauss(x, mu, cov):\n", - " \"\"\"\n", - " Caculate the multivariate normal density (pdf)\n", - "\n", - " Keyword arguments:\n", - " x = numpy array of a \"d x 1\" sample vector\n", - " mu = numpy array of a \"d x 1\" mean vector\n", - " cov = \"numpy array of a d x d\" covariance matrix\n", - " \n", - " \"\"\"\n", - " assert(mu.shape[0] > mu.shape[1]), 'mu must be a row vector'\n", - " assert(x.shape[0] > x.shape[1]), 'x must be a row vector'\n", - " assert(cov.shape[0] == cov.shape[1]), 'covariance matrix must be square'\n", - " assert(mu.shape[0] == cov.shape[0]), 'cov_mat and mu_vec must have the same dimensions'\n", - " assert(mu.shape[0] == x.shape[0]), 'mu and x must have the same dimensions'\n", - " part1 = 1 / ( ((2* np.pi)**(len(mu)/2)) * (np.linalg.det(cov)**(1/2)) )\n", - " part2 = (-1/2) * ((x-mu).T.dot(np.linalg.inv(cov))).dot((x-mu))\n", - " return float(part1 * np.exp(part2))" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 11 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "Z_true.shape" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "pyout", - "prompt_number": 15, - "text": [ - "(100, 100)" - ] - } - ], - "prompt_number": 15 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Plot Probability Density Function\n", - "from matplotlib import pyplot as plt\n", - "\n", - "fig = plt.figure(figsize=(9, 9))\n", - "ax = fig.gca(projection='3d')\n", - "\n", - "X = np.linspace(-5, 5, 100)\n", - "Y = np.linspace(-5, 5, 100)\n", - "X,Y = np.meshgrid(X,Y)\n", - "\n", - "Z_mle = []\n", - "for i,j in zip(X.ravel(),Y.ravel()):\n", - " Z_mle.append(pdf_multivariate_gauss(np.array([[i],[j]]), mu_mle, cov_mle))\n", - "Z_mle = np.asarray(Z_mle).reshape(len(Z_mle)**0.5, len(Z_mle)**0.5) \n", - "surf = ax.plot_wireframe(X, Y, Z_mle, color='red', rstride=2, cstride=2, alpha=0.3, label='MLE')\n", - "\n", - "Z_true = []\n", - "for i,j in zip(X.ravel(),Y.ravel()):\n", - " Z_true.append(pdf_multivariate_gauss(np.array([[i],[j]]), mu_vec, cov_mat))\n", - "Z_true = np.asarray(Z_true).reshape(len(Z_true)**0.5, len(Z_true)**0.5)\n", - "surf = ax.plot_wireframe(X, Y, Z_true, color='green', rstride=2, cstride=2, alpha=0.3, label='true param.')\n", - "\n", - "ax.set_zlim(0, 0.2)\n", - "ax.zaxis.set_major_locator(plt.LinearLocator(10))\n", - "ax.zaxis.set_major_formatter(plt.FormatStrFormatter('%.02f'))\n", - "ax.set_xlabel('X')\n", - "ax.set_ylabel('Y')\n", - "ax.set_zlabel('p(x)')\n", - "ax.legend()\n", - "\n", - "plt.title('True vs. Predicted Gaussian densities')\n", - "\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAIECAYAAABmAjaWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXmYHFW9/t+q3vdZM5PMZF/IAiSBBAg7CuQG2eRBiEAE\n4QICuRdE9Iqi4nKFqHBFotxcH2QRCRF/ShA0YoAIeC8JCCFkGZKQTJZJJpkt0/tWfX5/jKeo7um9\nq7pqpr+f5/GRSS91uqq7znu+y3sExhgDQRAEQRA1jaj3AAiCIAiC0B8SBARBEARBkCAgCIIgCIIE\nAUEQBEEQIEFAEARBEARIEBAEQRAEARIEBEEQBEGABAFBEARBECBBQBAEQRAESBAQBEEQBAESBARB\nEARBgAQBQRAEQRAAzHoPgCAIgjAWDQ0NGBgY0HsYRAXU19ejv7+/pNcItNshQRAEoUQQBNDUMLIp\n5xpSyoAgCIIgCBIEBEEQBEGQICAIgiAIAiQICIIgCIIACQKCIAhihDBp0iTYbDb09fWl/fv8+fMh\niiL27duHG264Ad/61reyvl4URbjdbng8Hvl/P/nJT6ox9BEBtR0SBEEQIwJBEDBlyhSsXr0ay5cv\nBwB8+OGHiEQiEARBfg7/72xs2bIFU6ZMqcp4RxoUISAIgiBGDNdddx2efvpp+e+nnnoKX/jCF9Ja\n7KhlsjxIEBAEQRAjhtNOOw1+vx8dHR2QJAlr1qzBddddV/TrSSzkhlIGBEEQRGn88Y/qvM8ll5T1\nsmXLluHpp5/G2WefjdmzZ6Otra3o15500kkQxU/Wwr/97W9xwQUXlDWO0QYJAoIgCKI0ypzI1UAQ\nBCxbtgxnnXUW9u7dOyxdUIj333+faghyQCkDgiAIYkQxYcIETJkyBX/+859xxRVXDHs8X1EhkRuK\nEBAEQRAjjscffxzHjh2Dw+FAMpmU/50xhmQyiWg0Kv+byWSCxWKRHyeyQxECgiAIYsQxZcoUnHTS\nSfLfyrbDBx98EE6nU/7fpz/9afl5c+fOTfMhuPvuu6s+dqNCux0SBEEQadBuhyMf2u2QIAiCIIiy\nIEFAEARBEAQJAoIgCIIgSBAQRNURRRF79uwBANx22234wQ9+oPkxn3zySZx11lmaH0dNPB4POjs7\nNT9ONc5Noev8wAMP4Oabb9Z0DARRCBIEhCoodxATRRFOp1P+e/Xq1XoPryQ2bNgAURTh8Xjg9Xox\nc+ZMPPnkk5oc67HHHsN9991X8HnnnnsuHn/8cU3GAADxeBzf+973MHPmTLjdbrS3t+Oiiy7CX//6\nV82OWYhAIIBJkybpdnw1UV7nDRs2YPz48WmP33vvvfjlL3+px9AIQoZ8CAhVCAaD8n9PnjwZjz/+\nOD71qU8Ne14ymYTZbPyvXVtbGw4cOAAAWLt2La688kqceuqpmDVrVtrzJEmCyWTSfDxaG61ceeWV\nOHz4MH79619j/vz5AIBXX30VL7/8Mtm6EkSNQBECQlM2bNiA9vZ2/OhHP8LYsWNx44034qmnnhoW\nolWG0WOxGO655x5MnDgRra2tuO2229JMRjixWAx1dXXYtm2b/G89PT1wOp3o7e1Fb28vLr74YtTX\n16OxsRFnn312Wa1Ul112Gerr67Fjxw48+eSTOOOMM3D33XejqakJ3/3udxGPx/OO98c//jHGjRuH\n9vZ2/OpXv0p778y929euXYt58+bB5/Nh2rRp+Mtf/oJvfvObePPNN7F8+XJ4PB78+7//OwCgo6MD\nF1xwARobGzFz5kw8//zz8vv09fXh0ksvhc/nw6mnnoqPP/445+dbv3491q9fj7Vr12LhwoUwm80w\nm81YvHgxfvrTn8rPe/DBBzFt2jR4vV7MmTMHL7zwgvzY/fffj2XLlsl/d3Z2QhRFpFIpAENh+alT\np8Lr9WLKlCl49tlnAQC7d+/GOeecg7q6OjQ3N2Pp0qXyeyi/Ey+//DLmz58Pn8+HCRMm4Lvf/e6w\nYz399NOYOHEimpub8cMf/jDn5y10bvKd1xtuuAF33HEHLr74Yni9Xpx22mnyGAHgy1/+MlpaWuDz\n+XDiiSdi+/bt8uu+9a1vIRwOY8mSJTh06JAcgTp8+PCw8/f222/j9NNPR319PebNm4e//e1v8mO5\nziVBVAwjCJWZNGkSe/XVVxljjL3++uvMbDazr3/96ywej7NIJMKeeOIJduaZZ6a9RhAE9vHHHzPG\nGLvrrrvYZZddxgYGBlggEGCXXHIJu/fee7Me68Ybb2Tf/OY35b9XrlzJlixZwhhj7Otf/zr70pe+\nxJLJJEsmk+ytt94qavyvv/46a29vZ4wxJkkS+/3vf88sFgvbuXMne+KJJ5jZbGYrV65kkiSxSCSS\nd7x//vOfWUtLC9u2bRsLhULs85//fNpnveGGG9i3vvUtxhhjGzduZD6fj61fv54xxlhXVxfr6Ohg\njDF27rnnsscff1weYzAYZO3t7ezJJ59kkiSx999/nzU1NbHt27czxhi7+uqr2dVXX83C4TDbunUr\na2trY2eddVbWz/sf//Ef7Lzzzit4Xp5//nl2+PBhxhhja9asYS6Xi3V3dzPGGLv//vvZddddJz93\n7969TBAEJkkSCwaDzOv1sp07dzLGGOvu7mbbtm1jjDG2dOlS9sMf/pAxxlgsFmN///vf5fdQnqcN\nGzawrVu3MsYY27JlC2tpaWEvvPBC2rFuueUWFo1G2QcffMBsNhvbsWNH1s+R79wUOq/XX389a2xs\nZO+88w5LJpPs2muvZUuXLmWMMbZu3Tp28skns8HBQcYYYx0dHfL5Ul7nDRs2yN8vjvL8HTx4kDU2\nNrI///nPjDHG/vrXv7LGxkbW29ub91yqCU0NI59yriFFCAjNEUUR3/3ud2GxWGC32/M+lzGGX/7y\nl3j44YdRV1cHt9uNe++9F88991zW519zzTVpjz377LO45pprAABWqxWHDx9GZ2cnTCYTzjjjjKLH\nfOjQIdTX16O5uRnf//738cwzz2D69OkAgHHjxuGOO+6AKIqw2Wx5x/vb3/4WN954I2bPng2n05m2\nss3k8ccfx0033SS7qo0bNw7HHXdc2rnhvPTSS5g8eTKuv/56iKKIefPm4YorrsDzzz8PSZLw+9//\nHt/73vfgcDgwZ84cXH/99TmjI729vWhpaZH/7u/vR319Perq6uBwOOR/v/LKK9Ha2goAuOqqqzB9\n+nRs2rRp2NiyIYoiPvzwQ0QiEbS0tGD27NkAhq5RZ2cnurq6YLVacfrpp2d9/TnnnIM5c+YAAE44\n4QQsXbo0bdUMAN/5zndgs9lw4oknYu7cufjggw+GvU+hc5PvvHKuuOIKLFiwACaTCddeey02b94M\nALBYLAgEAtixYwdSqRSOO+44+Xwpz1G2c6X8t2eeeQYXXXQR/uVf/gUAcP7552PBggV4+eWXIQhC\nznNJEJVCgoDQnObmZlit1qKe29PTg3A4jJNPPhn19fWor6/HkiVL0Nvbm/X55557LsLhMDZt2oTO\nzk588MEH+OxnPwsA+OpXv4pp06bhwgsvxNSpU7FixYqixzxu3DgMDAygr68P7733Hq666ir5MWVB\nWL7xplIpHD58OO35EyZMyHnMgwcPYurUqTkfV9YR7Nu3Dxs3bpSPWV9fj2effRZHjhxBb28vkslk\n0cdtamrC4cOH5b8bGhowMDCAf/zjH4jFYvK/P/3005g/f758vK1bt+a8LkpcLhfWrFmD//7v/8a4\nceNw8cUX46OPPgIA/OhHPwJjDKeccgqOP/54PPHEE1nfY+PGjTjvvPMwZswY1NXVYdWqVejr60t7\njnLydTqdCIVCw96np6cn77nJd16BoWugFE8Oh0Oun/nUpz6F5cuX44477kBLSwtuvfVWBAKBgucn\nk3379uH5559PG8Pf//53dHd3w+l05jyXtcKkSZPw2muv6T2MUQkJAkJzMgviXC4XwuGw/Hd3d7f8\n301NTXA4HNi+fTsGBgYwMDCAY8eOwe/3Z31vk8mEq666CqtXr8bq1atxySWXwOVyARjqfPjJT36C\njz/+GC+++CIefvhhVW4kys+TbbwDAwM4evQoBgcH0dTUhD179iCZTIIxhv379+d83/Hjx2P37t0F\njwkMTWLnnHNO2jEDgQB+/vOfo6mpCWazOe1Y+Y776U9/Gu+88w66urrS/l25at23bx9uueUW/Pzn\nP0d/fz8GBgZw/PHHy89xu905rykAXHjhhXjllVfQ3d2NmTNnyi12LS0t+J//+R90dXVh1apVuP32\n29Ny8pxrrrkGl19+OQ4ePIhjx47hS1/6klyfUArNzc15z02+81oM//Zv/4Z3330X27dvx86dO/Hj\nH/9YfkzptZ+PCRMmYNmyZcPG8LWvfQ1A7nNZKxSy5FVudGQ0jDw2gAQBoQNz587Ftm3b8MEHHyAa\njeL++++XHxNFETfffDPuuusu9PT0AAC6urrwyiuv5Hw/njZQpguAoUK03bt3gzEGr9cLk8mkekdA\n5nhTqRT27NmDV155BaIo4vLLL8evf/1r/OMf/8DBgwfl1jNJksAYk/8HADfddBOeeOIJvPbaa0il\nUujq6pJXfy0tLWnFbxdffDF27tyJZ555BolEAolEAu+88w46OjpgMplwxRVX4P7770ckEsH27dvx\n1FNP5ZyILrjgApx33nm4/PLLsWnTJsTjcSQSCbz99tvya0KhEARBQFNTE1KpFJ544gls3bpVfo95\n8+bhjTfewIEDBzA4OIgHHnhAfuzo0aNYu3YtQqEQLBYLXC6XfB2ef/55HDx4EABQV1cnh8QzCQaD\nqK+vh9VqxaZNm/Dss88WnFizTRqFzs1nPvOZnOc113ty3n33XWzcuBGJRAJOpxN2u13+nMrr3NLS\ngr6+vpwi97rrrsMf//hHvPLKK5AkCdFoFBs2bEBXV1fec1kLLFu2DPv378cll1wCj8eDn/zkJ3JR\n6a9+9StMnDgR559/Pv72t78Na+2cNGkSXn31VQBD14MXyTY1NeHqq6/GwMBA1mPywugHHngAzc3N\nmDx5clohZzEFr8qxAcDnPvc5jB07FnV1dTjnnHPk4lNgqAD19ttvx0UXXQSPx4OzzjoL3d3duPPO\nO1FfX49Zs2bJaSq1IUFAaE7mjXvGjBn49re/jfPPPx/HHXcczjrrrLTnrFixAtOmTcNpp50Gn8+H\nCy64ADt37sz5/qeccgrcbjcOHz6MJUuWyP++a9cuXHDBBfB4PDj99NNxxx134JxzzgEAXHTRRXjw\nwQeLHrPy3zMfW7FiBaZOnYpTTz0VdXV1uPjii7F7924IgoALL7wQt99+Oy677DKceuqpOPPMMyEI\nAkKhEPx+P5LJJCRJgiRJWLBgAZ544gl8+ctfRl1dHc4991x59XrnnXfid7/7HRoaGnDXXXfB7Xbj\nlVdewXPPPYe2tjaMHTsW9957L+LxOABg5cqVCAaDaG1txY033ogbb7wx52cFgD/84Q+4+OKLcd11\n16G+vh5TpkzB6tWr8Ze//AUAMHv2bHzlK1/BokWL0Nraiq1bt+LMM8+UX3/++efj6quvxoknnoiF\nCxfikksukc9TKpXCf/3Xf6GtrQ2NjY1488038dhjjwEYmkRPO+00eDweXHbZZfjZz34mew8oz/Mv\nfvELfPvb34bX68X3v/99XH311QWvV65rmO/ceDyevOc12/Xnf/v9ftxyyy1oaGjApEmT0NTUhK9+\n9avDXjdz5kx8/vOfx5QpU9DQ0IDDhw+nPd7e3o61a9fihz/8IcaMGYMJEybgoYceAmMs77msBX79\n619jwoQJeOmllxAIBHDPPffIj73xxhvo6OjAunXrsgo35Tn+2c9+hhdffBFvvPEGDh8+jPr6etxx\nxx05j3vkyBH09fXh0KFDeOqpp3DLLbfI9yS3241nnnkGg4ODePnll/HYY49h7dq1aa/nY+O/p898\n5jPYvXs3enp6cNJJJ+Haa69Ne/7zzz+P//zP/0Rvby+sVitOO+00LFy4EP39/bjyyis126GRdjsk\niAphjCEejyMejyMSicDn8yGVSiGRSKRNHpFIBBaLRfZhyIwQCIIgt/yZzWaIoqi5/wBBZKNQWP6P\nH/1RleNcctwlJb8m0+eks7MTU6ZMwZ49e2QxuWHDBixbtkz2Esl83ezZs7Fy5Ur5PQ4fPoyJEyci\nGo0Oi1Bt2LABF1xwAfx+v1xke/XVV+OEE07Iaip21113QRRFPPzww1nHlsmxY8fQ0NCAwcFBeDwe\nfPGLX4TVasWqVasADAnYxx57TG6v/vDDD3H22WfnjGhwytnt0PgOMQRhUBhjkCQJiUQCANJuJHw1\nly+cm7naZIwhmUzK70cCgTAq5UzkWpOZIshHZ2cnPvvZz6b9Zs1mM44cOYKxY8cOe359fX1ax83E\niRNx6NAhAEMFr1//+texbds2xONxxGKxtCLkzLGlUil84xvfwO9+9zv09PTIY+jt7YXH4wEAjBkz\nRn6+3W5P+1tZyKo2lDIgiDJQTt7KvDcXCcFgEJFIBOFwGLFYTC4myqfY+fvwWgdBEJBMJhGJRBAI\nBOD3+xEKhRCLxeQaBIKoNfKl8ziZhcuSJMk1ScBQ4ea6devSCjfD4XBWMQBAfpyzb98+tLW1ASiu\n4FU5tt/85jd48cUX8eqrr2JwcBB79+4FULh1txqQICCIEkmlUojH40gmk2mrfB6i8/v9sFqtcDqd\nsNlsEAQBiUQCkiTJKwjedZCPbAIhkUiQQCBqmswC22zMmDED0WgUf/rTn5BIJPCDH/wgrYX2S1/6\nEr7xjW/INTo9PT148cUX877nd77zHSQSCbz55pt4+eWX8bnPfQ5A6QWvwWAQNpsNDQ0NCIVC+MY3\nvpH2uJ6/YxIEBFEkPCoQi8XAGEsL4TPGEIlEwBiDx+OB3W6HIAgwmUywWq1wOBwwmUwwm83yxB4K\nhdIiCMUIBC4O8gmEeDxOAoEYtdx77734wQ9+gPr6ejz88MMAhkcNfD4ffvGLX+Bf//Vf0d7eDrfb\nnRa2v/POO3HppZfiwgsvhNfrxaJFi2STrWy0traivr4e48aNw7Jly7Bq1SrMmDEDQOkFr1/4whcw\nceJEtLW14fjjj8eiRYvSnpOZSsxXyAoULpAuBSoqJIgi4IWDqVRq2A+UpwhEUUQymUR9fb38fOXz\notEoTCYTLBaL/J6pVEruMpAkKS0iwCf9UsaoDFXyGgSLxQKTyUQ1CETRlFOQNlrJVqA4EqCiQoLQ\nAJ4iYIyliQE+6YfDYTgcDpjN5pKKfZQrfv5+XBhw8VGKQODvx2GMyb30/HHe5UACgSCITEgQEEQO\neIqA1wooK5JTqRTC4TAkSZJNjyoN0yu7Cvjx1RYIvIaBCxsuEHgqgwQCQQynVn4XlDIgiCzkSxEk\nk0kEg0FYLBY4nc40A57BwcGiUwbljEmZXuBtjfx/pa74eYohGo3CarXKYyOBQFDKYORDKQOCUIFM\nLwBliiAajSIajcLlchW9YZNa5IsgxGKxkgWCMoLAow3ZIgi8BoEEAkGMbkgQEMQ/yUwRKCe/VCqF\nUCiUti+C3mgpEPjKgjswAkPGS8oiRRIIBDG6IEFAEIBsNZwtRZBIJOTeYYfDUfYkqHUYVk2BwP+9\nFIGQbVMigiBGDiQIiJqmkP1wJBJBLBaD2+0uKvdvpLxrsQKB1xLkW/GTQKgt6uvrKfozwqmvry/5\nNSQIiJqFt+VJkpTXW8Dn8xU1uRn9BpopEJQeCNxsiSIIBAD09/frPQRCB0gQEDVJLm8BAIjFYrK3\nALceHo2IoghRFBGPx+WNW7hASCQSFQsE5S6Q/HiZPggEQRgHEgRETZHPW4AxhnA4jEQiAY/HI6+k\nawUuEHhqRBlB4CmVTA+EfAIhcydHxhhisZjsKU8CgSCMRW3d8Yiahq9YBwYG4PP5hnkLhEIhmEym\nYY/VKvkEAl/1k0AgiNEDCQKiJuBRAT4RKb0FYrEYIpEInE4nrFYriYEcKAUCP49aCoRMHwQSCASh\nLSQIiFFNIfvhUCiEVCqlireAUmSMdviEXopAyDehZxMIsVgM8Xhcfn9lgSJ3UiQIQj1IEBCjllze\nAnzb4HA4DIvFArfbTZNLhWglELhZktJmmUd4lFbLpe4MSRDEcEgQEKOOQt4CjDGEQqGq2w/Xkj98\nLoHAozXcHrmSCAIXCBwSCARRGSQIiFFFPm+BVColb09ci10EesKvBRdgfEKXJCmnQCjm/TgkEAii\ncuiOSIwa8nkLxONxhEIh2O12JJNJKlDTGeXkD2QXCMAnhYzFbPVMAoEgKoMEATHiKdZbgNsPc1c+\nLeBpAZpsSiObQODXKZFIIBqNysJA2cWQ7/2yCYRIJJJmokQCgSA+gQQBMaLh3gLZvPiV9sNer5ei\nAiMIZQ2C1WpNiyBUIhD4d4AEAkEMhwQBMWJRWuzWqv1wrZAvxUACgSDUgQQBMeIolCIIhUJIJpM5\nCwdrqdp/JJMv9aKHQOAbQ5FAIEYrJAiIEUUubwFgyI0wGAzCbDYbwn5Y7+OPBoo9h9kEgtIDIZVK\nVSwQuNgQBAGSJMFiscBqtZJAIEYNJAiIEUGmt4BSDGTaD9tsNt3GKQgCUqkUkskkIpFI2iREUYnq\nkbnVs9oCgRst8fZWAGlOiiQQiJEICQLC8BTyFlDTfrhSGGOIRCJIpVKw2+3yRKR02OOr2XzbCRPq\nUqxAUG6sVIxAyHy/ZDIpP4cLBLPZTNeaGBGQICAMTT5vgUQigVAoBKvVWpL9sFY1BHzzJEEQ4PF4\n5MnBbDbDZrMhHo8jmUzKaQ+g+M2ACHXJJxBisRhSqdQwF8XMNkbl39naHJUCIdNqmQQCYURIEBCG\nJDNnm1k4GIlEEIvFqm4/nA1lykIQBDgcjqx+BPxz2O12AIW3E6Y2yepRqkAoJCiLEQjKIkUSCIQR\nIEFAGI5C3gKhUAgA4PP5dJ80M1MWgUCg6Nfm2k4408qXitaqTzECgX9HS0kxcHinjLImhgQCoTck\nCAhDwfcbSCQScLlcOe2H7XZ7RTdMNVIGvKtBuWNiuemIbJsBVdJGR6hLpkAIh8NypKCYFEO29yOB\nQBgNEgSEIVB6C/C/lV0E3H5YjU2JKr2xKlMEWqUs1O6zJ9RFGb0BhoQs7y7hZlmVCoREIkECgagq\nJAgI3cnnLcDth00mkyHsh0vtalBrX4Ni++yLrZIn1IWnf5QCgV+fcgWC8ruVSyDwNke63oQakCAg\ndCOft0AqlTKc/XC2FEEuKkkfFEOlVfJEZRQSesr6EGC4QODPUdaHkEAg9IYEAaELmfbDmTcvvnWt\nFt4CpU7UjDFEo1FEo1FDdDVkgwSCscknELJ1mFQiEHh6yeFwUMSIKAkSBETVKWQ/zLsIvF6v7jex\ncoyPcokNLSMG2Y6lFAjZVqjKFjqeciCqg5YCgXeqxONxuVtFEATZA8FsNpPnBZEVEgRE1SjkLcBX\n4Xa7HfF4XPcbVjnGR3qPORf5JiBgaHfIZDJpKA+EWrJ6ztWCWolHRWYEgQsEfjyLxSKnGEggEAAJ\nAqJK5PMW4Ktwxhi8Xq/8XD3HavQUQaUoJyAuegDIKQZlEaOeAqEWJ6lsLaiVCgRlBIELrWwRBBII\ntQ0JAkJzCtkPB4NB2Gw22eFP6QevBflC90pxYgTjo2rAJx9uratsceQmSdTiqB/5BEKmiRWf9Aul\nFwBkFQhcbPCCRxIItQUJAkIzMgsHc9kPu91uOZQNVDfXriSbOKlFyAOhMGq1k5ZDPhOrZDIpp4Gi\n0WhREYRyBEItCOVahAQBoQmF7IeDwSBEUTTEKlztFMFoy33nEgi8cE25lTCZ5lSfzOvDuw1EUSzL\nBpsEQu1CgoBQnUwLVuXNxwjeAsoIBLdKBtTZG6EWJsJ8JknU4qg//DfHhW2lER4SCLUDCQJCNfJ5\nC5RiP1ytlAGlCNSBPBCMRbZdNtVMAWUTCDwiqBQIvM2RBMLIgQQBoQrFeAuYTCb4fD7dJwMuXKLR\n6LD6BaJyCnkgcBvfYl36CHXRQiBkin++30dmmyMJBGNDgoCoiEz74czCQb4JkNPphM1mK+o9tYwQ\ncOECVH/7ZL2KJfWmVBMemiyqS7UFAv8700mR0B8SBETZcLtUSZJyeguU4vCnNTxFUK2Jp1YFQCGK\nNeFJpVKGPX96dhkUotKx5RMImUWk5QgEnkoSRVGOIPCWVx45Muq5He2QICDKopC3QCgUKmoToGqQ\n2eKYTCY13XTIqJOYESnUQheLxZBIJGq6xVFvlALBarXm3GmzlGuUaZTE9y7hfysLFEkgVA8SBERJ\nKEN/Npstp/2wWu17ld4IsnURaG18RJSPcvKRJEluYyQPBOOQr4hUjQiCUiDwewCPIBTTNkmUDwkC\nomiUlcTxeBx2u11+TM32PbV+7PF4HKFQCHa7HXa7fdhNhzA+aoevCfUpRiAorw8vPM73frkEAocE\ngjaQICCKgrcTZlu155t49YCnCOLxeNYuAr3HRxRHNtFWTPi61lsc9a5vKKYNFRi6bxRzjUggVA8S\nBERestkPi6IoF4NxbwG12/d4Lr7UH7YkSQiFQhAEAV6vV9fqZX6O6OZUPsXkoqvtgUDRpdLIvEbc\nSZGnH0u9RiQQtIMEAZGTfN4CjDH4/X6Ioqj7xMsxQqSCC5l4PI5gMJi2oqWbkvbkEgjcPZN7ICiL\n1cq9LnQ9y0cURbkNuVIRl0sgRCKRNBMlEgiFIUFADCOftwAAWSRwbwG9f1yFUgSZaNkJoNzDwel0\npvn+801nYrEYiYQqkc8kKRKJACAPBL1RO8qj7Fzh70cCoThIEBBp5PMWYIwhFArJ6QNlUaHaFDtp\nKzdK0jtSwUUUT1dIkiTfzCwWizwJCYJAFfM6UawHwkgWCIwxQ4+7UBqtWKdLEgjqQ4KAkMnnLZBM\nJhEMBmE2m+F2uxEIBHQc6RA8RaDnRkmZYxFFEVarVW6VU8LPaeamM8pdA2u9IK6aZPNAUNbM8F0C\n+SRRyxOFnuRzutRSICi9EGrlupMgILIWDiofy7Qf5lXCWpIvQlDKRklak2l6FI/Hi755ZGupyxUq\nrTTfTRSifXlsAAAgAElEQVQml2DL9EBQTiR0PapPIYEAYFjUrVSBwAsU+THMZjOCwSAkSUJbW5uW\nH09XSBDUOMqcd+YPx4j2w2qkCNSqIcjmvcAjLOVA+W5jkcsDgRtb8YiQ0VI+Ru+CUFtIlbpXRjEC\nQfkaLtTXr1+PQ4cO4Wtf+5pqYzcaJAhqGGXILfNHwu2HrVbrMPthLYvy8mGkFEGurZOrdaPj4Wwe\nPTDKZDSa4edbEAQkk0k4nU7DeiDU8neh1DqRYiMI3IF1NEOCoAYplCLgIfBC9sNahkyVosNoKYJi\n7ZlFUVQ1vZJ5o6tkRzqicvTwQCBKI1edSKFC0mz3tlAoBK/Xq8fHqBoUc6wxeOEgFwPKL70kSQgE\nAkgmk/D5fDknu2re1CRJgt/vB2MMXq9XFTFQboSDpwgSiUTe88PRMorCV6tWqxUOhwMul0uOmvBI\nSjgcRjwehyRJhg8jjwa4QLDZbHA6nXC5XPIkFI1GEQqF5PbYWr4metZeKMWB3W6H0+mEw+GQ986I\nRCJympR3CXHKiRCsW7cOM2fOxPTp07FixYphj//mN7/B3LlzceKJJ+KMM87Ali1bin6tFlCEoEbI\n9BbIFANGMPXJJJFIIBaLGSJFwLss+ARshPOjRJnvzrT0pdWqPigjCLwYt5Lit2KhYsfiyRZB4K6H\n/DqtWLEC/f39cLlcGDt2bNHvLUkSli9fjvXr16OtrQ0LFy7EpZdeilmzZsnPmTJlCt544w34fD6s\nW7cOt9xyC95+++2iXqsFFCGoAbi3AO+RV04G3FsgHA7D4/EUPdlpbe7DJzKPx6OrQOGru0AgAKfT\nCafTWXAsRlj5ZVutms1m+WYXDocRjUblGhJCe5QrU5fLNWxlqrwm1ejk0ROjChZlnYjNZoPL5cLn\nP/95zJw5E5s3b8by5csxc+ZM3HbbbVizZg16enpyvtemTZswbdo0TJo0CRaLBUuXLsXatWvTnrNo\n0SL4fD4AwKmnnoqDBw8W/VotoAjBKCeftwCv2DeZTLqb+mSOCQCcTqeu9QLldFnkE0p6FWPyY1ss\nlqwFilz0ZLY4EtlRawWeq/hN6YEwGotGR4IAVd4vZ8+ejdmzZ+PQoUN46KGH4HA48Prrr+OZZ56B\n3+/HzTffnPU9urq6MH78ePnv9vZ2bNy4MecxH3/8cVx00UVlvVYtSBCMUpQpgmyFg/F4HOFwuOxw\nvBaTWywWk8dUSj9/qRQzdp4isFgsw7osSsGo4VvlZMS7SXixaSwWM0SBolHPnRbkCl1T0ahx4FHU\nE044AfPnz8fdd9+d9/mlXJ/XX38dv/rVr/D3v/+95NeqCQmCUUghb4FwOAxJkgzjLaC0ROZdBHyr\nZT3GwsUSN2Ia7fCJKLPfXtlOxx83m81Uf1AFcnkgFCMQjC6kjD4+TuYYI5FISUWFbW1tOHDggPz3\ngQMH0N7ePux5W7Zswc0334x169ahvr6+pNeqDQmCUQbvFMhmualc9Xq93op/lGpM2MlkEqFQCCaT\nCT6fT9cbBRcmRhJLekAFisYjn6ulUrSZzWY5/UCUT7bzFw6HSxIECxYswK5du9DZ2Ylx48ZhzZo1\nWL16ddpz9u/fjyuuuALPPPMMpk2bVtJrtYAEwShB6S0Qj8dhsVjSVgzF9s4XixpiIt9KXMt8e7b3\nzqynqOTzjbabca5+e+WWwkq/fyPUoox28nkgAEOrWRJt5ZHr98vvVcViNpuxcuVKLF68GJIk4aab\nbsKsWbOwatUqAMCtt96K733vexgYGMBtt90GYMgqedOmTTlfqzUCG213rxoklUrJlcmCIMDv98Pp\ndMJisciFcYwxuFwu1Va9g4ODcuV6qShX4m63O+uYeNRAix0VeRSlrq4OwCe1C06nE1artaIbJ29X\ncrlcskBTeqSHQiG43W5VPodahMNh2Gy2sr8bygJFPiGpYbHMXSmNJjB4pKSUyaGa8PZhpUgwUlTH\nqNeVk+t3etFFF2HDhg2jOnJIEYIRTC5vAf5Dz2WvqwblruCVuyaqkbaoBCM5II5kslXLK3cMHG3F\ncEbPgfPtj3kUAah8AyDC+NddDegOOELJtB/O/KJGo1Ekk0m43W651UxPsu2amA+tW/QYY/D7/RBF\nUffahdEE/y4W2jGQChSrS6kbABl19V4N8k38o/27SoJgBFLIW0CSJHmi0+qHXcqEbbRiPZ73ttls\nmjogjvabRzHkK4ajAkX9yLcBkNIDQQuBMBJX2rWSWSdBMILI5y0AfJILF0URNpvNECpf7c6GSlBu\n3ARAk/qEYscx0m6IapGvGC4ajYIxJkcPqFq+dMo5X/k8EEZr2icfuX6ftZBWIUEwQsjnLZCZC49G\no5p/cQtFCEpNEZT6/qUiSRJCoRAEQYDH40EgEFDtvZUUciok0snn9w8gzUGx1kPZpVDJd60SD4RC\njGSBN5LHXiwkCEYA+VIE2fr49bTI5eMt1fJXSzI3bqqFH/ZIRRnK5gWxRnNQrDVyCQTe4lyOcZWR\nr1u2CEGtRPVIEBiYzMLBTPvhSlbglZJLdKhl+QtUrsiVKYLM4koSBcaHf+eNZudbK5NDLmqxLiQW\ni+mWYqwmJAgMSiH74XwrcD0iBEqBoob5UaU3kFQqJW+SpGVxJVE9inHrG20TUanoIVby1YVkCoSR\n8DvMdg5DoZBhfSfUhASBAeEOcMDwQpZEIoFQKFRwBV4NQcCPYbQUgZb+C6XAoztK10iieApNbqVM\nRHwHR7oO2pN5XbJ5IEQikbRdHI1+Xfima6MdEgQGIp+3QCn2w9WIEPCxqZkiyHz/Uj9DqRbNWqym\nBEFAKpVCJBKRizvj8fiwzYOMfgMcieSbiCKRCADqtdcDZdqHb65mNpsN64GQ7ffJU7OjHRIEBiHT\nfjgzRVBK+JtPSlrCxYua+yNUgtKiudA50nIy5qtUAHC73ZAkSb4e/N/D4XDNh7arQa5ee16gyAUE\nFShWD+6iaLFYsnogGFEgAKVvbDRSIUGgM5n2w5lf/swKeSPctLh4YYwZIkXAoxRWq1X3FEE4HJZb\nG7kIUOa+4/E4nE6n/JgytM0nJyPcAEcb+XrtSy1QNHJB6kiLPhnRA4FqCAhdYIwhkUjIk0Yub4FS\n7Ye1TBnwGgblj1QLivkMahcyVgI3hbJarXKUJxv833OFtpUrJGWOlVCXYlrp8kVx6Jpog5YeCJVA\nKQNCUwrZDweDQYiiCK/Xa4gVY2Z+XhkC14NKCxm54Kj0ZqIUbl6vV17182MUgxFb62qNUlrptE7H\njWZK/c3lEwiZHgha/j74omO0Q4KgyuTzFgA+WWk6HI6yffbVjhAo8/N88o1Go6q9f6loVchYKly4\nKU2hUqlURee+0pUroQ75ChSTySSAdBdFI4h2wNjpDDVQ/j6sVqsmrae8zkEJpQwI1eHV5/xLmpki\nCIVCSCaThtqKl6cIMvPzWncyZHt/vc2YlPDajkqEWzHkW7ly739lYZxRJqbRhjKKo5x4MjcDMkKa\nx8gCUe0ah1JaTysR0OFwGHV1daqN26gYY9apAfgKz+/3o66ubpj9cDAYhNlsVmUrXjUm61Jb+LRG\n7R0Tyz1H3P0wHo/rsrV0Pu9/qj+oHoIgpFXKU5rHGOQSCNzbhW+elc+bIpto4ffB0Q4JAo1Rpgj4\n6o1/2Yy04lVSTJtjNbwO+PsrQ/N67pioPC9Gqe2g+oPqk/m9LzbPrewioetQHdTypqiVlIH+d7RR\nDC8cVBoN8YmUTy6xWAxer1dVMVDJZJ1IJDA4OAiz2QyPx6PbpMdvmLFYDH6/H3a7HS6XS9eWQr/f\nr/t5yQefmHh6RxnZ4SkOHt2QJGnU55u1pJCDIr8OTqdTvg58AaDldTB626He4+Pi2W63w+l0wuFw\nyKmfSCQiRyElSUorHi2nqHDdunWYOXMmpk+fjhUrVgx7vKOjA4sWLYLdbsdDDz2U9tgDDzyAOXPm\n4IQTTsA111wjFyprDUUINCCft4AgCEgkEohEIrBarboWxSlRpgiKDYVrOaFw0RSJRHStqSi1tVGP\nfSRyUSh8Cgytjvi51ttPYrRS7HWgOpDqks0DgacE+f37vvvuk/+dX6tikCQJy5cvx/r169HW1oaF\nCxfi0ksvxaxZs+TnNDY24tFHH8ULL7yQ9trOzk788pe/xI4dO2Cz2XD11Vfjueeew/XXX6/aZ88F\nffNUhn9xEonEsC4CfuMNh8NwOp1wOp2aiIFSJ6VUKoVAIIBEIgGfz1eUGNBSxEiSlOY6qIUYKNbn\nIBQKyVEcvesoKoVPTDzawldHypVrLBZDMpk0jKgZjeS6DspVajQalXPeRHVQ3q/5tbnhhhswceJE\nvP/++/jsZz+L+fPn4ytf+QpefvllBAKBnO+1adMmTJs2DZMmTYLFYsHSpUuxdu3atOc0NzdjwYIF\nw+63Xq8XFosF4XBYNjtra2tT/wNngSIEKlLIWyAUCgGA5kV6pQgCo2wExOGhbZvNJldv64FWdQtG\niiDw+oNEIgGLxQJRFLPWHxS7x72aGOUcVYNcdSB6OfVpid4pg1IQBAHz5s3DvHnzsH37dvz2t79F\nb28vXnvtNTz00ENIJBK4/PLLs762q6sL48ePl/9ub2/Hxo0bizpuQ0MDvvKVr2DChAlwOBxYvHgx\nzj//fFU+UyFIEKhAIW8Bpf1wPhe7asJDY7FYrKxqebUnNmX1vsfjkTcF0oNqtRQaiVKMeapZGFcL\n515JKUY82YTaSJpwjUquzY3q6uowY8YMnH766bjvvvvyvkcl1+Djjz/GT3/6U3R2dsLn8+Fzn/sc\nfvOb3+Daa68t+z2LhQRBhTDG5B9qPvthngcvJQ9VLoUm61I3S9IaHj0RBEGu3q/U4KccMkWJUbwg\n9IDy3rnJZlyjFfmMeLIJNaNHVqp57tSk1M2N2tracODAAfnvAwcOoL29vajXvvvuuzj99NPR2NgI\nALjiiivwv//7v1URBCPvyhgI5Y8yW4rA7/fL7n78xqp3yDgej2NwcBAWi6Wianm1Pgf3ZuCug9W8\n0SrHz+souM9BJWJA+b6jZbWWK+/Nc5xUf1Ad+HWw2WxyBwPfVpjXHXDRpoeoHunkOl/RaBR2u73o\n91mwYAF27dqFzs5OxONxrFmzBpdeemlRx5w5cybefvttRCIRMMawfv16zJ49u/gPUQG1uwSqgHwp\nAh4xqNR+uBKUPgfK/9bTUCeTSlMWasLrKNTYUXIkCoByxlys/4Ee9Qe1RGYkhy9QjLyV8Egg2/e1\nlO+w2WzGypUrsXjxYkiShJtuugmzZs3CqlWrAAC33noruru7sXDhQvj9foiiiEceeQTbt2/H3Llz\n8YUvfAELFiyAKIo46aSTcMstt6j22fIhMJKQJcG3/s0WFeAdBJIkwe12Z23j4h78WpsQ9ff3o76+\nHoIgpIXkXS6XKjeFVCqFwcFB1NfXl/VanrLIFRVgjGFgYAANDQ0VjzUb3NuAWwCrJUokSUIgEEBd\nXZ38XVF+R8LhMGw2m6Fa/CKRCCwWi2opEmVYm/dzF3KHy/YeoVAIbrdblTGpCd/DQG9RnQ1eiMvT\nC3zxwq+F3gWKan/X1Ia3OmemB5YsWYI333xz1AtbY14VA5LPWwBI33AnX1V6tVIG/Dh8LwI1Vr9q\nYKSuBu5UpoYVMvEJ2eoP+KRUijscURlcePGOJnKyLI9aKtQkQVAEfGKVJClr4aCRPP85PCSfSCQ0\nCcmXKmzKMT7ir1P7x8jTPXrvllgrZPr+KwsUR1tbnZHJ10lCO2kOket+UyuigARBAfJ5C2TbFrgQ\n1YgQSJIk/78RPPeV56nYrgatfnx8e2mTyaRZfYfy+tbKjaRYsrnD5Vq1AsY8f0YcE6eUKv5cnSTK\nnTQzN8qq9HMb+dwRJAhyUshboNzQt9aCgPfQC4IAh8OhuRgo9APnqZTM7ZOrTWYLKA9dq03m58u1\n2iCGyLVqTSaTAIY2lSm1/oAoD6VAyLeTZq2lekZqq2Q5kCDIQiFvAaNUxyvJnPC4KNCKYorCStkD\nINcx1FhRcNdBURTl7aWrEamptFK5FuGTEm9pdDqdZe1OR1ROZidJZqpHea1GS6onlylRKS2HIxkS\nBBnw0GUu+2HlxFLOzUgQhLRdtNRAOS6eItDT74CnCFKplO4Fe0qXSCMUVRKlkW1S4pE7qj+oHqWk\nevJdi5GYMuB7z9QCJAj+SaEUAc89V+otoPZErafNbrYVvLLbQs+CvXKLGNUew0i8ARqVfFXzVBQ3\nRLW+b6O1QDHb+SNBUGPwFW22L242+2EjUGhc1Y4QKFMETqdTFZ+Fcj9DMUWMWp4fPlGFQiEkEom0\nlRPVDxRHMeepWFtfNYviiOzkK1BUXgsukkeSUOb3tFrAGLObTii9BbhXtTK8nUwmZaHAc8+VosZE\nlC1FoAf8s3ATGd7VoGeKQO8iRn48bsfscDjkcfGVE/9/KpLLT6nnJXNSylcUx899OYykyUwv8l2L\naDQKwJi1IBQhqGGUKQLljVmL1a6SSgRBsamLakUItNomuFTUKGJUAz7xOBwOWK1WxONxeSULQG55\n5I5ogDqTFDEcqj8wDvxaxGIxWSRnFihmRnOMQigUIkFQKyjFgDLUq1VBXCWrEqOlLnhkQAvRBBQv\naowQoVBeHwCw2WxZx6688dEkVT1y1R8oIzcjMeediZGjF/z3wKMBlRYoajXGbF0Gpex0OJLRf1bR\nEWVUQBAEOUWgZUFcOSt35Sq82NSF1jnycDgMxhhcLpfm+zLko9wIhZrnh+/NIAgCPB4PBgcHix5D\nLUxSRiRfUVw2Ux6jhLRHI9muhZF+B5QyqDH4F9Bo9sOAet0NaqGcgKtxo8w3aevZYcHJrFmohHwm\nPTzyYMS862igWFMeHtkhtCOfWFMWKGohELKZEJEgqCH46i6VSsFut2suBkoNgyeTybJSBFpECDIn\n4EAgoOr7Z5LrR87NoeLxuG7pk0I1C7nOfSnXRTlJ0R4A1SXf9s68pXW0mfJoTbnpjHwFitUQyuFw\nGI2Njaq+p1GpaUGQSCQwODgIu91etTBUMRNCOSmCbKglCPLVL1R7taTcOrnSDotyx65HzUIuYxij\nhFVHM5krVh4RUnaMGOXcG7mGQC2UYg3I3U1SToFirhoCihDUCNy0hufE9YanCJxOJ6xWq+4GSJIk\nyTbImROw1jeezM/At3JWo6Ww3PNjlK4KSi/oBz/3fELKVn+gjB7QuR9CK7GSL5qjRoEib0mvBWpa\nEFitVnkTlWq16eU6TqUpgmzHqdQi2Si2v0ZpKeQbWul9PrKRK6xK6QXtKaX+gM69tuQqUFQ6KIqi\nmFYsmmlERxECouoov3i8MM1sNqtmgFTp2IrZwKkaIsooLYV62yCXSq5VU7YQtxEiY6MJrVes+aiF\nlEEpFOtmme+3UEuCoKZjWcofTjUjBBw+0QQCATgcDlVbHSux/Q0EAkgmk/D5fLpPfuFwWE5XqCkG\nSinuDAaDiMfj8Hq9RZ2PattGF4LfFK1WK5xOJ1wulzxZRaNROReeSCRU33ir1lGee4fDkRbh4hE4\nXiArSZKhvjdqYwSxwqM5Npst7bfAu8wYY/JvYWBgAEDpKYN169Zh5syZmD59OlasWDHs8Y6ODixa\ntAh2ux0PPfRQ2mPHjh3DlVdeiVmzZmH27Nl4++23K/vAJUIRgn9SzZs4D+dHIhFD2P1yeEjcZrMV\nlaPX8pzFYjEkEglYrVbd8neSJCEQCOi+UZPaZIa4w+EwRFGk9EKRVPKdz0ztUO2HvmReD14fJEkS\nrrrqKhw+fBgTJ07Ea6+9hubmZjQ3N+d9P0mSsHz5cqxfvx5tbW1YuHAhLr30UsyaNUt+TmNjIx59\n9FG88MILw15/55134qKLLsLvfvc72RenmtC37Z9Ue1UXCAQ0WflySvk8PEUQDAbhdrvhdDp1rRfg\nqyaz2axbhCIej8Pv98urutE8KfKbIv+s3NNBzxWs0VfKakbyzGYz7HY7XC4XHA6HPCGFw2GEQiHE\nYjEkk0nDn5PRgPJ6/OUvf8Hq1athNpvx0ksvYdq0aZg7dy7uvvtu7N27N+vrN23ahGnTpmHSpEmw\nWCxYunQp1q5dm/ac5uZmLFiwYNi9bXBwEG+++SZuvPFGAJBTyNWEIgRVhBfHMcZgt9srNrJRg2J2\nBsyF2iJK6fjn9XoRiUSqfhPU2uPAaOmETPLlXKu9Kc1oFmG5KLb+wGw2Zy2IA4x73oyQMiiEcoyi\nKOKEE06AIAj4wx/+AIvFgnfeeQevvvpqztRaV1cXxo8fL//d3t6OjRs3FnXsvXv3orm5GV/84hfx\nwQcf4OSTT8YjjzxS1fqFmo4QVLOGgE+8PCSr9cq3mM+TTCbh9/thMpng8Xh0DU9yTwgentd6LNnO\nj7J+wuv1GmK/CL1R5lyzrWDD4TCtYDUiX/1BLBarqfqDapDr/MViMVitVpjNZixatAj33Xcfpk6d\nmvW5lQieZDKJ9957D7fffjvee+89uFwuPPjgg2W/XznQHe+faCkIeBeBxWKB1+uF3++vyo831zHU\nauNT45wVquCv1k1OzW2T+Xkx+mqoHErpXiBzJHUppv4AGBLXRq0/GAnfh2xjLPZctrW14cCBA/Lf\nBw4cQHt7e1GvbW9vR3t7OxYuXAgAuPLKK0kQ6IUWgkA58Sp3BKyWI2I2tN7NsRSUY8mWrqjWzYOb\nQRltHwujUyi9QAY92pIpECRJQiQSMWxx6EiNYJRy3hYsWIBdu3ahs7MT48aNw5o1a7B69eqsz808\nH62trRg/fjx27tyJGTNmYP369ZgzZ05FYy+VmhYEWv5A8k281cgjZzuGMlKhVtV8uZ9Di7GUAu/0\nCIVCSCQSuouj0UA+gx6+5/1I9/838qTG7a0dDkfO+oNchjxE9hoHvodIsZjNZqxcuRKLFy+GJEm4\n6aabMGvWLKxatQoAcOutt6K7uxsLFy6E3++HKIp45JFHsH37drjdbjz66KO49tprEY/HMXXqVDzx\nxBOqfsaC46/q0QyMmpO03pNdJrkiFZVS7udS2jPnG4uWwonfLAVBMIQZ1GikmAK5kTpBGX2suayt\nsxnymM1mWUxoyUhOo5Uy7iVLlmDJkiVp/3brrbfK/93a2pqWVlAyd+5cvPPOO+UNUgVqXhAo871q\n5MOLyc1XM0JgBKc/Tr5NkqpJIpFAJBKBIAiaC7aRegNUm2ImKGX0gFCXbPUHyWRSTjMA5H8wkgWL\nWtS8IMik3C9FKbn5arWeMcbkLgItNuIp5XPwTYFEUdRtRa4UbDabTY4QqI3RWwuNQK69F5TpBT5p\njdT0QrUp5d4lCAIsFoscvaGttbPD9z6oFUgQ/JNKvvB8Fz6jpAgAyJuq2O121VIElYwlFArB4XDI\npjfFwPP8apAZKeFbBxPGIDO9wLd1Hg3pBaPD0wX5ukfUOP+MMUNPrtkEVTgcNoRfTLUgQaCg1HYx\nZctcKRXqWq4glWF5AJpWzRf6HMVukqQ12bYs1tOzn6IH+eGTk7JALlv+WzlBEeqRr3tEr/oDvail\njY0AEgRpk1opE3Ul7XtaCQLlxOfz+eTNOfSAuw4CKNkBUU3KjU6oRabAHHHphHgcMJmG/qcT+dIL\nPBJWre6FWswz5zv/o6n+IFeEgARBjVLszZqnCKxWq6FSBNWe+HKdL7VMfiqZPIuJTmg5MfPoUSQS\nSbObNbwYYAzCvn1gY8dCOHAA4s6dELduBSwWJC+7DGzKFL1HOKq7FyqhWmIl8/zzFE+h+oORKKZI\nEBA5KTdFkInaufFclfvVdsxTywGxUorZn0HrVWQ0GoUkSWkhbx5u5SFxI66mhK4uiB9/DPGPf4R0\n0klITZ4M1tYGxGIwvfEGJKsVrEjntUooVjgV215H6QVt4OkC/lvP515Zak9/tcl2r6SUQY1RbDhX\nzRC4WmFjZeW+1+vNOiYtf4DKz6FFe2M550npAaHHro2pVEouwvJ6vUgkEnLIFYA8SekR7i5IIgHT\n3/4GhEIQurshHDsG4dgxSGecAVgsEI4ehfjRR0jZ7WBNTZoPp5xzUUx6QSkQRtqK1ejkqz9IpVLy\nvhfK82/kaxAKhUgQ1Cq5JqBEIoFgMAibzVaxz71a8BSB3W6H3W7POqZqjTNb0Z4eFGt4pBX8eyKK\nYt5rIooibDabsfYCYAzim28Cg4Ng7e1ILF4M8Y03IPb3DwkClwusuRlwuyHu2AHpzDMBA/wOClHJ\n7oFE5SgFmiRJaSJBKdCUBYpGglua1wokCDJQCgK1UgSZaJ0bV+M4xZJKpeD3+3Ur2gPKMzxS89xk\npkqi0ai88smXtsm3msrcaljrm6XY0QGhtxfwepE69VSw5mYIJhNSs2fD9P77kE4/HayhAQJjYDbb\nUJ3BpEmajUcLRnt6YSTk6LlAKLX+oBpQyoAEQRrKL4PWVfLlTEZGqdwHPhFLjDHNtgouZtLm50QQ\nhJxpEy3hYoRvmWwymeTJvFSUqynlXgCZN0u1V7NCTw/E3l7A4QDzeMBaWoYesFjAfD6w+nqImzeD\nTZ4MdHYiNWUKzOvWIdncDIzg1VM56YWRMOkalWwdN9nqD7gHhRF2z6y1osKRJYE1IFsNQSKRwODg\nIMxmMzwej+qTTDlf6nLGpFWEIJVKIRAIyAVyeloQDw4OyoZQ1RYDPDqSrfVUjfPOQ90OhwMul0tO\ng8RiMYRCIUQiESQSiYoLVM27dkGaMQPinj1InXjiJw+kUoAggE2fDiGRAOJxCAMDMG3eDEgSxP/7\nv4qOazT4+bbb7XA6nbDb7RBFUe4q4lEooxfHjVR4BMdms8HpdMLlcsmRhGg0ilAohGg0qsp3Phu5\n2g7dbrfqxzIqFCHIIB6PQ5IkTY10SpmolWkLPc19OMp6CpvNBr/fX/UxGKGbgZ+HbDUcWtkhZ4a7\nuRd9JcWJQmcnTHv2DEUFLBawceOGHkgmAZMJRyI9MEcHUD91Kkx790IIBJBqbYV04YWwPPccUmef\nDS03cJ0AACAASURBVIzCLaNzpReSyaRcQFsr5jx6kStiVs0C0UgkQk6FtUgqlUI8HocgCLqH45Vj\nKtQ+lw+18+SZ9RRau/1lG79a3QyVnBvuL1COGFGr5TTTi76sXvxUCuZ16xBpb4ftpZeQmjdPLhSM\n9h/FNmc/4v0HETpsRUd/By4c9GLOwX5gwgRg7FiwhgaI27cPvW6Uwycnfv3sdntWcx49uxeMns6o\ndHzFFoiWW3+Qq4aAigprDF6xXy2nrWImI6X5kd6dDYwxBIPBYaHxarvu6d3NkK1ewAjkK5bjdR7K\n6AH/fgsdHWBmMxJnngnb22+Deb0AgKOho/jN5v/GPOcknGObgw3RGE7x+/Dn/a+gbnsC43w+sNZW\npGbOhNjRUROCIJNc5jzUvVAdsn3ntag/qLUagpoXBFwMuN1u+SaqNfkmUjXD4WpM2Mq+fj1dGXmI\nXq9uBl43wf0FjHyDL7Y40b5lC6RZsyB2d4ONGQPEYoglY3h598uY75gKi82B9wYPoHFHGPOnnAnp\n9EasO/YkvtDeBtOhQ2CpFISDB4FYDNB5Ay09yVYcV6ve/7nQeuFQSBQDhe2Vc9UQ1FKEQP+4uM5Y\nrVb4fD5YLJaqr3gz4RXzsVgMXq9XN6c/TiwWQyAQkIvaMn8sSktSLeDh2UgkgmAwCLfbnbO/v5z3\nLnbcvHjRSFbVpZC1ODESATtwAMHx44GurqGOgUAAO3q2IyJFMDblRpOvDe8d2IR2azMOTWtFa8qJ\nY41u7OneBmnhQgiSNGR13Nmp90esGsWEvbkgUxbHmc1m+bscDofl4jg1fztGTxkA1fNGUV4Dl8sF\nh8MBk8kkp3hCoZBskpTvGtRa22HNCwJuFFPtY2Z+CZPJJPx+v7wC1cvpD/gkTx+JRODxeHTbPpmH\nYuPxuCzaqk00GkUwGJRvKsXc0PQWlvngKyl7VxcsDQ1wNjTAFImAuVyIOhxY+8EamJgJiZAfB3t2\nY0viAN63DWDXwC5EAn0wj23DH468DphMkP6ZKhC3bdP5UxkbXu/BuxccDgdEUUQymZS7F4qZnIjy\nydZBIghCWgcJdxlVXoNSIwTr1q3DzJkzMX36dKxYsWLY4x0dHVi0aBHsdjseeugh+d+j0ShOPfVU\nzJs3D7Nnz8a9995b2QcuExIERVoXawGf8KLRaN6VeKXHKAVJktJa6Qq1FGp1zni9AADd/AV4m5MR\nojVqY/roI0jTp0M8cgSpujqYPB5scfbjWLgHV864ErPi9ZjUk4KrqR2b+7fhlNZTcLzUhCtOvh79\npjje2fInwOOBtGABTB98APxzu20iP3wBwmuDlO2kPH0ZiUTkPPhoEQhGil5wUay8Bvz3zQXCPffc\ng5/+9KeQJKnoCIEkSVi+fDnWrVuH7du3Y/Xq1dixY0facxobG/Hoo4/innvuSft3u92O119/HZs3\nb8aWLVvw+uuv46233lLnA5dAzQsCJdUSBMpQOw9deb1e1Vfipf4AE4kE/H6/HBrXc8tiv98v1wro\nVS+QSqXg8/kMUzyoGgMDQDQKNnYsxMOHwTwexO1WvBbYgrPdc9BoccHm92O3N4bjJ52CBsmKD7s2\nI3bsGFzuMZhZNwNv7/gr+iJ9YMcdB5ZMQti7V+9PNSLJ1XuvdXqB+ASllwoXCGeeeSZ2796Nt956\nC8cffzyuvfZaPPnkkzh48GDO99m0aROmTZuGSZMmwWKxYOnSpVi7dm3ac5qbm7FgwYKs0U4uPHjr\ne0NDg4qfsjhIECiodoSA9/BrVbFe7Ofhdsg8T19qV4OarY3hcBjhcFjzVEWu+odMsyOjrGrURDx6\nFMzpBCwWIBqF6dAhfNTxBkJH9mPhIQE4dgyxwT5stR3DBcd9Bu2WBvQN7EO8zgm7zYGm5sno7t2L\n32/9f4jabJDGjoX4j3+oOkYjrSirCZ+cykkv1Oo5UxtBEHD55Zdj5cqVmDFjBt566y2ce+65+NOf\n/oR58+ZhW44UWVdXF8aPHy//3d7ejq6urqKPm0qlMG/ePLS0tOC8887D7NmzK/4spVLzXQZ6EIvF\nAEDeLElP1PA6UGscmSmCajvCVeIvMJIQjhwZMhMKBCAcOYJgIohtrSY0uU9A2zYrLH/4A953BtDs\nm4RWdyu63GOQjDB0mvyYIQJH7HGcYJuAHX27sLV1D+a2tMC0dSuiR47AVF+vm83saKNUa18jRxCM\nLlbynbupU6di2rRpuPnmm2V31mxU+vlEUcTmzZsxODiIxYsXY8OGDTj33HMres+Sx1DVoxmQatYQ\nKIv1lD90rSj0eZSFjFpYNBcLH4dWVtGFULteQHnes3Vm6HrjDgaBeBwwmWB67z2wtjZ8PNaGPeIg\nGhvaYZ5zIpKhAHbHDmFm3XQAQL17DJzBGLqFIPYc24MJ9ZPR5h6LKWIj3uvbDJvVCms0Cuf69Uil\nUohGo6M21K3nxJYvvRCNRmWTHq2sfWuBQtc2n9Bta2vDgQMH5L8PHDiA9vb2ksfg8/nwmc98Bu++\n+27Jr62UmhcESrS8WfNiPeVKXM8bZaGWwmKp9JzxcTidTjidzqzj0PI8jfp6gQyEo0fBPJ6h6MDg\nIKKnLMCrvZuQMDGEEiH0RPvRZQ7D1tyKpsODAIA67xhE/X0YVz8R/+j+B2aMmY2UzYpJcSeOhfuw\n7+CHkE47DdYPP4T9n0YuuULdkiSNKoGgJ5npBR6ZSSaTcuqNuheKI5vQK/WcLViwALt27UJnZyfi\n8TjWrFmDSy+9NOfxlPT29uLYsWMAhlod//rXv2L+/PklHV8NKGWATyY1rQQBrx7ONNWphllHLutf\nvd32lFsW5xpHNVZifr8/634EoxWxqwvo7YWwbx9S8+Zhi/8jWFMME5pnY0rTDOzZ+RbilhBc006B\npycMoa8PHm8zAoNHMcE3Dke63kfbpMnoEBha4URbLIX3Pd0YP2kS2I4dMG3fDunMM4sy6hmp2wwb\nEf7d5YZURts50Ogpg3wUO26z2YyVK1di8eLFkCQJN910E2bNmoVVq1YBAG699VZ0d3dj4cKFcmT2\nkUcewfbt23Ho0CHccMMNcuvjsmXL8OlPf1rLj5X9M1T9iCMAtb68yknP4/GktfDp8eNQWv/6fL6q\nG/xkjkMURdXGUSq8jsPpdOrms1B1gkGImzYNOQsCkCZOxPuHXsU4Uz2sNjemeibi7fD/gxVxmB0u\nuOfMhvjRR7BOmwZLOIp+IYIxrjHoYyF4U2Y4m8bC2/kOPnbGAUFAaswYCDt2AGeemXZYpXMikH2b\n4XI2ZiJyk29zpsQ/W0QLOfcRpbNkyRIsWbIk7d9uvfVW+b9bW1vT0gqcE088Ee+9957m4ysEfQsU\nqHkjKtTPX41csvIYylY+tb0OSiGztbGYcajt5sbrOADovntkNRF37ABragKrqwPicXQzPwZD/fDY\nfDCJJngHIxDrGoBYDAmzAEfbJCCZBBschCchoiveg6l1U9EdOQqPzQvR44Pn6DEkfW50+Q8iNWcO\nxIMHgUAg/ziKMInhYW4KdauDMr2gdO6rVnrB6BGCbOOTJKnmhFJtfdocqF1YyCffQv381bjZpVIp\n+QevpvUvR+vWRjXHqqwXUHYyaIERJzJx924wlwvwesEaGrCz9yO0mH2w2l2wmWwwHe5GtN6NaDIC\nj6MOAJCaPBliZyd8ggNdgS7UWevwf13/h4BJQk+0H81JC+p9Y7FzYDdYayuYxwMxw4wlH/lMYiRJ\nSitONEKhnBGvK6eUsWWzsxYEYZg5Ui3XfNTaxkYACYJhVCIIeIqAb5aUb9KrhlpW5hG9Xq9uq2G+\nKo/H47qNQ9nJoLXpkiFXQrEYhAMHhrwHTCakZszA3iM74GY2OB1eJOJR/Gn/X9HJjmGzuRfB0AAA\ngLW1QRgcRILF8VFvB/pifWh0NKIXEWw8+L+w+5pRL7qwJ7QfqYYGwOOpaG8DZXrBbDZXfSVb7BiN\nSjljU4oyZfcCd1E1mijTglxbH5MgIMqCrz6TyWRRvvtapwz4DRSApq18hT4HT50A5RkwqXGeiulk\n0Aqj2M8KBw8Ohf8nTIAQCCA6eQKOho7AGUvhCILoO7IHzY0T8Jm2T2GSYxw+OrIN/ZF+QBTBmpqw\nPdENt2DF6W2nY+6YuWivG4+mqIg99QxS0I+USUBfKoBUYyPE/fsBlSaOrBszYXTb/OpNro2BKhFl\nRk8ZZCMUCpEgqHXKmYCU7nZ69vMDSNsbwW6362oQo3fdgrJeQI/9CGKxmJwTV05ceqyyxP37AasV\nqeZmIB7HXlsYHncj4gNHcUQaxCKMR6zOg1aTD2NcY9BubsT7R95HOBHGAWsEUSmKdksTGBha3a3o\nEyJojVnQ2j4bvf0HAYsV3X37wCZOBKJRCP39qn+GbH342XYRpDY7damF9AJFCIagLgOUX0PAJ99o\nNAq3211SKFyLCAGfACVJgtfrBfBJNb1W5Gpt5DeJzO6KasGdDwVByLk5klZRGsaYbMjDbyi8sp5P\nVtFoVG69q4ZQEnbtAquvHzqWIGBP8ijqPGPQt383xrSeBGtPCKnx4+CTLBBcbrgkAZPrJuO97veQ\nCO/HOE8b/KEhrwKP1QPRYoXQP4CxU+bCuecNhBwWdA104oSm0wGrFcL+/WBNTdp+pn/uIsjD2/wc\nJxIJRKNRiKKY1to40laopVKNVbiye8Fqtaa1lEajUQCjp3uBagiIoicJPuEkEomytuZVezKqNDSv\nFvy88LqFSsVAOeepmvUCmaRSKVkM8OugDMHy1VWmaY/WKyzTxx8jNXcuhO5uSI0N6AoeQsQqojki\nwiWZEHSYMMY3DohEAKcLLBpFu6cdu4/tRp1kRaKlCS0DMYSD/RC3bEHT9k4kDx9A7P2NmCuNQX9s\nAIOhfoQ9DsDphLBvnyafIxe5ihMZY3KkZrTnwfUgV3qBF4QqDamMTDYxVerWx6MBEgRlwFvnTCaT\n7ikCIHdovto2uXwi1vO86FkvoLSCtlgsOaMS3LSnahPX0aNAJILUccdB6O5Gb9PQTa6b+TEv7EUy\n5IffY0GTowmR8CBs3jp4mRXHosdgES0IRgYhtI5DXW8IkU1/B2w2NMw7A5Hx4+CfPgnHowWRnkOI\nRYPos8TBnE4IgcCQTXKZVLraVU5U/LuQbaIqNb0wUkPi1ULZUqpML3ChPJLSCxQhIPJOojzUGwwG\nK55w1JiseYqA7w6oh9se/xxKK+RqT8RAefUCagqmeDwuf36LxZImygqNIdvElVnAVckNVNy6dah2\nwOOB0NODvjobBmODcNjcqE9a4QhEcMxpQoOjAeGoH3ZvE3ySGR19HZjdMAu9sT6YXV64jx5DUEwi\nddxxaLQ3ICpICNoEDJ5+MqRYBO/t+18cjfSCjRkDSBKEnp6yxqsFuSaqcvLgoz31oBbKqI3ZbE5L\n70SjUUNFbaiGYAgSBCiuhoCHwmOxmOob4JRDZk99ttB8NSIEjDHE43FEIhFNtiwu5jNknotqpkt4\nvYRaWzbnqqrn0YNIJFLyDdTU0YHUtGlAIgEhEMAhWwzHYscw0zsNQZsIFg7BXTcGZtGMcMQPl68Z\nvoQJuwZ2YYqjDQ32egS698LdOBZB89Bx7YkUfPY6HDq2H+9JB/GpplPgD/Vh856/g7W0DB2rr6+i\nc6EVudrsRvrGTEau5GeMyTUdPJKZGbUJhUK6t5QqIUFAABgeFlSGgvXMz3OUXQ3F5Mi1+nFl5sv1\nKB7Us16AMYZgMCj7K6j9+TOr6p1OJ8xmc8lhb2HfPqRmzYIwOIikxYzOaDcYGKa7xiMsJBC1iGiw\nNwAAQrEgnO4GREUGKR6Fj1nhYVYEg/2wTzkO4WNHh1oKw2GMdY9Dx9FtaPGOw5wxJ6DV2oQ9e/+B\ngXoHhGgUwsAAYIAbeyEyNwmijZmqQ2bUJptjZbXSC9nEFPeTqSWoyyAD5ZeCh8K5UlRz9VvO6r3U\nrgYtVwuJRELeF0HrauJc5ykWi8mFP9VuKVTuC+H1eiveKa0YRFGUb6LKqvrMzWt454IgCEBPDxCN\ngk2cCKG3F8csSXRF+9AX7sP+gU7UpUKImlxocDQA8TgiYhI+qwvd5iScsA7VHhw9gvqTToC/O4aU\nzYpk31HYwmE017WhO9CBFlcLXC0hNOx1wy+asL13O84Oh4dMkAYHgbo61c+FVihrPIDsGzPx54z0\nKvpqUih6kWvvBeV5V+53UY3zHolE4HA4ND+OkSBBgOwpg8wWPi2iAqVMGqlUCqFQSJewuBKlSHK5\nXPKkpBW5tkPOtWlUqe9dzsTNxVDm7pX5xqw2udq/ksmkvE+D2WyGddeuob0LXC4IHR04bE/iY/9e\nzG2ZizFwYTM7ApM4BfW2eiAWQ8QMWE1W9IlRtJqbEO7ciYAVmDT5ZBzqfgMOTyMi3QdhC4cheLwQ\nepIwiSa4m9rgZVYkm8ahY+9GnNMrAAcPQmhvHzr+CCVzY6ZoNCqfayNtzDTaIhf5NsSKxWLy42qd\nd+oyGILkbQaCIECSJAwODu0Fr9XkW8oXuJKUhZp1BFwkqVVHUQ7F1E5ohbKotJR9Iapxs84Me/Ox\nsY8+QqyuDpFkEtLhw3jH3A272Y45TXNwXLIOnY4oXCkzTKIJQiyGiCghlAjB52pEA3NgcPdWSONa\nMdE3EUfFMGzeekS69gJmMwZtKYwx16Mn3ANWV4dmyYYWdyt2+vcgZbNC7O+H2NGh+WevNtnOMw9z\n611Fb9QagkrRI71Qi4KAIgQZ8O1BlQVdWlDsRM3D4uWmLNQSBLlC5FoXLirfP5lMIhgMyi171bz5\n8agE91coVyRWo9BTjh6kUrB0d0M67jikolEkmIQt8YOot0xGnbkOpu4jMHvqwJgEJJNIRsOQLGb0\nRnrR6hmHSM8h9Mb64BgzD/+fvTeNseQs775/tVedfel9mX089uANMHHIAwEkFJ7h0WMlURBmiUhA\nyLJCyIc3Ep+QgpR8sBIUkThIRlEQPBIGiSRgAvEjkbzBgF/HGAYb2zOenqWn9+3sS+1V74cz1Zxp\nd09v55zusc9fGmm6+3RX1V1V933d1/W//n9N1kjrGSwxwKwVYXCQtbDCUXWI5cYyd+bOMCKkMC0P\nRwiYy8uMDwwgXr2KH4bwBlyobpXmfqOJ9OwXnSQ87qS8EJXOdjrum72TfVLhmxjR7td13XUmbC+O\nud35dIu9vxsctAQxHLwfwUF1MewHwuws4vXriIuLqNeuMaeboMpkY1kG44M0l+ZAi2PJIn61SqNe\nQlEN1pprDGcmSM6tsJKUiMfSAIwkR2k0KzR0Cc9sUBMcjsuDrDZXQRAYykzSXJwml5vgQtJGuJFl\nY3Hx4Aahh+iGB0Af22Oz1t2IfGua5o67F/pth/2AAGhN+NVqdV1qtlc14K0QqQ4GQUA6nd5XWny/\n7o3RC7VVirzbO952zkIymexomWIn576xi+F2SsmKL7xAMDhI8I53IJ4/zwVnnqSaRJNUhss2wcVf\nobkeGU+iVlygWilQ82x0QUfwQpIVi4LqETNaAUE+MUzDqtJUBUqNNVKxPONCikKz1V44NnyKwtos\nJ0fOcmFQQJyeJjh6FPHSpYMchgNDL42ZDnPLYa/RXl7YrKyz0/JCo9F405UM+gEBrYUhqk2Jotiz\nmu9mx4l246qqHugCtF9p5k6dg+d5B8IXgL1nJXqtELkpwhDp5ZcJT5wgHB0FUeRC9TIj2iCx6VmM\n6/OsZFVSA+NMODrlX/wYfAtflxhODBOsrKDoKdYaBWTZwPd9jFiaRKiwJpgUGqs0RQ/Z8ak6VRzf\nITY0jl6pMzpyB9NqE2yLMJlEXFg42LE4BHizGzMdVMCyE0lr0zQ3Dcoi4vRO8fTTT3PnnXdy+vRp\nHnvssdf9/OLFi7zzne9E13W++MUv3vSzT37ykwwPD3PPPffs7UI7hH5AQCuibGeLH8QLuXE33qka\n+X68AERR3JEEcTfGq/0cNE3rub5A5FDY6axEzzA/D7ZNODICsoytyyzUF8it1BgcO0M4OclyTmXg\nyF1kH3gPa0EN+5VfYoYOI8kRjHodI5cHIURQtRaXxfcZcg1eLF/kP8MreLbJ1foMM9UZZiozhIbB\ngCWSig9Qw6GUMVoCRUtLBz0ahw6RMVP7LlYUxQPpwX8zYavyArCunvjYY4/xne98Z51LthP4vs9n\nPvMZnn76aV599VWefPJJLly4cNNn8vk8f//3f8+f//mfv+73//iP/5inn356/xe4T/QDgg3oVRTb\nvlAfht14hHYJ4p3wBboxXu078266AW4WLHXanOmgIF67BskkyDK4LnODOkKhSDCYZ/D4WxAKBVYU\nh3xyiLoSMpeC5bCBWiyTrrug63BjkVIUpbVoZTLYXpM1q8BgepK3CUf5TfU0d6RP81/X/4u62yAv\nJanVVhhKDPPygI8YBQOHVLVwt+jGTvfNYMx0WEsa0fMNrBO3dV3nn/7pn/jxj3/M+973Pv7iL/6C\nZ599Fs/ztvw7zz//PKdOneLYsWMoisLDDz/Md7/73Zs+Mzg4yAMPPLDp/P7ud7+bbDbb2YvbA/oB\nAXu3P+4Eum2UtNPr2bgrPggS40YipaqqPb0fEXdjp5mRneCgJkHx6lWCoaGWqqBp8mrtKmMkKBsi\nw7FhhNVVrqoNZiozLPplys0i39euoTYchFdfJRgbIxRFREEiCFuLUCGs03BqDIspgoEseSsAXeeI\nOowaqjw7/xwJJcnq2gwnMid4NeshLC0R5nKIs7O7Ov838654L8ZMh3XBvR0QjWE07n/2Z3/GU089\nxdve9ja+8IUvYJomf/Inf8LAwACLWxBk5+fnmZycXP96YmKC+fn5npx/J9EPCDag1wFBJ4yS9ouI\nRR+JMO1mV9yp8TpIfQH4NXcj4pLc1pNrGCJcvUpw4gSIIkK5zJXSFMfSJ6nUVxkOYqx4Va6GBR4c\ne5B3HH0X/0M7jRpKVEeylH/2DOHICE1cUnKcptfE9V1eql7iAekISdHAScaQymUUw2A8NoiiKQwL\nSay4yvLqdSZjk1yhjC+KBLKMMDe368u4re9BB7ETY6YoOHgzB1L7xcbnTRRF3v/+9/PYY49x/vx5\nLl26xMjIyI5+93ZFPyC4gY2Sxd1EtBMGSCQSXa1Rb7dgH6QXwE7PodtdDBs7KfaLAycVLi0h+D7h\nwAAYBuIrr3A95jKZOYrs+WjVBj8JrjIZG2U8OQ6CQEqKU/SqvHfyt/lFsoa5OIMVumTEGE23ybXK\nNYYSw2RDnYQcwxQ80HVC1yUl6Pihz1E/Tj0Xx7NqHM8dpxA2sPJZnFoNb26uXxPvAG5lzBRl+Q6b\nMdNhOY/dYLNzHhoa2nLhHx8fZ7YtCzY7O8vExETXzu9W+PCHP8yVK1e2/Llt2/z2b//2puWnfkCw\nAd0mFkZp6ehY3V6At1qcItW9/fb273fx2842uduRt+M46+ZEveBu9CJYEKenCZNJhBsLdqUwRzUm\nk0gPkHUVXp37OaJmMGQMokqtYNQRQ0BgsiYwefe7mHrtp5i4ZKQEFbvCTHWGU5lTIAjE5RgNt0GY\nyyFYFrFQQvHBxuPU8FkK9WV0RUfVDJYzIposI5fLhK57k5vgG5VR30tEae6ovHaYjZkO6y76VuWW\nnZ7zAw88wNTUFNPT0ziOw7e+9S0eeuihLY/XLVy+fJlGo8HJkye3/Iymabz73e/mO9/5zut+1g8I\nNqCbD+1hEPiBwyFBfNCchSAI1rXobyexoZ1AWFgAwyDUNMT5eV4Zlhg08pS0gIRosLZ8jWQ8u+5w\nCFARHJKCjru8wLH73kcxbLJSmiMnJbhWvsZofBRDMUAQ0CUVy7Pw0ikwTXRPRHE9KrrAnfm7sAKX\n5bWrjCRGeY1VhGQS0XXRbyhuRotWn1HfOUT2wqIovo6cCPuzz+5je8iyzOOPP84HPvABzp49y4c/\n/GHuuusunnjiCZ544gkAlpaWmJyc5G//9m/5y7/8S44cOUK9XgfgIx/5CL/1W7/FpUuXmJyc5Ktf\n/eotjzc9Pc2dd97Jxz/+cc6ePcuHPvQhTNPkm9/85nogcv36de644w4KhQJBEPDud7+bH/7whwA8\n9NBDPPnkk6+/jk4Oyu2M9p1b9P9OLdhRWtpxnJvMeHolY9t+jO1c+vb793eCiMkPrcX4VlkSQRA6\nPnm1OzV2s4vhoCDOzhKMj7csiBcXuXS3wDFjhLVaE1sWOGoavBg0GIoPrf/OUlBmxNOoapCNxTl+\n+jd4/vtP8Jvp91Iwl1qlBYAwxBfBkA1KcZFh0yTmC8i2R1UJUIw4R4xRLiy8yNHMMa7WLoN+BkEU\nYWEBYXBwSzfByDhIluX1Be6w4XYi793KIKiXxkyHfcw2Oz/P83a9STh37hznzp276XuPPPLI+v9H\nRkZuKiu0Y7PFeTtcunSJr371q7zzne/kU5/6FF/+8pf56U9/yl/91V8BcPToUT73uc/x6KOP8o53\nvIO7776b97///QDcf//9PPvss6/7m4fvjXuDISLLbdXGdhAdDaqqHliGop0v0I2uiu1g2zb1en29\n9vqGg2kilEotu+OZGUJNY1ZuckwdZTGsEOAzqGYJXZek0XIhDMOQtaDGkaZKJdOye508+XaKQZX5\nyiyDscH1TgPXd5AFmbgSp4QJqopRt5Acl4rkgqZxR/wIV9Ze41j2JAtuAU8SCSUJcROG9ka534hR\nHwQBruseqpT37Y6tFPw2Kif2x5p1/5jDjMnJSd75zncC8PGPf5wf//jHXL9+ndHR0fXPfOpTn6JS\nqfDEE0/wN3/zN+vf1zSNIAjWPTci9AOCTdCpnbvrulQqlS0Xv15JJEdqaJFLXyeNgXYzVtvxBbqJ\n9pbGbpdJDpJUKKyuttjmQ0OIMzP4qSTLQYUxOcuqX+WkOoop+qgBaEYCgKpTRRRkhhpQTbdKN6Io\nkY4Pcqk4xZHUEUyvZalcD2zScoKUlmKlsUKQzyMXyxguuKpMUwoYjA2yWl+mRBPLsygnZMJMGx8k\nBQAAIABJREFUBmF6etvzjxYtWZZRFGW9lNRPed8au33etiInRtyidnLiG32st7I+PuwBwUYifLS+\ntN+vZrPJ3NwcgiBQq9Vu+v3NrrsfEGyC/U7o7Ta50a5ns8WvFwtHGIa4rttT4txm57BXvkAnxuig\nzInCMFwnLfZq1yXMzbX4A4IAlQqFjIYrBBi+QD2wuEMephyaaL6AprVU2IpWEd2DvK9Sk389mcjJ\nNKvNFUbjIzS9JgCNwCQuagzEBlhprhAMDiKUShhuiBpLUsbiNWeBnK9yoTJF2a2xqjiEQ0MIa2tg\nmju/lg1yv+2mNX2zoNdjPwH2To2Z9vIcH/aSwWa4HYyNZmZmeO655wD4xje+wbve9S6OHj3KUpsy\n6Oc+9zn+8A//kC984Qt8+tOfXv++bdvr71Y7+gHBDXRKnGi3hL1uTmSRHSh0nzi31XVsVzLpNg6q\nrTIKgqLxb1ecA7q26xIXFwkNA7HRAFXlcswkq2VZqC0Q0xJkfJUKFrIbYNxwMSxZJWJNh1x8gLpT\nbynkuRZNweOEPoa5cB3TbS3kDd8iIcVIKAkEBKoZHWF5Gd320WMppsw5UlKM++KnSWHgCiFT3nKr\n68E0EW502Ozp2nbQjx+ZBfWxP2xlzNSeqXmjjPXtmiE4c+YM//AP/8DZs2epVCo8+uijvOtd7+KF\nF14A4Ec/+hE///nP+dznPsdHP/pRVFXla1/7GgDnz59fLze0o08q3AJ7Wah936dWq6Eoyo4Ie93u\naGg0GiiKgiAIXZX/3Qqe51Gv19dZz73eJURjEEmSbkQ3CIvwa/KWKIokEgk8z0MUxXWzpmiHK4ri\nOrFRFMX9j4/jwNISjIy0Og0UhStyhbye5/tXn8HRFappgYrnozcdNCNJGIaU7TJ6wyKePYGOTMNt\n4JlNqti8a/A+pucuER9sdSQ0fJNRQaUpGximS2XxFQZffpmYnwdJ5hd6kfdKx7kQh0ygMKDl+GXj\nCv/bON0STFpdJRwe3vcYR9mDKO0dhuH62Jo3shC9IMy9GdA+1sCmYx09x5uN9e2YIYjmjcMMWZb5\nP//n/9z0vY985CP86Z/+KY888gjvec97biIO/vM///P6/5966ik+9rGPve5v9jMEm2AvD69t21Sr\n1R17AETH6XSGINqZNptNksnkel2w1+gUX2AvYxR1dURj0MuWxijFKgjC69wq23XTt9p17admK5TL\n4PuEmgaCQCgITPsFLM9C8AMeiJ/heWaRVB3fMtG1ODWnhopM0KihjUwQDxUaboOl8ixxNcHxo/dh\nFVeoNIvgODRVgVggYayWMK7PUcoZBHfdhXLHXTTOnKBZXmXy0hKCHkO3fXJGjhW3RMOsEKZSCNev\n73+QN7v2TcyC2i1vO0WYO6yLWy/P681gzLRbp8ODwGb3+8SJEySTyW2FiX7yk5/wu7/7u6/7WT9D\nsAl2swhFC7Druje1FO4UnXxhNmvn832/Y39/K7S3aW7VYtkrhGFIvd5Ke2/X0thpRBkJTdNwXXfT\nzEz71+27rvaWMNu295Q9EMplhBsKdUEuh+XUWfBK3KmPoQtxTkgD1FMGlcIC8cBBkzRWmiskmz41\nRUFKZ0mGEnWnzmJ1lhFjCCmeZCI+zouLU4RD/4OGCvGlInHfQjx7LxVNgViMmB1QlGwSd96HtFZF\nKhQQ4jESaoJmc5mVq78gtdpEePll+F//q7MDv3EcNtnR+r6P53m4rgvcekfbx86x1Vi3t5FGlvJB\nENw2raSHvWRw7NgxXnrppU1/9s1vfvOWv6tpGs8888ymPzt8d+eAsBcOwX719zs5EW3VztdLxnu3\n+AI7Pf9IBVIQhJ62NG6UP95LB8Nm9XHYZfagVIJms/XPMFiTXUpulYScYFhIYtg+mdw4pdBE9luT\nYNkqE69bqFocEgkSvkTdrTNfnmUiOQ6axnB2ArO0SrW+huiHqAtLyPe9HcmIYXomrqGh2T7LjWXG\nk+PUTh1BDyS0hZbrYVCtMjUg4L/lLS0Xxhuy3b1CRJiLdrR9YaTuYbM20ug9vJ2IoLcDqbAb6AcE\ne0TUUqgoyp7Jap1arNvtgjdLz/dC/Khb+gI7DZoijYXdqEB2YvwjEmknuzh2yq6/aQELQ4T5ecTX\nXkNcW0O8dImL8SaapOE4DQaUDIYv4uoKaT2D5bXIjmWrTKxYQ0tkCONx4p7ESmMF220yEB8k1DQG\nsxM49TJrxVniaxXCU6cw9ASWb5FSU1S0EKlpUXNqjCXGqCkh2l33oBXKDHg6WtPi8oCIMDgIsoz4\n8ss7Gtdu7NwjufDNrIbfbO12vUCU6ZIk6aZAdzMi6EEFCJs9a41G49CXDLqBfslgE9xqoYgmDsuy\nSCQSBypu016u2KqLoBfp0GhR3Iq81+1j27aNaZo9vx9RiUYQhI6oPm6FSJI24oNE5ETbtgmCoJX+\nbjaRrl2DXA7vfe9D+b//l4ujBRJqAh0FzQ/R0wNU7SpHUhNcDn6J67tYzQqy46Ems6DrJJt15uvz\nJNFbbYmahixIDMQHmX7xvxiMZwjHxtB9AcuzGDKGqIgOSmijhzFSeoqq4KDLaeyJoyQuzyFKCrNU\n8F0HYXIS8dVXCR58sCtjtVu0q/lFYi1ReWGz0s1hxWHlNrTjVqWcnZATewnTNMlmswd2/IPC4X3C\ne4ydlAyiBcBxHNLp9L4Xn/3sUIMgoFqtbttb382SQRSQhGHYtWBgu+As2i33WmNhYztjLwldm2UP\nwoUF/LU1nHgce2wMVwi5ai0yYAygIiK5Pn4qiSzK5LQMzdCm1FgjY4GTMNC0GOg6iuNRs2vIfohu\nJEHTwLYZyRxhduZXaKfvIlQUJM9HERV0Wafs1qjGZVK+jCZpVEUXwxeRjhyDUoGMoGOLIUvWGuH4\nOOItCE8Hje3a7SKGfT97sHNsFazspJTTC5XKzc7PNE0Mw+jaMQ8r+hmCTbBZO1rUQheVCDqxAOx1\nsY60+HVdX2dT9xpBEKxPkNEuqtfH3+/ufK/jv107I/ROkjrKHkgLC4iGQRCLEaZSzPkVLNdERET1\nBATHxY0bpDSZoFgiaWSYXZki2wgwdZlYoBBqGk6zipAQ8F0HXU8SqiqibTMexPmpWCOeGQK7FSRI\ngsRSfZFfOpeIGWmojyIi0hBcRnyRZjJFTQ2ZbChclEWuhyVGB44iFYstHsEhT8lu3NEGQUCz2Vz3\nAmhPhx/0jvZ2R0TA3czj4qZM2I3sQbezNW/WkkE/Q7ADtLfQHbRLYaSAuFMJ4m5kCKLdsSiKJJPJ\nnkv1HtTufKftjAfxfIgzM4SOAydOoIUhi5qNqCjEQoUccerNKmXRR0fHNGsMxoe5XrxMtu5jaVKr\nPKDrFBqr5I08gWcj6gboOtRqDNgSlibh2S3/gnqzzKXSJWyrzqg2hK4mkE2Lny39DEFRW90Ooogr\ni0zIWbxGhVnDQXAcwkQCYWqq52O0X0SLUF8YaXfYSzmjnZy4GY8mEn/rBDlxqwxBPyDoA/j1Itqu\nf9+Nfvbdtje2KyAeFHfBcZzXBUfdXAA3jtF2BMpuYSN5sNftlLeEZUGhgGhZhKdPI1SrXJMqBLE4\no55GJpAQDR1fl0iqSRqNCjl9kJmF10gKBjZeKyBQVVacEnk1i++5oKqgKIizs+gTxwlUlUZ1jbro\n8cLKLzidPc1xbYRscpCUluJtwjiGbHDdWaFpVrBdk7hskM8fISiVmZObCOUy4ZEjSLdhQNCOzbwA\nZFle9w3p5IK1E9wOHIL9YGMXTreNmd6sXQaHaFY7WGzkEEQ1elEUSafTXWM87+Th3Y9lcad279vp\nC/TCk+Gg9A2idspOWUZ3GsL164TxOMLiYsv2eG2NaamKlsySsEJ0q4GWytHwGgwmB5nHJzMwij/9\nAoznMeuLCJqKbdusCSZ5McFaFBA4DtRqqBPHEBSZWnmZX8QETirD2Kkj2MsLCLqB6DbR1RgTcg4z\nNcalhatkwiEGM8M0YgrDlRiz9gqedQxxYuK2Dwg2IhLraSd++r6P67pYlnVTaaEjqpRvYmymUrmZ\nzsRO7c1vRx2CbqGfIdgE0cOlaVpPU9KbwXGcXbfTdRpRvX4rfYFun1MkNtRpfYOdBEue51GpVDpq\nGd3pEoswPw+iCIkExONYq4usyS6KniRmOmiVBmIqRRAGGIqB7TZxEzGSTY9GPobrWsTiKap2FUFU\nEBsutm3hCgLMzhIOD+N6Nhk1w6vlS2hqjCNiDkM2sJpViMXAddBSOexygXuH7mXVXGWtsogxMIrv\nu2TSw4SWyYJfIpycRFhchDdoar09exBl0hRFWbebjVobD3svfqfQ7exFOzlxozHTXsmJzWaTRCLR\ntXM+rOhnCNoQ7UIjJyhd17t6vF60N+538WknU/bashhY708WRbHnx7dtm2azud6rvhu0j3m3z1lc\nWgLXJczlQFWZWbmEqOnEYmncBqiFEu7kJEk1SRAEzDQWuFoPMeslvld+jlr9Ou/TNKp+ldHsOEIY\nEioSruMQXrqEOzREdW2JmBJjRbKYEDIIjo0ma9hWncDQ8XwfLZnFrs6SOXIvQ0KC2do80h0P4Bev\nkxwYJahcY8EpMJ7PI9h2S0gpn+/q2HQSe32P2lsbo1JktJu1LAtRFG8iy+3leXmjlwx2gx216baN\n91Ycgn6G4E2MdpW9XpJJbtXe6LpuR9obtzrOdtiML7AZukUqdBxnXYq5l9mRjXbNuw0Gej0xC8vL\nCM0m4cQEuC5LjSU8RSarZ9GTGfzCGm4yTlpL8+LKizScOkeS4/zP8DQnh+4kFsq8UH2VpcYSA4lh\n/EaNhJZErBTQMxmU4WHMaoFKYDGaOkK1sIRnmmiihmlW8WQJSdUR4wnMWol4LEvMgbiosxYD27NI\nigaCEWfOL4JpEmaziJcv93ScOoX93N++MFJvsbFNN+J6RMZM7a2k7XPYbkmFTz/9NHfeeSenT5/m\nscce2/Qzn/3sZzl9+jT33Xcf58+fX//+l770Je655x7uvvtuvvSlL+39YjuAfkBwA9FLmkwmkSSp\nN971m0wsGxn8+22v2etuo90g6SDEhtqlgLuFzQKZbpUnuoZarSVV7PuEY2MItRoLYh1baBkLxfV0\nq0Rgm5R/+f+x9vx/cvdyCHOzHElOUKqucEYZI2Fk+PnSz8kmBrHrZdJahsa11wiPHkU0DOqNVURd\n446j91OpLBJYFoHtU6ysEUgSWTWNI4vYtRKCJJHwREYSo1z3C+C6xEKZeGqQ6aCIUCgQTEzctgFB\nJ7FR6rc93b2lKuVthsOUvdjMmAlYLy984hOf4LHHHkNV1R3Pvb7v85nPfIann36aV199lSeffJIL\nFy7c9Jkf/OAHXL58mampKb7yla/w6KOPAvDyyy/zj//4j/zsZz/jxRdf5N/+7d9uaUzUbfQDghsQ\nBGGdudqrNrqtGPSdbm/czfVsxxfY79/fDgfJ5j8oL4T9QJibA1EkjMcJEwmoVJgJS+iKQVyJk5Ri\nOKVVKtdepRAXufMt7yMcHSO+Wia9VsMsryK4HqOZI8SVOPNBGbtZIS3HsCqrhCMjhKrK1co1jsUn\niGWHqVolZFUhqWoQumh6El2JU6oVcQixigUSoUJcTRLIEq4YIlk2Q4NHmRVrhIsLBMePI8zOHvTw\nHTpsJ4y0X0fMPn6NKHsArLuyPvzww6ysrHD+/HnGxsb42Mc+xte+9jUWFxe3/DvPP/88p06d4tix\nYyiKwsMPP8x3v/vdmz7z1FNP8YlPfAKABx98kHK5zNLSEhcuXODBBx9E13UkSeI973kP//Iv/9K9\ni94Gh3/G6yEOIortRXvjTtHp7MRuES3IwC3VF7uBvXghHAaIi4uE0KrFGwZOaY2FoMJIfBg/9Mlc\nnaMRusyMJbjnrvch6AZO0iA1MIH/lrcQvzyNb9YoejXeNvI2Llvz1Jtlsk1oZJMgSTiywFx9njsy\np3DxiacHqZglBMchcB1iyQyD6WGcoImezNIoLKHZ0AxcskqWkh5CrcZQYhgrGaM4/Qrh8eOIq6tv\nWGJhJ7BTT4tIOfF2eWYPE9o3MqIocu7cOb74xS9y5swZnn/+ed773vfyve99j3vvvXd9btqI+fl5\nJicn17+emJhgfn5+288sLCxwzz338OMf/5hisUiz2eT73/8+c3NzHb7KnaMfEGyCXmYIgH05Ju70\nONtdz075Anv9+9shWpC3YvN3837Ytk29Xr+pv3m/aD/frj5LKystsZ98nlDXWSxcwxcgFx8kWFog\nvVbnymQCQ5CZTE3iOE0s1ySjpAjPnEFKZfEW5ihZRSaTkwynJ7jWmCNTc6nnWuWaaXeFpCMwlBjB\n8iyy+UnKZhGh0cCXBFRJI2lkqJsVYpkBBKtOTo6BKhNX4vh6jFJpCQMDP5VkYWmKcGys1dJYKm05\nfv0F7mZs5ogZ9eJHnh6HURjpdriX7ecXva/Hjh3j05/+NN/+9rdZXl4mlUpt+7u3wmbzwJ133snn\nPvc5fud3fodz587x1re+9UAzk/2A4BbodlDgeR7AuuLeQTwIB80XANbVF6Ma6kZNiG4iIhelUqk9\n2RZvho3n3LVrCEPEubmWBLBhgKKw1FgiFAVSgUywvIw+OMZrCZN746dai4fdwLabpAbGCXUdLZ7C\nimvUpi+S1bMcGThFvV5EFkTMeIvsNueskvVksok8pmeSHjpC0SxCrYYvt5jaiViGpl1DS2Wxy2uk\nAgVPDAmlkDsm7qHkFNFVnURmhCl/DbNcxtM0wunp26Y2fpgWto3CSNHXByWM9EbHrebm8fFxZtvK\nX7Ozs0xMTNzyM3Nzc4yPjwPwyU9+khdeeIEf/ehHZDIZzpw50+Gz3zn6AUEbope92zyCdgliYEcS\nxPvBdmZNnSDQ7WWsolKJZVkdXZB3gkiXHrpbnujqAtJoIFSrkGyl9kPHYVE2CT0PdaVIZvgYCzEP\nV1M4IeQAaJpVfNsiMTgBhoFsOazlY6TLFlKtTiCLjDUFVvIGDbdBwSwgqwaGExCP5wgJSeRHKbs1\nhHIZXxYRBRFJMzB8Ec8wsEurxAUVQZSoO3VOTNxPwSmiSDL5xCCzeRFjdpZgZAT/8uX1Z6BfG987\nNhoFRZmuyCio00p+u8FhCqQ2ohPn9sADDzA1NcX09DSO4/Ctb32Lhx566KbPPPTQQ3z9618H4Lnn\nniOTyTA8PAzAysoKADMzM/zrv/4rH/3oR/d1PvvBIadQv/EQLYK+75NKpahWqwfywvi+T61W64i+\nwF6Cp43mRLeKwKO/36kxiq49UjHrdWamU8GmULzRwpfLQRgiOA5XwhJDpkQjETCaGuZq+TLpWI6U\n1TpeobFG1hUR8gOEvo9k2pQll8TJs0ivvIJ93ymO1hUWYz4CAtfK1xhIjVJyQkJFwZANEEWERJLq\n/BWUmI4f+qBppNFoyAKWaxJoKbLAgl1BHEyx6Nf4+ex/k9STzCZDpKtX4dgxjIUFxFjsdZbDUf/4\nYV5MDhPax2mjKdNWSn6HwWb4MMJ13V1tjmRZ5vHHH+cDH/gAvu/zqU99irvuuosnnngCgEceeYQP\nfvCD/OAHP+DUqVPE43G++tWvrv/+H/zBH1AoFFAUhS9/+ctbliZ6gX5AsAW6kSHYTIK4F3yFjcfY\niVvfbrGba4jEjqJe7F5OSJFTpGEYqKq6JVHodoCwuAhh2JIrrlbxm3XmvQL3VuDSSQ+WL9DwS+ix\nFGmzdX8qtVVOSKlWmcF18cwaJCXU0UmYKuBcvkhGMJATea47VRpOgwfHHqR5Y6rQZR3bs8nkJ1i4\nfpnU2VEszyI0FNKhRsl3sKUQQZZJI3LFM3lu6XnerhzjUnmB4eGTlHQBs7CEft8DCK+8gug4iLp+\nk5BMlDFwHGd94eqFy90bEb0QRrpdsVnAuRenw3PnznHu3LmbvvfII4/c9PXjjz++6e8+88wzuzpW\nN9F/u7ZApxfqw8Bi7xZfYDfX0k5e7LXyYLtTZNR/3AsPhm6lacVr1wiTSUilQJapVlaoNYuYmoyj\niqSdkELYINR1FNuFIKBYWWBg4EjrDygKlmshICIhEZw8ifvSL9ASGY7qo8xWZ4mpMXx8DGQIQwzZ\nwPRMMsNHWS7OtHQLPBs0jYQn4QQOTcEnlCQSgcJSfYmh+BBvS51BtG3iShxbCZkRaq0x8TyEcnn9\nmqLdrSiK6+z6N1pf/kFiN8JInWwlvp2CDNM0MQzjoE/jQNDPELShG8z27SSIe5UhiFL0YRhum6Lv\nBvZjTrTfMYoCIdd1e9LOGD1HUSYk2pVFadqO3O8wbPXxGwahbSMoCsvFqzQbFaT8JEP6AILT4K7M\nKc471wk0Fb9eo1kvkTt+DADHd7CkkCE1Q9NrEo6ewimtkhRVBuU0ZauMJmmYVh1d0RF8H03WMD2T\noZHjLJmr3Gtkue5boKqkfBnbt5EFD8IQxQ0ohAWG4kOE6RHizgxpLU2oaUyXFrjz2jUwTYRikXBk\nZNPL3E6Gtp89aKETssqapq2bMrWXb6Ln9o2YPejLFt+MfkCwBTrVelav1wmCgHQ6vemE1YuAIFoQ\n2xnJncR21xCNw0EEI7vhKnQaUSakPUCIdraWZd20mO36ntRqUCwiuC7ilSsIjQbT0nVsKeBE5iQv\nNatkkyOUAovB+CDzkkmyskrYbBAfbmUIbN/GxmNEyVJ361CpYOYzDEwt47oWCTVBzalhC3FyehJs\nG0M3KJgFUqkTlEWbmN8KrlwhRBdkNATqoU0YBDTsBslYEj/wSeZGSFxvPSOapPNa9Rr/M3Y/QqkE\ns7Nw9uy2l7yxNt7rxeuw73Q7cW679QHYDrdjFicqp74Z8eYNqbfBfhdq3/epVCqIonggO/IIjuPg\neR6KohxIqSISG9qP2NFe70V07K3aOrsVjNm2DXCT0ly7ZKogCOsdFe1+7rth2QvlMuLsLMHJkwS/\n8RsIhQKvrV1Ei6VIakkCy2Qkf4ySVeZs/m6uCiUKK9OkXAlhYKB1bN/BEgLGlDx1p464vIw1MYIu\nKCyvXOFM7gyL9UVMs4YeS7cCAtnA8ixE3UASBLxGtfW9KEsgGri+i63LlBprZLQMdadOPD9K3Aqp\nulUmXINLSZvwzBnCVArpV7+CPdyH7VT9+p0L+8NuhJG2e48OayC1lfVxL/1sDhP6AcEW2M9iEVkW\n70Tkp1uLUjtfQFGUrkoAb3UN7byJXvMF2u9Br47dbooEbGlKFdVxt5tob1UnFy5ebEkW33UX+D6B\noXPJX+ZU+gRF0SI0LUaGTlK2yxzPnSTQVWYWXiEnJ+HGwml5FiYuY2IGL/TwFucx4xrK6CQrcxe5\nZ/AeGm6DcmMNLZ5CcBx0WcfyLJBlJEHCrVfQJA17aQ7hyhUy51+FK5epVFao1wpMGMMUrSKx3DCa\nF6C5kPYUVgwfUxEI83mEpaVWxmMf2Gzx6nMPOotbCSO1tzbe7gFYv2TQB7B/DsFe6+SdnqCCIFh3\n8UqlUusLVK8QqaaZprkv6+a9HrsTttF7OW57WaTcRpTbDjutk0dtkgDiyy8TZrOEg4MItk3NLLOk\n2LxHP8KMu8JYEEPIZDDdBrnUEKZ1lJ+e/0+O61m4MSZFs0hc1NBCkYQvU7OrOBkBJiepXHiZe2Oj\nxJU4c+VZ9PhZsG10Scf0TFyzQSyWxlxbIHbBxxFi2OMjaMMxXGeaeT1k+MUS+nKdVVmBnE5WTlIv\nVjDSA4SmwNVglXvicYSVFYSFBcIOtlu9mbgHBxHgtJdvIlJiVBKL5puodHOYsVWG4M0aEBzuu3WA\n2O2Ost0+eTciP53euW6Wou82T6H970c6C7Ztk0qlOrIg7/T8Nxoj7fTY+x2bzUyR9jrmt9rpNhoN\nms0mTrOJcPkywcgIYToN1Srz1TnMhM7ZRpIZa5nT4iBVOUAOQDdSDA8c53p1mnz61+S9NXONATkN\nnkeq7lBIK8h+yGpSZEBOo6wVGI4Ps9JYRkm0SgaSKKGICuXaMoNyhurMFCXB5pkRm//SFvhl6VUu\nCgUuDkBu4jS5qkvl8suEskxWTiMU1hAyaeKizsXqNcKBAUJRRLx2bV/3YK9j+kbKHhxkWn4zF8FI\nGAk4UGGk3aJfMujjddjNhB6ZAsmyvOs6eScX692UKrqBKCiKdsm9NCfay7E7MT7Rvd/Kg2Gr4+70\nnm+sk6uqijA3h++6uLqOpaqEU1O8kguIJ/MMFE1WmivcOfgWSvVVYnIMSZKJGylM10SJpdf/9mpz\nlUEpheD7JMsmpZSCFogsCw2G80cRpqdJaSl8z6GuiwiOA4AhGxSLC2SLDV7LhywoFpOpSd4/+m7+\nt34feT3PS82rlPwmubMPULXKiNevMyAncEprxPOjJNQkrxUvER450goIpqf3NP57QZ970F20yypH\n7b2KoqzrS0StjYdBVrmfIbgZ/ZJBGzZq6O/kYbVtez2i3Kv07n5fiu1KFb3oZAiCYJ0v0CmDoJ3i\noISOOnHvd4OoRUy8dg0pl0M0DNxUCqam+NUxm1QsS2F+AWNIJpUf49X6Mlk1A0BldY6skqIZ/rp8\nVDSLDKlZsCySosdVNSBZDSmGDe4fPYlQLKIMG6REnVXZIXkjINBlncrLP2IpJ2MMjHG3MExTUkFV\nUepNBpLDOImAmr+CX1/CGR3CWVsmX3GpySZ3ZCaJa0muWysEuRySosDCAnge3Hh2e7VQ7KZzoe8o\nuHuEYbgufHS7CCOZpkk+nz/Qczgo9DMEt8B2rXQRkWY/Ovz7ffij2nUn/Aj2ish+NRaLdWVBvlVA\ncxBCR1EAFtlV99KDAUCamiLMZiGbRbUsFMfhesxkLDXJrNxgyJJpqiorpQWSapIwDKmtzZHVs9Tc\nVkBguia23SQTzyM0mxjJPGWniuU0SRk55HiKMJNBLJRJhhqrkgmuC2FIbGGV1xrTMDLC2wfvx6uW\n1sWJhHodWTOQRJl35O5lbe06ZuhQecspkktFfM9lKDaELKvUcKmoIAChLMMG29eDWBiM+IThAAAg\nAElEQVRulT2I+AeHLXtw2Nsh23EQwki3wlYZgjerMFE/INgCt3rBoppxpC+wn9T4fnbv7a2NtypV\ndLuTIYrye7kwRotyo9HYl+ribsdmI0+h5wFYGCLMzEAmQzgwgDg7y7Lm0xA9TudPc11rcszWUQYG\nqJhFUnKSRqNBYWmaVGyAulMjCAPKdhlNkNDVOEKziZ4bpuk1qZplhpIjoKqQySAVCyRRKfoNfFmE\nYhF7bpqrcZcH8veRj+WwnAaWVWt1L9TryFqMIAhQcoPc7w5Qs2ssSA1imUGEZpMMBqbgkZJjvFZ6\njSCZJBQExJmZ3o7lNtjIPYiesTca9+AgEWW9IgVXwzBex5np9RhHZOg3I/oBwRbYrpVOVVUSicSB\nReYRXyBqAToIvkCUmejFy9N+L9oX5XQ63bNFOeIpADs2ZOo4ymWEZhNUlSCfR5idZSrWRFFjpNQU\nFdFiwtawDAlVEEkn88TjcRr1NdR4irgns1haZLmyjBZIKIqOYJqQSCALMmvmKkOJEdB1wlgMbAfB\ntEkn8hQkB+GXv+R6TiAlx8lmRkj7Ko2YQlCv4UkiQrOJpOk4gUOYzTLYCJlITvDS8kuQzpAUdBpz\nVxiIDSBLKpeLU4RjYy2BpaWlzo9XBxHtbvvcg51jt9mLXvM7+hyCm9EPCNpwKw5BtCONtPA7lRrf\nyw61fWcckXY6eYzt0Amxod2gfZwjrgJsvyh3Eu3E0YPyogAQrl4lTCZbi7gsg+dx2WgS0xKIIYih\nQF5KUjVLqIGEpsXwq2VMKSCVzDGmpGmGTVbNVRKhhlUu48XjBK6L7dvgh8RiLXlhwXEQ8gP4pQKD\nqTFWKwvMVGeIj59E8H30VB7dFxASSYRGA0sOCRt1whvdHXYmiVCpcCZ/hrnKdRqBRXbsFOVXXmAi\nMY4gSsxWZgiOHAHbbukR3CZ4s3QuHCS2GuO9CCPtBv2AoI9NsbGVbrftbDvBbhbriC/guu6udsbd\n7mToBWkR9sbo7wQO0pBpI8QrVwgmJqBabbH+FYXrqomhGPiOjRRCJj9BrbiIGoCmxamtzqGmsmiy\nTs7XKNklGkGDYT2L4XmEo6NgWZSbZXQH7DDEl2VCy8LLpFCaJtlYjoWlKaayPmcGzhB6HkKyJVaU\nzo7h1ypYvk3DM0nFssiiTC2pQrXKkDGI7gpcjJtkho5QtsqcEPL4BCxaK5DPQyIBKytwQ+XxdsNm\n3SDQm+zB7cQh2A92IozUiTE2TbPfdtjHzYhesGg3DPS8la4dO+ULdAvtmYlEItExp8SdIOpnrtVq\nHScu3iqYiYhO++UpdBLStWsE+TwYRssUSBBYkJuooopl1Ul7CtroJLXSEnIAqh6nujaHls5jBg5z\nQZlnrv8XFauC7IeIjQaMjSG7Lh4eaVEHVcUWBKxymWrokggUpKvTzGkm6fggMTmG7AcEiTjYNsnc\nKF69hmXWKKsBKTlORstQECwAcugork85LqLJOqUYnKiIhGGALYasWAXI5RDCEGF+/oBHeGvsdOFt\nr4u/2bMH3QpW2lsbY7EY8Xh8Xe0zmqd2kj3YytyoHxD08bqSQXsrXbd2pDvZXe+XL9AJt8D2mn0v\nHRvbW5R6yeiPCJORwNJBdG9sBmF+njCXa5H+YjFWqgs0FYGYEiMuqmh+iDp+lFp5GdkL0PQE5cIc\n02GZBXOJbGqIeCjT8BpcWHmFslcnGBrCa9YxvSYJQUWLxzGyWXTA922SiQFK//0MtUyShCdRt2ok\nBQ1Tl8BxSCcGcGUBe22JqiGQFmJk9AxFrwqaRs4UsM0qk/lTVLEpY5HUUiSsABSF2eYCQSbTmpwX\nFg56iDuOg8wevFlwK2GkjbLK281V/ZJBHzchkt4NgmC9Tt+tlNx2O9T2XflO+AKdxsYMSS8zE+1u\nkbqu95w8GATBvrJCW/oQ7DWAKhbBthFVFQSBYHiYK8XLxGMZVElFNR0kWUUYHCRs1MH3kAKB/669\nip5I86B+muO5U+SEOBOJCc66GX4WL7NKg9XGMlk5iaPcODdNw7Wb6IJMWk8x669yYuxuGmaFSnkV\nQ9ApN6v4QFLQsXUFa22Jqi6SQiWrZymaRcJ0mli1ieB6pPMT+L5DARN98gSJmoOmJbhcn4VsFsHz\nEJaX9zTWtwu6kT04zCWDgzi39uxBFIRFwkimad4kjLSZtkRfqbCPdbT39Ucv70GeR8QX2A9vYa8L\nUHtHxU4yE90gLrY7A3YDG69po0PiXiezbkyC4sWLBMPDCKUSoe8TplJccZaJx9KtSbDeRIqnsDWF\nhCfi2yYXV19GjMW5e+BudF+AVIrAtnADl/GawFuP/Ca/qk1xvTbLkJpDlVteBSgKlm+huSGaE3BZ\nqfLA8P1U3Qph4JCL53ECB0+SCGomaDGKy9NU1ZBEoJAzcpTtMmEmg1Qsk3AFqnGRY9IATTmgEpcY\nDWIIYcisuQCGQahpiBu0CN7o6GcPuo9oHo+yB4ZhIIriuqyyZVk4jsOlS5fwfX/d5nmnePrpp7nz\nzjs5ffo0jz322Kaf+exnP8vp06e57777OH/+PACvvfYab33rW9f/pdNp/u7v/m7/F7wP9AOCNoRh\nSKVSQZKknvWhbrZYHzRfAFovSb1eX+8N3s6xsZPYbSCyX0TjHx03mjgO265LvHqVcGIC5uchn0cI\nAmbFGqqio8s6TqVIJj1M1a2hJ7LUakWWSjPcNXIvTuCgeVCLyaQDlbpdRSvXyEzewZH0Uf7bvcqg\nkCCuJ2m4DQAsVcRYKVLRQtT8EEOehuj5lBurZIwcnuihplLEZZmhoWOslmaxZYmwbpEUkxQaBcJ0\nGmF1lbQUoyi7HCWLr0isFWcZzRxBtWzmrWW4QW4UlpZuW2LhftHnHnQfG4WRoCWr7Ps+f/RHf8Sp\nU6eo1Wp84xvfYHV1ddu/5/s+n/nMZ3j66ad59dVXefLJJ7lw4cJNn/nBD37A5cuXmZqa4itf+QqP\nPvooAGfOnOH8+fOcP3+en//858RiMX7v936v8xe9C/QDgjYIgkAqlSIWiyGKYs9euvbjdENfYLed\nDNHOZDcKjJ3iEdi2veNApJOIAqCDKs3sBMLMTGvRrFYJJyehWmVRrIEkMxofJaxXSWSHqTk1iMdZ\nbCxyJEiRHTiC7ZiookJZ9RknSb2yiiyrEI8zZAxhSQFOvUxcTVJ36gDYsoAxv8zKUIJUfhyhXCYX\n6CzXFknHsi0bZEVBcF1GBo+zbBfIpAfRBYG0nsZyLYpigFcokJKTrLlV4p7AQHKEqdUL5EdPEbdC\n6q5J0S4Tjo9Ds4lQLB7wSG+OXqe/d5o9OMzBwWEuZ0SQZRnDMHj22Wf5j//4D2RZ5tvf/janTp3i\nHe94B5///OextwhSn3/+eU6dOsWxY8dQFIWHH36Y7373uzd95qmnnuITn/gEAA8++CDlcpnlDaWx\nH/7wh5w8eZLJycnuXOQO0Q8INmBjqqjbL1v0shwGvkCnaud7QUTi20wKutukxcguudMtpRE6MiEG\nAcLSEsFgS+3Pn5igsjZHEw9bCEipKcqNNRoxmZpTYymsM+bpBJZJKj+GYzfQtDhFwSLvayhNE8tQ\nQVEoWAXuSp1mqTyHoSfWMwSm08CulZAHBlFygwjlMgPEWGuskInlMV2zpU5oWeQTgxREi5ikI3ke\nSSOJrul4cQVREEhJCVZqq9iex2TyGJeLlxlIDaPoMfA9Ftw1wqEh8H1YXNz/eL3BcKvsQZQ16GcP\ndodonNrfz+PHj2MYBt/5zndYXV3lr//6r1FVdcuN0fz8/E2L+MTEBPMbOmU2+8zchtLYN7/5TT76\n0Y/u+5r2i35AsAHRw9GrqDbqZqjX61uy+DtxjO0miXbhnUQicSDkwciPoVeBSGS04vt+V47b0Yl5\nbQ3B9xHn5xFWVhAkiamlV0hraWpujemV13CFgHmvxK9WfsVqUOdk06CiC6SNLLbdQNNilLHIujJq\nw6apS6CqFMwCQ4lhcr5KBXs9IHBKq6zG4Fj2BLIew1ZE4r6E2awQj2WwPItQVREch5Saoin6KKEI\nto0qqeiSTlm0kIBBNY0ruohxg+OZ4yw1V5FDBVfTkB2faXOZMJkETUOcnu4vatugPXugqur6+3o7\nZQ8OO1RV5b3vfS+f//znt1wPdrpObLwP7b/nOA7f+973+NCHPrT3k+0Q+gHBLdALwR3f94HWC95r\nFn+ETgjv7HWsdqp62On70N49EZGMOolOB5TilSsgCIhTUwQjI4gvvcTVyjViaoKSVeKEPMBpbYK3\nDN3LcmMZkZDY3DLO/DTp//dZ3JdfRFpaxnSbJAQdzXRoGjKBACW7hKanOBPkWPLKrZKB49Col6hJ\nHuPpI8SUGI1cAiwL3QVfkVrkQ10Hx8EQFDxFInBsuOGKmNbTFIIGgu8TQ0YSJBqqgCLAvFjlJ9Xz\neBLEpBhT5StYvt9yb7x27bZINR8WRHXxzbIHB+UHEOEw38dOnNv4+Dizs7PrX8/OzjIxMXHLz8zN\nzTE+Pr7+9b//+7/z9re/ncHBwX2dSyfQDwhugW4HBI7jUK+36rXdJLFtdR1Rmr7ZbB6I8E5E4ttO\n56HT4xJlQzRNOxR2qzuBcOlSyxFQlgnf8hbC8XHmStPUsRmMDRKzfBRZoym6DDgSjSsXaAge8dP3\n4Lz3t2F4hGpgkrs4jbe2RErLUJNcSlaJpJrEV2UGbImBxBCL9UX869eYywiMBQnUWBJDNmimY9jN\nCgOBTlVwkEUZWwrBssCy0IwEllVrKShCq/UwaBD6PkbQsradD0rMlq9zOnWcmKBSc+vkBo8w05hD\nn5oCUSRYWQHTxLbt/i53D3gjcA8OCo7j7CpD+8ADDzA1NcX09DSO4/Ctb32Lhx566KbPPPTQQ3z9\n618H4LnnniOTyTA8PLz+8yeffJKPfOQjnbmAfaIfENwC3XQJbOcL9AobvRk6aZu827E6KBKfbdvU\najXi8XhX9SUiRCWJ/T5H0q9+RXDsGNg24egoYTzOAjVKdoW7B+7GqhQQVJW5q7/kbitDavI01zOQ\nyY1iiwGakaB4YpTU2bfjTl0k7QhYYsBSfYm8nseRQTddTuROUbWrmDOXmUuEnLBjoKqtDEFcw3Sa\nDNkyxbDZChLEAMFx8Jo1YrE01dCCGwZQOT1Hya+D56KHEmIo8JJ1nXvjJxlIjSL5IeNSBjupU6ks\nYWoCsqqiFAqItRqiKN60y3Ucp18j3wS32uneinvQi+zB7ZYhaDQau9IgkGWZxx9/nA984AOcPXuW\nD3/4w9x111088cQTPPHEEwB88IMf5MSJE5w6dYpHHnmEL3/5yzcd74c//CG///u/35mL2icOh/za\nIUIvFohIbCedTvekRLBZr329XkeW5Z6310VZCdd1d1y370RgFgVhjuOQTCbXA6BuExajaw3DEEmS\n1o+7q2PW6wiLi4RvfStoGmEshlVYZikWIDsWE8kxktZFLLvBwuoc73r//0Pw0n9wIeHxNl/G9mzU\nQKREk2PDxzBHBjBWl1ASKWars9w/cD+L8jRa0yaRGMS47vGau4RlSIy6Kr6iYMgGJauEn44zutpg\n0a+TMvKYcgi2Tb1RYtgYoiCAVVnDc5sk1AQEIU08jHSeRm0GGYcTyjCyESfeDMiGBmWzTN2QWbaL\nxH7jN1Cefx5xYQHl2LH1bh/f9/F9H8tqySFHYylJUs+e38O8uO0UoiiuZxDaxzUSYovGVJbl2/5a\n9wLTNNfbEXeKc+fOce7cuZu+98gjj9z09eOPP77p78bjcdbW1nZ3kl1EP0NwC3TLJTBqb4yCgV5w\nFaJjtKfpOxkM7OQaDqqLIWql7FQ2ZKfHNE2TMAzXU7eR1nokxbzTnZlw6RJoGoJtt5j4us7Vldew\nNZl8oKHXbJK+xGJlDunIMcZyR5HrDcRUCqdWxvEdtECgHJhkzBB7KI86PEFsYZW12hIZLYMthmiW\nC4rCcVPnWWmekcQoot86t5gSw/RMzGyCfMnCk0AUREzBB9umXF3BkQV+ar3Gs40LPHvtR7y08hJF\ns0BVdBFTGaxGmbiebBkipYaQXQ/BsRhsCljpGLMzLxEePw6JBMrLL//6+jfsctuFZXYrS9vHr3HQ\n2YODRt/6+PXoBwS3QDdcAjerl/ciIIjkmNvT9L3cAUTBUCT61CvyZLtdcq9EnqJdlyiKNzlCRlrr\n0S4MdlbXlV55hXB4GKFQIBwaIgxDLnuLhELIeHIcf/468dUKs0MqxwfuQBIlmqUVMrlJKtUVbN/G\ndUxiegKtWMEayqOJMv7gAMr8El7gIYoSkiiDaXLCNLjoLTGk5UFRwPOIyTGabpNmyiBes8gaORzf\nwQodFoMqzyz8hNH4KOOZo7wn+P/Ze+8guc7zzPd3UufcPTkPMkAABAEIJMFMRcqUZIUryaIpy1ZY\nr71yKNe6bnmr1uVab63t1d4rmZKvZS+tlWQFi5JIiQTATJAEiZwxGEzOqXtmOnefPun+MTzj5nAw\nGAAzA0icp4rFGmDQ3+nvdJ/3+d73eZ+3iQer7mR75XZyxTSvO0ZJyyZWsYDomGmFDPkrKQkWgYxG\nye3CE6ygLdWB5XZj1dQgX7o0797ONZaZz5Z2OUbi3sxYqve5HNqDX7WsyrvZthhWCcE7sNSBej5/\ngZX+gtjvwR7Us1y99pfbq/lGJi/Vay+ExYxLXmoyZmdgbNX35da8kiq8vF4udnZiBgIz/9jnQyiV\nuGCN4xEchCL16G3n0aIhCi6FxkAjmqFRzE7T0riNqVycbClLsZQj5I0hJBIUK8I48yWKdVUouoE2\n3I9DVECSEIaGMCqiOBUXeqkIHs9MZ4HsQjVU8rKFy5QImzM/96X6aDNGWWNFuK12Jw5vgHQpjaBp\nVHmr2OCoRXH72T/5JjHThcPpIVdIEXFFmHLobMi7iUt5msKtnHekEDIZzMpKxHh8VouwEOba0trf\nr6UeiXuzY6mfKe/W7MFqhmAVy4YrTQm0sZwZgvITss/nW3GzIXt88EqPTLZbKZd6XPJCKM/AlO+z\nYRizAX6+wDTfyczeu/z4OGY8jiWKWDU1oGmgqvQaCfw48btCGIlxJuqjBFwBgq4gamoS3dKJRBup\n8FYwEu+hqOYJKQHI5VAjAZwlkzwaUlMr2qULODULPB6kvj6mwx6i7ijJwhSWx4OgqjMzJSQHeaOA\nwxsgkjMYyYzQPd3Nnuh2yOcJ+GJ4RCeT6THEV1/Fd+w0Um8fIUNGkRXSuUkERSFXTOF3+tEUkdoU\n5AWDNbGNjCpF8gPdUFUFioLY3n5V+7/QSNxy6993U/ZgqfDr2LlwudHHq4RgFfPiegL11UwJXC5C\nUH5CXu5U+dz3MHd88HJkJeZDeUZmpcYl22sWCgX8fv/se7VHN0uShCRJmKY5W04wTXNecvCOk9nY\nGDgcGKpKLhajlE6TSsWZ0NOERQ9iIoE3Us1odhiv00/AEaA0OUFREQl6I1QF6xmfHiCv5QirIlY0\nimqU0CUB0bSIRhuY9Iu4RiawAKOQZ9KhUe2tRi3myLnlmbZCQBZlQACPB3k6RU+yh1pfLR5XgEJ2\nGn/PIBWDk0z4RHC7EW/ZhsvlI63n8Hf00VDyMpIeIlNI45bdSJaI5HThk93EQjUk5RLJsR6sUAgz\nEEC6SkIw317aZRqv1ztLSN9t2YOlxtVkD+abJngzI5fLrRKCVcyPaw3UC+kFVgp2e91KnpBtLLV4\ncLH3YW5GZqXEg/aa5YJFW8AJM61JDodjNp1tmiaiKGIYBpqmzQaluYFJEATk7m6EcBhF13GuX4+s\naXSme9AEi1jaQlVzCHWNkEojSQoBZ4DS1ASqDEFfjIpwPeOpIdB0fLkSVixGySiRk3RicoCAM0C8\nKoB3LI6QyzHuEwg6g7gUFxHJx6izNEsIJCQsQ0cPhzgzcIQt0c0IgkA6m8DZO4AUDBPadQ8TTbEZ\nC+JQCI8nSL61AauxiZ1GJYXeDgb1SdyWhGRYZJ1Qp1SQN1WckouzxgiWIGD6fDNmTEsEO3tQHsTm\nyx4slAK/WevhN/q6Fsoe2P+/GbMHl8sQrGoIVjGL69EQXKteYCkzBOUzAcpPyCslXJxrgbxSDyqb\nhFiWdVWOj9ezL/Otabdy2UK3TCZDNpudSf+/pQ3w+XyzlrOyLM+SA5sglJcWpO7uGUtflwsCASRV\npUuexuVwUZe10AMBUiEPSjKDIrsRTIFUYghFceP2BJECIUy1iMMUEJJJrIoKVEMlJZSIin78Dj+T\nVg4lGEUYHWXEqVLrr0URFEKChxG5gPDWg10URARdp9Ov4pe9rHfWoqWnmWo/hSdag7l5M1FPjKQL\nrMkEaBpu0UFeNnE7vbjfcxetRpDzo6dRijqCYZBWLJodlYxkR6hyxjitDyKYJoLHgzAxMVMiWQbY\nQWxu9uBXOQV+M2Bu9gD4lfKTWNUQrGJJMPekeDUp8qUK1vZMhMu11y3nF1AQBHRdv24L5MthoWu3\nyzMrSULmW9OyrNmTvqIoeL3e2UFNpVJpNsCUSiV0XZ99eNrDUxRFeVtpQcvnsYaHsRQFfD5wuRA0\njXYm8RQNKnxVmBiUqiIoRZWoJ4aeTjOamSAg+ynpOobbjVnII5gmOBxYLheaoZGxVCpEHwFngJSa\nQnF60DGZLExS5ama6ZAwJUpOmWx2ZvqgIAjkihkG5TybIhuJjCYxenuYaq7E4wsDM+2Jkj9ANjkB\nuRwud4C8oKNoFu5oNf7KBpyKi6HjLyCqJXIhDy26n3g+TmugmY7SCFgWmCaW04mwhFmCy2G+7MF8\nIk979sUqrg7lHSG2PuZmIF6rGYJ3YpUQLIDFBuq5eoGVFO7NvYbLzQRYziBpZwY0TVsWC+SFrt1W\n9S8HCbmaNcvJgN1mCMwSAFmW8fv9syWkYrFIOp2eJZEwY7Zjn1odDgfy2BgoClYyiVZbi5bLYRQK\n9OgThPMCvsoGpvMJqqrWkHNYVEsBPPk8aZ9IhTc2IygVTMx8Hj2XRQuHUXUV1VDxym4cukXAMUMI\nvFNpRtbVEE3kUSQFURDRSkWqIo2MZ0Zn70N/ZoB14XU4nR6ip9op1VUz5bTwMEOA3bIbye0lJZYQ\n4nEcLh+qYIJWwhGKYeSztLTuon+8HVdeJeGTqSzM2EfXhZuYVKdJVwahWMSMxRDnzJZfCVxO5GmL\nQ4vF4qow8RqwGO3Bjc4erGYIVnFZLIYQLNaP/3rXWQiLaetbThvmXC6HaZo4nc4VqdvbKLc/vh4S\ncjX7Ut5JYK9pB4u5ZMAwDHK53Oy8dVEUkSQJl8uFz+ebFSBqmva20oJhGDOq/qEhRJcLBRCbm5E0\njeHiBDk1S0TyoSkyRVmgMdTMlFQiZjgRpqaYkktUeqtwuVyYThGn5MCf05nyykxnpknnkoRkP1ax\niCIpWJqGMZVgeGMdtZMqZklFFmRKWoHKWAvjuTEAErkEpmHQGG5G7OnB6Q3gDlUwpk7iEWf2wi27\nkR1uMrKBMDGB7lRwOf0U1RyCx4MTCa/DRyjWQKowTVHUUVIZAo4A+P0IusElVw4EASIRxN7ea76v\nS4HyIGYTtpvNFOlGawguhyvtx+WI10plD1YzBO/EqnXxHCxWQ2C3hRWLRXw+33Wr6K/lQ7/U13C1\nsGvkdqvXSg1nuhb744VeezEotz4uX9POjgBvy8rouk4+n5897c8H22Cn/ASqaRr5fB7LsvC1tSEF\nAoj5PGJNDY5SiV4rgVzSCFfUkc0nMV1OIo4IU4JKhSpDZoppsUile2ZyWqKYIKL4qdZksiEHXoeM\nquUJe6soJZNo+TxyJkfaHWTKZbEzVE+h8yIBfwBdKxIIV5Mv5cirWXpSPayRKyiODeFWFGhqotJK\ncLw4gddaA8wQAkGWSTkthPFx1BY3fjFIaWzGAMnlCyOYEFAl2morcSdTmBkZv8NP0QKXLtBmjLJD\nkjA9HuSenmu+t0sN2z+ivIvEdp4sFAoAs6ZTK2mpfLNjsToqWZZnDxR22UzXdVRVRRTF2b1dzoFk\nqxmCVVw1rkcvMB+u5cO9WI+D8jWWkmnPNf2xBXXLDVsnYRjGipVn5lof22vaDyw7UNgolUqzD5bF\ntj3aD0S3243P58Pr8SAODVFyuSiZJlmnE21khC5zElGUaI2sZViboDbWjFrK4nL5cManmS6mMBHw\nOH2Ypkk8Hydmuog6w8SLk+T1PLpZoipUjdPrxWGaODM5BhxFfEoQo66BYkcbDtGB15TIiToV7gpO\nDx9DEAQaC05yuWmshgasSIRqVSGhTuGV3GCaOGUnbtnNlEdCHB+nIFsoDjc+UyGjpvEEosiaQTE9\nSVPLTia8FoXhPoKOAB5nAKfsoGeifWbEs6ZBNgvJ5LLc16vF3BPlqinS8mGh7EE+n1+S7MGqdfE7\nsUoIFsB8QXQ59AJXG6yvxuNgOXAjTH9g5n1n3pqCt1I2xHYWBP7d+vhyJYLyjI1tinMtEAQBKZtF\nyeVwulw4YjGUcBgrHqdDHUFweqkRgvTlR9hQv51kLk7UV4FsGKSdJh5BQXZ6MAyDscwY4YJE2FtB\nsphkPDdOVAogOt0IXi96fJQwboaUDI2xFqipIZ9JYo1P4hJcJAspIu4oJ4ePU++sIjyRJrtlHYJh\nYEWjhHMm2VIWweuDt7oRfA4fltdNbnp8RlAoOfA6fWSzUzgDUSRdJ5+dYk3NFlLVYabyCWKlmW6L\nmCNCT6ITraUFcWQEq6IC8TI2xjcTFmuKdLOq65cDS1XKmG+WxXJpD97tJYNVQjAHC5UMlkIvcDks\n9oNsX8NCdrzzYSltmPP5/DtMf5azrdHu3V+OvV/ouss7Cew1FxIPFgoFdF1fEkdIYXgYS9fBshBK\nJZyTkxAfZUzMEa2oJ5oXGLbS1PvXMhTvI6gEEYC4laFCDuDw+ZBkie5kFyP5UV6ilwsTF3il7xV8\nlgNLlrE8HvS+bryxOiZKk1SH6pH9foxYiEgyi98dIl1Mk7RKFLJpAoNxnP4I2c94WmIAACAASURB\nVIgfikWscBhnpjDjJ+BVZv0K3LIbxeUlbuUwNJWgK4ji8JDJTuIKRhEyWfJWCZ8nRMxfTUetk1jX\nCIZlEPSEKRYz9NX5EMfHMevrETo7r2svbwQuZ4pk18eXMntws2oIlgtLlT1Y1RC8E6uE4AqwW40K\nhcKyDQZa7GvZIjqv17viZkOWNTO2ea4Bz0rAVuF7vV5cLteKrHk1nQSmaZLL5bAsa7Z8cr0QurrA\nMBCHhrAqKxEuXWLo/Btofi8RT5RMaoSiS2JCn6Ar2UVACVDIZBjKxQmYLtKWygt9L6Dm02z1tfJ+\nzxbubrybRCHBWHaEQW0KTVEo9ndTCvvxmQ50ecZhsOhz4k4kCTj9qKhMKDnWiGG0xBhKfSuTaoZS\nNotmmuTdMhW6wqhDRXjrPnkUD4rsYFQpEjIduGU3osNJJj+NJxhDzafwSC5My6TKW0VfVCQ0lcPM\nZPD4I7g0iw4hgeVwzBgU9fdf937eSFzOFMnWmbwbswdLhaXOHqw6Fa7iHbAf9HYQWEq9wOXWW+jD\nal9DsVic7Wtf6jUWwuXGNi/V618Otniw+NbJcyVsiGH+7oUrdRJIkrS046Q7O2dO4fX1mNu3Y27Z\nQk+6F7wePIqH5ybepDJQS52/jsHsIBkrjxgNUTTyuHSBVydOgg7rrBixYC2Kw02lM4wkSTwQ3U2P\nOcFgZoCiViCFSoMYYbqUwXS5ULUiLn8Yf06jN9VL0BejbjxPIRYgHKvFkExElws9m2XaAbGcxDBZ\nzLfEkG7ZjWgJjLg1gkVrhiC4PWTz07gdXgqiiVd0oWtFJFHC74uRcFso4xNUhRoQSiV60n2Y1dVg\nWYhjYzPOh78mmHvC/XU1RboRmYsF54LMyR6sZgjeiVVCsADKW4lulL/AUtsAXy0WMzFwOWBnJHRd\nx+/3r9ia9kOjnPzZnQSWZb1N4WyfQmzjlSXbm2wWsaMDmprAMLCqqxF6euiodeEsaGimRkFNs7tp\nLz6nj1Z3LbKucyqYx6WZDKrDbK7dQsgbwptVER1ecrJMNj6OZmhERS931Oymf7KLfqVAUc3R4q8n\no2XQFYVCNokQjOKcTNGX6mONHsBXssh5FDyeAEWjiOTz4RYE9KCHRt3NmJVBTaXI5/OIpohgCYzJ\nKqGcgVt2oykylEqIiBQx8Eke8rkkTslJXaSFQTOJIIjUEsQUYDjZi9XQgJhKzZCB8fGl2dubDIs1\nRfpVtFS+0SjPHthZ1fK9te3Fy51B7e/4YnHgwAE2btzIunXr+Ju/+Zt5f+erX/0q69atY/v27Zw6\ndeptf2cYBjt27ODhhx++9je6hFglBJeBpmlks1mAZQ+Elztdz7UBvp5U9LWc4O15CIstUSzVicbW\nCwiCsOziQXtfygnI1XQSuN3u6zZiGuk4zgs//RsOPfNNOo4fINl+CsZGMbZtm9lzvx/xwgUuVcvI\nFriyRSQDGms3kSqmcFsSt1k1tEtT9JCksqjQHF1LOjeJF4lgKIq7poZcLoFP9jE5OY5RstiYC/AG\n/VS4w8R8FRSsAo5gEE0v4g6EGTNS+A0HDI1gRKI4DIGcZM5MPVRAUFUKskWjFSAp5PGIIm63G0VU\nGC8kGLRSxDNxzIJKXjQIWA6yWhaXoCDLCpncFB7FQzRaj5XLkgv7iKVUJEFiLDlMob4aIZXCikYR\nbgJh4UoE3sWccH9VTJFuNqIyd2/h3w8Bu3fv5nd/93dxOBxMTk4u6vUMw+AP//APOXDgAG1tbfzw\nhz/k4hwjrX379tHV1UVnZyff/va3+f3f//23/f3Xv/51Nm/efNPs0yohmINyvcBKpY7mC9a2kn+p\nHPiuhhBcbh7ClV5/KbBQRmI5DUrmEpDFdhJcbwmp58zLvPjSt9E0FVl2MT01zP4n/5afyx2cSV9i\nOD+Ons+SG+sn7rbQPW5aEha43FR6KpkuTuMwBAJFC9PjYVzKsUUNkLQKeLMqRsCP0xCwImGS2Qlq\ngjWYog7pNJGaVgQgNZ3AJXmYyk0hiCIlh4hfg4EKmc0Jk0LER0E0qBT8jOtpnKKTjKhj5vMU1Cx1\ngXo0tcBEeoST4yc5O3mWES2OKcGoW+N03xscmT6PkckzmYnjkpxIgkwun5zxLfB4iYlesqJGTjap\ntrxYaoGe0QsI4+OYfj/SClgY32yYrz4+nynSqqXy1cP+PjudTvx+Pz/96U/Zs2cPfX19rF27lttv\nv52/+qu/4tixY5fd26NHj7J27Vqam5tRFIXPfOYzPPXUU2/7nV/84hd8/vOfB2DPnj0kk0nG38p2\nDQ0NsW/fPr74xS/eNPdvlRDMA3tYzUrVrOeubQuNlsMGeDHrLzQPYTlxuXbG5WTPpmlSKpXeRkBW\nopPAMk1OvvKvjA2386lH/pY7H/wC4Ugt7d1vMh3vJ+KMUizl6S4O871/+o88lT7GpJZEcDqQxifw\nuv2zcwgcBRXB5WFMnaQqWE8xM8WUkSGQKaGEYwiGwZQLHKpOzBVjLDmKM51Gam3C5fUTxUFBMskW\nssSn4hSxSMQHMMIhmnumyK5vwrA0muQIU0IBv8NPRtQpZVKUCnl80Tom8wleiR+lwlPB+1reR4Oz\nki1yHWtqNvNweA8Bf4S+wiBtI6eRfWG0YpFMegrJksgJOn0k6Zvqoi2k0ZiVcEwnuejOYfn9iOPj\niAMDMzMO3qWwM1TlcwHsAVowo3tRVfVXJntwozF3j5qbm/nyl79MbW0tExMT/PVf/zWpVIo//dM/\nvex+Dg8P09DQMPtzfX09w8PDi/6dP/mTP+Hv/u7vVrxtfCHcPFdyk0AQBLxe7+zDfjnb6crXnC9t\nvZTBeDHv40rzEK739S+HhdoZlxO2L70kSbMEZKHMwFJ1EuilIide/h4XOw6RzyXpPP0iqcQwiXgf\n21v28uXCFppbb8PKpDiW78SRLTAUsMiX8qTHBjgUP0o+PUVmfJCsmsWRznHOm6EuUMea6DpGinGm\n8gm86SKOQAQUhYRSwlcEn+gjq6VQikXGfOD1hNipNNJlTRANRFFlFY83SM9kF7V5F4o3wnQqTk40\nadDcpIQCAXeAolNA0/K4LZFz7jSWWqLRCFDnrUNAwDJ0grKPlGLgzZWI+Ku4z72Zicww4+4SpYCb\nQNFkOj/N2clLOAUHW5UmzpWG8BYMTF2nJ2hgrV+PJcswNgap1FLd+l95lJsiwcxJ92YzRbrZSgbz\nYb7rczqdPPjgg3zta1/jtddeu+x3/WpcTuf+/PTTT1NZWcmOHTtuKgK3SgiugJUiBHbdfCVNd8pR\n7rGwUkOC4J2uj5cjQUt9H4rFIrlcDpfL9TYbYlu8NbetMJvNLkknQTGb5KUnv4bT5ee3vvgYd77v\ni8iKg2eff4xLvcfQR4YY05IoDc0UC1l+Y82H+VDrB+l3lcAwKWYncYpOjFKRtnPPc/Ll73Gp5xgn\nMh1s8Lfi8wTJU2J4sA1fuBKnqIDDwUhxEpdqEXUH8WeKJCv8jBYm8LqD1Jec+FxBclqOycIkuF2U\nCinWlpwE9txNcqQbQ5Sw4tM4JS95NU9ONikUkgxmBlGqq7nD0cK0mUXQ9ZlRzoUCHneIabMAySQe\nTxCPIdJICNPp4qwrSTCn05/vpznWQr2vlrVGGI/gIiVbCKZFT7p/xi9h/XqEiQmEX1Nh4VJg1RTp\n+nG1BKauro7BwcHZnwcHB6mvr1/wd4aGhqirq+ONN97gF7/4BS0tLXz2s5/lpZde4tFHH73+N3Gd\nWCUE82Duh2K5v0R2mm85DI9sLBRQy9vsrtVj4VoCtt1BYZdoVoIEzW3hnDuTYL5Ogmw2uySdBOnE\nMIdfeJxcMcX4aAenX/sxfe2HGRw4xwff9wf89pe+RYPqok9P8N2+J0lZBaxcBtHtZlDJUe0Mc0vd\nLhor16MY0DN8gVQqzqiaQC3l6D78DEcP/RhNU4n3nEWPRXGYAhmzRLqQJhipwlMyiU2rjFW4SBQS\nRPyVSOks6yLrmC5OEy/EmRTyNI8WEJpbCGzcRjE1gT8Qxq3rVIbrSBfSTBRSvDF6Eo8usb1mJzXB\nOpJGFtnQccgymAZef5SirqIaGg7VpCiDN6+xpXobU26TzukOBAR8Th+BcDXRooVXM4hVt2BgMp2J\nM6pnUH0+LIcD4eTJpfgI/NrjSqZIduvdu9lSeb7gb5cOF4tdu3bR2dlJX18fpVKJH//4x3zkIx95\n2+985CMf4bvf/S4Ahw8fJhQKUV1dzX//7/+dwcFBent7+dGPfsQDDzww+3s3EqvDja6A5Twp2+5a\n9mCUlTLdKV9/qYYEXS2WMtAuFnZJppyA2CTA7iQovw5N0ygUCjPK+esUD070t/Hay49z+x2fpm7D\nbtRcmgtHf8lrR35INFDD8MB5tFIR69IZdI+TL9z5n5ByeeL9F3iq+xkuOrp5b/R2nIZAtLIJn+Qm\nKRvsXLOXi7mXMPQSmdw4iewQWaro7jnOS6aMIihorlrq1u5BS47jik8RwsMRa5KwK4zuMxCy0wR9\nUapL1ZybOIdbU2keV7E2bkRwuZBdbsxiEUEXqI00MBk/xzhJ3HqW90hryRkGkieCUVSZmholItZj\nOmQUn4+o4iUfcuMvWWRkC39SQ3Mo1ERaudD1FGvEvViWhSsQRhseIiYISBWViEUPci5HX7VOpSpg\nRKOYJ0+S/+hHkSQJWZaXdcjNfLgZU+BXIuF2W6P93Z5vaNBy7efNuF8L4WrnGMiyzGOPPcYHPvAB\nDMPg937v99i0aRP/+I//CMBXvvIVHnroIfbt28fatWvxer38y7/8y7yvdbPs0yohuAKWq2Rgn1QN\nw8Dn88365S8X5r4POw0OSzMP4Wr2ya5zejyeRYsmr/c+lE9m9Pl8b3s9TdMAUBRltmRRKpVQVfVt\nepJrxVD7ES6ceZ6gv4K2sy8wNtyOWsyRzU7ymd/6G/yRGiZHujj+/HfoSh5lg6+JibFOYoabkkNC\ndfiIyVWEInWYg4MczFwgKHlZW7cVC4H31L6HoYCLCoeI0xck3d1ORLU4N36OastDwZ/AfWgMoVik\nKSlSG1tDb7KXlmALWa8J6X4sRWFraCvfP/99ftPYhBwIob9FUOVIJcbAEFgugs4gQ5khcnqOFl8V\nYVPCF40SLbXguGgSnxpG1y0cops8OuGCRUbSCWYMMi6RiCpQ9Dgp+lysK3jome5jR/UOBMWNhkE0\nZzJSqdMYaOLi9EU6zDh3OOoR1qzBee4cRj6P7vejqiqmac5OwJNl+aZ5qN4ILPa9i6I4235nl8gM\nw0BVVSzLmiUPv+77OR9ZyeVyuN3uq3qdD33oQ3zoQx9625995StfedvPjz322IKvce+993Lvvfde\n1brLhVVCcAUsByGwg5MoigQCgSV97cXAHhKkKMqK6wXsjMhKjmu2sxFOp3O2JGJ3EoiiiNfrnX0o\n5vP52f2wTWKuB2dff4Lu7mM88KE/JFjZQCmf5c0X/je9Q2epDNVz4djTRCuaSMT7CZdE/kDZS37N\nesaw2N/+JCmPTFeDlwrNg+5WqMJNVXQjjWt3M9xxlPMjJxHVEnXqWrbU3kcyPUxCiZKeyBL3F1gv\nVNGWHWdn9QZeGXgWfUgjWZ+k62KaNTkngepmBFUFSSLsClJSc8j5DITDM4ZAkoQcrcC4cAGoJKfl\nSBVTtAZbSY2ex5PXENxufFX1OAxQS2mYEqlKlchMnKVOD5MIu2iYKDIup6nKSExl4qiSwS5nAylc\njGZHqXNWUMinCXh89Ikm1Z5K2lMdtKU6oXIPVn09HD+O0t+PtHMncONG5P66wBYm3uiRwzcLCoXC\nu9q2GFYJwbxYzg++rutkMhlcLtc76vXLmWKzg6BtuOR2u5e0RLEY++V8Pv8O45/lhp2NsE1e7Gsp\nFw/aD0WHwzHbSSCK4qwlsSzLKIpyVQ9F09A5+/oTTE0OUlO1lqMHv4/PF2VyapCgv4JHvvhNJNlB\nfLCdgy/+M6ncJC0Jnfb8OAH3BuL5ODvcray/+xM8MvYY4ZzE8XMH2EMdW/1bkSNRghUNVCQGCSoR\nNvnW0aYOcDF7nkx6kIfqdjF6VytN+Woc3aeY7jxLxB3DT5yMVyFsuXjx5E/YUrMdY7SH6JsRtMZ6\nalQn434BKxiEXA4CASS3B9XtxBxLcnr8NNsqt81MTjSzeC0FBAGvJ4QoKySPvUoo1EysppV8WCRo\nVTNYKeA6P82UOcCGrgKT546TZxKfN8wWsYozZpKMQ6dUyuGLNBLxKRSnssQcEboyvRSrTByRCEgS\nQns7vEUILnfata2u7WAmSdKvfTBbClxpP+3vwmL382YuGcx3bfl8/l1tWwyrhOCKWMoMgX0CLQ9O\nK4XytsaVPJ3Dv5cn7FkIKyFaLM9G+P3+2VPQQp0EuVxutpXLXk/X9VmrU/j3ssJCKdVSIcvBp/8e\nC4u7P/AfcAci5FMJXn7mG2iaSkkr8Oaz38YfqGR0tIPNG+9h8+0fofSf/4TemMm+3gM4ZCfbHHV0\nj7YxaWWpw8Wa8Fp2Nb+PUvclDp/+JX1DZ9k55SRw61Z2fPpPuNh3nDNPHWNXYBOeylpG2t7k5/kZ\nh8CPbPgIFcMX2FN/C0/6plFSEzj8IZyiglfxMDB0ntfaf4SpFbkQy9FWLNGUGMMVCCAJEqWAh67O\nPlzifWys2MzTnU+jYSIhYFgWcncPoZxOximQaK6iJtaMT8wgjqgUBQl/MIqQ7MVX10x8nYVnVKRw\ntg+Pz0nDezZyPt7FhpKJZUHIU8mI1UEkVE13YoyxqUHqajdi+nwIFy7MZnbmfj7KiZ192i2VSpim\n+bZgdjP1fd+smLuf9ndB07TZVt3y0sLNGvivBlerIfh1xCohuAKWghDYffalUultwWm+dZbji2W7\n61mWRTAYXLbT+Xz7dCPKE5fLRtgPNeBtQcGeOud0Ot+mabDV2rZi2zRNNE2bJXZ25sAWZAHkUwlO\nvPoD/P4YTpeXQ899G0lWGI/3smnD3Wy/59MADFw8zGsHv4PL6WVstAN9/7/gHb/EUL2Ph2oeoCbS\nRCI9xjOZ8wwXu1knrqFC80MwTNATIV0a45PcwnQww7iZYd+//lfOpzoJy272bv8E1fUbOXYuw5HU\n63y28WEGtDgnJ06THTfoMGS+9Nt/z1PjL3N7dA9jF/4X7fE2gg4FMRSjaMH+6SNU/myA5s13MqDk\n0Iwc3dYk9/rW4HTM2GgXLA3LMBCPHwfLwvOeuymdOsRYdpS1zTvxigr5/CW8SgMZv4RnzKAg6piC\nQM367RQLXmJnOplqqcZQNaa0LAFDw+f1ERU9pJwgOBxcmG6juWINNDcj9PZijI1hVFTMmvXMRw7s\ngFUezOyy0LUK6W7GE+9KXJMd8Odm2HRdnxVEz5eNudq5ACuJy2UIVgnBKhbEUojZFiPeWy7xYvnp\nHFg2MjDfQ2mpyxOL2Z/yToJyP4f5zIbsa1xMJ8F8am37xFQoFJAkidzkMC89+/e0Nm5n+12fwuUL\nER9o5/WXH6eqopXk9AgHn/p/ZkoFiX7uf++XqV17G4XMFBd/8i1epIeovpax9mOYNUl0l4OLzinW\nxDZQIdYRLELXmRfoGjqNEIxwS/UHeU3votXfjGTClqYmht7cx9mBo7zSvp/OfAdN0VZuf+8XcKdz\nXJy8SFf6Io2ZEBfe/BmDehfHzT5qHAq3b/0wMcvFiXCRC8eeodNKsMW1FVlxEp9u50z36+zJOal5\n9gdU7L4Pv+RF1QsYXZcQt23DuuUWfKMO0gcPEM9O4PdF8SGR1bIEZB8pTxFvXifrUimZIiFniHx1\nlMBwDik5SXW+wLTDwO12oqUyuEQvKX2Kanclh8fbeVj8KNTXI/X04BoaQquufltgAmaD0XwEwSZ2\ntnbErpOvChOvHuXZA3s/58vG/Kp5HrzbJx3CKiGYF0v1ULhR4j0b5a19LpeLZDK57GvazNs+RS9V\neWIxe2cYBtlsFlmWZ/d7IRvi6+kksG1k7RPoSNdpzp86wLp1d6OXCrzyzDdR1Szp/BR77/wtWrfN\nqIjbjz7DiVNPUxFppO30c4wPX6Kk5sn0nOMRYQde30bi3hwnzVHaL52kY5OHkB6iJBRxe2uIiB6s\nQBIpWslIKcOLE2+yabKXj334P3PWGuF2z3pCLVtJD56mggqEVJafH/hfKIMDZKNOdtz6Ad6TD+No\n3MX+s8fpSSdwSQGGTu/j9q0PMTnSydpgC3W3PEyd5qLkDXLh/ElcOlSGGyiODtJ5/hVe795POpvg\nvH4raxpr8AgCfl8M3aWgJhNIXh9eTWNKsaiwnCSdRfzZEmOuDEFHA5IoMa1Y+GQvqcoArsNdtEox\neuQsDZaJKxhFKoxRJwQ5r4yRmxhHiURwahpidzfKHXcA/z6RtHxina7rC5KDK7XhlZeEVgnCwlgo\nG2PfE5t03UzCxNUMwfxYJQRXwLWe3K+2tW6pMwRz17dfe7lSjHP9/m3nwZUSD84n1lyIDNhT4653\niiRA//nXePnV7/CeHQ/Tcss9OL0hLh07wMW2g7Q27KK36zi9nUcpFNMYpsHDH/8vBCrqKGaTHH7x\nX+gdOEP1yBBtspuYHmdS1vDXtvB5zwZecDxDxHQzPHGJYdcAe90bOC0l+FT1/RQSOYLeGJ+o/xgF\nNcebp56gaizB+gEvW+/6JJNHf8SD8gb25U8TFUSc4QrO9hwnqKxj7IXjRKp93PfAJwkMTxA7cpAT\nYyeIa1MEiDA5NUSxqKOXAlTUb+RR9x30TvVgdA1yvHQJf1El63LTa2UYfOYb6IZO7ZrbiMsaRjYH\nDgc+fORkkzWmgyHFIJYtcak6T6OzioJeQHQ4yVsGLlNErqljTX+GI9lxIo4gHpeHZrmeVKaHabdF\nJjNOJBiiFIshnDyJ+olPoCjKrCZgboC377thGACX1Q7MJ6S7XCr8ZsTNVsYoz8bYZTVbz1OejbkZ\ntRy5XG7FRq3frFglBFeAbSu8WJRPw7ucXuBy6ywFIShfv/x0vlIPDVulv9TOgwvtz2I6CcrJQD6f\nB5j1I7hWWKbJxaNPMz05yH33fIFMcow3n/tnhhPduGQX9773K1Q0bqKkFjny3ONksoNUVjRz6MXH\niYRrmZoexu8N88jH/wr3i/+Jkft283r7fiYr/KxNirziFChJoCfjVDijuNZvpnoA8qLBi4e+hxiJ\nEfNVUe+IIex4P8Uj32BPdBu1Wx7g1JkDnB85hTtxAbMhxrb7P0dHSKfVaqa/7XX0ulrEyU4OH30C\nfypPpWmwceNvcPuWXfiOneFIsYsX2w5ARYyWhu0oqQyligil9i5+M7yXi5Ui2sgxurJxpKE8a+u2\no+fStOf7yUyP89Nf/g9ides4ne/BPXGR81o/FV6JoVKCnXKMU+oAiuQiL5vESgJpUYStW6npfYlx\ns58NrbuoK0QYlbtRRAenlQQfzNZBayvimTOUpqYoBoMYhvEOLYf9uSsnBfZ/wOxJdSFh4nypcJgp\nMZVrRlZxedh7vFBb481kMlUsFqmurl6xa7gZsUoI5kH5B+VqAnW52VAwGFzxh0b5+vOdzpdTuGg/\nbAVBuO5Au1hcjnxdTSfBtcLQShx/6bu09xzhrts/Q1XjJho27ObUKz9AlGSqatbRef5lzhx9ksnk\nMBWRRj7+yF8jOlykEiMc3P8timoGy7Q4+tNvUJkfoF9qZpNVwcbf/xa5Z37GNzlCKhmnO1dkTaiZ\nXZMKZkMV0b4LfKX+YQ5t9NB++jle7H2Bs1//P0iCzq2bHiS064P0e0tEB4/T4gzj1h08ffFnpESN\nXG+WPTU7qf3sHxA7+UsunNhP31QPocAGBvpOkzEKtExkGTT7uXfde+mrD7AtsJ6Rl19mf/8JHkr7\naFCLGM0b2ZZJcSp9lM+951GEYJChkYt0m5NkmaJ6ugPBtEgNd9M+lkKridDuKHAs284dyREMxcDr\nCaB6FQKTWZJeD9logLXqNg51Po+6dicxy01BEaiTI7zuGOFD49XwlpjQPTqKVVc3r5ajvE3UDvB2\naaE8a2AYxlUJE+3vVqlUuqHB7FcVN7sp0mrJYJUQLBns+rUkSdfUWrdU4sXrae27VtjpemBFbYiv\nppPAMAxyuRxOpxOHw3Fd16jm0px49Qd4vWHe//4/JDHaxasH/oHe0Qs0VW3g9nsfJVzdQjGX5NBz\n/0RltAV/IMqr+x7D7QkwNtHD+vV3sOWO36Skqoz9xR/wWjSPGO9DFosYvYcJDLRzqqqPpqqNBI1J\nGgtudJ/Gd89/j7VSBb4NLfh8JbYE1jKiFlhvtuB1GbSPnmX8+2fZP3mYu0M7uFOtILv3Htqn9mH0\ntFHvqmRITdD1y28w6izROXaeh9f8Bg/e/XmOJs4wlh3lYMez5BsidKoqeiKC5GrFMA0+vvWzrFW7\nKDokjr75E4T+PrLVUQLOIOmGBkYzF/Eobh4QNhPyNRHQBHymzPB0NzVOhUR2CreW5uSxX5BoirG5\naSfZgIvYQAJ9c4SMbBCqqKdmqJKRvnOs8TcR8sWQsnnatFF4q3XWdLsR2tqwdu16h5bDMAw0TSOf\nz2NZ1juyB5IkzY4NtknjYrIHNmxxrE1ErrVH/92AhQ4fN9oUab4OiFVR4SohuCIWE6htNf18ZkNL\nuc7lsNi5AMvRyVDurWCn4pcD5dd+OfJzvZ0Ei0FmcpQXn/46Fga37foowVgd3mCMRLyPO3Z8DI83\nxMVTB5iaHmFieojtmx5gx72fRVIcxAcucvDFf8bvjRAf7+HIc/+E05IYHz7Oe7d9lJpAPckqg7ax\nYZ5PvMpgqESgYLItJWE4dQqywC31u7hbqyHrEjl0+MfERpPUbtzN6OgwW2/9JK1JmXi2ncr6DURL\nQV7peo5CLMWp3EE+ve0RHjQ2YdbU8MrFp+kYOEyF5aE93kZFx6tcip/D5Q/xyG1f4MAmBbPzEkf6\n3+CZngu8T21AHBslva4JZ1Ej6orwyY338pj1Bj89/yPGjyeowsP64Bo2fuCR6gAAIABJREFU4kOo\n20iF6Kd3spumiip0zaTPZSAni0yPdBINetk38E+0lLx8ZCxEcYOXjKhTpytE126jq+comZJCuKUa\na3SUtJ5loNZH41QGamoQL15kbiFvbpApDzB2Pbs8e1BeWpgrTDQMY15yUN6tI0kSTqfzbVmKuT36\ny50lvNk0BNeKpTZFuhasZghWCcEVcaUgWiwWZ5nlSpsNwbXNBVgK2Ol6VVVn0/XLSQhsXE0nAcwQ\nFlVV8Xg8i9ZzXA6JoQ7OHn2KXe/5TWSXh/hwByeP/4KBeBc7Nz1I4/rdhKtaCA60cfLwT9m+6UEs\nTF568muYlslUapS9ex+hcfPts/qDY88/ToVucMlXIH3hJbR77qEw3svu1vt4oaYTM53GMZnk9VqN\n+9KV6I4CDcHb0GIx/K4g/9ctD5GL+fl292uk3/wRPapM7d6H8MlOnFolKb+TPn0Utz/CeP95Xk12\nU+h30zfdw4bG7Txct5EjpV7i472cHzvJjobbOZU7xWggSEwtEJY87L3zc+x8s4fzzfU8feSHiMUi\n9a07UF0WutuPlLB4oOFeqpq38vSbj3M22cHgi23cWnUrd931ObJdF2iKrONr5/8/YrKfWk81sulg\nna+VU32vI6UtSu2TKKEIoWIdheYg0XADw4Md1O74JNPCGWTD4lRMo6k9jrl5M+L+/ZBOwwLW3+VB\nu9xYR1XVWfFb+SlUkqS3EYK5wsTLwc5SwOJ79N8NuFaycqNMkVadClcJwbxYjIZgqScFXosT39yA\nvNRrLLR2uVbBPgUtl5eCDdtAqNzXYKU6CYY7T/DC8/9AbeUaDFMjEqlBV/MEJ3p4eMeH0UsFLp48\nwOBIO7limrvv/Bxrtt2HpDjoPvUip07vp7FuC50XX2Wo7xSqmiOXT/EJ3+2EXR6mb32YU+f+BxdG\n36S2qHDUmaZUzOLP5PB5w9yz94NEe0YZj5/nteRrDIw/S6iykaA/htcTpCnYiIBM9fpdHBx7k2Iu\nxYX+DF5Jp3nNLoaEAQwxAsU006Ukmq4y1H+GEZ+LAWmYhjTcv/5D3HPfF3jpxW/DQD9HpjqpEUN0\nHz/A9vr7kSUH4YoG7m+4n/ah4+yLv0mq1EtXUeR9uz+Lo7aBXU130pF8gXoBGtbuZrjzOCfbXqS6\nqDBZXeD3bv8SamKUhvc9wjef+r+pFYMYSpaipSPLMod7X2a8GMJd0MhoGXwXz+DyBPDkJU4kzvCx\nMRGam2dsjDs6sHbtWtT9m+tFUB607dKCnT0ozwqUCwthJttk17uvRZi46ph4dbhWU6QrYT6ysjrL\nYJUQXBPKU9bBYHDJGOq1iBevVs1/vQG7fGrgSmoV7LSsz+db0U4CgM4TzzEydIGPffK/UsgliQ93\n8Mqr3yVTmObuXZ8kXNlIqLIJ68SzFAoZdjR9iNT0CC89+TVSmTgIAg984D8SqV2Dqescef5xxuJ9\nVIbqOHH6aSr8USbf+AmS38/vPPp1lOeeZ1/2x6SmxnAlcmRqbgM1S7CyHlfvUTbe+hAVjZUM9Zym\nu/cMB44cRPM6MV1uXDWN3F+zi+5TL9CqdVO/djsvdRwh6HPQN3WOFE7+w+e/xfP/57+w/bZPMHLo\nBQp+lWEJtN6jeL0RBqZ6uHPLB9hw98eZ/uWPMBQn/9r3JM5ECGcowsV8H2lTZaNcTXXLLfQPt5HN\nJDj7wj66Lr2JrLi4p+EeKhs3U7n1g5zoOIhLVAj5fJwcOEx6uIfuXySIhuq4s/V+tpwZ5t+8/Zyf\nuMhGSSDmq8AsTqA5fbx45km8wQrE3CQnrdMUKh/EfeYMltuNeO4cxiIJQTnKg3a5A2W5MNHOHgiC\nMJu+9nq9sz+Xex7Y6e4rCRPf7cODlgLLSbhWMwSrhOCyKFfklwfRxdbrr2W9xeB6AvL1Xut8UwPn\nYqkzBOUnfZfLdUUyYHcSSJJ03ffHNHTOv/Fzjp7+JZta7yAZ7ydas5bxwYusb9lF64a9pCYHOX/0\nl1zsO4rX6efuez5P3drbADh18AdoeomqyhZOvflTHIqLyeQIAW+UT/3O/0Tu6aPw82O8WKUzPXSe\nylgTF179CaFsjrO5biotL4/E9pBoqGSqmONgxyHy+Qk8NQ2MiXnW1W5BTlwkVtlCqiJMZXsfL5/+\nOY4TBiIij276MKVtW9jS7+NUtpOtjlpKosg/PvFnTKd7ES962OStYu+X/oLXLz1LZv/P2Xf+CeoM\nH/nsFNNnOshqOYJeP02tO3nfQ1/ll4f+Ny93PId/Yhq/o5mtdz1EW+IiLRtu58zYKXYEN6GFA/RN\ndnHiqb8lILqJusKsrVgPu9ezUQvxsx/8BVWGiZXPcnH0ZdQMeDJpvOsb2bXuPcgV1Zw9/jTDo+fI\nuwTqC1DQHZzXU/yt9ToPFvxUqjJVpzW8fOG6P2OiKM7aVs+dX2F/nt1u9+wJdD7Pg3Jhov33cwPS\nctTJb2YNwXJf20KmSFdqa1w1Jpofq4TgCignBMtZr19Mun2hSYlLtcblsJj3vhxKYDsTUt4ZsBKd\nBFoxz4lXvofD6eXR3/sWU+O9jPad4+lnv4HH6eX2XR/H4fHSXH0X01PDbF1/L9W16xgfbuf86QNM\nTA1SHWvhvof+AE8whppLc/CZv3/rVKjw2jOPEb7Yx6g0QGPF3Xw0cgelO25nYKKT7w/9GylfmgpD\nxBcMccaYImx5aK5Yz/pcNapeZHqsjcPth1inB2DbFrau3839Q9X8N/EY2yO3IMTHOTZxirYjb5Af\n7cN/yy4+e+9v8UbyHLH+SzyhtGPks0zpBqVXn6Bb7aFf7+dB52Ye+vifkZQN4vv/njdK3dw1XkL3\nK/QOnSPtFnFrJp/e8CkaNDdj2TTxyT6+9vjvUFG7gTtqtqO3NBMf6mSo90X2bLqX0aE29g++RNCV\nYCA1wQZPA/c9+CXGfXD6wOOcHDxIk78RdzLL/qkX2Jnbztl8L3X161C8DsyubqKWg2wxwXSgHkfa\nTdIt0TXwOqlv/T6bbn0fFbXridWtR1KuT8dTri0od9krlUoUCoUreh7MbWtcjOfBjRYm/rpgblno\nchbVlyvvFovFVUJwoy/gZocdRPP5/ILDiZYCCwXrGzUp8VqNlq4XczsJ7HrhSnQSFDJTHH3pu/QM\nnuGWDfcw1ncWb7CSXG6K++94hJqWrcQH2znx2o+40HeE1ppb2L3301TUraeycTPHXvk+61p24vPF\nePOFx0EQmJjsZ8PaO7jt/s8BMN57gYNP/w6KSyY+NcjxgIZ75By9ncfR6uto1XRipgsNi1MDb3J7\n4BaCqoKjqo5SMYcHB3fX3UlvdpBqV4xLx/bRP3qJyrVrCFfWUle9mcaUzKHxX7LR18JUTuX1l75D\nG+OMZEfY2bKXFv8W7vRtoidk0X3wx0w4Ndx9Q1y88ArOTIG8R2ZD9E4eEfby0+AQPzv5fQrDvaTM\nLF5PCE/Koq55OzUnK6iLrkH0BxjovkTP6BF6Mr00h5rZcvcnaT3+BoO5EeSpaRxeP3kjxYtP/794\nWtbTMXSKbU17+Miu3+Zn04c40XuI71/6ETWuSmJZsHLTnA6WWD+tUVNdi1DTgj8l01EcokNJsiWn\nU8in6Wk/xGsvP051xRoaW3dQ0bARtz9yTfffdtu0LOttJSc7wNj16/k8D+zfuxrPA/j1Eybe6DkG\n5dkDeGdbI8w8M+DfW03nm6K5EA4cOMAf//EfYxgGX/ziF/nzP//zd/zOV7/6Vfbv34/H4+E73/kO\nO3bsYHBwkEcffZSJiQkEQeDLX/4yX/3qV5fgXV8/BOtG37mbFKVSafZLnUwmkWV5ScRpl0OxWJyt\nU5aj3ArY5/NdV0DOZrMoirLo7EZ5r7/P57uicDKTycyezq8H9gyI8rKM3Vdun/yXq5NgeqyXk4f+\njbUb91K3bhfxwUv0XHqDwxf20xxbz7Zt76eycROWaXLqjZ9QW7cZlzfA+EgHwyPtxJPDbN94P9v3\nfhKXL8TUSDevvfDPBAOVSJKEYegoDg/j/efZ81oPjXf9BlpPJ+0Ri1enTxH0x/ie+xI+XDR6a2hR\nPVyskvjM2o8zevR5ptQkJ6cvcNfGD6DGRynUV/OJ3V/ge699nU2jGs5oDcemziL4/IijY2zZ+5ts\nj97ClJ4lPDjJP5z5Rxw1jXicHqrjBQKhapyBMJcqRbz+CJ//WTcXPHkOC4NQV0dasfjwRJhXN7vR\nk5N8as+X+OeD/5OHS60MjnfQp2SJ1awl6ZNY07Kbzf0lTk2cZDw3SiCrIUoSjkyBJ+RL/Lftf0an\nJ8fGiwkuZHsY81mMlKZQPD7eX3M3J3PdvK5e4sGKPSTrY8Ta+pnsOccv/SO4NXArLlINVXxrZAfd\nqT42DxRQa6sYf/9euntPMJkZY1PL7fi8YbLZSVQ1T+ua3VQ2biJU2YSwiO9uuf5kofkj5Z4Huq6/\nw/Og/N+Vex7Y2oOFhIlz17GJiE2Gy4cx2SLHlewwWgzs7J7P57vRl/IO2NcmyzK6rnP//fezbds2\nEokETzzxBJHIlYmkYRhs2LCBF154gbq6Onbv3s0Pf/hDNm3aNPs7+/bt47HHHmPfvn0cOXKEP/qj\nP+Lw4cOMjY0xNjbGrbfeSjabZefOnTz55JNv+7c3CtJf/uVf/uWNvoibEfaX0J6ct9RWvHNh1xPL\ng6llzUzuM00Tv99/3Z0MpVJp9kFyJZRPaSyfGnil17cfVtcKTdPIZDK43e5ZMmCXCGySVk4IisUi\nmqYtirBcCeN95zn00nfI5KdxKW7QdQxDIz7WxYMPfJm1m+4km5zgxOGf8tIb36WuYi0Na3ZS3bwV\nRXYyHR9g04a7EUWZS+deou30s5w7+zy7dn+MHfd+lqYNezDUIucvvkw4kWV6aojURD9jeopBp8r7\n/beyuWUP35l+Cb/opJSZJmOpxML1BDIlvKKTuJHm3pYHkAIhTve8jmRYtF14mWBVEz7RzQc8W8n6\nXHQYY9RJEerDjZzuPsRI1wn6eo/TtHYX1Xd9kKam22g6P8yzmZOUXA6ShUksQyfQ3k2qmOT9f/RN\n/M0bKRVzHLz4DMnUGC7//8/ee8fHfZ1nvt+pmI4pmMEAg947QRLsXaJEirRkyZJsuUS2V04kX5fr\n68TZ7G7uzXU+8XpzE++9TuR4XWUrkm3ZslWsRrGDnSB678AM2hRM7/X+oQwD0aBEipCl3Q+f/0jO\n/M6Z4ZxznvO+z/u8Ogo1RXgiHgpDAgRqNTur96M1FvPy+Mssj/XhGu9ik7YRsUhCQdN2PLkybDE7\nfmkGsd7IVGwRbybCuHuMP9nxZSRuLwZNPtF4mBPzZxAqFbSE1YxL/cQdCyjcQTYefpylmBOF3c0E\nbuYdE7RqatEnxBQuhUjdc5Bo2MeGDfciFefg9S6y7Jln0T2LKkeDc36MyaF2HNYRRAIRcpUWoegP\n10D2oBAKhe/ajCx7kGcJdnZNxePxq+Q+a36TzWVnhW6r+R+sfO5q46wkG8DbQuHZcdayBG8tkEgk\nPpBS7HeDQCAgHo8jl8vJycnhrrvuIhKJcPToUb797W/z2muv4XA40Gg0mEymVb/TS5cu0d/fz5e/\n/GVEIhFer5fR0VF27tx59TXf+c53uP/++2lqaqKoqIh//Md/5OGHH8ZsNl+1SJZKpRw/fpyGhgYq\nKir+aN/B9XA7ZXAdxOPxqwdTNmz3x8Rq9fa3ihvVEKx2Q1/L518Pq6VFshtmlmisLBXLjqlUKm+Z\nrE30HGd2qpM9B55AmWvEOTdCb8fvGZrrpLlsKyG/E4XGgFyZi0Zt4JM7vkks7Gd69AJH3/hnwvEg\nu7Z8gormvUjlKmb62+nteZ3ayi3MzfRineoikYwTivg4dN83MP7wX4mJ0nSmFuk2JSmQ5TIh9DAW\n6iAZDSNV6Xho/9fpHTxKnspMd88JAokAxUWNaPOKmZw9T4E0j7L8RoqrNnHZeh6He5bfzl1hqkCG\npq6eMp2RPYe/gv/Yk8yfeQVxIk6SFO7Bi0zE/bSmgjy6/nMcNQbZJC1iqPMVXosP02xoZLrjTeZN\ncpaiTqRpIf/xsz+nff4cVs8M09NdzNqXeHjvV1BEUuS33YnmwvdRRGO01N1Bl0nE5aFOEmP9JGMh\n9hTvQRAxoG/dxnjvq7RHR5ELw5ywniaiEeIJzKJxh9hsakG1Yz+G3knkrmlOuzu5R1JG3DFPrjqf\ngHgWSSpNWd02iuJlzDs7OZLpI/Lbb7Prni9SWN6CUmtiovsY0ViI2podBPwOorEw3oCT6fl+0ukU\nA12vodUVoNMXUVjZiiI375Ztrd+L5wHcejOmLCm47Zj43lFeXs7jjz/OSy+9xNDQEKdOneK1117j\ni1/8ImfPnl31PfPz8xQXF1/9c1FREZcuXXrX18zNzZGfn3/172ZmZuju7mbLli1r/KneG24Tgusg\nG6KXSCREo9H3PSe28jDNOh9mGewfc2Fnx/5jGh1dz1NhZSVB9gaUNSsJhULAW99bIBD4A7HXDY+d\nTjPS8SoDg8dR5GiYHj6HyVKL2z6DWm3giS/8+N9KDUd56flv4gu52b7hAcRSGaaSBiJhH4WmKkor\nN+LzLNL+6pO4vPMIEbL3rscxlTaQyWToOvEMk9NXyDdW0HnyXzF1v4rbrCOdSPEnn38SZUc3LrWI\nfxr4e6IkEQaj2BzjWKMOlu1RFBoVhrxqAmIRo4EZLo0eRyHM4UDp4wiMFpSJUiptMSJqESJLGb1u\nK52uUYI//wumky72GtcTToTY/slv8+yr32LQ3cMmaQnnxo4iFlQzGBihIiDEXL2fDfUHsLtt/MD6\nLLJghFKRnLnxK1iKyul0HqMxv4ncuBFtQQVjrz1H3+WfYZMtEbXUEGtpZFvNVrR2P2PJRaSZOP6F\nSaQCAZOnnqdUoWPvvf8F14vPkNZqGFvqJZBaRpUrpcLjxXP+GOF4mhpLGTLzDjRpGbF4HO/iBPak\nF1Eqh57kHF8RthEyl1C5aKM0pxlPKsHlk08zZx9DLJSw544vUFCxDoFQSPfJX+APuGio2kEwuIxK\nZWDa2sPoxCUsMz2IJTmoNAXkF9dhLq2/5fV2M54Ht9qMKftv72bg80H0VfmwEpLr7eWZTAa5XM49\n99zDPffc847PuJkqkOu9LxgM8tBDD/Hd7373Q5NauU0IrgO1Wv2uDmVriSwheD/FgzfquriyS+Ja\nPn81XM9T4d0qCaRS6VWylMlkruZyVxN7XW/xphJxLh97CqFAyP2f+q9kMmmWZvppP/UUywE76+v2\n4bANozdXEI0EqKnYQnXTXrxOK6O9xxn47TdRyTTs2vVZCitbKRWJ6W1/jlQ6RYG5muGeIwx2vYbH\nb0el0HH/p76FVKEi+vsXOJP8BQsSKQUiOX2jpzFNjTGXl8OiJMJmZQuFYh3dS11EPEtknHbuXfco\nff5RFAUVdE5fRqc0cFiziUwmQ/vZp+mYv4RsUcnOe7/KZU8fO0vvZe7Sm4QFSbRyPcdnztMoyOf1\n330LgSTNjt2PYpxLkFmaxO1N8ILtIrXqHYyE7eRHF+nydqNRa/lPB79L14tPMj3Tx2Tn81xJzfBI\nzUMwbUfm9OIRJokXF1KVk4c/4CI21M+pruPIQlFKmtswJ6Qs2acQxGMMRqxUmxvpvPRbSuIxAn0d\nlFaUY69rwjc3zm7L/fz4wpME/E7ulGiQRGNYpVGkAWgwr8OSVNMjXGTcP8v/a/sB+rxSdkv15M04\nKPjL++g/9zsymQyFlgZmxi8x1H0Ed8COUqbhwAN/iSI3j2QsypnXv0cqlcScV4pQJCGdEjAwdIyp\nyfNoc80Y8kowWWowFtUhkd2a6vxmPA9Wa8Z0rZ3ytcLElSm0dzLwyYrsbjdj+ne8WxniO8FisWCz\n2a7+2WazUVRU9I6vmZubw2KxAG9dvB588EE+85nPcP/997/Xj7DmuE0IbgDvtwMf/PsCjkQia+J8\neLNjr6Xr4o3ivfYkWOlHAFzdCK9tcJONImRvayvDqPFIkM7Tv8C2OIJObWLo8ito84qwTXfTULub\nxq334V6cYmGmj9eP/wsyqYKtG+4HAViqNuJYmqCt+SAmcxUuxxSDfW+yuDxLoaGMnXf/KWpDIfFI\nkLOvfx+pWIZCnsuZ1/8FtcaE/YUfUJBr5m7jHWSampg3qTnj/DVjiQRhdYpkyMtSRT7CGRtbZDUU\nlDRQUbed14+8ScA5RFlURo9eQm5UQtX6/bxkPcLmnCraCixYo0scGXuV2kkTxTn5qDbvxz3YQdnm\nB8icPkkoHichSBEYusKv3TY2O6VUV2xgT90hatZ9FM2JF3lq8GnSUjGF4iLc88MUFFRyKTjC9uZD\nxDOzCBaC2G3j/DXfokRbyoO6nSwWqDg3cgS5zkhJSku+QMXRsXZsyTQjnlEeLLmH9VV3s2fvFwgP\nvYR/5jkW/POsE7Qws2TD7Vng5dSblBkqMTfdw8axAHaln+mlLsI+AdubPkJYqaIknY8jOYpYkc/B\nvX+Gf+b7XPANMPb3D2EoqGLn3s9hLK0nk0px+dhPiadiGA2lnHvzRyiVOlyeOfQaMx//3H8nIxCy\nMDXIlfPPkkzHUamKUaoMJOIRjh/9H6gUWgoLajGZqzAW16HS5XOreCfPg5XkYWUzpuxaWc3z4Hr7\n0moGPquV4L1fnQU/7BGCa+cWi8Wuup/eCNra2hgfH2dmZobCwkKee+45fvnLX77tNffddx9PPvkk\njzzyCBcvXkSr1ZKfn08mk+Gxxx6joaGBr33ta2vymdYKtwnBDeD9JgTpdPpqOPH9bJu82ufIChfX\nQjh5M9/TajqFtehJcL0bWTQavboRRgPLXDrxU6pqtrHt4J8RDXqZHb7Am8e+j0QkobF2NwsTXSjU\nefh9dvbv+jz5pY04rMN0X/gd/VPnqTA3sGnbxzEW15JXVIv/1NPU525BozVxpf0XpFJJHMuzVFVs\nZt/9f45AKMQ1P8Gx5/8emceFt7qJK0udKJvM2C6cYKO+CX+zCu3CUUII8MyNYEwK8QcWqW+5g5hS\nijcZYG/ZfuqSWnzxLk4udfLidz+KWyvjPtEGynceJFOuRTj6KzYki8k1lHL6+K+4GJvgTkktG8Qa\n7vrU33HR2cXEdCfT01cIhtUszvaTaizk8sgx4kErEoOJr977bTpPPUto0Ur76GvMScK0NO9HNu/B\nE4kzX6CkpriCB1v+BP+ZN7jkPMOUc4ih3BI+ceg/okVG9JKYoxNvoMxIUaj0DPefJh2LMWrvpbWw\nGktYyN5P/g3dR/9PNFMjLCfnWMjECYfkFIhkpHxe1qtrkBgLiamUCBbTTC8MEsuFMVkQdVKIuWYb\n/sGjrEvmYWi5m6mRc3R3vIjLbSM/r4I77/0/yFFqiIX8nHzln0glYiQSUdpffRKl0oTbPUN5WSut\nuz5BPBpicaqXM+f+lUgsSHnxOoRCEUsLo5w883NKzbUUFjVgtNSiL6hYVZh4s+slS1ZX/lZXNmO6\nnufBShMeoVBIIpF4x9TCO5Xg3XZM5KrHyo1CLBbz5JNPcuDAAVKpFI899hj19fX84Ac/AODxxx/n\n0KFDvPbaa1RVVaFUKnnqqacAOHfuHM888wwtLS2sX78egG9/+9scPHhw7T/YTeJ22eF1kF1sAH6/\n/w9upWuF7MGYLSHS6XRrPkYWkUiEdDp9tbRxrYWL4XAYgUCAXC5/x9etplO4kZ4ECoXilqIX6XQa\np22MznO/xh9cRqsxYS6oRqZUMzfTQ13THRRUrsc5N8rE0BkuD71BhamexqY7MZXUk04l6bnwW4pK\nmsmRq3EsjmObG8LhtbGuZi/rdj6EXK3H67By5ugP0agMSMQ5RGMhpFIltoURNvlVNFyeIHbPQWa6\njnOqRozCZsci0vLdymUcnhnqRRYUZVU8rNrKG6d/xNaa/by6eBJvOsJfVH0Wq1FKNBFB0zNEryZC\nRAJ7bCL8ehWn0pOYdcV8XbQLaWsbr3b9ih97j/FFxR4UswvE6qo5JbYhDUbYHs6jQKLDUNfGqdQE\nHV0vEolHqDXUUlHQSDqTRjU+S2X9DhxuG8sxD7/xnccbdvFJ4TpS9fXs2Pc5hAPDPNPxQ3LtPiJb\n2mhOGwnG3xJcBotMmKMiHnvsf9D38g84HupHIZCiiKUJjvZR95HHeN76KnvE1TRvuhf30BWe951H\nMjhMbmE5+jCYJTqGNpcRm50iZ9rGxWo5QdsEfxnZwGTKRaUtyNb8NnL/nydJxCJcePPHZDIptNoC\nlpdt5MhU2J1TlBa1sOmuz5FIJJif7Ofy2adJphOY9EUYjGVoDUXYprrQ5xVT33YY99IUizP9nL3y\nWxQyFfWV2xEKRUTCXmYXhmiq34upoBpjST1S+drmgFd6HiQSiT9IgwFXKyKykbEsUYB/1xe8G8Ff\n6ZiYTdGthTAx6xb4YTT6WW1uVquVv/3bv+W55577AGf2weN22eF1sLJmeC3K6VbDyhK7nJwc4vH4\nTYWtbhZZgZ5UKr06tkwmWzML5qzRxzvpD2Kx2NX65BvtSZAlMbf6/duGz9N9+UU2736Ezfs+g9Fc\nxdxUN2c6foMgLUAsEJNOxknFY7gcU9x55xNU1G4l5HP9W6nhv1JkqqGovBVzRQtikfTfSg13IxZL\nGe0/wXDPEXp7Xqe19RAb9n2a4ppNZFIZenuPkKc1E7x0kmVhDDsBrKIAO+/9KjsXxfhLC3k2dJaQ\n30WjooxlUYxNTimzijjlARHLVUXUpnQUxMS87rrA/MA5GtJ5CINBAokAG3MqsHqmyVXo0IvUeAc6\nuDh5itOJUeqrt7Ox/i425a1jORXktYVT7Jc2wMgwnYXgXZ5jJDRDk2UD9SVttBZu5ML4cSYXBtC6\n/MgN+SwvTnBC6UQpy+Uu8w42FrYRsNs4N3Gci6NvokfOTmUd4w1m9jTex8JEN+UxJQPpRbwBB2Hn\nAlMTl1HVtXDo0NeRinLQjE5zNNiDQpCDMJVm2T1HibyAKccIYgT3hP9xAAAgAElEQVQcfuSbRGIB\nQoNdnPf2ExJlaIwomTPJcKdDVC1E2LHz0xRNL2NzT9PrG+H8ld9hMhSzdf9jFNW0kV9Yw3Df8bfK\nSMkwNXweh22c6fHzNDTuYd99X8NSuo54KMDpMz/D67ejURlIRkPIlLksWPtprN/Dlp2fgnQK97KN\n7vHTaFV56HLN+DwLDPa8ycTAaYTJJGJxDjmK63dgvFFkb/XZssa3PCxSVyNlsVjsqj339cSDq3Vr\nvJGyxqwmJx6PX33vzZY0Zse+VZOw9wPZ/Wbl3JaWlujt7eWjH/3oBzizDx63CcF1sJIQZMNxa+nS\nF41GCYfDqFSqq7fkaDT6rrfrW0H2JpAV8imVyjWtYsjeMFbbBLIGS7FYDI1Gs2olwbU9CcLh8NWa\n8FtNo0z1nGCg/zgioQivy0bE58I5P0o47OGe+75B44ZDZDIZujt+z+krv8GYa0EhzyU3r4hELEQ4\nsMy+vY+hUuqYm+nlzImfMjB8gqb6vVSv34+laj3ijIDFhWHKS1rxuueYGj7HWN8ppiY62H/PV2g1\nNFBxtINFs4qu8AQ5BjNRj4PY1BivW0J0eAfZIa+jav3dqAQ5zPW3M5J2YpGZ6E/M8dFUFV6tnKDT\nxh3qVlLFFgJ+BxNpF53JGeSNG9i291HyNYVYLvRzJj1NfeMdSGMJ+ifOMOmb5oy1nY2b7udT2l1U\nSguwFah4c+hFkhIxDWkDcUEauzTB5Gwnhw98jZ3WNP2eUfpFy0y7xjHnlVKaY0JSVoU5KGAQO9vr\nD6JacILXy6uBLhZGL9LSsJeSsnVMBGfJUWqZnx/BJNUzHrbhc8wxbO0k6VwiU17Oww/+DVKhBPvc\nCFOzXQTCHnJFSpyyJCmVCt/cBJs1jWSqyol4nLiCTmaSSxCO8dHtj1E070cXybAgS1DStBO5XMNI\n71Fmxi7R2fEidbU72XHoixSUb0CYFjM48DpCoZBYJIDXaSMW9DI9dYX1rYfYc+jLyGRqHPNjvHrs\nSRKxMPmmSnLkKnT5pSxZB2hu2Ed13U7CIQ8OxxSzS8PIpHIkYhlzU12M9Z3Aa59BLJQgU+YiXINO\nqNlSQ4lEctVPBHhPngcrowjXjrOSiGTXcZaIJJPJt0Xw3mnf+DATgixJWjk3m83G2NgYhw4d+gBn\n9sHjNiG4Dq4lBNnc9Fo8N2uDvPJgBK5a775fyJr7JJNJ1Gr1mi/W6xGClZUEKw2Wrq0kWCkqDIVC\nV3Ort0JYMuk0Hcd+htMxxZ5DX6J+40F0+iIGeo4wOHkelUxDKhZFCPhcVkRCIR+5/6/Q6YtZdlg5\ndvRf6B85TVXZJvSmMgorWwm6l8ikkrS23kM46GGk9yidF3+LzdbPzn2fp2bj3ZTUbME1P4l1bhCz\nqYKluQECR3/PRHCWYI6Aw5WHadz+ANp5F4PuUX6UuUQsFWe7qIKxHD8bwzpm/VYeOfyfWVClSQ4P\n4J4a5Gx0lNr6neTrSwiYtBQEIZwI06StZVYcJDw3Td/sJYZ84zSb19FS3IZl3W6kDidHXJfYIirF\nMz9OLBKiLzHHcibAslrCZ9q+wEZJGdbFYS5MnUSeFjFjH2Up4iCh01FjqGWzromwxUjFXIhXZ45g\nne0l11JFtNBESUpNgDgTySWSBj3paISBqYt027twpwLU5zeyYeN9IFcwGbPTM32GHGEO3bFp6iRF\nDAUmyMxb2Xfgy5QsRcjR5hENeXl54vdo01LM+lLUyLAKfOjDKaJ5ejzpAK2TIa5EJrgQHKYqpaXp\nsf9MUfVGtLpCRofbydcVEw77mBg8x9LMIDPTF9i67eNsvesxisrWEfI6OH3+GRKxCBKRlEQkgEgk\nZcHaz9YtD9G6+X7ikQDjQ2d45eg/oc7Jfcsa2VKL3lSG3TZMRekGCgpr8HkXiUQCzCwOI8xkiAY9\njPadwGkbJhOPkyNXI5a+9whg1itBKpWiUCjeVmmTTCaJRqNXzbuya2q1Bj8r03PZA341od3KyoSs\nKDerc8h2F1xZEnztXD/MhODauU1OTjI/P89dd931Ac7sg8dtQnAdrEYIbvXHvdL9bzUB3/sZIcgS\nkaxw8f2oJMiqoFdqLVZWEqy0fs5GK64VQSWTScLhMDKZ7JajF8l4lO7Tv8DhnEaAENfCGGGvg8nh\n8+Tmmjj80H+htLKNZDREe/vPGZnpwJJfjVQkQWsswuOYwqAtYMfuz5KIRZkYPseRI/+EyznDuvWH\nKa3fSkFZM4HleRLxCOWl65mb6WVq6BxdF18gEglw+ON/Tc26OygqbGDi2e9iFQVRpIV4I24irkWs\nA2eJq+ScNkcpURWzWVrFKedFFNNWBBo1hvwqhsMzFPROolIb2fvQN0gJMswMnGFg9BRuUQK9sQSF\nSM7Og09wceEiBqsLfW4+RUItF5JT9He+isM7R03bASqk+ZSIDUTlEmzWfqIqOelMknnHBMu+BXQ5\nWuq23Mvi3AixVAxhKILIYUdRUYsntIzTpCTHGyCpyOFw+SFCMT8vzxyhf/4KHreNlqKNUFPLZ3Z/\nlUwohKi3l5KK9UStUygiSXzzk3iSXu437MZYt5HUsovR2AKj1g70ERHenBSy2Tm8plziYT9btj1M\nMOJDGUkx75vjkquHypSWYFE+S7Fl7kyWIERAo8CM0G5nOGVnZPQsfb1vsHHjR1m/55OYy1ohkWZ4\n5BhquRavZwGv04bfvYB1pptduz/L1js/h1z+lsDy9VM/RCKQoFEbkcqUqLQmlmyDbGt7EEtZC87F\nCbouvcDpc89QaKygfsMBimo2YTCVMzvRQVF+NWqNkUDAhUQiY2jyAsloiLmpbpZm+wl5lpBI5ciU\nuTe1trKNu1amFVfe6KVS6dVDO5tWWC16cG3p4creCyufuxLv5piYtW++9pl/rN4nN4PVCMHo6Chu\nt5u9e/d+cBP7EOC2qPA6yDJhuHGx3DvhRtz/3G43Op1uzVW+2ZbJ2edqNLee41wN1/ZjuNlKgqzt\n61r0JIgGPJx89Z8pKKhh3a6PA7A01Uf7yZ8QTUQozq8lv6CKXEMR1okOVBoj9ZsO41qYYGG6lwu9\nv0ctz2Vr2wOYy5pRqPR0tf+SVDpNnqkSx+I4rmUry74FTIZi9tz9BBqjhXg0zImX/4lwcBmTsZRo\nPESu1oyjqx3z5UE2iUrJ7N2HI1dMe9fz+Ikxo0rzqnicFlMrRTEJIWGKj1Xdz9RsJ7PiMEtjHYjS\nUJdXz933/jnd6Xlmfvdj9ua2Iti8heODL1MyOM9StRmb34qgsIgnVHdirm7l2dP/TCwdp9TqxaDO\n56VcO6lYiDptDcUlzezZ/VmOdT9P/4lnKQwI0JTWMJhaZFgeZFMoD2U0wWO7vwZ+P6/Mvkmnbwhv\nwIm0sRVzbiEtyTxeCHXwgFXJtmQBs2k3v9bOkYqGyQ9CnT2N4Z6H6LVeojIsJzY9ylxxLmmPG7tR\ngdodIJNnpHjTQbwLk9jjHkz94wzL/Oh1RTS1HcbptTE/2kGuuRxxJMbyRC+z1Sa67F1U+IT8XXQX\nVbJClIsuZj92F5f9QxSYKoklwkQTMQQiCX7fIrv2fg5TWSPxcIDRrje52PUCOnU+loJaTAVViCQy\npkbO0bD+IKpcIw7bMFPjl+mZOsu6ih3UN9+BsaiOaNjHlfZfYi6oQSgS4bRPEQy5sS9bWd98gObt\nH0MkkeJenOTE699DrdQjFkuR5ShJpdMMT1+k0tKMUCjCaKrAaKnBWFR73U6NWTJws8Lm7B6WFSde\n63mwGiG4Vm9wM8LElULs7LPXskX8WiGRSJBKpd5GrF5++WUWFhb4xje+8QHO7IPH7QjBdbCSMWfZ\n73uNEMTj8auq+ndaINka+7VcQNmWydmmQ8lk8n1zIFzZjyErWlz5mVduOis3pKwhUzweR6lU3jIZ\n8Lvm6Tj9DOl0gmgkgGt+DK99lonRszS13MW+e7+GsaAKn8vG0dM/JhBcxpRXCpkMcqWWuZkeWhr3\ns37zRwn5XAz3vsnrR7+HVCihpe0wRdUbMBZW4VoYR5dbgDbXwtjgaSYGz3Dp/K/JN5Ry14N/SVn9\nNvSGYvq6XyPV0wmhIA6dFG9jJWNDp6kRmdj/mW/y9NLrxESgWHIxE7NTKNIyJvUzH5ijzzfKJnkN\nsUIzFmUBqaFBnhr8OZXOJNUf/VNGcvyIlGpKJp1sEJdhUyUxirX02C5xcfEycyEblbsfYL8vj5yM\ngEVZAnvIQVlCiTmj4oynhzOzJ9ksLmdK6MZsKKe5ZAs9tivstmZI67WcUXvodfRyIjVGdVpPrbGO\nGnMjGZcTd+95gokQCUEKvUBJKpNiShqmVKinrLCRHH+IJUMOLwc7MIjV7Nj8ccxb9oNQzGVstE7F\n8MkFSPx+JL4gC+EFQhKoqtlGnSCfVE4OIxMXGXUNkjLk0di4F894HyIBBMUZQuI091j2MjZwiss5\nTsbne9n60Nep3/wRjCUtJMJBZqYukZdrZmlxFK/DhnNxHPviGPsPfoX1Ox5CIdcwM97BifNPo8hR\nI5cqkcqUSGQKXEsT7Nv9eUzmShyLE1w+/2vOXXyOiuIWKhp3U1SzCU1uPraZHsqKW0im4oz0HmNu\nopO+njfYtOkB2u58lPK6bWSSKXr730CnyUcuU6FS5RH0O7lw+Xlc1mG89pm3bKtlSiQ58qtr6r2Q\nAfj3EtxsakEoFJJKpa6mFrL720o75esJE28mepCNUmQymVsSJr5fWC160dXVhUgkYvPmzR/gzD54\n3I4QXAcrIwTX60T4bsiWzEWj0Rty//N4PGvqQxCPx6+KB7OHdNb46P1ALBYjkUggFov/wPHwnSoJ\nsuWQayEedMwMcubUU2zd9gkstZtIp5KMdR3l/KXnUCv0FJgqMOZXIpEqmJ64RF3TPowl9ThtI0yM\nnKNj5BjVhS2sa7kbY3EdyUSMrnO/Jr+wFrlCg2NxgqWlCRy+OZqqd7Fh1yPkKDW45qc4feT7KORa\nJBIZiWQElVqP3TFJi6WNpu/8jETrOmZFQU4ZfChHp9DXrkdgMvONpZ9iVpjZKCln3jlJrbkRQ1zM\nC3NHqJeVsLvuIO2+XjY33k3X2d/gTQb4a8ODOKoK+NH4L8n1R9nmURM0aBjdWMo2ZR3zp15i2aQm\nHHBzeNnAYGKemQI53rif6urtyOYWkJqLUNk9DAQmqIrISLvdtG+zYAgLkcmVGFJSDM4AJ7UeCqad\naBQ62nKqWTDLOKdwgW2OP5lSs1xsQOT20KWPIXJ78GsVCFrW4fYu0eKXQySMK+FFEo3RpKvHKvBz\nPjyKTK3j79QPsJjx4yo1cebM05hH5wkXGpnXQH5eGWKNHlE4TNNkkBNFKTRSNf19bxAmRm7zVvqX\nOnly+9+j/eVvmQ7aKPaD+5EH8AmSxNNxUrEwdx78ElpTCYlwkJ4Lv6N34E3ydcUY8ssxmatIplMs\nTPewYfvDiKUyHLZhRofaGbRdoa12H1V1OzEW1+NzzdHf8XuKy1pJJWM47VN4vEu4A0tsbXuQmg13\nI5JIccwOcvrYjzHoLGQyaeRyNTkyNQsLI7Rte5iCyre0C9ODZznb8Ru0yjzKSloQi3MIBd1MWLup\nq9iM3liOUmvBXFqHdA1JfJaYZ6MH2V4hq1l/r+aYCNe3U84iq2XIXkKyEYTrpS3+mMjObeXF6Cc/\n+Qm5ubl8/vOf/6PP58OE24TgOsiyW+BqHfzN+E2vFNLdaCc+r9e7Jl0NVxKRlb0Bso5oubk3nru8\nGcRisauNoK4VD75bJcFahBbnRi4x2HsUsSSHTDqJ3lBMOplk2T1H285HMFiq8NpnGeh8la7h4xTn\nVVFVuQmTpY5UIsbIwAka1h9EKBThmB9lbOwCNtcEbfX7qV9/AJ25HNfcKF0Xf4fJXAWZNMvOWWKx\nCI5lG5s3f4zGrR8hk8kwPXie82eeQaMwkNPVjW52EUFJKUt5Mja33ovlbA+Br3yR7zzzOM9meqlS\nFCFOpGgWFqKUKMmf93DenOC/VX+J16WzTF15E41QxmImgAwxBSWNDKtjaD1hHo7VcMXRxXhOkElp\nkKK4DH8OyCpqWJwfocErwRwRU1i1iVDMj9wTYCg4iVWdRqrRIRZLqTc2ErrYjlJpYFTux64VI0yk\nqPBCefkGrBEH48EZmr1S8HlRCHPoNMSR6POJZeJIkxkEIiEtcymM2kLmdGLOentojOVSITIS2b2d\nKz2v0GpoQtjTg1Uaw2YQsV1cQdi/jC1PSo3UzGesWi6vMxI9d4pL4TFmdQJqa3fSuixhIVfERMpJ\nZmiAVgp5TedkMjaPSZTLpx357FE0UXxhgMD/9Tf0xWeZn76C2VhBOB1Fa7AQjoaIh7zsuOM/IFfr\ncS9M0tPxEgNTF6gubqW0bD1GSw2xsJ+JwXaa2j5CPBbCOT/G6MRFnIFFdmy4n8qmvWgMhdhnBrhy\n4TdYzHXEEmH8PgdCkQSX28qO3Y9SVNNGJp1mqv80Z889iyG3AKUilzxjOVKZEttMN00bP0KepRqn\nbZTpsYtcGHiFSlMDBQV1xOMxggEn3oCdhrrdb9kpF9fdkjBxNbyb58HKdbnSMTGTyVxd09c2Y1rt\n0F3pmJjdDz6IZkyrze173/selZWVPPzww3+UOXxYcZsQXAcrCUH25nujhOBaId2N/tDXghBcq+i/\nVrD3fhGCTCaD3+8nnU6/LcrxTj0JwuHw1TrrW90M+tp/g3V+gL0HvohKbyYRDdNx4mmGJy9g0hVj\nzCvBVFBNKOBmednKhp2fQCzJwWkbprfrNcYW+9hcexcVNVswltTjmBlkYuw8FXU7iUcCOJcmsM4N\nEoz52bHlE1S37EMsUzDZd4Yrl35HcVE9qWSUZDJOOpXCE3Cw+47HMGotiD7zaa5YRPTGZzGs24Fi\nehZDfgXBhiq+2fMdpMXlFOrLMA7OkFBKUSy4CAqToFBw6O6v8rrtGBumwpSXbyQhFuKzz9Jpuwg6\nHQM5fsTxJPkFlZQoComODFBV2Iw5KGQ8NMVRsQ1xJIZWqkLRupUB1yBaf4yiwQXkMgVzZgU2RRKD\nQEXeogdxcSkeg4pY2E9q2QlLi+h1FuLyHJb9i+SJ1ahDKUS1dbhSIaZ905R4U7TG9Air65iKLxGM\nBQjrlJTNhTFL9dTEFUhKqnjZdRZLWslGh5jJ3c1MJV3oPREsPZPYdEI8hXrqZ4O4NzbjnR1mZ8SE\nXCDltMZDIuBhwDuCXJ5LRq1md9jISL6YxblB5jI+fmD8Eqn2I7jSQZwaMbm772Lfoa+g1ppIhoKc\nP/kUszPdmPQlqAyFGM2VBIJuwq4F2vZ+mlQygdM2Qk/fEabtQ2xquIfymk0YLbU4bcOMDp6iomor\n0YgP59IkDreNQNjDrh2fpqJ5D0KRmLnRDi6c/QX5xnISiShyhQaRSIrDMcW2vY+SV1RDyOtgou8k\n57tewJhbSFnJOkwF1Yglckb6j9HQegCRVMH8VB+LC4MM2S5Tb2kjP7+cZCrO0tIkapWBiurNGIvr\nUGpNt7RursVK6+9sqnRl9OBacpAlCCuPkZXOie+U5lhJDlKp1Nv8FN7P9EK2A+XKuf3DP/wDmzdv\n5iMf+cj7Mub/LLhNCK6DlYQgHo9f7cT3bkgmkwSDwZtuHQzg8/luKYf+bkQkK/LTarXv6fnvNG5W\ntJitYsiOt5p4cGUlwa26P6ZTSfrOPo99aQKZTEkqmUCfV4LHPY9EksOmfY++lQueG+Ni+zPMOsdp\nKNmIpbgJY2ENdtswbreNlq0PEPQ5sM+N0DtwlGgiws62hymt2YzaVMT4lTeYme2huKyVoM+JZ3kO\nr2eJaDLKnXd/kcKqVgD62p9jZPw8BflVRCNBckem8HdfJGkpZG/xLqT3PUTse/8fJ+sVdM938Jxi\nHIO2kMKMmmpXmiVlij/f9df8qP0fuDNRwgWlG2k4jiGcIVxaSKqslPHpyzTbhSjyCrmUmqEwrUQU\niuDMSeCUJDFGBHikSRIKGZlEklyJCod9Ap3OgjiVZntAj8IdQF1STXxjK1KXn4YRFxlhBolIiq2l\nFC1yyq+Mc1JkZbe4muWGMhYnemjusuI36Qg+eB+pQjO/Hf4dLZ2zpCQS/HXlpKwzeJZttEsXEUik\nqIqrcPuWkGdE4PWiSQjRhlP4LSa0xhJ87nnuX85DtmErr/k6kE5OoUqKiYgzGLQWVFI1xwQTyF0+\nNjhEaErriJv0/Gr4OXSKPKLRAIviCF8/8F954MdnuCRzwWAfikcfxytNItPn4/YtohUp2Hn3nyGS\n5OCZn+TCuV9gWxiivGwDhcUNmIrqcNuncc2N0rL5fkI+J46FMQZG2wlEfezc9BCl9dvR6AuwjVxk\noPsIxcVNhEIeAgEXqUwKn9/BvruewFhSTyadZvjKa3RceRGjzoJcpsaYX4FA+BaJWb/tYXKNRTht\nI4wPttMxepQ6y3oqKregMpSQI5UycOVlKmt3IBQKsC+MMTc3zJxrkuridej1RQQDLhKJKIVFjRSU\nNqMvqECwxrbn2VB/Voh3bafGq+twRWoh+55sZdZ7FSZmIwdrHT1YjRB885vf5PDhw+zbt2/Nxvmf\nEbcJwXWwkhDcaO49m7N/r62D/X4/crn8PYkXb6SKIZ1O4/P51tQeOUuAsm5q2TTFH6OSIB4JcvqV\nf0ap0rH17i8gFIkJuOY5+ca/4Au6MGqLMBpLyTOVsWgbQpwjp3XXJwj5XCzO9nHh8m8JxwJsa/kI\nlrJ16M0VDHW8QjgaoLRmK17nLPbFMaatvchlanbv+iwFVa1kgM6Tv2BucYzSsmYC3iVIJPD47MgU\navYe/BJynZG4086FLx/GKYlj0pWQUMnR+GPMJ90YKps5ow/xQriD3ap1jCx0s8ORQ6SsmKQwgyfh\nQynPpS2VT1QqhkgYXd0GLo4ew+CPkxaJWBQEmM/LoSosw6uS4pOkSHqWaViMU4qenLIqRBWV7FY1\nYRqbp2PsON3aKF9c96eIe/vI+Hz0RWaRtmykumkXAkBgt9N1+hcUCbSYRbl01eWizchIaJSkRULq\nxj1kamogHkcQi/H9xZe4S7uJqqic1BNPwMwM4qef5nd6O7kpCRuq9+BPhpgeOsvlFgM25wRuv51l\naQJLQsFMxo0lpaRIbCBg1JBaWuSgdhPDFik9Y6cxxoVIEWMQ5cLMFAOVuRzY92f85rX/RqXIxLJW\ninW6G2GeiUNOLU1RNZvHwig/+wS+Xds5e+yHJD1Ocg1FCPVaDOYKXE4r6qSADXf8CfGQD/vsEJc6\nX8Tum2Nz82GKK9/yGZgducCSdZCK2u0EPEs47JMsuqaJJyLs3fMYRbVtCEViJntO0N31CgXmGiJh\nLwqljkwmg9ezwK67/wyNsYiQ18FQx6tcGXgDs76UkuJmTAVVIBAyPtTOus33k87A/HQ/NmsPY4vd\ntNXeSU3jPozFtQTci3Se/RVmSz1k0jjtU8TiYaYXR6guakEhzyUc8aHWGCmuWE+epWbN7ZRXtlfO\nHvgrhYTZC0E2xZpt4HRt9OCdtAfZcVb2W0in029LLdyqzijbGnrlPvtXf/VXPProo2zZsuWWnv0/\nO24TgndALBYD3iIE4XD4uqH27CKIxWKoVKr3fNC9V0Jwo0RkrQnBteNmvyeVSvWulQS3qpMIeR10\nnfkV8WQMkUCESChCrTGxuDhGSVkrDVvuJZmIMTd+hTNnniaejNNQsRVzYQ1aQzFjg6eQq7RUtexj\neWGCeesAVwbeQK8ysX3Lw5hLm5DIVXSf/iXRdAJzYTXLzll8zjkW7JPodRbuOPAEanMJiVCAs2/+\ngGA8SJ6+hKDPjkwkZ+nSUYrGltguq0bU2IxLkuCU9TSyHCWyHCV/oT5PKpWgPqHDrCmiRmQiZTRy\n2dWLyL2MSVdCUUzM69F+CsRaUOcyJwoQCvuQypWohXIULh87Anrq8uoQKVQUaktomAmS0WoZLlcj\nSiSpPdmHwOvFVWHmZaObxro9bBzyEkun6Zu7TKmulIJABvx+0Go5pbCzbsfD5ApkuHLSDHa+in7R\nS27rNsp6pkm3tCCcniZVWclTqnHaFmDdoOut/2uxGIRCXlJYUSYE3Fl2B4LxcXC78RUa6PWPookL\nCAtTRPfs4rhohoBrAc/CBJJkmglllCaRhfyajZyeOk51UkuhoRSXWsgTR738vX6IHJUGvTgXjzTF\nbL4M8YyVqZSTH4rup3AhiN01w5IihX3fFhoNDazf/SlIg2t2hLNnf0486MZU2oy5qBZjYRULMwMI\nwiGaNt2Lx2nFsTBG59BRUpkUu7d+ksKqDWh0Zsa63mRmvIPikiZ8PjvBoJtoPEw0FmT/of8dbX4p\nmVSK3nPP0zdwjHx9CTkyJcb8irdSEs5pNu3+NHKVDtf8GEO9R+meaKelbAvFpRtQ55UiEWYY7H6d\n2qY7SCVjOBbHmbX14/DOsbX1PmrX340iNw/P0jRnj/0Eo7GUdDpFJOxHKBQzNttJTekGUqkEKrWB\nPGMZ+aVNqA0Fa7Hkr2LljT6RSFzVA2QJwMoI5bXCxKzu4EbIQfb9KyMPtypMXI0QfPWrX+XP//zP\naWpquvkv438hfPhcIz6EeKcf3Mqc/R+zW2AW0Wj0DxT9a/n8mx03q15eGeZbWUmw0pzovcKzNM2J\n179H64bDVK57K8RnG7lM+6mfIstRYl8YJXUuhlJpYHa6kx3bP0l58x6WFyaxjl7i9ye+R54qn40t\n9xD1LpNnLMM63sG+nZ/FkF+BY36U4SPfxzo/SGlBA1u2P4LOUonF7+bMsZ9iKV+PMa+Yy5eeJxMM\n4nBbKavcyK47/xSxJhfv/CSnj/4A3awdUSbDsVwXicQQzoUpmtcdpD4o49WtBqIXLlHvliBWyJAt\nObgstTIZSVKVU0BULiFPpqdT4ULm0yL0J/AkFwjlxPlYqJy7o7WIZApSBgWtU1YyQj1dES+akBOc\nQQRuN4nOYXLjYlBbSLW1EVZDy7iT5IWfMBBO0ljSRkIYQbqq6+0AACAASURBVDFtQ+CPk66rI7V5\nM2F/J+qjpxCPTWAqL2eoQsyCWYlleh6WlhBNTJAxm4lZJyhoUOD0BkFdDFIpyQMHEE5NIRqfJ7Yw\nTbooAZ/+NGQyKAMBwh0B4lPTtOlbyJ0Tk6cvRRk1oeuNMFSj45VCMfPeWeam2on53HhkQpozSi6H\nJ/lm5TJNwXy8SgWlGBAujmAVhnBlgpBJ8WuLj7/OVCA05OHvfINN1hQpWZSz7T9DqjVgXxynsWob\nNVs/SthlZ36mjzdf/A7RRJj16w5id8+SV1yN3TVDc8U2Sqo34XHa6D71LNOOMXIEYnbf+QUKylsQ\nCkUMnn+RsdFzFBXUc+XML1Gp84hFg4Qjfh769LdR5OYR9Njpu/BbesfaseRVMtF/ElNBNYl4FKFA\nwJ9+7l+IRkIszAwweu4ZJu2DbGu8B5FEirm8+a1mWZ4FGur3kUxEuXj8KaLRIE7vPNu2fJzq9fsR\nCIXYZwY4deyHVBQ1k0zGUan0xGNRTpz5GRVTzUgkORjzKzFaajAUVq1Jp8aVXUWzrduz4f6s0+jK\nTo0ryxFXeh6sNChbbW/I/r1EInlbWiIajQI334xpNVfGcDj8oWzE9MfGbULwDlhp6bnaQZrNnYtE\nIjQazS3nuW7mwM46DyaTSTQazfviPPhO4yYSibeNm513tuQQuBpKzDZiUSqVt/wdLU72MtRzBL2u\ngOnxSzgXxxGLpdgd09xx9/9GQUULkYCbse6jvNn+I7RKI1qnmYWRS0gkcvw+Ow/e+59QGyw450bo\nuvwifVNnaSzZTGVuAca8EpQ5Ktz2abbs/CRKmYbhsXaWT/yExWUrDbW72bztQXIMJrzWMc5c/CWW\nhq2IRDmcPP4D0u5lHCEnGyK5NC8qEBaVMLKjjaELL9FStpV0wEd7aIJvnW0nEwuTp2tgimUMKhXx\nZIxNmUKKo2p6gy6u0I8gFkeQiFAXM6ORqMmzx3hwMEGmNMhofpgcgQjCYchkiAqSKCJJBOEw6XXr\nCOXmUSgpgMEpBOEwUVEcWUUtlqKNdHt6WDQVE46kUcwKSStBkEiQbj+JWDCLJFVGJpGAeJyyuSRv\nCCe5Y1aPcNFJuqyMdEsL/uASeYtjRGMh3OuL0QdTiDo7CepUKIJxpKV1LFdZMCQSCGZmEJ08idIQ\nZq4kD9UjXyIzPIwuvozD10dlZRO7Fh3oNm5BuGjmsqeP5cp1nI2M8PryOaRpIdJQDElMgjVPihgJ\nZ7xL3JHaQJ8SVG7omL/IC34HIQlsFasoEOvIu/dxliZ7uXDmWQwJIU6RnVDv71Ebi5kPW9nSeJDi\nht24FsZZGu3hld//I8ocFdu2PYLcaMFUuY7Y+d9Rlk5TWNSAdfQSwz1v4gstIxGKuev+v0Clyyed\nSnL52M+wLQyTbyil4/QzGPMriIT9xGIRPvv5JxFLZbjmx+jrfI1B6yVaK3exODuIOq8MU0E5nuVp\nPrXjb4lHg9gmO2k/8RPcAQc72h6krGEbcrUe19wY50/9nPqq7bjsk9he6EEqlWN3TrNzz6NYqttI\nJeJMD57hzLlnMGgKkErlKJRaXM5ZLlx+nmJzHUZTGaaCavKKaslR3loZ8sr0ajatmq1aCIVCV/eC\nLIHIkgOJRPI2UeK1HRev18o5+5ycnJyrwsRsi/PrNXp6N0QikZsuK/9fEbcJwQ1gtYN6Ze58rc2E\n3g0rxYPXVhLcCFZjyDf6vmAwSCaTeVs0ZGUlgUKhuHoDiMfjV8mBSCQimUz+gVL5ZjB+5QgDg8fZ\nc/cT6Asq3hIUnvkN3YPHyNMVMDFwEr/TRjoZx+Wc5eMf/xYaQyHO+VGGu9+ke+oMDZYNxANehJp8\nclV5iEQiHnrw/0aQgfnFcc6d+wVOj42NjQeotqxDZS4hV6LB6ZynZfvHkApFnLn4S+JzM7gSPjav\nv4+a2h0INblMdx6lJ9lFffV+wv/9H3mjSIxd0g9jXrak9ei0JSSX5jkr8xMTpKmRleAOOZGn4xij\nSuYVMB1doiczhSCT4v4lLVWyclTxDLGSIhqLNjCkipJsyyGycyf25QHyFSai8344cICA7RQS82ZS\np8+TPnCA4MwJZJZtpIuukG5pwROaRJaRIQtLWB/ezFmVm2iqEqGiDcFLL5F89FF8kiQy1zAJ40aE\np06RbmvD6FzEOfYU6Qc/TerCZYhGEUxPE9RlUIkV6MdtOMNHMGTyEDqdhFQZNEkP6jwJy79/DqO+\nBvR60lu3Ipo4iTAUQHjyJKLubgzN9QxsbyW1qRTRT3+KLiWlS+CmVpzPxsxm6pfDVKrLeS3Ywe8L\n/Sy6XSSWfAiEOu5c1rGcmUfRUM5czMGyMIYjusxfsB93pgvbpTd5+fU0mXCIXS37qWo7gNgXYHL8\nImde/yFKYQ7LjVsR+afILa8g7hxmR/1h8iz1LDsmuTz2EyZcw+QpjOza/wVMxXVUZ6Dz1LNEQ37y\nTZVcPP5T1BoTgYALgI9/7jtI5SoCrgU62p9lzNpNiama0Z6jmAprCPuXkcuUPP4ffoTf62TJNsxA\n/w+ZW55i27r7EImlFNVsRipT4fUs0tp6iEjIy4WjPyEc8eH229m54zNUtOwBYGGim/ZTT2HUFTHU\nc5T5mT5kMjVzcwPcc+jrmMub8bvmmRk+z6W+V8lTF6DVmkmnUkyOnueNo09SX7mN/IJq8iw15BqL\nb3pPWNlWPbu2s82RZDLZ1ahhLBYjHA7/gefBag2YVprCXY8cAG+rZFhJKrL7zmrCxOtFCG4TgtuE\n4D0h+8POGv6sFW4kQpAVD0okEhQKxU0drrdCWlZGQ1bmB1erJMh+jkQigVwuRywWX22IstqG8G7I\npNMMXXyJ+bkhDIZius79GoOhmEBgmf+fvfeOkrQ8r31/lXPO1dU5z/TkaSYwAYYZkmDAJCEZlJDA\nsmwfneNl6zicc+VrX/uec21JtpAsyUIog5CFSDPA5Bx7Zjrn7upUOXblXOePpkcDIskCSV6X/Vd3\nre/r9+u1ar3ffp9n7/2USnkeeOj/RaWzEA/N03Pix4zOXaLB0oZ38hLlbJpcLIhQJOaRT/4rpWKe\nkGeMV/Z/mYXINFu7PoRaIMVQ04IonSFuqmHV9fdSzCbpGXyF0LO9xApJdnTfT2vzFkQ6PTM9B+kr\n51jRcDOxdIJDp79HfHKQkkrOtq47qNl/EmFIwgWlGHVtJ668jFxyhgv9+5gqBnnJEqUqyRFMTSET\niLEKtZwWeZmQFdiuXc3t6hVstK1jzc0fpy/Yz8DxZ9iz6zOgUKAOjCGSV1C2tcF8ED02ytEimVSS\nxdQiJLKUpVKqlQqFcgG5WA65HAWhkHgqzgr7CiTJOBK1iXqthsOzhym37kVUKiEIhcha5CgkCshm\nQa0Gk4mcWowjv4p5TZWWdeuWNASnTrHYZcYo0aLvGeCyS0SLqgtBPk9s+ATaQ4exJMoM2Kp0zsxA\nJIJAKkU0OwzyDMLgOcqdnSg9AeTMkwqMoF9YwJjawPB1jXxMuglRLI/OLcQ4OsN/jahpa78esaTA\njyLHcEuS+JsEyGIRhDMZTAUpJXLsr8myKelFtaeb+JnDbDwyimnt9YSjfo6d+SEZmZCsx81t2z6F\nvaObxYVJpt2XOPDSVzBr7ay57i5kLgetLR0sHv8xXaL16C31TFw6xOWzzxJLBzEqzdx075+jUOko\nF/KcfPlfCYXnsBhdnD/0JBZ7M7GoB6lEwace/SbVanUpv+L8s0z6BlnftouF6T709mYMZgeWxVq2\n7/oUmUQE99hZDr36NVK5ODs2f5T6js3IVFp8U71cOP0TVrZtxzs3wMzkBURiCaHIPLv2PIa1fiXl\nYoHJviOcPvc0BrWVicGjxENzyBRaQkE39+z9S0zOFkJzI8xM9nBx7BBN1hVIJUqi4QWmxs+xmArR\n2bEDi7MNc03bW8Ypw1uTgWuxnFGwXEm8NvMgm81ePc1fKxi89trl/eXaFsNbCQuvrR5c25ZYTmVc\nXuvN9tj3e9LsfxZ8QAjeBm9sGVQqlauxn9cG/ryXeDtCUCwWSaVSKBSK1+Vw/yp4q8lmb4c3q4a8\nm5kE1wokZTLZVdXxskp5eUNYJgdv1vYoF/Kc2v91qlTZdfefIpbKyaXinHz56/gis1j0NQyefQ6r\nrZlwwI1Sqeczjz1BuVwkODvMsWNP4InNsbl9NxnfLGZnC7FCEZu9me23/SHpeIDxmUtM7PsSxWqZ\n7Rvvo0FTh7TOzGh4kZirkevaN7GYjHD47A9ZnBygolazfc1dODTNVIUpLnn9VLftweXsJHD5LIOD\nzzLeXKVBYKA9nqM4M8GsrkJFoKUrLuMbrjzyqgi1Qk3aaWJWIsKZl/O5NXfzx1s+T/+55zBr7FSo\nctl/mRUiMzZjHTOJOZRlESheG5ddyqETi5Hp9RTkYrRKLcJCgbxAQDwWhBKU8nkquRy5apWqpIpG\nroGcHzQa9AolepmeyeAoHfX1CKanSauWgpHIZuG1DTJTzNBoaGQhOE2zvG3pc72ejH+OWsdqdBoL\nFU2BpMOMRqphUZeiTqpFi5pUq4C0cgWKmQXw+8lX3UgFOXK+CPL5eYjFsLh9RMQKtE4nyctnUWRL\nyKQahOOzGFo6CG92YhwNo8tkqTs9xleiKl74yA76FYucGn4ZhUKBMp1AJKoSEKQ5GeujXSdBV8iT\nKqRQ3nErdSUZxdHT5M+cokljY0A/ytxUBpFaSzgf4YHtn0VjryewMMrg4R/T77tMk6mV7hsfxmRt\npJjLcf7AE2gFanRKK8df/CoavZXYog+dysQDn/wSIqmMeGCWs0e+y3xwgnp7B8M9+7HWtBGP+TDo\nHTy2978RDSwQXBjlystfJpT0s23DvQjFEupXXo9YIiWZDNPdeDfpZIRTr3yDdHaRRCrCzhs+RW3H\nUrTuzOApzp55Gru1kb4LL2CY7EEikeP1jnLnXf8dS20Hi6F5pgZPcOjkk9gNdQQWRqlWK8jVegqF\nNB++86+Rqw2EPGPMz/YzMtdDk2Ml+Vya6ZHT9Jx5BrXKuJTNUduJXP0Lu/K7IQNvhuUTvVQqfV3m\nQTab/aXMgzdWD64VFy6Tg7cSJl5LRKRS6etcC8sCZ7FYzMLCAg0NDb/SnvjKK6/w+c9/nnK5zKc/\n/Wm+8IUv/NI1f/Inf8LLL7+MUqnku9/9LuvWrXvX9/428QEheBdY/qKk0+lfKpe/H+u8GZarEu9G\nPPhe4o3xx/B6W9Cv6iRY9v8ubwjX9hqXfcvL5KCQSXDp+I8pVopIxTJO7fsaBkMNfv8EFlsTN93z\n51SrVfzuAU4d/y7RTISVrg3MDpzAZG0k5puivnEddzz4fxMPzeGbG2Tfka8jQMCOdfegLlSxudaQ\nXZihbuX11DVvJB6e59jFZ/CP9iBS67ix+36c2lbK8lp6A0Eq23dTY2vFHfZw5dz38EdmsJob2Biy\nopvoJfvt75CRVrgv14K6KCAYcdOjiCMz1VFbt4q/rH2VhESCoqxkXlimyeDgs6seJd57mvWttyEU\nCEmnYzTWrGI0Mko5n2WlthWEQtLFNOqykKpcTqlSolQtIStUQC4nW86ilWuRl6tgNJKQCVFKleRi\nMcSvbayZQgaZSIYgl6Mil5MtLtJl7WIuPIlDJ0drdZCZHMG8ejOCxRzV10hnupjGrrITLHiIyPMY\ngUptLenLZ9BY1lJVKrGpDATSgSVCkF9EJ9UgqIgwS9SEdBJc27dTSMbJSGapWbuVwLGL1Datg2gU\n41gP3tELNMsNzMfcdAxJiZhGMCjNmKf9TE70U7JuwDwfIXT3zbh65rBPefhw8038KDDAGUOKM4Yq\nJMsUhQJesMX5av8MjfJGVOMhLj3/fV6yVXGmBXTf/Ps4a1ciC8c4P/QKg6MnMNuamXWlsMsrKDpW\nIYhMccfKe5HpzXiuHONy5qf4Y3M0WdvZ85G/QiSSkknEObH/cVLJIOKKiFOvfgurrZlQcBqT0cWe\ne79AKZ8lvDDGmePfxxOdZWPnbubGL2N0tqHW6ql1dnLTqs+RjPmYHDzOgX1fIVfIsHP7x6hr34RU\noWZh9DyXLj5HZ9v1zEycY3LkBAKBiEjcw823fx6Tq4VSIcfY5QOcvfgzzDoHY32HiPrdiKUKYlEP\n99/7RfSWOkLzI0yPnuHc8Kt01KyjkM+gtzVQ176JgG+CW3c+ilSmJOifJBJdwBuawmFpxu8ZY3z4\nJGKxBIu1GUfjamRa669MBt5sL1g+0cMvMg+ubS1cm3mwPC/h1xUmplIpJBIJ5XKZhx56iHA4jMPh\n4IUXXmDPnj1v2zool8v80R/9EYcOHaKmpobu7m727t1LZ2fn1Wv279/P5OQkExMTnD9/ns9+9rOc\nO3fuXd3728YHhOBd4NrhHL9K8uCvijdrGSwz8UKh8J6IB38V4eKyk+Daasi1McRvJAO/qpNgmQAs\n9xqv7f+lIl5OH/4m7e3b2HLbHyAQCAjODnP04DeoCoWIIhIGTv4Unc7O3GwfK1ftZkX3HSxGPXgm\nLvGzF/4OoVDCpq5bSXumMRnsLCQTbNh4NzUt64kG3Fzo38fk6BkMBifb19+DRWql1mbkgnsS89Zb\nqK1pxx310nfyCYK+cazmRrZqrke/UCLtjnNOpmD11nsxSrT4R/s4dvE5vHY/q5NKAgkfkyoJU2ss\n1NdsQ3fn/fy892n6Rv1IiyIKciGPuu6hc81NaAsChCoLeoV+ybWSiZESV/Cn/DgkBlTqJZtoppjB\nUhSAQkGmmFk6ySdyoFKRKWZQiBWQyoJcTq6cQy6SI8znkRsMJIRlxIhJp9KUYzGqQDKfRC/XY1ZU\nGShfZkvrLjL7D6PIll5XIUgVUpgVZuoEBuYrcYxAzqRDmC8ijS6CQoFdZWU4PEydto5yqYiiKqZa\nV4stGSGoDOHSuohGFtBrLFiMtYRdU9S0t4PNhj67m/6f/SPJ9lsIHfo2KwU2PBE3LRUZpmCUy/Fe\nyhUHToWU84Fp0JkxZcKEpwbYZF7HDRUhL9dIeK7vKcbKcXxSAc+aw2yS6ZgzFqjvO8vvt+5GbnHi\nDfs5kpjCW4ziyGd4YO//QKUxEpofo//IM/T6LtNVuxHR2g7M9lYM7WtJHHiClcZOFCoTp176KjKt\nkWDIjcvWwm0f/itK5TLh+XHOHP8ui6kQtc5Ohi7uw+poJRyawVWzgjvu/78ILEwQ9k5w/vxPyBRS\nbL/uAcRSGU2rbwSBgExmkYbG9STiAU7se5x0ZpFMPsGNux/D3rgagKkrh7jQ8xx2cxOXz/4Uo8mF\nUCgmEJjknvv+J0ZHMzG/m4mBY5zrf4laczP+uWEq5TIKjZFCIctH7/kbxBI5Ie84J1/5BuOePta0\nbMNob8TkbMHeuIqzB59gTecuZHI1kfAcQoGYybkrJNMx/L5JCoUsNnsTjvouzDWt70mc8vKJfrmS\nuCwWXA4Sujbz4O2Eie9UPVheSyKRcObMGcbGxvjMZz7DV7/6VR5++GGuv/567rjjDj73uc/90l5/\n4cIFWlpaaGhoAODBBx/k+eeff91L/YUXXuDjH/84AJs2bSIej+P3+3G73e94728bHxCCd8BymR5+\nM6M8r31Zv5WI7/3GWzkY3mkmgUAg+A+fGK49LaRCswxdeh6dzsbC/DChn8+hVugIhCbZcv1HqOvc\nQj6TxD14gldPfQelVIlSoWFh4CRKpYFowM0NNzxCTct6ggujjIyf4vLIIepMzVxn+xDGshS9uY34\n9BBrdn8Mk97JbGiGS8cO45kZxOVcwQ5ZN5qSiUwkwhm5iua9n0KvsdI/0Udw8hB+tYDVtrW4vClU\ncxMkvYM0nxvl/piMcmsDffdeT0SQYPOaPeQjAS4E+viJ+znKlLjO3k23ppMH2+7lciVCMZNFrtSi\nlWpJF9MIcgVGsrOssHYxHo4gVKiosnRSVxXloFcs/SxRLZ32TSbSxehrpf4kVYOBaDKKQqRAJRAh\nUKkoCUroVfolFXilQk4mIxqNohVqsRSVzElkzGV8ZBxmNNPzCKRKKoZfEBGVToUWLWMVH4VygWQx\nhdpRj8DtprpuHQa5gXw5jz/lR1eRgEpG1W7HOuBjSBuiWq0Si3sxau2YFWbGVQIEwSBVmw1pKovC\n7GCkTo5ty82YWzbTF+2hmK2hfLEH9ckp0qkwlrwO0YUx0hUHVp2UoKtEjbEN94nn2FXtYL36Dr61\neIQXlX6eNizQlrCxZ7SAphxn7C47xfoaWIwhmvGxaTqIoKmFs+HLaIS1pNVpxHIlj237b+QlQvyD\nl3j11E+Zj82woWk7XTc8iFquJR0PcmzfV5EXqmQSYc4e+jZGSz1+7xitzRtZseUekrEQ/tlBDuz/\nFxZzMTZ23crc5BWMzjYSsXnamrppWbmDeGiO0cuvMjF3hWq1wg07PomrbSNiqZzpvqMM9B+kvWkz\nY32HGes/vBR2lAxx+11fQGetpZjLMHxxHxeuvIBV72L0ygEs3mZEEhmpZJiPfvgfUOnMhOZHGR04\nTM/YYVY1bKaYz6Azu1CoDQT9k9y689NIpAomh05w4cSP8UdnWNm2nXU7HkSqUJNLxTn8wpdxWduQ\nSJQUi3l0egu9gwfwekaQShUYjEtx0BZXB0qd+dfeg649LLxRLLjcWrjWtfB2wsRrK5nL1127R7W1\ntaFUKjl8+DCLi4scPHiQ3t7eN93HPB4PtbW/EF66XC7Onz//jtd4PB68Xu873vvbxgeE4G2Qz+dJ\npVKoVCoymcz7vt4bc8LfTMT3XqzxdhWCa0nItQ6Gd5pJsOxH/nWfc3bgJD2XnmfHrk9jqetYEhSe\nf4mzPc+iU5sY7TtONLCAXKpgwTPInR/6U6x1Kwh5J5gcOM6FkVdptrTjzLRSDocwSQ3MFvLcvvcL\nqNQGgr5JLh/7Fp75QTobN7NeaEMrc2Ajy0mxnPa7HsWoMnDRM07q+M8JClKstq2la3QRtXeK+XyQ\njMPMLTI7ov5pPLkYl4N9VAf7aDYZOHXTeib3bqd85RJNDRu4lBjBm/Py8vAlIvk4ezQb+Mh1jyGf\nmiEphUg2whpBPUPyBCqpCl/YjacSZ4exBZFQhLosAqmQ6oyb/NQoarcIgS1ETpZGLREimM8hUKvJ\nKhIYjAaq2SBpnY5sJUudsQ5BIHO1oqCUKBEUCghlMhRqNVVJFZPWhMDnplnTzJn5y1RVMkTBAtVQ\nDJqaAEgVU6gkKiS5AlaHC2/SS5UqKlczgp4zVDZvRiAQYFPZmI5NYyuLqapUYDQiK4GqKCSaixKL\n++h0rUchUSA2WUm63ai7uhAkEhiNNfRHxrm5phNJOIbaZGfe6cQm2YqpToW/WsaIBdOAgNDELI45\nEaMlH6tx0KsQ0nKun+CWZh4prcGlX8/XIy/xNd0wCpsF8mmUz/+Q0oduR1qsoBBA5fd+D5fcRm04\nyolzL5ILeNC1rmJCW8Dh7EBl0aE55eP2plspSIRc3PcNinIpofAMq5u2sWr7fVCpEJwZ5tiRfyOf\nS0NNmfHeVzDZm0in/Kxo30br2lsJeSYIe8c5cvzfEAqEbNv8YaQKNa0bbqF04SXqChnqGtYSDkwx\nMXKSdDZOsVRg1y2fw1TTAsDw2efpHXgVu6WJiyd+hMlST7VSJRye4YGP/D1aUw1R3zRjfYe4OHyA\nRlsH/rlBLM42FGoj1UqZh+//BxAICHnGGew7wJRviLVtO7G42jHYGrHVr+TsoSfpat+JVKrgxL7H\nkUjk+ENTtLduo3XjUs5/IRni6KtfR6XQIpUq0GjNVMoVjh3/LnqNBZOhZinzwNWGwdb4a8cpvzHz\n4Fqr4Rt1SG/MPABeJ0xc3sOWRYZvhE6n47777uO+++57y2d5N/jPmvf3ASF4ByyfkJeZ6fuJ5Zd1\nqVQimUwil8vfc0vj2xGCcrlMKpVCLBa/zsHwTjMJlgWDvy4mLr3K9NRFTIYa+i78HNNUHYVcmkQq\nwv0P/h06i4t42EPv6X/nysRxanQNeCf6qGTyUMpTKGR46CP/H2K5guDCGMdOfo8pTz8bWnZiLAgx\nyswoJHEiSh3bH/gCwkqVXv84kbM/xJ8M0F2/lTUJNdJ4ieB0igt19axvWgulEudHrzBripEzqNmc\ns6CeCyGQqnEPnWLPRTetti3EHtzLeVmQDrGdukwtlxodpMcu0ZdzMxYZ5VZa+PDWP2A2MceDOLmQ\n92BSmFBGymg1FgAGPZdRK/Q0aetxj51DOzCGQJUn09aAXGtEYJVT6e4mmZ3BgBw8gwhiMXJDZ1DV\nFMgvBBG1tFDOllFJVZCNgMGwdMqX/kIsWK1WKZQLqGVqRJUKdns9joqA4eAwucb1SJ9+mvzWrVQy\nSaiCVCiBfJ5aSxfD0VH0Mj06jRmBRIIgkaBqs2FX2bnku0QrzfBayEvV4cCa8uBL+kinouiMTgBM\nBifh2SHUsRiCxUWkWhPR9DyGxlY4dQql0US8EKc+mcTUuYHhsRNU7rgLw03XsTDRQ+MLl5GWp8ic\nPISlGCLXsIKyxYwxWeHGXh8pQytPycf58RoLHx5Ro/FFEUx6sYl1uBztxAJxDjBAIOFlk9rG+q0f\nR1Kq4Jsf5sS5f8K3OM+mlbej6r6RRo0dS2CGs698k3qpjVhwhuMvfw2twYlnYYg1K3fTvuVOMtEA\nPvcAr+7/CsVSnvVdtxL0jGF0trAYmWF12w04G5faVT0nn2HGO4hcImfnjZ/G0biKZomUkQsvMTF2\nhqaG9fSd/zlSqYJiMU8qu8hd938RlcFKPp1g8NzzXB4+gM1Qx8jlV5ambyIgl0vysYf+CalcRWh+\nlIFL+7gyeYL1LTsp5tNYajtRqPWEgtPcsvNRhAIBo1cOEIv58EfnWLtyF6u33odEriSzGObwi19B\nr7ERCs4Q3PdVLNZ6vN4ROtq3sWLzXkqFHP6ZAU4ce5JSuYjZ6EIu17AY93O+51nMOic1rpVYa5Zc\nCxL5rx/+80Zh4ttlHlxbFVgOTxIKhVcJwhurne+EYgsArgAAIABJREFUmpoa5ufnr/4+Pz+Py+V6\n22sWFhZwuVwUi8V3vPe3jQ8Iwdtgua8N723K39thuTLwXlsa3wlvRkJ+VSfBfxSVconzB54gk45z\nwx3/BZlSQz6T5OzBbzPl6cemr2Xs8qvYHC0kI34EAvjMp7+BQCzBPzvM+Qv/zoR/iPUN20ktzOKo\n7UBTFKLWmrn3pn+kmE0y6Z1g7vQPiKXDbF15O21ZFVKlBk/MTbi2gY2rH0JQLnJsvI/kzBgJs4Zt\nivU0jEaRTk7Ta60iUBppmaqQL3iYqMTpHTuDPZ6itHM1vU0upkpnsDhXYOm/wP4GAZVMiKHwEL35\nUTZJmthsXINcpUNbSmIQKhlODPPx1R9ncfooWlsz0WyU6dA4t1WdCI8eJS2OoLfUUNl+C0lpAVVC\nDJEIWK1kfDPUaBxULQEqmzeTGAtTzWmQTZxGUF9PRru4VBF4TUCYKYaxqWwIUkuEIFvKIhPLEAqE\nV69xipxcCVyhYjciUyphcZGAQIagKCAZDKIQCNDLjZQqJfwpPzUqBxWtdqn039qKSWEiko0goRaM\nS8KsqtOJ7ZKb4xo3loIAoXYp/tusMDOvEdEYCMDiInmTBmlOSlEiplytYivLmCmFEBSK6Ju7yA28\nQi4Zw6w006+TEt29jYi4nufbhpEtGBmdGKXh0BgCpZGSIMmNzd2EUkUu5gMc0UrZHq5QM9CL//N/\nyrnUPMXoBOu8VW4Py/CvNnE6fBmR0URcnaBNVc/eFfcRzoaYO/TvHK2ESMcCbN9wH63rdiOsgm/i\nMkeOfhs5EjzSSQrnn0dvqcMXnOC6NXfSunY385N9BH3jHDr6dVRyDddvfhCTzUVt61r6Tv6UUrGI\nzdnB9Nh5Bi7vJ5ONIxKKuemO/4LGtESceo89xdDYCRzmJs4f/R5mSwOlUp543MtHHvpHlFoTEe8k\nI1cOcGnsMG01a/DPDmJ2tqLUmhEKhDx8/z9QrVYIesa5fPEF5kITbFxxM7baDvS2ehyxAGcOfptV\n7TsAAcde/GdkMhW+0BQrO3bSuPYWAHJxH0de+RoIwDM/RC6bwGiuZ97dy6oVN9G19feIB2cJzA1z\n+sJPlwiCuYFSMc/cZA8HX32cloYN2Gs6aFrz3gwReqMO6a0yD0Qi0dXwJLVafTViuVwuc/r0afx+\n/7tab+PGjUxMTDAzM4PT6eQnP/kJTz311Ouu2bt3L48//jgPPvgg586dQ6/XY7PZMJlM73jvbxsf\nEILfEVxrx9Nqte+LpRHenNi8106CXwXFXIYrJ54ikQwjEcs4f/AJjOY6wv5plBoDH3vk6whFYgJz\nw5w78UM88TlW1XXjH+vB7GihEPFjszex+54/IxEL4Jsd5Ngzf02mkOT6rjvRxLLorQ2IZudINnex\nZuX1ZBbDnFg4RXSoh5QYdtXupGGugDAQZDSRYbxtBd2WNmJzU0zHZnC3i9BUpWyaqyCVashnM+T8\nUzyUaMTiqmWh3kivIc/dylrKVRmnRXMILQ1Mh8cZyS3QJrayzb4FvVBDIp+gQ+6iX+DBrDRjU1rp\nS0fRabrpGz+OYzqIxdxI5brrSCQGcQ0GQKUinYmhqohBJrvqOFAWq6BUks6lKZYqKJpaEG7YQEGj\nRDg0hEyz7mpFIB1Lo5QoIRulqljSICjFr53WXrumkIvSZmpj1NPLda2tSN1uKuubseqtKIGKQkE2\nk8EoNHIqcIqtujVU7XYE+TwkEpTVSpQSJZlYlOpyDKxej16kIurvp16qWpp1AFiUFvrUIsoLc4gr\nECRFnaaOufAcdU4n9myVwbSPoqEZkVCI0VJPZGGMms7NLOYWOVSJ0hiXE1aaWf/Hf8aBl75MWGXm\nUu8R1vWXUF4a4DalnJxehk9VZbxRQ2XBjfjgMzQ7VtCQ0xFyaejbXoerrMbhm2fk0POoCxDuWsOE\nTYTDvAXlrA7bhUM4bZuIz45yxDeCVKUj6B1n57aHcHVtIxvxMzfZw8sv/iMysYxVXXuYdQ9grGkm\nHBxn69q7cDauIeydoOfYD5n2DqJVGpfGY9d2UK5UuHL0KTILCcymJk4f/A5qtZF8Pk2pXODe3/8H\n5Go92WSU3lM/ZWDiJA5jPSOXXsbqaKFSLlMuF3jkk18HILQwSs/pZxiau0h3x27K5SIWVztylY5w\naIabV3waqlUGL77IYiJIIDrP+lW3sGrrPYgkUlJRP4de/Ap6jRXPwhgB/zQWawMLC0OsXn0z7d23\nUcim8LsHOH7iu+SLWVZItjLVdwSTo5l0Ksr6rptpX3czYc84Ac8YfaNHEIuk5PNZzl/4GbXtm96T\nasG1eKvMg+XWAoBUKiUej1+t/Pb29vK3f/u3nDhx4l2tIRaLefzxx7nlllsol8s88sgjdHZ28s1v\nfhOAxx57jNtvv539+/fT0tKCSqXiySeffNt7f5fwASF4G1x7In4/KwTL8xCWU7neLzLwZuvmcrmr\nEwrfrZOgXC6/JzMJsokIR176F+rqVtO951MIBALC8+McO/gNMsUMzkoDI+dfxGSuZcHdR33DOvZe\n//+QiPvxufv49xf+nmI5z7auOygFfdSYalks9NG+aid1q3YQ8U5xbuIo3hfPIZaruHHN3dSkZAgq\nNgbjIyxu2Mr6lg14kmHG+k8SycWQuWrYoWjF0uelWIDzjjrW5YrUBrIsWpScn+vFXfDSqJBxQSvC\nV5cnFD1PS+3tjI6PsqAXYJYbGCRJMDqHrSilqW4ddaoa8hQxKU2o4gWGqmFWW3dBJsMiOZJ9J7Dk\nqhTNduSbd4BWSzKwiAYpyGSk4imMJSEolRRKBYLpIJNZEfHsBJ5RD76cj/PzYjTVAHJzHeKOLgQT\nEwhGRmDrVjKl11wJmQVQq69qCqhUoFAAuZxUIkWbsY3J6YtE9FqMCiMp9yjqxlbEqQLo9YjVamqF\ntSzOLFKKL5IGhBYL4qkp4m211Gpr8c1M0KD+xaS9qtOJdPAYZV3z1c9EQhFGo4vw6BAKrZFqRYpN\naiNRSSCpbUJ45QpGIQStAhyA2dFCeG6UuFkDAmh0rWbDgQEOrnaikKpoca2lRuMk01LHeMNZFFOz\nGGf83BBSctZZISTIoVdUWXGuH+XtnUyp8xhSIqQTUxwmiDCVorvpOlratyJdTDLd18ezwScQFops\n3fpRajo30SFWMd1/nPNnnsasNDM6dY5QMohGb8XjH+fmHY9gb17H/PgVgrP9vHzgS1h1TjZvfgC1\n0Y65tp3siadok8iwO9qYGjnJwMUXiaWCKGUabrv3vyNV6Sjm81w49CTzvjFs5kbOHPg2Vnsz+VyK\nXC7Fw5/8FyQyJWHPBIOX9tPvPs2qhi34ZwawuNpRaa3IpAoevv/vKRVyBD1jXDjzE7zRGa5bdTvO\nxjVoTA4cYQ+nDz1BV9t2isUcR577JxQKLd7ABKtX7aF25Q0ApEIzHDv4DQRCIQtzA2Qzixgt9cxN\n9bBu9S2s3Hw3Ud80gbkh/v2Z/wkC2LzubpIxP87m9cTCC6zpuBG9ycXFnue4ac8fvudk4M2wbDNc\nPtTI5XJKpRJf+tKX+MEPfsCOHTvo6+tj3759OJ3Od/13b7vtNm677bbXffbYY4+97vfHH3/8Xd/7\nuwTRF7/4xS/+th/idxXLp2RYchss+2DfS1wbQ7zcongv+vFvheX/QyQSXZ1J8FZk4No2wTJpAVCp\nVL82GYgHZuk58SMqVMmkY0Q84ywG5xkbPEpH143suuNPcDR0kY4HOXzqSUJxL3a9C0GhgEqqYmH6\nMnXNG9hx62cpCaq43ZfY/+o/k8jEWN2wCYfKhl1XQ9ozhWzlGlq7b8NTiDA4eJQLl58nKShyk7yd\npoQQV7+boCSPuK6JBnUN3vEeekVBjhkW0USStHizKM1OYt4pBEIBd9NOl6aFQr0LaTjG7l2PIvV4\nGcstoGnoYCY5R0ImoDI/R4OpGXNDF6p4CqutGaFCScbjRq4zUe9YgdLt4Wzfi+hdLTRuvp3k/CR1\nbd1khRU8wQlaKwaqdXVMx6ex5sQspL2cy08SzUVpLRmwC43oG1pwaBx0ieyICyUmJQnGk240tS3o\nR92Uq2Vm5Hlaze0I5+aomkx4q4uoJCoMFRmCQIBqYyNT8SlqNDXokkUmU7PUrt7O7OUjWBpWoo6l\nQS4Ho5FUKUUoG8JZkWFSGKjU11MdGGBGDZKSgIR3Gnt7N1Lxa9UmqZTR8y+hsLuorV/9i+9iuUhs\nfoxMPo2gppF6Uz2zqVkabR0IpqcpxaOEagzYDbXIlFqO9/wUidXBltrrccemaRn2kVzdSUEixKAw\nEJjuo6F9CyqNifFqkOoNN+DwJVAEIiRLaSRCEYnsIjPiBOlaB4tWLZFUkOvmyuws15LXqxnKzzMi\nT+DLBtkhaua6jt2kg/OMjZ7i3MgBvHOD7N79B6y68UFc1lYWA7McO/Ek5UIBhcZIrlBA72gk7B2l\nq207K1btIRaaZaT3IEeOPkG1UKD7+gepae/G1byeiG+CYjaFxdLIxPAJYv4pJoeOI6DCbff9JU0r\nd6A1uJgYPE7/+HFkEiWFZBzKZXLpOMlEkDvu/gvsrg4yiQhXLjzPsQs/psG5Er3JhbV+BXK5hmhw\nhrWrbkUikTE1cpKRKwe42PNzVnTsYM32+3G1rMdia2Kg71U0Sj2xqJ/A3BD5RJCx4WN0rd7D9ts/\nR039Kkq5DEdPPEkovoBBY6OYSaE22PAvDONydrBz96OUCzk8M3288spXiMY81NV24feOcd3WB3E0\nr/m19o53i2tHMavV6qviw127drFy5UqOHDmCWq3mb/7mbzh+/DjxeJzGxsb/X0cYf1AheJd4PyoE\nywmAUqkUhUJx9UX8fqNarZJMJhEIBK8byvRWToJKpUI6nX7PnAS+iStcOPsMm7Z9BHvTasqlIhO9\nhzh17mnUSgNqzxiCSgWFQotvYZibdj2Kq2UjIc8YM2MXOP/y/6bW2MhGazPixRROfR3+7AU2734E\nk7mOQGCKgbM/wD/di8PZyXbXWjQiG3lBkZMSN9Wb9mIxujjpmUQ4dpGQRkCdo4MdokZU/eNELa2c\nV8fZESmikYgIrtYwNHiIRXmVhqyCo7o4M5VJcmkBTdYaTqQGiU0epe1Dn6B/+gwitRZpOIC9qkRZ\n18Iq6youjT3NjVsf5oj/DM1FARmlBuOMH3/vWWIuI3dtuptoJoK2KASVimQ2jLYigddmQ7jjbhLh\nDC6ti05TC1a5lRqfALnNzKKwiEFhQJupojU0kNGLsKvsFJJJjtdVqBEuohqbhbr8L1oIqTQmhWlp\nMNJr5f1lK6OxqsEtl+OvJEgZlGjmA1AWwmvjv5P5JI36RuZmpql1XY9Uq0VYU0MlHsCqsSJR2ZgK\nTtGob0QikZAWFrChIl3MUCgXkIqWiIJFaWGimkIQj7PWdA9GlZFqqEqqkEKj02FbKDPGkrunIKgQ\nlpa4sazHIDcgikSINdXgyIoZT/u5ztnNyMV9tAo0TCmq3KJayzlpgbEbVlGf3oCw7wRz3hHsJQHN\nZ6dR2zZTGhmgQV1Las1qzphkqAogmp9GdK4fi8rAdJeZvEuHbfVeEuf3Yxn3YzY10n9lH6q5y4jk\nKqKBce7b+9doLLXMT1zBM9XDS6/8LxptndQ1b0Brq8VY00L66A/oUm7BZKln6NI+8mczRBcD6DUW\nbr73L5AoVJSLBU69/K8Ewm4sBhc9R7+PxdZMcjGIQqHiY5/6GuVKleDcCD3nfs6Er5+1rTsJzo9g\nre1EY3CgUup46L5/IJ9N4Jnp5cyJHxBa9LJ53Z3Ud2xCoTGyGJrn5IF/Y0XL9SQSQY78/B9Rqgx4\nfWOsXX8HjtZNUK2y6J/k2OFvIRSJmHNfIZteRG+uxTM3wHXr99LRfTvhhXEC88O8evRbSIRitmy8\nh1wmQW3HZhZjfla17cRgruXipefZvecPf6NkIJ/PUyqVfskKPTw8zN/93d/xzDPP0NjYSDKZ5ODB\ng7z00kts3boVq9X6G3nG30V8QAjeBu9n5sBy316pVF6tCPymhIvZbBapVPpbcRLMDZ1maOAQCrma\n4d5XCXnHqZYrBEPT3HX3X2GuaSUacDN25QDnhw/QYGrGFguR8LmRIyWfWeT37v4rlFoTQc8YQye/\ni3u2l87GTayQ2dFrXFgKYlKz43Tc8QgauY4LwSlKh17EG5ml2b6SO5MWxPEcKXeaI1YTNWYHslyF\no8MvkrLpCYsX6F6Q4czKkJvNRCYG6azdwPqwFOxqLuJBl1GxpmEzM+I0V8aOU9++mb7MNKpMiWRp\nEY1IjsHchFBrIxRbYLW6iVAlSaqQoj2jpGd6EoXLwUvGFKucW1BL1cz4htEq9SAUkiwk0RSFpGVC\nLs6fJJqNcpdqPWp7I/35MDKBDCUFUKtJFxZwapyQCYFeT7oYxaK04CqbiVpLHNaEEGSrCM6dg2Ty\nqqZALVEjyEaoKpXkS3kECJCKpAiyWVotnQyFR8jbzKjmIgjEYiqNjQAkCgnqtHW4s4PExSV0QKWu\njtS5MzR21KK1tTBCAoVCQalUwhf3oRHrkKUqeBY9NBgalsRgSMjmsyAXYK78giSEMiE0EgmKshCp\nSEosG2MoPMT6hq0kfG6cLeuwx0r4Wmtp82e5oqtQqpYxWhtILExiNBmR2EU4MnOoXauYu3wU850P\nojt3hoWRc/R6PFgPP43to49xUaeivDiOYjZNMBtDhpiVu+6nwdZB2bfA4NnD7AtcpFZhZ+stn8Lu\n6kSQzXLl3LP0nv0ZFl0NEzOX0CXCaExWKvNl7t3zX5FrTQQWRhntO8hMcJwGeydbbvokWpOTlmKB\ns698C6VcjUZt4ti+f8FoqCEa86KQqfjwJ7+MWConHpjl/PEfMO0dpMnRhXvwGBZnG4JqAY3WxCdu\n/hqpxTAR3yQ9F1/AG59h65q9CMViXO3XodAYiUW9rFi5i2I+zdmDT1As5ghE59jUfS9t629GIBQS\n9U5x+JXHUauMjI+cwjs3gtlay/xsP5s23Uvz2pvILIbxTvVy4NDXoVpljVzFwtgFjPYm8vk0m9fe\nSWPn9YS944z3H2Fw8hRKmYYNaz+Ed37oN0oGYMkyXiwWf6maOTY2xmc/+1meeuopGl/7Pms0Gu65\n5x7uueee39jz/a7iA0LwLvFevayXmWs2m/2NxxCXSiUKhQISieRqWeztnATLYpz3wklQrVToPfE0\nsaiHGz70xyg0RjKJCJeO/4ih6XM4jQ0sjF+gmE6QTy+Sy6X4+ENfQixTEJwf4ezppxidv0x32y4U\nZTApTIi1NQRlam66588RVmHAP0Ds9A+JxBZYs3IPa6VNCNV64gspDuvncW55GLFCzcHZMaQzM3is\nUtZb17Aio0Y8Noa7bi2Xqj62BsVURCJ619YwOHAAqQjaY1VOKBWMiyaRLHio3XUvz17aT0haZKt5\nJW6LBG21Sjq4gKmmnqpOizidpU7fwPTsZW5yXsdznvOsK5jIu/vR7+qm3ylGNFuizbkKgMRiEJd2\n6XSSLCSppGKcKUUxmNrpdnajcZfICAQkc0kaTA0I3VNUlMqll7tUjSA7R8XhIJ1PUy+ph0wEo87O\nSpOVEYGQi9Eg3WOzVPbsJlfOLWkIMvNLwsTiEkEAIJPB2tJCf9RPhiI0tCM4ehS2bQOWkgsbdA24\nKhrmK7ElQmAykq7k0ARiCOw15Epu8pU8KrmKgjCPXWenXBIyE5nDKDIuWb/yeSRVwOFC4PNR1Wqx\nKC3MLs7SVJVTlcmwCrX0BftQiBV0tO2g78D36AgGsSksDGgEdITEWCqipVTH+i7mB09R23Ans5pF\nnH4oNbdQlvQyO3EJk15H5+2foHT8CNnL5wk/+wOkGzbjEOlIyYVscKzHpanBMz/P8cgkaXEVuSDH\nQ60PUNao8Fw+zlD/QVKFFIqSgI8+/E+IFRrmxy4zM32e/ZPHWFG3kapUitZWh9ZaSzzuY0PHTai0\nJq6c+gnlcpFwdAG7tYXbHvifCMViCpkUx/d/lUBkDou+hotHvo/N0Uo0NI9GY+aRx75NuVQgND/K\nhTNPMeUfYdOKW8jEPNhqOxALKkTDM3Rv+TDpRIThK4fwv/oN4ukQ2zc9SPOqHUgVaqLeKU4efoLW\nho2E/JN4nhtAqdTj8Y/R3X0P5sZ1UK0Q84xy7NgTiEUSFmb7yefS6M21BLxjbO2+l9Z1ewjNj+Gf\nH+alA19FKVWyZeO9VColGrt2kkpE6Greit5Yw8XLz7Pn5j/6jZKBXC73pmRgcnKSRx99lB/+8Ie0\ntLT8xp7nPxM+IATvEu8FIXirBMD3co23wnJFYtmju/w8b+UkKBQK5PP598RJUC4W6D/1UxY8w0gl\nCnpP/RSrrZlIeA6RSMInPv2vCEViQvOjnD/zDO7QKBtbbyTln8VS24GkVEWlMvDwx75MLr3InG+C\nY8efJJ4Ks2Xd3TQpa5BZHBgSBS5ZA6zauZdSNs2hmSMIRkbwFmJsbdtNe9oCvgReT4GT9VbqbS2E\nE4scDPSRWm0nJVxke8iMQy0Dh4MLZ55ll7KeunU3Uxrpo0cUZGVUxIp7/geR4YvkiyLWbn+Anksv\nkJc2YRtdICdVIG1sQe4PU9WaSOVT1Ff1+CU5sgtu1mfVDK9sJGvSQT6JoSTBYHK9FggVQatfGrQy\nHB5Gv+jh+rb7icmXCEI+Mk2lq4tysYxapoZMhqpCQSaUWXIMvFb+TyVTSy/39BwYjeRKYTbXbCYi\nmeGsaYQV50+gqJUtEcBMhqrDseQ6kLwm9MpkQKXCUXDgjruptLsQxeOQz1OVSEgVU2gkapQVDcfL\ncTorZZKFJCpnI+IRN+WWVpwiJ96Ul1ZjK9G4j5VGJ2K1jpH4NOKajZSKJSSZDHmJiLJSTml2Flpa\nMCvM9If6KYUTiFtaMMbzvJrp45NrPolWpqWqVpEa6EHf0E6+5CZtNuNKZRmXedns2szIpf1o8pCW\nQmMWho6+SLu6DntERK8yQWz4FLXtbdQYahC+sh9jcYrgrTtYbe8iVUhwqjqLzK5DMLWA1udDaLYx\nbc9T17CSztXdXDzwHWThOCq9lbNnfoLB1IhUJgNBlU98+H9TqVYILIww1Psqs4Exupq30tF9O2qD\njZZchhP7HkejNiOWSDn6/JcwmlyEQjPo9XZu+r0/AyDqm+bsse8zH5qkvW4dk31HsNa0k88kMeqd\n3PShz5OMBQh5xzlz5mnCi162bbwPo8VJ48rN+Kb6SSbDtDRtIR4LcuSFfwaqhGMLbN36kaujk4Oz\nwxw+8HW0ahNDA0cwzI9isriYm7nCtq0fpXH1TpIRH97pXl7a/yUkQjFr1QYCs0MYbY0suK+wdd3d\n1LVuJOydYOjiS4zMXEQt17J+3YfwzA3+zpABt9vNI488wve+9z3a29t/Y8/znw0fEIJ3CYFAcFVg\n+B/BteLBa/v2b1zjvSYEy8KafD6PRqOhUCi8zoP7fjsJ8ukEp175BiZzHR/6yN+AQEBgZpBTR58k\nkg7RUbuO2aHTSypy7wR2ewu33vsXLEa9BBdGOfLUX5AtZNi+4V4UZSG2hrWUQwESNe2s6/wE6XiA\nk33Pk54YIi2usLP7w9RoO8Aqx70Q53STk/rOu5nLpfHNnae8ME/EpmGXaD2WiTzCSQ+9tXqm/QHW\nxwSECTDcZGd47iR19RYUTeuZPvU8g/Ikcn0NekUDx/peZHL8FC0772M6OIZWa0ETLDKYnKXrujsZ\nLgdoL6kYlQto0Topj84x5j/DBmszotoOZhIXqeSibNWtYlChQi5VksgnUOQrVFUqenwXCaVD3Cvu\nQGZ0MhsbRZQuIZRIUGi1ZKIZ1CURSKVkKnlkIhkigRDyefISISKBCIlIgiCbpaJUksqkaJY2U6No\nYKCpk9P5CczTKmioLpEKpZJkwYNGqllyHAiFIBYjFooxKowsRN00tLQgHBsjsboDuUiOKJtDotRi\nVGjwprxUqhW0Nc0Ijh0CkQin2klvoBen2okom0Ohd1JxONBeGcCX8NFkbaIY9KIyWigbrSSjOURe\nL+j1qAsSfBkvNWvWkbx8CIVZgUS4VKGy2lsJnj6L+vpd2JNZvKISLVM5+nQVMsUMDmcHXncfDQol\nkVQQvaMWyYYt5E/vY1P7TgKKi0wuzrAg8OG4aSv+gV6cx05wqnMS9AaUHhHJZByVo56OOz6Fy9JC\nyD3IlYPfZzg8xLraTdz44F8iVWgJukfpv/QcYwuX6WzoJh7zYm9YRa1SQyg0w86NDyCQSOg5/iPK\nlRLB8BwtjRvo3v0JEAhIx4Ic3f9VFtMRqpUKl4/+EIu9haBvEqu1kdse+GuyyRjBhRGOHPhXvLFZ\ntqy+k0TEg8XVQTGfxmaqZ9v2h0knwgxefBF/cJrFTIQdWx+isWsHCEUEZ0c4efgJHJZ2psbOMTPV\ng0ZjwuMbY/v2j6F3raBSKhCZH+L4iSeRShQo5wcpFrLoLXVEQjPs2PwgTat2EpobwTc7yHMv/i90\nSiNbNt2PRKakdf3NZE7G6WzahE5n49yFn3HzLX/8O9EmmJ+f5xOf+ATf+c53WLFixf9h7z2jIz/P\nK89f5ZwTCqiAnNFA59zsZjebWSIp0VRTFCXbGvtYDpoZ+3jHPmP7HO/seHa91qwlWxpZspUtUaIs\niSJFstk5N7qRc0ahUKgAVM55P0DoadKSKFIUZ+XlPQdf6lR4Afzr/z7vfZ5777u2nl9FvKcyeBNs\nGRNtxWa+HbOgcrlMMpm8Q9X/rNmEXC73jrkT3i1n3GIktn4PoVD4E5UEWxbN74SSIBUNcuv8V4km\nQlRKRVJhP/lUnOWZ6zjdvTz4xJ9gsLiIR9Z49dz/wBeYocGxDZlEjtHiIrQ8hsHkZN+xZ8kXs8zP\n3eDCy5/FH1lmd8+DuB3d2OvaKfpW2DDIaNh+nEAmgGfuFtMvf5XlfIgHG07SoXLSGIV4NMBihw17\nYy8rhXUCMS+3tttIumwc1WzDZahHc/g+Qv5fSp4oAAAgAElEQVQ5DvjF9Bo7kXlWmVBlMB64l97l\nLKVqgfVClPtaHkbhbmdq8GWUqSLrKuiWOBlUx7m/9igXZl/m5L6PsLI4SHbgBubtB6ntOYRgZYVX\nSpO8r/MDFMJBioUc9voeQpkQ+eU5lpUFBFI5FrGOlqSEUmMjk/5J3EI9urKQTI2JYDpII0YE6TQR\ns5JsMUudSI8gGCRWZySZT+LUOhHMzlJpaGAqMU+7qR1haB2b0sqMoULYv0hnyYggEqHa2spy0otF\nZUGdqyCIx6k6nXjiHuq0dXh9E7gMDQgTSTZkZYpSEfbCZmqi2OlmIboAgF6mRb+4BmYzcruT5fjy\nZlJlOIZNW0vWYqE6M0XULKfO6CYwexuB3oDOVEulWsRWkiC22ykH/KymA6idHYxPnsXp7KEqEWFU\nGBGmUnimruPc/yBikZSFjJeGuICcTkVKUKBO72am/yV6yhZGW7R0xiTMavLUKmooboQoWc20Y0Gp\nt5JPRlHozPgLG9gKMiwGBwKVmh07HqGlcTeri0NMTF3Atz6PUqbmnr7HkSpUTA6fxrswgt87hkaj\n531P/jlWWyOJyBq3rn2bSzf+mQbHNlq23Utd6y5sta0sTF9HozYgQMDCxGXiQQ+To69Ra2/lvsf/\nmPr2fQgFYm5c/xZz3iHMmhpK2TRKjZF42IdYKObBR/8QqVROcG2Wi+e+yMTMJbra76HG3YW9qQ+J\nSEpkfZnOtiOkkhtMD7+Gd/4Wk5PnOXz0WXoOPIazZQ/CsoBbAy8gEyvYCHlIR/1QzLI4d5Odu9/P\noft/G43OSnzDxytn/55kMozN3IBQKMJc20LAO0m9o5u+3e8nGQsyP3GJc2f/gXRyg5bWg/h9U+w7\n+PS7XgxseaPcfd/y+Xw888wzfOELX6C3991bz68q3mMIfk683dP7VjiSQqFALv/ZiWDv5BDjz2Ik\nSqXSnYjhuwOK3kklwYZ3hltXn2Pbjoe4p3UXuXScpbGLvHr2syilalQqI2uzt1Dra4iuezi87ymc\nrXtYX51meuIiw989R43ByYH9H8Ksq8VicJIN+qjvOYyttp3l9Xkmpi6Q8C0gs9g5efhjKGwOKrYM\nN899jeVd3bhrW+lP+zAODhELecBm48mAA9lCkPKKlwvuKqJVLzXRMreiAdJWPd6ZdboScthzkoje\nyHhmEmvLbtoH/WwkIoxuM1K/bmXcmGNq6BscDwqJHN5OPOtnJZek07CXwfkrtBhaUS+ssDR9jQ90\nn2TSZkIn03LOf4Wuvl2YlWYmItcx6u0A+JNrLEUX2LXrCDKpko30PGWllHQ6TbaaxYQU1GpSxc12\ngCCToapSkS6kNy2J0+k7/gIqqeqOv0BWXN1kEISizeeYTDgkDlaai0wv9NOVkIFEsjnEKNUguMtU\nKFlI0mZqI1WcwCtP4m5pITVzFe2OnQgiaaoqFRalhfH1cXxJH25tN9WGBgSrq1RbW6nT1G0OAxZE\nZCUSytUqzubtLKwOUXLvJbjhwd5wHIlaz5xmnaZlP3R04CormNdLWS9vYLI1UpOSMMkCNdIatJEc\nWauRjG8Jo6uZcrVM3GrAEctxS+Cjre4wokCQuXYhYq2eZVUARTSN1NVBcGEYR9sDBFfPonO2Yi3K\nSPqX6KyYiGY2EC+v0lHTwfT0Daq5HBq5hhwJqhIxxXKRdC6Bs3EXemsr/Ve/SqacRSCAuYHT2N3d\naFUmtFoLD+98mEI2ye2rz1HMpglFvfR230f34U1//FjQw9mXP0OhmEMsEjNy8VuYa5rweydpcPXx\n+OG/IhFeJbQ6wwvf+6/E0mEO73iCbDKKvbGPYj5Lra2ZpraDJKJ++i9+nVg8SDId4ciRX8fduR+B\nUEhwaYzL579ErbWF6dGzeOb6kcu1+NameOCh30NtbSKfSbA6d5vT576ASqFFpTJQLpXQW5zEY37u\nPfhRnK27WV+dZnnmBs9/7y8xaWwc2P8hNMYaLM52Cpe/TYtYhEZt4er1b/4vYQby+fy/YjQDgQAf\n/vCH+dznPkdfX9+7tp5fZbzHELwJthiCLdertzJpn8vlyGQyqNXqn/t12Wz2F96QtxgJsVj8OkZi\nq0Vw94zA1kDh3UqCX7QYWJsfpP/acxRKWUr5LIV0nHR8A69nhENHnmXPPc8gFApZnL3BD89+BoVI\nhsPRhVpjQq01418epb3rKM0dh/AH5hm7/UOunf8yYpmC/bs/SG19D3ZjPaHVKUqOOsyOduZXh9m4\ndZGRC9+kqjfwaNdjNFnbcSaFTGU9hHoaUdW3sirJEI35udVlQO9u47i6D0dehvbEo/gNYrYXzFj3\nHCOhV3DzwlcRIMCQqbAW99LfbaBV5aYuLSCa3uBwWEW41cmAfJ3jNBBRCago5BSX5tgVUfNqcZLm\nmi6ctlbWFRXikTWykSC9PSfRyXXMjV/E5e4lI4GXJr/PAYGL1t7jeBNelNEMioqUSq2FUC5ES1YJ\nKhV+SQ6JSIIlkgeVihXhZoSxPp4HYFVRQClWYqhIEYRCRGr0mwyCpg7h0hJVu52F/Bq9NdvxFEMI\nJydRNncyn/PRYe5A4PeDXE5Zr2M2OkuHqQNNIMw4QVwtu1meuYFFa0edzG/KEHU6iuUiw8FhDspb\nEVRBIJdDuYzMaOPM0hl2hTWIG5pRGQyIVGri00NUTEa8CwN07XwItVTNTGKBupwUsUyBeNXHuk3L\nbGqJvc59WH0RFo0VatU1SMYnidrNpHzLaB2tlKol4qISTk+UQWWUxbGLRMRFPIUARlsDA/EJJKEN\nrhTn0QuV+MKLqMx1KKJx0loFVks9wdw6prwYsVrLoGQdVVnIqiLPoiJPk7KOA20ncfQeIRTzc+Xs\nPzI+/grdbUc48b7/QF3rLvKFDFcufpX+iZdpc+3EUdeJo30PBr2d+cVbWG1N5HJJlieukAh4mBo9\nQ3Prfu5933/A0bCdSqnApUtfYck/gc3gpFLIoTPVEQ4uolboOHH/71GtlPB5Rjl/5vMsLA3Qt+0B\n7I291Db1IRVICAUWaG05QGR9mbmxC6zM3WJ68iJHjn+czr2P0NC+n0qxQP/A95FK5IRDXvKJDYSU\n8K+MsGvXY+w++lEEAgnB1VlePvsZstkkdlsTUrkKq7ODgHeC+roeunpPEgl5mB45w+VLXyaTjtLZ\nc5K11fH/JczATyoGgsEgp06d4tOf/jR79ux519bzq473GIK3gJ+XIdjqwxcKhZ84PPiz8Ituxj+J\nkbhbSbDlhLj1WD6fJ5fLAdyJGN0KBXk7mO5/iYBvhqMP/C5qg42If5GxWy8wNHeR1tptxDdWkSu1\niIUSioUsT3/gvyCSyAiuTjH6o0+zEphmW+s9uF3b0Na4MehqSEXWaNv1ECq5luu3/wVRLMF6dAV3\n+0Ee2vdBBGo1Ge8ipze+QnpXL1K1mRuey5jOreFL+LC09nGy1InAnye6sMBZByCskg75OLdyjWpT\nE775F9m1Bi6xGclqjNX5i+xVNNF2/0fI+Za5bpzg4dYj6E5f5GJuiqy7jhlVjoBWwam2p5h87WvE\n3Ab2JUSEPWEWD3VSlSnZE3czW46xGt2gvaxHpTFjUpgolotkkmEySglj/lvUCvW027oAiKQj1CcL\nyOxOEuUMWqkWwXqaitlMMu/bzCTI+KhYLKQKa7h1bkivgkZDqhDErDNDMrUpSSz+mEGATYZApSIV\nS6GX69ll7OZ6/QLV/jOo2zed2gTpNFW7nWQhuclECATo8wJ0Nhve5Cpxu5GeZT8CqYrKj6NcdTId\nuVKOciKGUKOhYjAgHB9HZLdSyRXJF9OYLJbNa0qjwa6pY2z8PHqdDYnox7MBSisBU4aGpSUoFhEo\ndeSiq2htLgTTS9gqSsKBeZosFpq7mxl+5Us05XIYRAYuRy4TzAcR+AVoUgUeevRPuPjKZ9lh7kEt\nVWMZncNmsFA2QmroPEGrhdvrt7A5Oxla7ae2oZ4RRRxJ0IM7rcFjiNOh3UaXwsWyQcDVteuYr6yT\nLWaxtHbSWd9NPOTh6ot/R53WQTTiw9HQx729f0jEv8DI5Bnir32eaDrMgQMfonnHfSAUEvJMcv70\n50AiIbA6RTmfxVzTyNryKF0dR+ne9xhh/zyh1WnOfP2PKFfKHN77FJVykYbuI5QKeZzpGPXNu4lF\nfCy+/FlS2QTZbJxjJ36bmsZN0yfv9E2uXvkGNeZ6Rvp/gG72BgqFjtXVce5/4A9QWxvJJSOEPCO8\neuazaBR6dPoapFIZZpuT1YWbnDj0G5hq2witTjNy80Uml65hM7o4eOhpLI427I29DF96DqFYjEZt\n5tz5L3D/A3/wrhYDdw8+310MrK+v8/TTT/OpT32Kffv2vWvr+beA9xiCnwGBQPCWGYKt+OBKpYJG\no3nLE/r5fB6pVPq2+vf5fP5OJsHWOn+akgA2i4disXiHwdhiDnK53J0ksDe+5qehWqkwfvVfGJ88\nh0goopTLUC2XiQSXyKRjPPLEn+Bs2E42FeXmtee4ePvbNNi7MFvrMde1ICxXiG542b77MVQaAwvz\nNxi79j1uD7xAc/Nedu55nBp3FxallRnfMGp3GxWhgJXJa0RvX2Zo4CUa2g9wYteTNDfsRB6McJMV\nUtu7wWQilgoTnxlh1FyhR93E4ayFlnEfQnst8xkvLWEBlUKehSYjL2QGSZWziPbuZz65zKuDz1GS\nismM3mY0NkNu13aO1h6imoihb+rBtzrJjG+EU+LtzCWXCKuFaDu349DW0bCW4kX5Mm5DA20xKSuC\nJC5rB+vhFbzeMRImFS2mFgQb67j1DeQFAkaXbrIjWEGiUBKIriDL5LEs+Kna7cxlvbiMDcgXPFTq\n65lKLNBuake87KFqtTKd89JsaEa6EQGRiBVZFq1Ui06sQrCwQKbRxVpqjWZjM9LgBkqdhSvFeazr\naWqb+hAsLFB1ONiopChVS9SoaxBMTaHq2s7Q+ghVuYyOvBbB8jLVvj4QiVjPrJMpZlBvxNHbG8Fq\npbqygie7TqlSRFwpU9uy4861ohIpuDD0XdrduzDVbsq/REIRS/kg7nEv2GzMqrLky3naTG0IK1VE\n8TgrG/M46zqR2+rwBmcwCxUIzUau+K7QrG3g4ESKqVoF1ppWRIkk66kgja5eJqIz7CiaWdQUOCxu\nJlaIc1/rgyS98+xpO0Ei6ueAoQ+T2YVYLOVozk5iY4XZ8AyuQBbtRprL5gzBOg2tZT2tYivNrQcQ\ny5RcGP8hnvIGbpEZrVCBs74XWRnWkj7crXuIRtdYGbtE1DPDzMQF+va8n0Mnfwubq5N8OsGZC18k\nEF7GbnRDedNLYX1tDrPRyaF7Pko+m8Azd4vzZ/4B39oU23e9H2frbmob+xBVIBCYpbF+B37vOJ6Z\nG3jnBpifv8HxB36Xjt0PU9+6l0x8g+u3v4tQICYRCVJMx5GIRawsDrJv3wfZe/RZhAIha54JXnjl\nU1Ap43R2oTPVUNfYS8g7Sa21FXfDbvyrU0wOvcrNq98in0uwbecjrHnH2Xfo3WUGtu5Tb1RBhcNh\nTp06xV/91V9x+PDhd209/1bwHkPwc+LnmSH4afHBbxVvdVbhjUqCnyeT4G5Lz63iY6tl8MZQkK0o\nUYlE8hMLlVIhx62zX0EqU/LBZ/+aYj5DYHmM8+f+gY2En71dDxIPeLC4O6mUiphNDg4d/zjpeJDF\nuZucefXvyBQzm5rp1r2IFSr0s2ZuJ16kq/kBkvk4537435EWqgSTa+w9/DTOzv0AeEevcmbwO6g6\nWwnlgoyc+zpqbwiPNM3eHSdosPVQyGfwLF3kYrsCrb6GRYGA+NwsuXsaCEgLHFM8jmXeR37fHvrX\nh3g4UqS5bwfZUolbl77OUZmbTufDbMiXmW7NsKv7EWav/oCbkiCtMQuVods8Ku/E12BmaPYGTzXe\nh1copqas5EJxFsQKjjYcxTv3bZwt7cjlcgZHrhATlthfqSMyNYludI6SokDKoEIvySBfz1FpbCGe\ni1EnMmymHHpXyPlvo10sI5hfINPsQiqQIBaKIZ2moJBSSpZQSBSQSm3aDBe8ODSOTXZAqdw8+Uv/\np99ATU09akUU78wku6an78wiJKI+tFLtprOhWIxWZUQikhDPxanU9yK+cgV+fCOO5WN0mDvwzLyK\nW32caqVCtqaG9OINumqdLGfmyZfyyMSbRaqwtg5iMUp32YCbFWZGKZISlSllIoCSRl0jgVQAR10d\nlvl5xlJ+kr0q1ECtq4fZmZskpBscqz9GKbKOJpGiofEe1jJrONzbuNL/HHUNu1FY3WxMLOKq68Vj\nSdA6K2TRGqenYGQ2NMf+Qg1DsihdAgMph47rqVX6ZAeRSct823+FilbH+xR7qFVYWbIruL48hOi5\n75EQ5Nm/9324+46xtrHI/Pwgr33lnygJKtx76GM42veAQsHqzC3OX/onlGojnpmb5KLrGM1ugp4J\n9u5+gpbe46x7p/F7J/nhK/8duUTJ4f0fQq5Q07rzfso3f4izmMHp6iWwOsXM+HnyhQzZfIrjD/we\nxtrNjIiF4fPcuPltrKZ6Bq99B5PFjVyuxusZ5ZFH/hilyUUm6mdtcYDv//C/YdbVYtpwIZYq0Zkd\nLE5f46Fjv4OxppHQ6hSDV55jyjNArcHN/iPPYHa2Uakc4fa5r1GpVFEpDfzoR3/LAw/8wR124t3A\nTysGotEop06d4i//8i+555573rX1/FvCewXBm2CrEHizgmArPlihUPxCffi3+rotJUG5XEar1d7Z\nsH9WJsGWkkCtVv/Ez3tj3vhWCmMul7vjB741lJhNRhi48M/MrwzRUr8Tz+RVDLZ6Qv452lsO0Lnz\nYSLBRdZWJnjp1b9FJJJyZP8pNFoTVkcr+VQcW00LroY+4tEA51/6NLlUjGwxy7ETv4WloRuA5eHz\nXB99EXN9O9NzVwnNDSFO5/Ck/Rw//hu4GreRL2SZv/oCZ22LaGrqUeQ3KA+9hnh8ihWLiEdlO7BX\nLOSmxxgzV5j2jeASGxlauAp1TlbOXMAWTFOX0+ITyRnLLqPU6jA8cIqJRJBbYxdx7b6PC/Ov4Vu8\nxH31x9F7CwwLhKwf6GMoNsH90k709kZGMhMU15fIqGQcchxCWCwRzISoM+xnZPosG3ODPFZpw7y2\nzhJJrHI9qWPHCEuyqNIhKpI81b4+4ssROlTtVAsy4ju7UYQqlIT1lONRkktTaCMeBGkrpFKkROVN\n6SCb1H/F6SQZS6KVaRFEQ1TValKF1J2CQJBKUVEqMVVMbDS24Jnrp76gApGIRD6BxWDZLCx+HFS0\nZRpUFgoQWSybLEFTE7FcjN2W7cRL4C/HUacqyFwuktOv4I5YyZnq8SV9NBoaAYiXUtTITESjq6+7\n7u1qO2viRbLRJVzaB1FIFHgTXhy1DgRiMY6yitVyhHasmGtbeOHmlzklOYLV0sqFkX8g3d1GQ1rC\n9UqAzvp7aZysJRCcptHWwi3pKAe8SW4pwzgCEcSBBdLGWhyL60xbNeyZSDOgXMZZUGLRSPkGp9FU\nZByz7kGRzzNX9ZLIxWnrjyBSlbnZ5Uatt+GP+pCc/g52nZPsRprUtgPU1LWx6Jtn8eXbqApV/OnA\nplNffQ/JVJjVqZt87/SnkEtV7NJZiK3MYrU3E1gaZVffwzgatrOxNkf/pX/GtzaNRCLj2InfxuLu\nRCAUMjdwmtHx13A5uhm6/l0USi1ChGyEV3jkiT9FZ3GSTyeYGznLpRvfxKitYWb0ArbaVnTGGuIx\nP48/8r9hrG1i3TvN0sx1bk68TIO1HVfjDpRaI6077icRD7Gz6z6stiaW524yevsFwvEAWrWRPYef\nZPT2S5w8+fvoa9tIJBJ3Dg1isfgXVij9NPy0YiAej3Pq1Cn+7M/+jOPHj/9SPvv/D3ivZfAm2GoZ\nwOaQoEKh+FfPeSNV/4vMARQKhTub7ZthS0kAm/abdxcDpVIJgUDwOmZgS0kgEolQKBQ/1zq3IkUl\nEgkymQyhUEi5XCaXy7GxusDA5W/ibOjj6MO/j0plIOib4aXTnyadjtLg6kOu0qK3uFhbHsFR28b2\nH0uVpoZf49L5L5GIB9l/+GkcrbupdfeQjYYIp0I43dvwekYIzg6yOHgG//oixx/593R2H8Pdshv/\n6gzXgwMoa+qoBnwUF+ZI9l/CV9zg6NFfZ0/7cVRSNSueEc41gqS1A5HJQmF5Hr9JStSi5X7rATqX\n0zjdfXj0YJEaaasYyZw4xpA8Qi7ko67rAClJlfHR0/TYeulRuMnfvEJ31YJ9+z28kB+hLBRgqu9E\nhpC9ESW3zXmWEx52pDSkjVpa7N2I5xcZnrtIOrCCqixAks3TdeLD0NXNcHyO9pwa9c7deJNeVIk8\nypyAlFHHbGQWXbrIUnaN24UlFqOLxJMhPII4t405AqoqhXCQzNQIMXEJic6ETVuLYGqKdIMDfzZE\nk6EJwdoayGSsiNPo5Xp0Ui2CqSmqHR1MR2bY49jHeGIe66wP6bbtTMbnNlsR62EQCMBqxZf0IRFJ\nEMaiGAy1CPx+8rU2FpMeOsR2RLE4M+I0jeZGhGIhs/EFemZiiLfvZD67ujnrAKyuz6OLZEnkYpt/\nN8nmrIu0BFPz10hJq/TY+9AaapgKT1GnqUPs86NI5Zi0QL22npH1EUTlCo60GJ2hhsL8DPGuZupW\nomzYNIAAh7qWqYVrtLTvpywXk719hfq0jCFtlm5pPWNtBhxyG1G9jHFDHpXWwjnBIpVqheOZOhTF\nKsmNZeqrWlqrRiIJP8/XZ9iw63ig4GaHqgl1Ywf+VIAXJ55no5xkv6GHJms77q6DlFNJbgcHkZps\nZFeXKITWEKayeFdG6N3zfvbf+zFKlRIrnlFeevlTZLNxOtsOY65txt7YSzrsB4GAlpb9+FbGmB+7\nwNTwaQKBOU4++h9p7D5CQ/t+kuE1xqbOo1EZCfsXSEeDJKMBfKsTHD3+27RuewCVSse6f4aXz38O\nmViGTmNBJlejt7rxLQ3T132SprYDRELLPw5i+iISxGzf/wT2pl7qGvqI+Bcol0uoVUb6b32P/Yc+\njKN1B1Kp9E6LcuvgUCwWX+d++k4oqIrF4k8sBpLJJKdOneKP//iP/z+dJPirgPcYgl8Adw8P3k3V\nvxvYUhJsBSO9WSZBuVwmnU4jk8mQSqVv6wsqEAiQSCRIJBISwUWuX/oSpVIR/Yaf5ekBlCot0YiP\nR+//JHqrm9DKJLcvf5Op5X4a7N3sO/JhTLXNmO1NZBIbNCi2Yza7GBt8mcqN7xNLBFFrzDz0+J8g\nVagol4rcOP0FVnIBrCYXI+e+jtXgIhnyESbHM0//n2jVRsKpEGNnvs6IcI5mbQehm2ep5kQU/F5y\nTXp+vfFJ5Go9kfF+BjVZFnQV3Hoj46ujKGoVLNqS1Crq2TWXRnCohzFBCHdazB7bCSqWFm5NnubA\nXI7mNjXjlXm8ojTl/Qe4nrmNPJnlfdt+jQlBAndByZg8wDXfBB9qexL9/BUWyWO8NsjY6gCrmiqP\n3PM4YqmC4tkYAquNUCyEJJtHb2+kKhKRqWRwIyOszTDkv8xCdAFbJoFJX4dVJqXH3ENrqITAKGNA\nFcekMKHeiBOWaBlMzqC4Ooi+LYmTColqDq1Mu/m/S6ep2O0kC8HNjTmbBamUfLVElSpGhZEOXTND\ndevsvHUNkWMzR4BkEvR6AOL5ONus2xi/+QKuxnuRKJXEp4bQ1+gpR6NolTaKghS5ao5MNoOhthnh\nhYsYFUYoeIlkIxgVRtZDS7TVtSIuxPDND9Lecy8A+nSJqAKsVidyX4CKrRabysZaco3mSgWVyoAi\nX2EgMIAAAfu7H2b5wr9QJzPjbN7J9eo6bSoVTUUNo9F56hyHcIzJmfeN0oaZKxk/htZtVK0mzk6N\nIg1o+aeSj52rUnItTlKrQX5r9ycYn7rEolPFPsEOYmoxQ5FpiqUIJbOLE+EyIoGGQacQ0+ooteeW\nyJoF7Dl0CoOjhYWVCabGvo/kuwtENWLed9/vYnC1Es9EWB46xyuX/x6LxoZl3UlO7qHW2kJgfpg9\nez5Ajb2V0NosU1OXWN9YRqnUc+z+T6Cr2SykJq7+C5OzV7DbWrh+9ksYjXVUK2XCER9PPPW/ozHZ\nSUWDzAyd5sKNf6ZG72J+4io1jna0BguZdISnHv8LVDoLIe80o/0/YHj+Mi21PTR1HMLibMPibCN7\n7mt0qQ5ittQzfuuHFPJZwgk/OrWZvYdOMdL//X81QCgQCF7HKpbLZYrFIplMhmq1eoc5eLsDy1vt\nyzcWA6lUilOnTvHJT36Shx9++C2/73t4Pd5jCN4EW8N1wB1ff/jJpj/vBAqFAiKR6Ge+X7FYvNOe\n2CoG3iyTIJPJoFAo3nYxcDe8k9eYGT/PgWMfpXvH/VTLBabGz/DalX/EpLGjN9WjMdYhkSlZ98/S\n230f9ro2PAsDjN/6ITeuPYdRb+fAyY9jc3dR6+xiZWGAshDUGiPLU1dJ+JeYuv0ScpWe+97/R7R2\nHkFjdTM08CLjsRmMKiME1xBEokQGr5A2qHjfw3+Eu347RbWSW56rXDKncJoakcaTyK9cJ+SdpqpU\n8Jh0G23LScT+IAPyMIJkEsXkDNOJRa6EB1mcvYF1eI6gIMPlwA38wTnEjc0M1csZiI6xTdWIrX0X\nuXyK41EDhY5WrvlvUFpdIaOQ0Cww0T25zpJvHGVjB36njv71YfbveIwWRy+e1TG0qRISeyPhfBhp\nPIZd7ySllnHec55swEvVoEeuM9Jj62FHQomuvh1PIYRJYkLmWaNkNDJT8NFqbMWwkcJsqCNjt9Ds\n6iM6eZtZzwBJqx6d2oxZaUYwO0vZ7WIquUCHqQNhLI4gkyFiUpIpbqYo6gJRNvRSvAkvqkKVWmcX\nwoUFqrW1FKQiFmOL9Fp7Sc9NkDSoMTV0sjZ8CbHRhiaUQm61IjQZCaVDFCoFNEUhplQZRCKqNhuB\ndACj3Mjc7DW6arYht7uZnjhPfeu+zfcUCcEAACAASURBVGvW42G8vIbaXk+9L021rg6JVMGcb4SG\nlJhqUxPp8BrXc7Pc33g/epWJhdVRzPM+1EdOEC7EqUjE1AYz+A0ShCIRDqmFgbFXya+vsdRoYmzp\nBq1NewmLcvSFxezc834ShTjHBU2k6mx4hy/R3vsAgtVlxvV51IkcWamQgDCDOBjE7GynKSmi5fI4\nIVGeF9qqCG01tEVFuCIl3Ao76UiAKasAtb2BmGeK4uIcIp8Pb3CGAyf/Hdv2vp9sJc/8/E1+9Mr/\ng1AgpLv9CDZnx2ZbIbhCVSzB4d7G4uwNfDP9TA+/Riwe4P4n/hONXYdwt+wmuDrN8ORZlDI1ybCP\nfCpONhkjsDbDvfd9goaOo0hEIvyeYV4891m0CiMmYx1qgw2D1YXfM8a2jntx1vfi904yPvAyV698\nHZlEzp5jz2Jv7MXZvIugd4p8Po1MquT24AtvKi3cYia3WMUtVdMW3b/Fuv68zMFPKwYymQxPP/00\nv/M7v/NeMNE7hPcYgreILR1/MplEJBL9VBvit4s3m1XI5/N3vA22Aod+lpJgS6erVCrfEQZj5tbL\nXO3/No2OXhJhH3KVDpFQhEKm5Nef/hvy2SQB7xQD/d9hI+mnr+MkNY07UelMGKz19F/6Om3N+xCL\npZz7wadQKbQE1pdobT9E9/7HAIiFVjj/yt+TKeewxIVMXPgWJqMTz/wghpomHjz15xSrJQKeCc5e\n/BqhSpK9wl7Cl17BqrKSX7iNub2X+3seJFlMsjF6g++aAsS3mdlr2Y43VkK9lmC2s4ZelZX2jAph\neJn57lpEOT99UTmCZgPLDhWq0Dz3+ToRHzzGSHicPaI+6rr2MpwLYk2BXyvg7OjXsGRE7B9PMtpQ\npLF+BxWTkAlDDTJ9lVqRCAdaWtybk/ah4BJd6lqk0k3jIXWmxIhmjbmlMdRSNUdEemSNh7gdn8Qg\nNyBIeRHp9eTTeepMdYjzs6TUClKBFJV8hfz6OoKmJhK5BLsbdiPp0xKVDfL9gVexuruo3+lCmc2S\nEldQipWIhCIEqRRVtZpkPolG9uO5g1SK7pYdfLMSoHN1HUKhTYZAoyGej6GTbsYft5T1XC6HqRfB\nulmFc96HQmZAYDDg0mo4v3IesUDMzpKVSmsrgo0NHI31zGZnWU2uYimIERiMqEwmVBIlAc8E9vpu\n4kEPRpuTHEUKNTYkHg/GtrZNmalei8npJDr6IupGw53vikvjwJO7TZdUSqOhkbHiKK5slWaBi+GN\nKTbEcmKzQxSO3Mej23+N8eL3Ma+naOx8P7dj32H/aoRcx15Grp+h23Ifc+4045Ov0Nx7EtHlf+E5\n+Tq9aSWPC5pBYWX+whku2LUIT3ZQCId4Nt9AtbaeFVeJyaGr5IfmEOlNPLnrSeQNrcTIMXvl+7ww\n9zxNukbyMxOQA5fWRahwm4PHPoZBZ2dpdZzhoZcJh1fQGWu594HfQ643AXD7zFdYDS9SY6rn2iuf\nx2JtoFTME4/6+NBH/i9UWgsR/yIzo2fpn3iFxppOVuYGqXF2YLQ68Mxd5+nH/gKxXMW6b4Zrr32R\nGe8Q7a4dWJ0dGO2N2Ju203/mS8iVGkxGJzfOfgmJWEYk7kerNnP4+McZuv782zId2jrg3D2wXCqV\nyGazd2TQWwPLb7yXbhUDSqXydcVANpvlmWee4eMf/zgf/OAH38ad7D38JLxXEPyc2LpQt07bMpns\nHbMY/nnw07wN3qqS4O2iUi4xcuU75HMpTn3kb0hE1gh6pzh/4UtkC2kO7/k15Co9FlcHlXKJWDzA\n9h0PkUnH6D//JXLZFNFEkD17n6Kp9x4kEglh3ywXXvs8KpWewNoMmVe+iFZrZdU7RmfPCdq230eh\nmGNl9havnvsn8oIKO+W7WRs4j8nkIDo1QPO2Yzze9yCRzAaB+WFe7v8nBFotB1dVFKJnsSYK+DML\ndPYeoKt+L/HkOqGV8/yoLo1MXkEoN1NYGiHe6yZIiMOmLrTxNcItTUSjU5zM1iHvqGMouYIwmUaU\nL3I9NsaA9wZti3FyahN1aiEP6XYT70mRb9OirNnB+R99nlUrPGXfhSAUIqu3IZcoiGVi5MMbGHsO\nUhJWuO2/jT3kp6X9cTrEVoTFEoq1IBWlkmgwSreqEcRiUoICcrEcSbmKEMgrhNToazZTK9NpNoQl\nSvkS+WwewmF07dtx5xWYlwJcfe0LbJO6KJTSdzZ/Egkwm0kUNjArzJuPJZNI9SbsSQfeaoBd/TdB\nJAaJhHgqjk6ug0wGpUyNXW9lMjBJUCVid1qBKBCgcuAAEpEYq8LKYHCQezGByURVo0Gy5MFutzMW\nHGVPXnKnDeFq3Yt39ib2mma86TUaao+RLKZYVUhpHFuh2tSEOyPFo89TKEYo63XsqNbgSXhoN7Xj\nysm4aJbTsrqMydmATCTHVytGtLTAtGwOyYaYD/U+y9V8iGwpS0/vA9w88yX2t/TR0nOUwcs/ZI/z\nGZKN3Qze+h67+h6kf/Im33rhzzlg2skf+t1Mt5g4F1+hSWTH8dTvE55+Dc/sAIambgJmJ41Ta+yc\nnOWmS8jqsXtQiTXcXB+mbqYfWSRBSlPgmaf/GolMQWB1mhuTrzIzc4UWZx+duqPoXW243Nu4debL\nlKViLCYXV879Ixq5jmRiA6FEwhNP/1ekchWZZISRK99hdO4StcYGZgZexVrbAgIhuWyCjzz9f1Mq\nQyy0yNToaYYXLtHbeJAqoLc40RhshNc93LPnKZRqAzOjZ0hdDROKeHHa2zl4/28hkSupVipcfunv\nKJeL5AsZXvrBf+P4OxBh/MaB5Z/VWtgqGt54mMnlcjz77LM888wzPPXUU7/Qet7D6/Fey+BN8MaW\nQbFYRKlU/tKKgWKxiEAgeN0X4G4lwd3eBm+mJKhWq+9IJkEhm+Lm6X9kfPYyjfU7kCu1GKz1BLyT\nGDVW9h16mlw2wfzEJa5c/CrelVF27/s1GnoOY6/vRlyp4g/M4HZtI7qxzOr8ICtT/UxPXWLf4Y/Q\nd/BJGtr2kUsnuHLr25SqZaTlKvlEhFI8wdzEJdp77+OBR/89UpOV4PoSL178PIlsjBa1G0Wpir4g\nZG1+gLrtR9l/4EPk7BaWNmZ50X+elFVPR0GHanYJ7fnLLCjz9GnbuFfeiWFkmpBWyHTeh0tgIDx4\nmVFNhtdWzqAKJwksDHM9v8DYwlXs48tkM3EWUysckrexT+hibX839e0HMCVL3NKmyEoF+IJzZCMB\nDu15EofWwdLUFYwmB2pDLQvr88i8K8RcFgbWhyllkjwu6cXSs4+l2BI1eSmaqoSUWcdaao3Wsh5B\nqURIK6ZSrVBTlCFIpwkYJIiEImxSA+KVFeJNdhCBXW2nOjtLXK9hrhBgT++jWD3rjC3fYM0ooVbn\n3MwEmJuj6nIxk/bQoG9AVqggWFuj2tzMUmwJi66OeCJIjS9Gta+PxdgSVqV106Ewl0NW28iN1Rvo\nVDpaDc2IBgep7N0LAgGZUoapjSl2pTQI3PVgtSKcnERW6+b0/Mvcq+xC1LAplVPpLcxNXMJYEjNb\nWKOr/R6UEiWzySXqBQYEySTqaJoxc4VgJkhv3U5syyHGlEnqSxqk4SiZRhfJ+QlMTT3IxXLObfRT\n8C6xT9dNJBnAffRxdHMrjIvCNNu7EWZzLHgG6ey4h1Qpy8LgOVrldSwt3eTMyjna9z7CQWkLAbua\nQm83XQkJtj33MlFa5bXB59DXtnC86WEaxldJTQ4xLApx0Q1qmZYHkzU0mVvQ2+pZ8I1zWjCPSW1F\n6w2hL0sxVGUEN5ZoOfQY1tpWFr0jzA2cZvDyN5EotRx74BM4mnfgbtnD8lw/vsgyCqWW0OIouUSE\n9ZVJUpkoDz7+n2jbdhyRUMzsxCVeu/5VTJoaBBURGoMVndFGYGWcwwefwWZvJrQ2y8itH3D5yuYc\nTufuh6hp2Ibd3Y1/eRyFQoNOZ2Vq+DU2VmcYu/0iCrmGvfc8Q8g3w54DT2Fvemftf+9uLUilUiQS\nyetaC8Vi8c7jW/e2QqHARz/6UT7wgQ/w7LPPvmsHsi3EYjGeeeYZ/uIv/oLPfvaz7Ny5E4fD8a6u\n4ZeJ9xiCN8EWhb/l5qdUKt+SffHbwd0tgy0lgVAoRKPRvG7Tv1tJcPfz36qS4GchHQsxePlb2Oyt\nbNv/BMGVCcZuvcDYwnVqDJvmKVZXB1ZnO/mrz1OplLHVtLA4c5WZ8bOkM3GqwMlH/iMqow2AsSvP\nMzj2KkZdLdMjpwl5pxEKxQQDMzz88B9idXUSXfcwN3ye7498Fqe+HkemleTKLBqZisz6Kvfd9wks\nrg6Cvhn65y4xPX0Rh6WJ/fEWDIEY2kSacCLJ/uO/ic3gJJwKMnPrHBNdKVpqt+FS2UnOzJEWlUmI\nBTyp2I121ktW6OJaKc1vao5im1kl0dBJv3yDR5wnMMgDTOxy006Rdr+AkLNMvBrFVixyznuJW/YK\n73O+H2c2w1VTGKfWuRmHG1xgV8s+wokwo2s3kROjR66iQ9FBPiNHbLJQrlaI5qLsyCqo6vXE83EM\ncgNEYlT1eqK5KHqZHkE4TlWnI5aPYVVaN0/6Wi3xfBy9XI9UIkFYKpEwazFGjVQEAiRWF30VIc8N\nnEPSCw3aeoTpNCWlnFw4txmVHA2BRkO2mAVgh30Hl5dnWJeXMS0sEBVF6bZ0g89DTiZDWBFi1phJ\nFBIINDKqJtOmDLGxkUwxg1vjwuNbokFzBIRCqg0NFOanMZdlrOsE1P34+hIKRTibdzLU/xLa3j3I\nxXLkYjkCBKzbdVgv9CNqawNBiEwxg8nWgHBlA1NynbXAAC5XB411Nq7N3qY+4CMgjJAqpXHXb6eh\nf5boiZ3MZ7x0NG3DEBxmxjRDZ98xoj/6IhOLN6hTOplc+gbjmTkOP/obNE5P4U+Hadx/H4dvDTGm\nTnGxJo+u/2UEDhP37vsQiVuXmZiZo0HXiEXXzVJ4BLfQjtDp5kw+Rf34BQSzMxTbavn4yf9MSSlj\nLbTA+f4fsewZpqd+H61CC0pnE011PVw980VU9W3IVWYuvPQZLJoaIhEfUp2BD330bxBLZEQ3vAxf\n/jYTnps027pZHDmPpa6NarlMtVrh15/5W1KpJPH1RW5d+gozq8PsbDuOQq3HVNuM0d5IPBZgV+9D\nyOVqbl/8BtVqmVDYi6O2k+OP/B4CoZBSPseFFz9NIh2hWMzzyg//hnuO/eYv3XRoS8209ZNOp5FK\npVQqFZ5//nk+85nPcP/99zM6Osqjjz7Kxz72sXe9GAD45Cc/yUMPPcTzzz9PqVQinU6/62v4ZeI9\nhuBNsGU2tLX5yuXyX5rGFrjzORKJ5HUpiVtGR3fPC/w0JYFUKn1HGIyIf4FXfvDXCIRCnA196MwO\nlBoD/pUJ2pr309C0C59njPGBH3Hz2nOIBCIOP/QJ7I3bcDTtIOCZIJHawGCoYWV+gOSGj4WxC6TS\nEU4++od0734YS00T3vl+bo6/hEKihGKZQiZLIZ3A6xnl+P2/S/eeh8gW00yOnuVHFz6PUVNDvbUV\no8aKCikh7wRtRz6Aq/swa/kNhkde5erwD9DJ9fSKajGXJGgn5wmoYceO91FvaSUe9DASmeRsTWaz\nmBFWiGajXGtXUtPQg11ioKyU0+8S0eDYhikQI1CjZiTvwSW3szZ+jZdlHqoCUGzEyYsq7Oo6SZup\njdXB84jrm6g11RMKLOD3ThM1qFnMLJIMefmA6wFq6ntYjC5iD+fR1LiJSSvEcjEa10tU6+pYLobQ\nyXQYVzeo1tUxm/NSr69H4fWDxcJUfpVGfSOyUBjEYhbESWrUNagKVQShEAGbCrFITJ2+DpnXi7i9\nk4Agg3JhBW/Ui7UkJ2Y3ki6lcelcCAIBkEhYV0GxUsShdaBd22DMUMTkj+OXFWmu6aI4NUXZbEZp\ntRLJRdjIbFCfEiOtdSFYWaFaV8dUfI5uiYP5jSlcLXsQCoSg0+EZuYCpLCekF+Ouab9znSn1Fl69\n8AV29NyPzrRZKggFQnyFDRwzaxTNRmZkSQQINiWUShWK6XlmorO4dp1AIpWTKWUZnjyL0GLjoPMg\ns4s3ccdAv30/Y4k5rLWt1C2tMyEKo9aYcKodvHb2H5gPTtC9/zEMqTJCi5nuzntRziwwVF5FVt+M\nezHMjCTBmCRC49w6PSEBjdZ2pAIJA/g4pw3R1nWEfRU7roUNDN4II4IQlxpF2FQ21ItezNEcGn+E\noCBN24lTKM21TK8OsXr7LIOXv4XR1sDRE7+Fs3kntfW9TI+fw5tcRSqUEF+dp5xJEfXNky2keeSD\n/xlX805KxRxjQy9z7sY3cFiaEQhkWOua0OrMrPvn2bf7A2j1VryLQ4zd/iHXrz+Hw95G38EnqWnY\nRl19L0szN5BK5MjlKubGzpMIeZkYfgWdzsLeIx8mHFxkx+7HXucy+ctGqVQik8nckXBLpVKam5tx\nOp28+OKL9Pf309/fz+LiImKxGIfD8a6pu+LxOH/6p3/Kl7/8ZWCz/fFmgXW/aniPIXgTpNNpqtUq\nWq2WRCLxthIP3wq2Nv2tTIK7GYk3UxJsBSO9nYjmN8K/MMLUyGkOH/0Y1WqV4OoU/deeIxj10td+\nL619J5Cr9VidHdw4+yVc9g7UGhMXX/wMarWRjfAKNbZm3v/h/wOhSEwmvsGlVz6HP7yMzeBieuBl\nbHXtxMM+qoIqv/nv/gdCkZigZ5KhWz9g1jfC9paj5CIbaNQW1GItIqGIJ37tL6FSwbM2y7Vbz7O+\nvkRfzwO0KZzIDHVYEyWSsil6nvgdlFI1NwIL5G6+SiC3Tq+tj8bhZWSIEHumCbbb+e3GIwhEIhJT\nV7hqLSETicinEwyODjBuFyEIyyjEIsz7Fpmsk9JsbCa9PEPKpKTJVM+JhhMUz53mktVEo76RaizG\nSjZAj/YQ3uURXuv/FpJ8hQOxLI6yhNhKASURKtmbxML97FqoIijKiSyFMVNFMBtFUFNDJLmI27UP\nEgmKGhWZ+GamAbEYuZYGShsl1FI1gvgsFZuNWN67ySCENkCr/Z8MAiBIJMhpZGjr3Bxuf5TxF7/I\noMyHKlaLpCwhk8kgj0QQOhzE83F0ss3hQUtWiKmxiX65F+NymIwjhiQeR7FzJwKhkHg+Tp+tj5mB\na+zc/dj/y96bBsl5l+f6V+/7Pt3T08v07PtoZjQarZZkLV6EbWxMCMEEAockBxIOh6yHnKpUJVRl\nqVA5gSQkkBwCSQibgQC2ZUuWLMnaR5rR7D17z0zvPb1M73v3/4OQj0McMJgllb/vz13Vvw/d73u9\nz/vc9w1iMYW5KcqmMvaajKDBhjd1F2QQiQhZlBy6GWS8t4Pt3DZmpRmAWi6LVGegHPBC190iGrvG\nzvK2m5RSRCiyhMO5izp1vCkvrcZWTHmQi2T4CmGcUicCs4Xl2Q0+IHgCdV2JIVlkbU8XnasbdPV0\nMRNf4GB3HyMbC5zjIrJwgvaMlFRHG5b2QQYMXUzOnWVCJmV49AgHJ8c5XZsgpopy3F3jlLqFNXOB\nlxMenHI1gl2jKDbEPBEpEY9EuCQsYivFyQpz6EVyPth4iniDBt/OFrfGTxNMB9hv20tfSoakuYcu\nXRsX4l9A1jdEXiTg5Wf/Cou2iVh0C425ifc8+TsARALLTF75GivBWYZd+/Ev3MDs7EEmVSKTKXnv\nu/8PyViEnaiHl559Ef/2GmO73oLZ0Y3G1ERT6y6unv2/9HcfRiJVcOm5v0Kh1BLe3sDlHGT0+HsA\nyKfiXDj918SSATKZOFu+eQ4dee9PNY74HgwoFIp/c5MXiUR8/etf59SpU5w+fZqFhQWeeeYZ/uAP\n/oCjR4/yJ3/yJz+V83k8HsxmM+9///uZnp5mdHSUT33qUyi/2w76X0FvAsEPkFKpfM0b8E9SlUrl\nlQav73USvNZZftxOAs/MJS68/HlGB0+hNd21KQmFYuIxL51dh6iWi1w983fUalW2Ez5GRx6le+xu\nIEgq6uel038JCEgmw9w6/48YTU6CfjeN1g4eePvHqFXKhDbnuHLli0SSfnZ3HSO65cbs7CW7E0Wl\nNPKBD3yGQjpK2LfEja9/lURmm70Dj6GVGFBbbKgqQna2t2jfe4pascDluWepPbdJJB9hbO/b6db2\ng17Pjj/NVYuFgcHHQSTmQmid3NQ40QY5h+vNSFZWUd2ZZ1WRoF/QzFDFimBtjWWFCnFVw37FMOKZ\nWab1jTQKDAwVXFTmrnHRWeVAog2x5wLu5eu0VLoQBM8xv3qdTUGI0rWnkYkUKEMxnhx+CpnWznhi\nlmaJkVpvL5FKEo3AjqgkotbdTSQ4TmdFC+oyhWSMStCLfr2OYGODpFaEQZJDoItDtUpCULz7OgFg\nZ4dUmx15VX63KGhnh7pOR/K7nQbk8yAUkqSATq5DaDQyNHCSuZmzTC6/yOHRn0MkElGJRsk7nYR2\nQnSZuqgViwjLZXqdu7m1M4dSo0Y8MYFcLqemVJIpZRAJRXQZOricfoaYtIKpo4PYuW9gUjUgyO3Q\naR/i9s46Tq2TdCmNSKNHVYvQJjSxnlh/BQgCvgWGO4+ymdykZTuCyGxBKBDSUtWwZAqRKKc4mFdS\nsjVyO3gbl86FUCqlq2TkTnwFqUhKKBfm8OBjbM5eZsA6RHf3fVyRhnBsJnEVWwkJRCwpc+RzQTKL\nGyirMg784u+RvX2V8a1bjLQcYLRxN3ObG1yypZGZKzS6t2hVGfCpM2iqKboGHsRm0nLm0t/jfek8\nR8d+AVt7B+1nzpML+XhhSIlfp2JQ2cZOIoBjJYsmESLpdLH32NsppJKcCVxFO/6vbCc26dzzMLv2\nPQ4yGcmdMC+f/isi+RjNOwIWLn4Vi72bVNSLTmfhg49/gVwmTmRrgZfO/A0bkSUODD5GLpXE0TFM\ng8V2t6649yj1WpnJK1+hWMgRim8w1HeSXYffgUAopJDe4aVnP4lYJCGVDHPlmb+iwdJGOLSMpcHF\nwWO/xO3LX6Jn8OTPDAbuXfPg7tTzwx/+MLt37+YjH/kIAoGAgYEBBgYG+L3f+72f+APa955xcnKS\nv/7rv2ZsbIyPfvSj/Omf/ikf//jHf2pn+EnrzVcGr0P3fnSvJyPgjX5PPp9/JYb4tToJvnd58N7y\njVqtfsPnqtdqLNz4NtvhNfbsezvlUp6V+UuMX/0qKyvXGB17ks6Rk1hd/ShkKtbXbtHU2EFyJ4h/\nbZJt3zLzU2cYHn2UfSffT0v3fuqVCleufpFYMoROaaCczyAWidlcGcdibuHUEx9DodYTDa3z3Om/\nYMM3za6+Y5jMThoc3eSjQWqCGmMH30GNCivLV5h9+Wlmll9m1+Ap2jsPYHP0oCnCWt6HY/go6XKa\n9dVx/C9+g5nwNPt6H6DH1INNZUWxsEK42cDgrgcpGrV4oqs8L90g1t9GU/MAuXySrZSXNbuSMfNu\npNE44R0vWxYZe/T9iAJBZgghc7jQ6ixseGe4ZswiaWlnRV9lOblO/9GfZ6D/IeoKJcaqEPsDb6ek\n17AUmWPA2Iugt4/1UghTQYC+wUHF5WQxv8mA2Eapwchqk5QdjQSJWkesQYVblqKc3kEyO0/Jv0VA\nnEejbsAk0yPY2CDkuLuxb1VbEa6uUmxsYK0UpK+hD2IxBMUim+oKWqkWg9yAcHMT88hhJlcuIczm\nabH1IvP6kOzaxUJsgQ5tB+VQmFo6TbXJxmZ8k7RSRF+shihfpN7bSzgbpk6dppoKeTzJsqqAU+di\nrRzBshVFl68j7d9FopKmVC2RKqbQ7OQw6m1okwWWNUV0Mh0KiYLZ6bMMtB8kq5JQ21hH19oLgHYz\nzIslN87mAVq9GWRtXcTycWqpJPp0GUWDFV8+zHR2lfuc9+Fs7GZh7jyWUBrl4RMgFOKpRHH6Ukha\nOvjG0jfRS4w8Npkid/Qg2/IKLYY2DP44k6IIKnsr6s0As8lloskA+9I6umV2tCceZVGdZ3PmZdZ3\nPNj7DvBA4yGyV84zP3eeRE8LS11G7Cl4tN6F0mwjXEtyPXiDW4oYwzQxJLLSbOvGKjEwF52n2tpG\nvpBhe+4GRd8GG3deQt/ax1ve+jvY20coC2rcuPYVJlYv4WroQFwHvclOrVQim45y5NgvU61BNLjI\n9K1/5fbkM/R0HqRr+ATWlkEs1g7WV27S2NBCpVpiZfYCieAa0xPP0NI8xOFHP0xr70E0WguT49/E\nt71GrVRiY+02I3vfhv2n+JqgWq2+JgzUajU++tGP0t3dze/+7u++5gPZT3OPQCgU8vTTT/Nnf/Zn\nwN3o96effpqnnnrqp3aGn7TenBD8EHo9BUc/ql7dkvjq6OLX4yT4jzoJfhhVyyVunPl7/OEVDt//\nPqytu7C1j8D4sxSKOWy2bjZXx1lfukalUiKTT3Ls4V9H33g3RW154izXb34NvdqMZ+Um2XQMhdrA\n+tINjh75JZp7D5IIe9hcGueFC59BqzQyNvwY2Z0wpsZWVmcvM9hznPa+g8RDa9y6/GW2/PPIZCru\nP/bLWNsGQShkbfwFFip5djmO4gu72Vq5SS2TIVnPcvjBD2J2diESClm/fpqb5TgW515mkyts+Oep\nueeJmZTcb30SXUkP2Swz2QpDI2+hy9JHNhUlHLjFhKNGm9XGzZqfbOgmbmuVroYhzgk8JGPX2WhS\nsFsvp1TZxlvy0jl8giHrMNWgn1m9j27zECKRiGh4mT7n3S6GUCaEOQOiNju1ep1wNkxTsoLXXmLN\nexVfysdLgUWwOQiGchjlRjLRAMImG/FaDkdjHwlFhGCjilvRCRo3J9kRmzCLtIQyGmxqG9TrkEoR\nl9cxVL/r1U+l7k4Mitv/7zPJJPnhfpy7jmDwRJi88C+MGfpJlVJoFVp0Gh2Et6kYjewUsogFYmxq\nG9OqdUY9eerRKNHqXbuiILFDk6UdjyCLN+UlKq/Sp7IgWNsEuZxOYyc3/TcRCUWM5kXQ2YnA76cr\nV2ElvkKHoR1xOoPW1kpb1czMNdelhQAAIABJREFU5hdxBAIIrFYE2xHqDRrQaEFzN7ios6mTyRvf\nwOG4D4G5kdKFl6m0W9DKtIiFYjpUzSwklxgTCGjTtxHKhpiKbhGZ9rDPMkph9hb1A/sZzmm4oc4x\nr5IyoDSxO1Xhmzun0anhsWs5qkND3DksZztWoPfOAv3DQ5zJhah51rDkBQgUTvrtIzhqOU4H7pC3\nWVD0DeLLy3BcuEE9GyEy3EN/114yhSTn/Evonn2OYNLHrgNvo2PoOGWxiFBghZfPfIaEIE+/V8Ty\nxW/Q1NxPMbBFk62bUz//+yS3vYT9i1z96leIpcLcN/YORAIZ3SMnyGxvkbm6zb6OfZQqRS4+95dI\nxXIC22vsHnmU7j0PA5COBTj/3F9SqZYIBpfJn/sC5sY2Qr5FHI5+jvZ/iOsX/pHBkVM/1cnAvb2n\n14KB3/qt36K5uZmPfexjP5MFwu+V1WrF6XSyvLxMV1cX586do7+//2d9rB+r3pwQ/ADdG9XD/5sQ\n/LiXWGq1Gul0+hWPbq1We6WOuFKpAPy7ToJcLodQKHxDrYr3VMjscPvCP6FU6Wlr24N/axb3nTPc\nvvENSvk0xx79n9g7dtPcOUY8sIY/tIRJbyewOUsmFsC/fodwcJljD/86w4fejtHswu+Z4cK1f0Yi\nFKNRGREAYomczdVxxvY8wcjet5HP7uCeu8Bzz38SUV3A8NijWJzdmBrbSITWUaoMtHXsw++bY3X6\nJWZvfpt4KszxUx/G1bGH1s4xsokQG9lNTE0dBD1TxJdm2Lx1Fn/Kz7GHfo3eljHa7AMktpZwmwWY\nukfwZgPEPPPMXPk6GXGNQ8IWtNkK0qkZ1nQV7h96G0NNI7R408REJQ6MPM4+2z6a/RniojIPjb2L\nQcsgyrUtMmopRwYeRSFRMD/+DKambkyWZrL1LLG5G/QMPwByObPhKXSbYeLNZqais8yEpxEHw1Rb\nW0iUdujUtbMvIqHj4GPECnHucxzCuR5FP3SAQD7MEecRbJtxGvv3s6MRc3LsXSgjcZJRH5d8lxEj\nQFYXoUkX8TVIUUqUmBQmhKurVBrv1iL3NfQhzGQQxGJsN2qoUGO4/yTbty4QSgepu1yIhGIsKgus\nrZHXaEgp6ggkAoatwywvXgZnG8rlDWalO3Q19CD3BqChAY3ZwQ3/DZQSJZ0qJ4LlZeodHchUOkLZ\nEJvJTfbHFNR7eqgbjejc66yoi2xHNmiuqtF3DqKQKIhUktSXl9BpzGzEV9G19bFT3MFs60Q+v4jM\n2UpqYZJMi50dcYXqTgKnQE9CUcdclaP3x9jUCyCZRGdrpVgp8mz0CgfCSgbqJmoGDesuLc5wniaT\ni9VKmIgKgovjNEpNyIJhqt3dNJeUONpGiOrEXArdYGPhMvcPvpV95t0Ub11jNrmMt8eO21hl1DTA\nsW018lyJkH+R88ow83Yx+0uNdMbBrnVgSpaYFIQQ9Q+SzSZIue/A5iaBhavYRo7wyEP/E7W9nZ1s\nggsXP8fC1gRt5h4UYgUWRzf1XJZ8IcOeg+8knd7Bt3GbpTvPMzX9PLuGHqZ3z1uwtQ1htrSzMHse\no66JTHob/+oEqagf9/RZWlv3cPSxj9DStQ+RQMSN61/GE5hDKpSwuT7xM5kM/Ecw8LGPfQyTycQf\n/uEf/qeAgXvavXs373vf+/j0pz9NuVzmz//8z/9LLRa+CQSvQ/eA4LUyAt6o7rUkymQylErlKxMB\nsVj8ipPg1a6Ge38iiUTyY3ESpGNBXvjXP0WjNjJ838/T4OzG0tRJcGsOqViGwWBjZf4i8cAa85PP\nIxKKOfn4b9E+eIQmZy8rcxeZW76MUqqmWipQr5TJJEJEQis89MhH6dl1gnIhy9z0GV64+HeY9Q5s\nzn70lmakMjXetSn6eo7Q2r4b3+Y0CxPPc/PaV5HJlNz30AdpdPVhbxki7F0gU81jMt319af8HpYm\nzpCvFHjgrb9Jd+99OLvGCGzNMJ9eQaYxklqcJrOxim/8RXakNR44+UG67UO4dC1srI4T7W/D3DvG\nUj2CZ2WcK4kpmlRWTFtRBFN3cM+9hMxso1fYiDAaxT1zHmXPIK2mDuq5HHemT9O59xRahZ5ocJ31\npXF2HXgbdTHcWjyHNJcnZtEwHZnm1soFGsUGZA4X+XKeYWETe1XdNHaNspncZLfQgaIKqUY9wUyQ\nLqEFQSLBtlVDoVLAqbQiWF4m2tpIrpKn1dCGJhhDvfcIeZmIoYwa//TLLNW38SkrdBg7UEtUCObn\nibVZyVbyd90EkcjdpUxFCY1Ug1HVgDUrYCsbwB2eo7t1L0qxitLkJKL+fiLVOGqZGovKjHHVy4JL\nhl5pJLa5gNM5THV2llJLCzK5Gk/SQ6lWojsjh6YmBD4fdaeTnWKSzcgSAzUzos4ukMkQlMsIojFe\nDt/gWMtxRA139wnU2gbmvbdxbiWZ0uUYar8PiUhCsBilSWxA4HajMzRxUxRkp7jDvq7jNK4EmJXE\nsQRSyGxO9F1DzEw+C1otnqyPXn0/sZ0t2pfDGB99J9vFOCF5BcdKGKxNnAlewqhs4PgVL/ajj+Nr\nVLAuSGBe9JLUSslqZGhECvIXzqDJVrA+9hQqs53pqdMIa3VqjRYEWi1NE0vkc0nKdiuDPUcJG6Us\nlQIkXn6B2cAd9vY9yN6+B3G276Yqk3Bx9tv4JHkaswIEqR1McgPp4CpKcxNHTv06pVoVz8Ydrp77\nBxZWrzHQdwJjYxfNXaMYdBa83nna2kZJJ8OszFwgsrnA9OSz7N7zVnbf/xStvQdRKLTcuvl1MvkU\n1KpkYkHq1SqBzWmMRgf3HX0f66vjP3U3wb3r2PcuQddqNX7/938fuVzOH/3RH/1EHV0/iqxWK7/6\nq7/Khz70Id75znf+l4IBeBMIfqBePSG497T+app9IyqVSq84Ce7d3O8ld4lEon8X5Xkv0Usul7/h\nVkWAqG+ZO9eexukcQCSWsDj9It7V20yM/ystrhEOPPyr2NtHsFg7mL3zPOlsHCECklEvlVwGz+JV\nxBI5p578GO29h6BS4db1r3Nt+hmc1i5USj0aYxOFfJrE9hYnjv8KJpODoHeeG1e+wrUbX6PVOcjw\nobfR4OjC2OAksDmL0WBHrTbhnn6RqHeRqZvfRGewc+zRj+DqHKPJtYv5mRfxpXzIxDIyvjWqqR28\n0xcpSYW85a2/Q9/A/agcbbgXLzGVX0chVJJ3z1H0beK5+QI4nZzc/25cxjaaC3I820vYD57C0NpH\nxCjlxtYVZmwi1AYroWyYhYnnWWKbpqKU+OIk0xe+RLgUR5Uts+WZ4vz1L4FcQrgQZjOywurKdbps\nQxgtLmoCGErKGek5hsnSympilaEdGWKbk5ikzE5hh454HRoa8AkzSEVSGuMlkMvZlObQyDQYMzUE\nxSJeLXef/iU6BEtLhFvM1ORSOvqPYI+VMaTKXI1OUBOJUNZEaFIFvA0S5GL53U6DzU3Q61muRWjW\nNaMQyRG6F7EcfysX3M9h2amiVjSgiMeR9PezHF+mWduMIldGuZOl2GxjpuzFWZLhzICkXKbe3U25\nXL67a1BIYw9kkO4eQ5DNIkilWBYmsGYgLapgcX7XbmgwkHHfwRtdxdG7H7XmbkyvXCxnR1xm7eLX\n0e8+iMvShU6mwx1zo7e2oTp3EVHfIJOVLRRiBb3WQUQiMZL1Ddbiq9jHTiBTqInmtrk4/W2OdL2V\nNn0z+XU3AXUdm8xEo7MXXzHCndwquXU3J7sfobA8j6/bhi1awN45Slml4OntC9TWVniw5SQ9CRGo\n1LjzmyzkN/HI85zY9SR7sjqUk7P4Q8s8317Db9dySNhC61YKJzpUoRg3GktI+gbJpqMU3XOIllfY\nWrpJ84G38OD9v4zYamM7HeKF83+LL7JCX/MoJpUZe8cwwlyWfCVPz+ADJGJ+Vt2X2Jy9zOz8OfYf\n+AV6xk7h7NyDRmthauo5VEo9OzE/ieAahWSMFfdlOroOcOytH6XR3kM5n+Hiy1/A45tFKzew5Zlk\n974n/1PAQL1e5+Mf/zi1Wo1PfOIT/+lg4P8PehMIfoC+FwjuxWu+URUKhVc6Ce79Ke71JBSLxVe+\nC+7uLtyr/lQqlT+W7/ct3uSlc59lZM/jdI0+SFPLIGqVEffCRfSaRrLZOOGt+e96k8/Q0bmfo4/+\nD1q791OrlLl8+Z/YCi1iNjigWkGm0OD3zCCTKXn0iY+hUhmIBFe4cO4zzLkv0tdzlKbWQUz2Tqql\nCrGwh10DJxCJRCxOvYjHfY3Jie/Q33c/u+9/6u74s7GNmannqQmF1KsVoltuCjtRlu+cxWBx8dDj\nv017730I5Uqu3/wai9EFGiR6qukk4lKV8PwN0Gp4/PGP0dZ7AExGbk49wzzbqEsicoszFNYWmZt5\nEfuuI4y034dZZUY8t0Beo+BtRz+Eq6kXeaHKet7H6PH3omnppqxWspbaYOTYUyiNNnL5HKJYhId3\nv5MemYNCLEyfJ0OvoQv1VpClpSsMLSaQ6Axsh9fJpqK0baao9/TgyQfQybQ0rAao9/aylFrHoXGg\nWfNSd7lw5+4mCSr8YdBqWapv49Q6USZzCAoFPJoqepkevVyPcG2NzKExpAIxA8EqS55xwooaCaUQ\np9aJSqpC6HZTamlmKbNBX0MfgnQGwfY2WZeNjFRINriF2uvH0NRKyWJiOb5Mv7kfYSgMQiFGVy9X\nfFcw27uxz28hEIkQ9vRQE9bwZ/0MaNpZXb+NsX03JY2G/OwEm6I0h0pW5hQpGowOZGIZCIXMpVbp\nnQ3h6TLTrG95BXA1uSrf8Z7lqKofZXM7QoEQuUjOcngO1w5sliIIHU4QCFBL1SjNNoxXJwjoBBQs\nRgQCAWulCKZYCWmtii1do8FgZ8OhIbMwhcnsIlJNs1z04ygp6Lq5QtOxJ0g26nDnt5AvreGR5+mw\n70IpkOJ77l+QO1qxHn+csl6Ld2kcdbZESi5AlM5hKUmIiYoohHK6WkbZUJbYqMaJ37rIct7HYddR\n9nTej9nVT6qS4fTKsySUQhwpEGdyNMhNxDcX0Dk6GDvxS6TzSVbWbjBx7gus+2bYO/YkVtcQrq49\nGNQmltfHMTd2EPS58S9PEPev4p59iX2HfoHRo+/C1bWXaqXM5Sv/TDIVQSlVUUzvIJOrCW3NYzY1\nc+DQu3EvXGDs4Dt+7AmE30/fDwb++I//mEwmwyc/+ck3YeBnpDeB4AfotYDgjfj87y0D3usk+F4n\nAYBUKkUsFlOr1SgWi690Etzz577RycDKxFk21m5hs3YR8rvxr02ytXKb1aVrHD7xAQYPPE5L9z6K\nmR2u3/o61VoFsUBIMb1DpVRgfekqnZ37efCJ30au0LAdXOXZM58iur1BV+cB1FozRls7seAqComK\nsX1vJ5/dYWn2JcavfZ3lpWscOPIUXbtP0tQyiEKmYWXlOhZzC4m4n5Bnhrh/lfmpMwyNvIX9J9+P\nq3s/9VqNK9e/RDQbQStWU8rsIKjU2Fq8jtHayiNP/B56ezvpbIJzL3+OlfA8bYZ2xKUyKqEM38zL\n6BztPPHo72BpH6SgkPLy7DOENSJEqTSJ+Qkity8wvz3H2OAptEoDgnKFufFv0zV2ig5rHzqZFs/4\nC3T3HsblHEYiVuPduMVw3wn0A3soGLS4A3fYNfAAwn378VnklMsFXK5h6m1tLGU2sMZKGNIlyOWY\ndV+gP1RFFk1QbDCwlPYwYOxBuLZOtquVjeQmfeY+hPPzFNtcLGc36W/oR+j1gkqFm8jdgKJ8CUE4\nzJZFhkJvxtmzj+Z5H7lEmLOFObqsAxiQI9jcZNvVQLFaxKF13A0kEgjYlBaoVeuMDJxg4c7zqAtV\nMg4rlXoVu8aOcH0dLBZqahW+tI9SvYJVoEUejFB3OglWd0AA/VUjwWIEcWMjRq2ZjVoC6dIqpnQd\n+gbwpDZxap1kyhm8/gX2CJ1EaxmKWhUGxd1FyPD8DbIGFZJcAavCDFotGpmG0NJtMiYNG/kAo8pO\n9E1tzEfnaZaYEQaCmIQqxkUh1lIb9On66OvYx+rNZ5ClsmgOncCqd+Iu+JieeA5tk4sHWx8ktjqN\nr5agUWensWWAgkzM130v4Ajl2GvdQ7M/g2TXbpYDM9wI3CStFPHw2FP0lnTIz55nU5TmWWeOfJOZ\nw9oBnOtRWuN1qtEI19skiNs6KBcyVJcWUMy62QzM03PsnRwc+zmKJh1b2yucefHTJNIRhloP0mhw\nYm0dRLCzQ6KWpb37EFtbcwSWrxNenWBp+Qr3P/jfGdz7CG29dzsKbtz6BiAkEw+RiYeolYpsrY7T\n1X2I42/9DVRqE8mYj7Pn/hZ/eJkGnQ3vxiSj+//zwMAnPvEJIpEIn/70p9+EgZ+h3gSC16F7N+p7\n2/4/KhC82knw/ToJhEIhQqEQkUj0yt6CRCKhXC5TLBZfOc9rtYN9P9WqFW6c+b+EQyscPvVrNPfs\no7X3IFH/CiuecTRKA4ntTQqpONHgGv6tWQ4f/2/svf89qDUmgpvzPH/xMwjr0GhpQyyRodaZ2Vy5\nSU/HAUb3/xyZZISluQucP/dZcukEowd+jqb2YSzOXlLbQdLJbbq79hPyu/Euj+NxX2dj/Tb3P/Qh\nekYfprX7AMVskvHJ7yASS6jkMxSScYrZHdYXrzEw9CDH3vJhNAYriW0vz7/0NyRSYVyNPYgRoNWY\n8S5ex+ro5cRbfwOkUvyhFU6/+FfEUmG6GvuR1oWoxAo2Jl+kdfh+3nLsV2lw9ZGlzA3vddTOLkLb\n63jdNxh/6QuUJUJsKiuFQpaN5ZtkCim6hh6mVCoRia9S82/ReeBREApxh2Zo2IhgHj0KEgnToSl6\nAkUUw2MUdCrcJR/DZROM7WW7rZGUUUV7SQ1aLf5sEHEgiG16HUol/LIiEoWaRoEaQSBAyKGnWvvu\nDXphgayric1CiN6GXgTBIIhELIuTOLQOlDI1wkCQ2sgIQr+fXDxENBPBLDPiVVfv7g8ojAg8Hkpa\nLe5CAJfRhUXbiGk7wyQBcqEtLM5e9HIDgrk56r29REsJyrUybfo2VhZexjZ6DJHbzbIiS5POgc4b\nQdfUykzeg11rZ60coKugQhuOoxw7zHp8nWKxSDgTxuiPYdp9H4bQDtOlTezmdkR1AVO3v8PY3p9j\nQ5RCu7KFwtEKIhEG9wbfkqzR3bYPlyeO0t5Csp4nsTSFxd6FwGJhYekKO3IR+137Uam0mFYDTGdW\n0bb1I5ep8JWjBDNBOqI1GjN1rDoHO7u6WFy4SDmXxitIcX/PKcrJOJ4XvoR87CDm/jHiSij4PKhS\nOWK1DLJAGEP7IKFyHEtJgsPaxaJ4h0g+Smxtli2SnGw8yEj7YZQ2F6GEl28HzlPVamiJVVGXBZiV\nZuKeebRdu+gbe5Rwwot74QILF76CN7rG4fveS4NzkM6+g0hFIuZWr2I0uwhvzZEMbpCO+vAsX+fg\nkV/kwMn3YbS0kU5EePHi35HYCWPQNFIrl9CZHYS3FmiytDE88gjTM2fZe+hdP1U3wb1IdZlM9m+i\n3+v1Op/61KfweDx89rOf/YlZut/U69ObQPA69GogqFarPxIQvNpJ8Or2wdfjJFCpVK90i7+6AOSH\ngYNyIcfExS+SzSaQy1RsrNwkEwuxNHWeaqXIA4//Nj27H8TY0MzK/CVuTj2DSq5FIhQjQEClWMC/\nNcOx479C764T5FIx5qfOcPrcp9ErTXT0H8Fk60BrtLEdWKbR1EJL6whba7dZnr3AratPU8inefjt\n/wtn1x5aeg4Q9a/g2ZpCr7UQ9i+S24mw7XXj9y5w9IH/zujhd6I3Ogh45zh7+XMI6wIMGjOCOsjl\najyL1xgafpi9R95NqZRnbXWc5174C2rVCj2dh9BpzGh1FsIrkzg6drP76FNkSxnW1m7y/Jm/pCaE\n9oZuxAIR4kqF1elzHDj2HoYHHqTZNUIqFiIjFdA9eIJ8Ic2mZ5IbE99EJpCx7pvBG1/m+vQzGOwd\nhCUl1hJrTMy8gF5jJqSqMxOZYWNrGnG1jlcHt4K3SCSCZEKbeMwirvuvkytniW+62eiycLO2CXY7\n6UyMmEnBXGQWkzeKamkdqUTBqqaEWWNFVxEj2NrC79AhEoju5g+srFCxNOAu+e5OEJJJBIkEWw4N\nOkcnw0Ib6esXmJen2FbU6TZ1IxfJqN65Q9blYqPko9/Sj7hQQuEPozp0nNOL32Y0o0GlNiJIJKi3\nt7OR3EAn09EqNrO9Oc9OhwODwoh77jwDXYcRuReRDAxTF4lwR91UahX6RVaE2SxilYqG5i7m4nMk\n0tsMhoUUO7oQaQ0IlhbxKkqQiJPL7tA1cBSlUoc7uUJzOI9ALCGdjrKlA5Vci9PSgXBhAVNLH8tT\nLyLtG2SpHkcbTtOqtuEVpXEkqigEYjSODibnz7IhzmJRWbi/71FWp8+TXl/A9ODbsOhsRKUVzt55\nmkG5i059Ow5fEtnAMPMrl3k5OoHa2MiJ0Z+nbUeI5Ow53FYxp5U+5PYWDhmHsK9FaN1Ikiynudom\nRupso1YuIlxaRDs5z0bOx8gD76O/7xgJrYTFrQkuvfhZ8pTY236UpqZu7C2DVGNRwtUUtuYBVpau\nk9ycZ3t9mo2NOxx/5CP0734YR8cesukYl258iXodhJUK5VwahVyFf2OSgf7j3PfAr1CtVPF5Zjj9\nwqeIJ/w0NrQR8M4ydvCdNLXt+qGvYT+q7vWxvBYM/M3f/A0LCwt87nOfexMG/hPoTSB4Hbp3073X\n5f3Dlht9r5PgtToJXq+T4J7L4bXawf4jOMglo1x49pNYLG3sPfl+XD37MTW4mLr9HQLRdeQSBYV0\ngnqlQmhzlnI5zyNP/m9aOsYo57Pcuv40l25/DVdTL0azC72lmXq9RjS0xv6xt2Eyt7C1Psn0+Le5\ncf1rmE0u9p58H2ZnN42OPjyL41CvYTI0sb50jfS2D/fUWeq1Gg888Tt0Dh3H3NTO2vxlbs2fuft0\nW6tRr9Uo5dIEtuY4+eCv0TfyEMVClsXZizx7/q8xqC00twyhM9lRqg2EPNP09N1Pe88hQqEVZidP\nc+XSF5BKlQzvfhSjuRm9xkLYM0NL/3307DpJLBViYeECZ8//LXqdFbPajEgsIR32EPDPc+SBX8Fo\ncqHQWfGuTbJ/5EkGxh6n3zZAdHOBgaSMHnUrRn8CX3CRLn8BV/9BtCoT3kKIoYgQZ98hjCYHwWyQ\nI8UmWpr6MDt6iBfiPKAYwCnUo+8YJF6Is984jNofoTI8xBJRjG2D+DZncNciTK5coildRxSJIjeY\nWZGkadI0oREqECwsEGq1UK5X774K8PlALmdRGMOlb0Fpc2HxJRBUalwIX6OjaQBFtkI1FKLQ6SBV\nStFmaLv7CgGoW61EhHlymTiOuU2EdidYrcxH5+kwdCCPxDDLjCyIYqSVYqSFMs1r26BQUG9rwyA3\ncD1wHY1UQ5svS23/foSLi0gNZnzVOLHQKvvMQ0hbW0GhQFMWs7J4jeWIm8HWgyiNVjQyDXFJhWRg\nnYYVP7cbq+xpP0KylKSklGMoChBP3kHf0stz6UmqlRr3jTxG01qIIGliS3ewjB1D5mhhZX0c7/Yq\ne7tPoi7UsG8X8alrbIUWSSpF7FQyPDTwJNHpa2zdOov64DE0Hf0EBBlU3iC1YpGdwg6qYBTVnoOE\noh5aalr0DU7mayFSyTDRuJ8IGR42H6S/bT8YDHhCC3wrdQO1ykBrrIpJqMKiaiS5sYhycBRX9348\ngXk2Zy+xfPVbRLIRjp/8EGb7AF0DhynkdrizfAGlxkTKt0p+Z5tiKsHm2m0OHnkP+469B5lczXZg\nhWfP/SWlYh5bYycyhRJrcy+x4DJN1nbaWvYyOXOaodEnaHD2/bu69J+Uvt9k4O///u+ZmJjgC1/4\nwk+tj+BNfX+9CQSvQ987IfhhgOC1nATfL4b4XoTn63ESvBoOpFLpK8uH99IOAZKRLSYuf5lyuXjX\n/xz1kU/GWJo5j6N5gAee+G0cLUOU82kuXvo8yxu3abb3I5HI0BptRAOr1KtlHnzof6BQaPBvznD1\n4j8yPXuWvt77ae0/gsneiUqlJ+hdwGXvRygSsjR9jtDGHOPXnqa5eRf3P/4Rmrv3YrG2Mz35LOH4\nJlKRlNxOhFqpSGBtikqlyCNP/m/aeg5QLRW5c+tbXLz5ZZqtPej0VrRGG/Vale3AMofvey+WpjaC\nPjeT17/BtetfptHSzuCeRzBa2zCaHER8i1gcPZgb21hbusba9AVuXX8arcHGngPvQGdsQq+1ENmc\nY3DPIzhbh0kkAsxOnual8a9ga+wAatSEApbcFzDUlThHjoNYzOrOBjnvKrve8iso+odIWnQkNxbZ\nbx1DLVWTXV+ksDDNWEKJwuYinosCAnqDZSS7xwgVtpGJZbRupRC3dhAkjVqqpi0lRK0ykDaoMMgN\njGp7aEnUUR8+SUmvplHViP/WeeZjbuYza3RZ+tCkSwgrFdbUJUxK090Fw6UlinYrK0U//Q39CFIp\nBMkkyb1D6FIltt0TJGMBHI5ufIoSKonqrgthfR3MZrwk0Sv0GG3tLM1dxF6UkrY1ECps023qRriy\ngtBmR9/g5IX1F+hp3495xQeFAvWeHgQCAVvJLQrJGI6iDEnfIHWdDuHUFFvqCgSDqBxtaI1NiEQi\nJI2NVHwbTHuuMHrwXVQqNUqlEka5kYXcBqmJqwi7e+l2DGNSmJiJzGCwtqG+cJkdl53F6jZalZY2\ncycikxnbuRt4GkQkGtT4Mn50jS72pTRMBSfReMNo+nfTNHSYxaUr3Ny4zIHeB2mSN+AM5xFIJEwm\n5riaWaCtsZcDux6l1ZOgdu0KE61yLtTXsbUNs1fVjW05iGsjwZa8wDV7DZWz/e6UZWEJzZ15tsQ5\n9px4L46OUQLSAnMrV7j14j9QV6k50vMQVmcfLS0jJMOb+MoxdA1O1mdfphz1s7PlJhha5uRjv8mu\nPY+gt7ayHVjm3LUvIKxN906qAAAgAElEQVQLUUqUCGp1tPpGtlZvsWvwQYb3PkEuE8ezdJ0Xzn6a\nQi5Ja8soAd8sBw6/G8d33QSvvk78pODgHgxIpdJ/BwOf//znuXLlCv/8z//8Y3Ntvak3rjeB4Afo\nnhUQ7v7Ay+Xy6waCe04CjUbzb5wE/xEMlEol8vn8j+QkuFcf+uo/n3dxnNvXnqZ714MMHXoHro49\nZJMRLl79J7K5JHqthXq5hFgqZ33xGs2OAR549KOIBSKCW/M8d/ovCIVWGBx8AJOtA5O9g3wqRimf\nZWjXw+QycdxTZ1mdv8TC3EuM7X8Hvfsewd4+glJhYGLiWZRyNZVyjkRonUI6jnv6HHZHLycf/22a\nO0aplQtcefmLLG6M47B2IRaIUOsbiQXXqJYLnHr0t1CrjYQDS1y58Hkmp5+jp/MQzV1jmGwdyOVq\ntkOrdHYcQCpTsDhzjg33dSZufgNX6wh7jj6Fxd6N1daNZ+0WGn0jcrmaxakXCW3McfvmN2huHaZ/\nzyNoDU3IlTq2fUucOPoBrI3tlBJRbt/4Bqvuq4hMZjLlBNuVGAtzL9Lr2kvNZKaQLzC5cpFdJQOK\nEw9TszUxIY7Ql9cgH9oDQiHTnmv0TPlQ5crUxWJmYnN0S+0oY0nq/f3Mbs/SaehAOb9Mvbsbd8aD\nS+dC7Y+AWs2aJI1d66C9oYvmjBDxvoPkE9uUVxZZXbhM2WRgU5Khv6EfSamCYG2NgMsECGjSNL0y\nMVgWJ2lo7KLD0Eny+hm88iJxjYh2YwcKoQzh3Bz1vj6Wk2s4tU6c8kayvjU8FimVFTcqqwuz0oxg\nYYH6wABisZTl+DJ1wJWTIJTKIJcjqhaSKWXoySpZIoLD0Y9AqWKnnic4d439gmamzFWaNLa7HQwC\nAUuReVzhAgm9iFbnACKRCAECxBs+vlWb51jOiqzRgVSpRi1VMzN7Fl1jOxMb1zjYfRyVvoG1xBo2\nmRmJ10eT1MTZyiLpSo5jLSdQOVoxX7rFdHmLcncnkfw2Zb2G+6tO1tbGSXrc6Fv7kI7tJxhYwhTL\nkZJBIZdCF8sg6xkk7F+iXd1MXatmsRamFN9mOxMhVcvxmOMkLa4hMgoRc97bPF+ao0naQGdaikVp\nplFhIb7lRji0m4amDpY840Rnb7Jy41lytSInHvkNmuyDuHr3sR1e5friWWQyJdVEjFo+i6BSZctz\nhyPH/hu79j1OtVJic+02337hz5EKpbhahtGZHZgd3cSDazTobNis3dy68x323/dumtp2/bvrhEAg\noFKpUCgUKJVK/yYR9Y0Awj0YuDflvKd6vc4Xv/hFzp07x5e+9KUfSxHbm/rx6U0geB265zK4N57/\nQWEU95wE5XIZjUbzujoJisUipVIJlUr1hsdnAoEA3+J1pqeeQ0CdWrlAKZsmHvWzsXqL/Qffxf5j\nv3S3U2D1Nt85+0lENWjrGEOla0BjtBHYmMHR2MXQ6CMktrdwT53h5rWvEotucejE+7F3jtLUugtK\nJbZ8czQ1dhDyu9n2LRFcn8M9d5FDR9/D3uO/iKtzjEImycXL/0Q2F0erbqCSzyKWyPAs3aDJ2snD\nb/tfSCVyIv5lnj/zKbZ8c/T33o/B4sJk76CQjFMuZBkZeYxyMcvSzHkWp84yO/siw6OP0Tt2Cqur\nH4PJwfLiFYxGB8V8mq3FG8QDa9y5/W16+o4yevQpHG0jWGydzN15AbVKTzmfw7N0g2BgkcmJ77Br\n6GEc3WOoDI2kqnmyYT+PnPpNeqy9KFNFZm98i6ZogapRSyDr51L4CjnPEtXmVgKlHea358l413Aq\nrNQH+gnKSuSUErprRmqHDxMqJ8jE/PRcX0ZQqxEtJ4kWE3QLLQgyGTIuG+s76ww09COcnaXW08Ns\ncom+hj6kvgDI5ayry7S1jNDfe5TG+Q08xSAzwTvo5Ho06SISmZIV6d1KZI1Mg9DtpuJ0cCexRLex\nG52hAXuyRlxa4erKOfY0H0SWLSDIZik6bSzFlxgwDyCMRLAINURcDdyMz7A3KEaOGIFQSN3pJJQJ\nIRPLUFeEhALLNJ58G8K1NZaji5htnbRu7LBt1xOvZrCoLCyVg1jCGeyJCrWBAdaSHuwaO5FchIR7\nkn0H3olvcZyiQkKD0Y4Y8M1cRNW/m5S4StNqhJzBgEIoh7lZnlX56e7YS/dGClNzD/FaFu/kBayD\nB1iT55B6A+jsbURLCSwFMcpMEZvaxkuhq6xWwhxvOYGxtY/miVXS8QA3mipMx+YZ6TnOiHmQ5tkt\n0kvTXHcJuS4K0Nd1HyMFHU5fiiZ/kllliutNZRodvcgSaQwL66gWVggYJAwdfgdaVxfL5RDrcy9z\n58IXUVocHNv1BLaWQVyuYbxbs6xXIshUOsKz4whyaXIBD5EdLw8//rv07z6FSCrHs3ab5y59Bp3C\ngEHVgFJlQG924lubZNfASdq7D7AdWmdh6gxXLv0jlVKR7oFjeDenXoGB17pOiEQiJBIJUqkUkUhE\ntVp9pSzt3nXvh15e/g9gAODLX/4yzz77LF/96ld/6Fevb+onrzeB4HXo3oTg3o37+wHB63USvBoG\n7o3uVCrVj6WgaP7aN4kEVzn88AfpGz2FTKpkZeEilyefpkHbhFplBKGMSrmMf2uGwwffTXv3AeKR\nTaZvP8vFS/+AWqZh+NA7aLB30mDrYCfkQSwUYbf3sr50neDGLItTZ0nE/Zx462/QPnCUlu79RLzL\n3J49jVqhpVLMUsomyacTeFZusP/QL3Dw5AeQShUEt+Z55synKBfztLWNolDp0Tc4CWzO0NTQyui+\nJ+86FmZf4vrL/0IwuMT+w+/G2b0Xq6sfCUK8/nlczkG2Q6v4VyYIbsyyMHuefYefYnD/E7R070ci\nlnH79r8iEknIZe5G/WaT28xPPk//wHFGj7+Xlp4DKGVaZiaewSTVsZMI4PUvsO6dYW7qLPv2/zwN\nbb2I9AaWkqtYqwrGHv0gDrUdZTIHk7d5sNaK0epCJBQwH1vAESoQsBtZT21xbuMckmCYqLJORC9h\nPLNIg8GBsA6V/ftY3VnDmRZieOkqqFSsVyJotWbM2TqCXI5Qo4pcOUeroRXh7CyVtlbmsmsMmAcQ\nb8eQyVUkd3XTqXAg2/QxP3GapFmHX5hhqHEIUaGIwOPBY1FTqBbosfYgDARAIiHb14msCsHZK2ii\nKZSuDvziHAKBAJvahmB1FSwWlKYmplJLaExN2C/foe50QlMTi7FF7Bo7HUkRG9UoBa0STXMnC7Pn\n2VXQIa5Bw9BBluJL1Go1vGkvIwUjArUGU0FAWCtkp7hDILhMZ1aGes9BGnQ25m8/i8rURCngxZMP\ncHzsnexIKiQKMVzbearZLKlakTVFHqXKgNXUhnRuDouqkZ3tLW5q0+QUYg4ZhmnxZQgr62xMnsO4\n5wgbFgkSr58esRV3PYLU68egMiHp7se3cB21toGksIRIIsUQTiFRqInkIrQ09fH/sfdmwY3e57nn\nD/tC7DvABeC+b012s/dV6pZasmTJlrc4sn10sp0kYydT8VTiqlRN5SqTzEwmk2MnZ8qTRLZly5bc\n2rrVWnpfyW6yuYIkCC4gAGIhQRAk9nUu2q2xfRxbmbHlJNW/SwAXbxXw/b8H7/c87xsXZgkqigj8\nfqKbfgoyMU+3fhyd1UlUkueu7wbXCl4aBQY6KxYsumpqFFZW/VOUe3qQKTUsz98i45lm+c47FKsU\nPHL6K1TX9GGob8G3OMwV9zl0Ui2ibBYxQqRiGQHfBMce+R2czbtJbIVxT77Hu+9/A43SQHPHYSx1\n7Vhr20mEV5DLVOh0VkZGX/8XxcBP88DH9MC8LBaLf6Y/6Rd1Dn6eGPjBD37Aq6++yiuvvPIfbsLf\nfxQElY9yf+S/Ux600kqlEjs7O+h0up/5uVKpRDKZRCwW/8SOgZ9OEjzgx5MECoXil7KgaPLGK0zO\nXsLl6MBR04nV2Ul4ZYrw2jy7Dn6abHqbiN+Ne/Yaa7ElBjseo77zKGqjg3Q8xNTIGYymOmTyKiIh\nD5VymfV4AGdNN0MnX0AgFFLMZbn+9teJbKxg1DmQy1WYrY0ktqJsbUXYe/x51HoLm6ElZkbPMTp/\ngWZHDy2tB7A67y8DuXfjB7gaB1EbHET8boL+abzBSWotLRw49iX09nrKpSITV7/PRmwVm62JzZgf\ngUBINpukUMpz9PHfp0pnAWD+7nmG77yKSVeN4kf1yJUaVhbv0tl3CntjH7lUgpWZG1y7/V2qZCpc\nDYNY7E0otCbmx96lpXGI6q79UCiwPHOLa5f/EZe6lpLFQEWrZUdQoBJa49Dh59FbXeRLeW6MnWEg\nqUE3cBBBPM7o0jW0kx5a7F2UuruZFyeIZeJ0+3Ls7NlFuBRjYWuB3nUhaY2CmF7GaHiUAWULel+Y\nqqZOpnzDPFKpx7yWoNzTwx1LAZvBSU1OhnBujkBfI8GdILsduxGOjFCuqeFCfpa9jr1U5SuU33qd\n24pN7hVXeaT/ORryKoo7KSatZSxqy31hMTxM2enkVnGZRn0jknSWiW/9LzT0HiXcZKfO2IhNbkJ4\n8SLlo0fxJFcolArsZBOorw3TrW8j297C5coiJ5wnkFy7TqazlZupWarEVUjKMHh5norVSvnkSZL5\nJK/OvUqzrJqDQSHlI0cQjo2RFwl4s2oVVnw82/QUlcZGALaW3YzeO0ulWKTj4DM4HG2UyiVuBW+h\n9QRwTvgYPtnG7sYjeDe9ZHIZejI6VG+eJfrkcc4WJqlR13DYeZiqQAThhQsstVi4ottCI9dw2nkS\n+fQs22vLTBcCbHc2kxYUGFK2Ur0QJq4Q4I24CZilbKtlHJe0UhvYpmwwsBEPcKW8xKq2wkFFGw3r\nRUwVJTvxMLcsOSytA5QKOWIBD+rlNdbXPNQMnqB/6BmQy0mmt7j19j+wnPRRW1WLUaSlpqGHUjaN\nNzLD4NHPUwGifjfLc7eZWLzOYPNR2rtPYKpto1jMcefii1TpbahVBqKhBVLJOJtbIYx6B31DzzJ5\n53Xa+079UtIED8zUhUKBYrH4QVfhx5ewPfjcAzHw0/6n1157jRdffJEzZ86gUCj+f9f0kF8NDzsE\nH4IH6hju+wJ+1g/6x5MED27uvyhJkE6nf2k7CXKpbe5cehGZrIpHn/kTtDobiY0g7733dTwro7Q1\n7UOls2BwNJLcDFHMpdi//7NIxBJ8C7dxj7/N5MTbNDUdoKH/FEZHMyZLA4ueW6hVRgSAb/42Oxtr\nTI++hdFUx/Gn/4jGrsNUVRm4e/sMs0u3MetsCErF+0792Bqbm35OP/VV6ur7SSbWGRs5w4Vr/0SN\npYXapl0YbA1UqQ1Eg/M01PZjd7Sy7LnFwtQlRm+/ilgs4ejHvoytvhtnyxDhlWnC60vo1FaCKxOk\n4hECi2Osh5c4fvoP6Rp6CoutkXDAzZVbLyERipGIpFRKRUqlAt7Z6+zb9xn2nvgSComC8OoM5y98\nAyECqgw2ygJI5lNMj77Nob2fovPU56m3tlGKbxK+c4EGsYVQNop73c3VpUtowpvoBw4i1GiJSvKs\nb63R59hFZWiIXGaHae81hkaCqMx2lGo9czsrdAprqN0oYRo4SrqUocfcQ0+ohNzVjF9ZYENaJKmW\nsxJfIqIo4527QX9Wj2zJR6WxkdlSmFpNLeqCEMHiIhuNduK5BE2GJgRLSwitdqINVrq0LWTmp5ke\nOYukqYWQJEW3pRtxroBgYYFMWxPexP1OgzKVxy4xMCnaYG72Cvsd+xHtJBGUy1Rqa5mKTtFqbKU+\nLWMpHWSrvZ7c7BTSsgBblRVBNIqoowuT0sQbC2/Qae7EtJUHqRRSKURWO964l1IwQI29FYnVTsVm\nQxxcw782RzYRw9JzAKVcBYBcb2Yj4GF6+Sb7hp5DIlMiQIBOpGMuMM5sboVuuRNbfTd2TTXxQpxQ\nZB6NUs9YaJTdzqMolXomI5OokaHaSpEo7rBTJUap0rNTTKGzulDfm0Ej0zIliSGQyREqlCjrmjHc\nuIs8V8JvkWMxOQkJU+xYdChG7xEJLSCudfJE93OgUrMsyzA+e4HR9AK9kjo6NU3Y7S1Uiw1Mh8bI\ntTZRLhaITQ9TCgcJjF1CaLFy8rGvYKrpQqzTMD3xDpenX6dOX48CCRqtBalYTiQ4x4EjX7g/1jvg\nZvLuG9y8/hJGfQ19+57BUtdBdUMf66uzlAUVxGIpo2NvfOjOwIfhp30HQqGQUqn0E76DB49Jf9Z5\n9tZbb/HNb36TM2fOoFQqfyk1/WsolUoMDAxw9uzZ/1Crin8VPBQEH4JyufzBGOFMJvPfCYIHSYKq\nqqpfepLgw5CMR7h89u8IRRepqelALJai0t53HtfY2zh4+HlymR2W5m5y8f1/uN8tGHqWmuZBzDWt\nCMsVNqJLNDXuIZVcZ3XhNpGVKSbuvU1Xz2m69j2Ls3UvCpmKkTuvkM7sIBaKyCQ2KOVzeKauolab\n+Phn/2ds1a1kknGuXPpHxtzv0+QcQK013/9HnUmyvRni4IHfoKpKi29hhPHh17hz54e46vroPfwp\nTDUtWKtb8XnvIpMoUCq1LM5cJRH1MzN6FrmsihMf/x9p7DqMxd6EZ+oSU/NXUcpUlHIZKsUSqcQ6\noYCbk6e/TOeux6FYxDNzlXOXvoFJbcdgcSKr0iCUSFlZGOHw3s/S0/c45Z0EC5OXOHvxG5g1Vqpq\nGxDI5ewUU3hnr3PkwOepPfgkdVXVZIIrqEbHadI3E6ukcG95eG/hHNaNLJmOFgpKGdOlNRwVNfa6\nTirt7YQiC6R98/SPriKsqyMlETCV8NKRNyDf2ELRu5vVHT/7a/fTu1bC2r6bVYOInF7LenaDNfdt\ntlIx/PEVdln6EAaDoNczL4pjUVrQSTUIJyfJtzbjTi7S49qHRmbCFktzb8fN2uYybbYe5OH78cBV\nRR6pSIpNdX9xktheTbGuhmhpm7zHjXVhDWFnF5uSIuvp++kCsWcBe30PS4It7gnCDGXNVI1PU2lq\nApOJZD5JupAmHfVjFGuQ7j+McGWFgH8GqclKQzDFtAWqdXWIRGLWVJCevMMeahgzZDFXWZCJZORL\nebzua3TWD7E4ex2rrYlCRYAgV4DFWWZdKuqEesxrW2C1YpMa2J66wxvmGP2ufbT6tzGaa1Ep9Uze\n/CHz9XqiahHHNlQ0axtIKsRM33yVRLOTOX2JfZtKBquaKWhVzN05i0dfZq5azpEdIx0FHTW2VgoL\nbt4RLLLQoKcLK8aFAKaiFPXKGgGzDOfuk2wphSwFp0jevIR74h2cPUc5MvQZXK5+JFYHI2NvMJNa\nxlSWk4tGMFTpKCdibGfjPPHsn6ExOliPrXL31g+4Pvw96uv6cLr6MNe1YzI7ifhnsdmbUamNzE2+\nT2hpgomR11EotAzsf46wf+aXKgZ+mn/Jd5DNZoH7HdBgMPjB++fPn+frX/86r732GiqV6ldS0y/i\nb/7mbygWi+TzeT772c/+Wmr498JDQfAh+HFBkM1mf+Kmn81myWQyqNXqD5IBv6okwc8iFvQydv1l\nOvtP0bv7KbLJOPNTFzn77v+JVCCho/8URkcTeouTWHgRtVJHc9N+QoEZvNNXmBk7Tzi0wLHTf4Cr\nYz91LXsoZzK456+g05hJbUdIxyPEo37mpi7R1fMYB079DlZHC9uxEG+/91/Z3ApS7+xGJBShNtgJ\nLI2hVZs4cfK/IKjA6tIYVy9+E8/CLXr7TlPXugdjdTNSiYJoyEOja4B8Ps38xAUiPvd9A2D7QfY8\n8iVqmwcxmp3cu/s68e0oIoGYZDxMpVBgdWEEgUDI6U/8GQ2te6kU84yNnOHq6CvU2dqpqtKh0lnI\n5TOsr3k4+cjvYXe0shleZOz2D7l089vUWVuxtQ6iMjrIi8X4VyY51fcJ6p19ZIMrTI+d573hb1Nt\ncCFuaEEokxMqbrG+Ms3+o19E3z6AtShn3TvO3uk4Lmc/ZaWc+aSP6dURROEokSYbm9IS90oBeqoa\nUFnrEDoceBZv4ojsUDu9QqmpCb8gTTS1QXNeizAcRtjTy+LWEsdcx2jfFKJu78NtgVhqg6R3mtLw\nbUTOeuZLEbptvYhDYQT5PH6ThEq5gk6oo2p1FVVHDzt1VswlBSsTlyjOzqDddYCZ9DJN+iYUFRFC\nt5tKdzfu+Dx7XIcoqJR4pi5iLitYFm1j1tfcH33s8SDo6UUmUTCxPoXW2Yp1ahkBULFYmNtZwqVz\nUeNPcE+xhdniQlLjYtx7lfalbez2ZjLVVrxxL/YqO+Phe7SnFBgtLpRbScYrISwqKwsLt9BlKnQc\n/wz5Up6Z229i1NVAeBWPIMap3Z9jWbJDIhXDuhhBGA7jN4iostSwIy4id9Shm19BM7+EormNYVZR\nq4xoa9uRLvkxjUyhtNTyvmwVsbIKS1Mf2p08pou3UMrUzNTKUKkMbJlVVADd2xcJJtfQ9O3lQNMJ\nEioJM+IYS8PnmYrff1zTZu3CWdeDBjnD4TtsV5sRbm+T9bgRJdNEpm4idzh57PE/Rmx0kBfkuD38\nfe7MvENLbT9apQFzdQtysZxYdIWewY8hkcjwzl6/H5m9/QqOmg72HP8CdlcXdc27WXRfI51PUshn\nmJm68JEOHXpwtuVyOSQSyQd/lP72b/+W559/nosXL/L666/zne98B4fD8ZHU9NMEAgH+6q/+iq98\n5SvcunXrYYfgF/BQEHwIHggCgUDwEx2C/y9Jglwu90tJEjzg0lt/g0KuwVrditZci0gkIRxw0999\nCnt1G6tLY8yMnWP4xsvI5VUcOPU7WJztVDf0sx7wkNiOYDA4WPWOsrMRxDd/m431FY4//od07nkS\ne20762vz3Lj7AyQiMUq5mmIuTyFfxDt7jZ7ukxx+9D9T/lEE6q23/zcyqS26e09hsDdgsDWwvRFA\nJBDQ3XmCzQ0f8xPvMz91Ca/nFvuPfoGmvhPUNA2glKuZmHyHKoWWnUSErYiPdGKD+ckLuOoHOP70\nH1Hb0E8pl+bKlX/CuzpOjbUFIaDSW1kPeCgX8zzx1J+gqtKzvrbA1Sv/zPjEOdqa92Ot70Zvq0ck\nlRMPL7On4yRKuQaf+wZ3753l7t3XaW/cg2vv46gsNYhMFqL+WU5WH8Gsq2ZnboKxhSvcGHsVp62d\nSkMDYqWK+WIY0foGHQc/gdJWi2IjQWDmJh9bkdLSfQyVpQZPcoX8Vox80MecS8WKOIlHsk27vA6F\nrAqpUnU/ylgxoHV7yba3481FKZQK1JU1iH0+JP2DrKbWeKz7WUxFGZtqEVcS42SWF3CkxaiWAlS6\nuxnf9mCX2jFKlEgXF8l2tDKbWOBAx2lqqhyE/TOMh8ZI55P01e9HsLoKUinbJjWBnQCd5k4skR2E\nNjt35ZuE5+6wR9aAeHsH1GqwWvFseugwd7DtX2BDLcTSOkD23gjz+TV6DB1ogxvIe3YxHp0gXy5Q\n1Klp9cahUMDY2MMOeW4Hb6NJZGhXOqns3Ys6XUS+GuRaZp7Ukpvdu55GUKVCXmWmKBWzOHaO1cA0\nXUc+hUllwaFyEBCl8K97Sd69QbLJyaG2U5iUJqYSHnZKGcQLXqaF65zs/SRWXTXzSS+pSgbxRpzJ\nzDKDhn4aqvvwp9ZY2JglVkiwJEhwBBfdziFUOgvhxQneYo5Nq4bBdSnWjBCLxoF2eY1ZfRHL4BHC\n6TBx7yS5e3fxzl+nad+THN/zGcyuTjJyEZduvIgnsUSd1EYpmaLa3kh5a4NcKcvhx34fgUiIb2WM\n8RuvMDb+Fu0dR2jtOoa1rgObo5XFhdvo9A4ol/FOXb6/dGz0HDqDg8H9n2Ij5GVw3ydxfIS7CSqV\nCqlUCpFIhFwuRygUIhaLOXbsGF1dXYyOjlJXV8fXvvY1XnvtNaLRKC6XC61W+5HV+MILL/AXf/EX\n5PN5bt68+VAQ/AIeCoIPwU93CKRSKclkEgC1Wv0TY4g/iiTBj1Pr6kUiEhNYHmf23rvcuXuGpsYh\nWgcfw+BoRG+sIbg8gclQg0KhZn7yArHQIpMjb6BWGTn29B/hatuHo66TuYn38KyMopBWUUjvUCkW\nSKyvEgl5OHn6K3TtOo2gXGTBfZW3r/w9JrUVe00nIoUWqUJLeHWK1sYh2toPEQ7MMj36NiM3Xyab\n2eHgyd/GVt9NdWM/2USMUGgeu60J//I48fASYd8MS95hDhz9An0HPkltw8CPZiZ8i0xmG3WVgXIu\ng0SqYHH2JrXVHTz28T9BIpIQCXo4d/5/JxB009FxFL3Vid7eQCYZp5hOMjjwNMV8loWpS0yNv8PU\n5Lv09j9Bw65HMNQ0I6rSE/GO0+noplzIMeu+zEpgirE7r9PddJCag0+gqmlAaK8mPn+Pk1V9aIRK\ntvzzXPddZXr6AjWODor1ToRaPROEqU2JsLbtRiiTk/XMsOGb5bRfjmvPY9TV9+GJe7CU5KT9S7hb\ndEzLtohqxTRlFCi3U0hzOWai43Sqm5DNL5KurmapvEmFCnUyC6o5L6aDp9hQVGhq2kMo4GZx4Tab\nqRibmW36G/chXV4GvZ4VWQa5SI5NZUM6O49l8ChrBgkb4UWEnnlMy2EEg7vxpP0YFAaMUh3CyUnU\nfXtJKoQsCDYxp8B0dYRyby9ZlZy52Bx91j5qvFGCFgVBRYFtrRxTYBOr20eluRmVox65SM4ZzxkG\nJE4MMh2Vri6E4+MY9dXcTEyh9K1R03MIUZUKzGZUkirmbpwhXyli7z1EpXD/unM4Gllausvqziqd\ncidKWy1CoQiHwkJg+gYX7WkOpUxoiyJkFge1YiPBiaucqU3Sa+zCtRhDVaWnTlXD5swdfuiIUdPY\nR+eODG14E0u5ilIgwGVLBpG9BqlMicK7jHFygUh2A93AIdqdu1nVVlhILBJ551U8aR9H+56l3bUb\nZ00XRSpcXHyPLZ0c7fo25dg6mrKU8PwddLUtHD31B6SFQjZ3Aty6/I+4F2/R03ECh60Fc20bapmW\nUHiBxpa9ZLPbzEo28JoAACAASURBVE+8R3TFzdid12htO8ju479JXfNuzI5mJkffYmM7RDaVYMU7\nQv/Qs78WMfCzDNHXrl3jL//yLzlz5gxf/OIX+eM//mMaGxsZHR2loaGB6urqj6TGt956i1AoxAsv\nvMDKysrDDsGH4GHK4ENQLBY/MBbG4/EPlg39OpIEP49capvw8iTRsJfEVhiVyoA/OMve/Z+itn0f\nAImonwvn/pZKpYxGZcJoqsVkrSfkn0UoEtN/+DOUS0XWV2cZufUDltfn2dNxElfjIBZnJ5HVOabH\nztO96zEEQgGRwCyBgJtgbJl21z46hp5BqdZTKeYYv/YSuVwavd5OPL6GWm1ie3sdiVTO/pO/hVSh\nopjPMn71Ze7NXsCircZma8JW3YpYomB++iLtvY9iqesgujqLf2mUG+NvUGOsZ3D3x7HWdSJTarh3\n9XtQLlHd0M9GyMt6ZIlI3I8QAcdO/h6WunYAgp67jN5+FYetmWxmhzxlKiIpsfVljhz6TaxN95e9\nxPwerr7zDcwSHSV1FWWtFpnOxNrqNIfrDmMZOAJAODDH7MXvsqtkIWU1sqEWMVYJko0G2evYi6Fz\nN2qpmvHwGN3uDSwKM0il+LZXCcry7N9SUz54kILJwPml8zjQUHZPs9nqJFPJw3aCR9Y1aL1+ivv3\n8T5LdDceRjO3AgoFUaeBYCrI/uq9iK5dI9rg4M3F84i3t9hbtlO/WUb0iU9zaWuMQfsgmmQB4dQU\nuYP7ueS/zMGagyzfu0B0/DotzgHchhKH+55BvhZBsLFBeWCAK6tXaNY3s+K5jdIfoUfTzIIsRanB\nRYfw/g6F0oED3Avf46r/Kl9qfA7DD89RcbkoDwwQlGSYiEwgn1+gu/MRzK5O2N7Ge/NN0tltFBoj\na01W9tj3oJAo8MY8JN5/C5fYzLA6SWvvozRYGgn7ZliYukDbwU8wc/csToGe+qHHSS26Gd6cxNV/\nHF9sEfvaNq1lA8VMipuGFKb6LuK5ONJskXZfCsWcl+sDZura9lIoF/Bv+7FE0+ivDrPQbKR7z8eR\naoz44j6CnjuElu5iVFt5rOYo8qZ2MJnwXXuDy9l5DOZatPE09qwEndzA/IYb64HHaKjpIbodIrw4\nzp2b30ciFLO/+yn0tmYMrmbWpq/jCUzgahliOxZkM7IMuRzriTUOHv4CtR17AdiOrfH+W3+DRKZA\nIVagVhkxW+9P51RojDS07Wfk6nfo6DtJTfPgr+xc+Wl+nhi4efMmf/7nf84bb7yByWT6yGr6WfzZ\nn/0Z3/rWtxCLxWSzWba3t/nEJz7Biy+++Gut698yDwXBh+CBICgWi2xvb//MnQQ/yy/w40mCX4Z5\n8F9DIZsm6pthZfEO6VQCvcGBSm1i1TdBW+dR6jr2U8imCSzc5cq1FykUs/S2Hcde246pphXPvfdJ\np7fo3fcsiY0AYf8sk+5L7KTjHNn3OZp7jyFX6dgIeBi//SpmSwOVSoWN9RWEQgnh9SUa6ofo2v/s\n/UxzIcfVt/+OzUQYo9aGWmPG5mhlJxElsRVi4PDnkKt0rPvnmBl7hzHvZTrrdtPafghLXQflUpGx\n6y/jbNiFSm/7UVTRzUp4jlpzAwce/W205hoq5TIT118hGlrAbm9mczOIQCQiX8yRyexw9NTvoTba\nKZfLzA6/w93RV3HoaxEolRgsLuQqPf7FUfo7TmBpG4RsltDCGJeu/iNmVNDUiNZSh1hnZM19m8OW\nITSDByCbJbB0j+Wbb7ErZ2Krr42YVsKtjAdZOEq/vhNj734UYgX3fLc44N5BVRZT0WqZU6ZJq+Xs\n2pBQ6eggY9JzdvEsNTIL2fERys0tVLIZBLEYJ3bMCLa2yD/+OJczs7jU9dgiKUTxOPHOFiYTk+yv\n2c/q9TcJx1YQi6SItHoO7noG4dwcFZeLRUWW7fw2fZZehFeusNFSy7uBywhCazyr2YdsM0H5xAki\nkhzeuJcD1fvh0kWm6uRsCLMkV+Y4WXShTOUp7d37wTyC5a1l5KtrDJh70ZhrYWqSy9IgPbV7EK6s\ncNclpdXYiklh4vrKZY5cWkLucLLUU8tieYMWfQvzM5c4KG6i2NRGfnqUqe051K29xGdGGBj8OLqa\nJrLFLBNT71B0T5PJJWl/+repNtZTKBVwb7jZGLlAeslD576P09B/gopYTCCxytyNM6ykguyTN9Pt\n2kuluZlCMc/UxZe4WBWmt6qJ7i0ZNpOLikLJ+PINQk4LWpWZjaAHSyxDlS9AxFrF7tO/jU5jIZFL\nsDJ7i6s3v4NJY2PA3Iu1rhONvZ6J22fIa6qwN+witDTFdnyVrdV58oIyx0/8DrbGXhAKWffNcuXK\nP2KxNFLMJpEJpWh1NvyBGVp7jtHQdYRSsUDUP8u1i98kntrEZWmmWCmxa+gTH+miop8nBkZGRvjT\nP/1TXnvtNaxW60dW04fhypUr/PVf/zVvvvnmr7uUf9M8fGTwISiXy+RyOZLJJEKhEKVSiUgk+kiT\nBP9aRGIJGlM1dc27cTbvRiQUEw15WY/5EAmElHIZysUCXvdVurpOcPyJ/wGxSELI7+atc/8r8XiI\njo7DqA12dFYX0YAHQbnCvn2fIptOMD95gemxc7jdl9k99BzNux7F5upCb6hm3n0ZncZCqZhh3T/L\nTizE5N2zmEz1HH7iD2nsOIhMquTO7e8ztXgTi74GQbmCVFbFTjxEIr7GEx/7KrbqNrZiAe7eeoXL\nN75Nnb0NZ+sQBnsjKq2F9cA8dY4ObPZmFmevsTx7g9GRMwgrFY4+/UfYGnpwte0jGpgn6J/GoDYT\nDEyT3IywsnCP9dAcJx7/L3Tu/zg1jnbi4RVuXv824jKUZVLyhQwZQZG56YsMdZ+m5/R/ol5ZTTYS\nZOTSiyiyRTbMSnYqOdbLSRYXhtlbt5+qJ55BK9OQDq+iGpvmRK4ampuJlnY4t/IOgrU1ZFoDxcOH\nyVXbmI8vsHsmjmQ9Bmo1nsQSeq2NwUAZV9NutM5W7ibcyM12/OteMrV2dsIr5ILL9AqtiBYWyPb3\ns5hZRS1WY83LsIeTOB79JMP4yRYzCMbH0S6vIWhu4V7KS5elC/laFEE2i7Stk0ghjt3ZhSc0jTwU\nRYuMycwK9bZ2NJE4wlweS88+1pIhlsoxqrV16N2LIJGQU0iZ3FngsGkQzVKAe5YyMr2ZTVMVhWiI\ntqvTSHsGsLq6cG+4uRe5R1tKibW6lUprK4Y5HypkvLL2Ds5wFlP3YcQqFerGFqplJi68+3WKQOvu\nx5CKZYiFYhzGBu7NXyIiyuDcEaHV2RFVqbCkBaz4JljvqkeWyaP2rKCUKlFEYqxlohh795M0adjY\nCiKbnqV4d5jlaiWPDz2P0eJkVVNmzn+Pyes/QKg38EjzKepqOmhwdLAR8HAVP8IqDWXPPJVYDMVO\nhpXlUQaO/ga9e54mKYHF1XHee/tvSRdSdDceRKWy4WruR7yTJFbYpqntAGtBNyvTVwkv3GN29jKH\njr9Ax8ApXK37EEvl3Br+PoVKkXI6TToeQVCBgHcUk9nFgSPPs+gdZteeZ3A09X9kZ8qDaOHPEgNj\nY2N89atf5cyZM9hsto+spg+Lz+fj1q1bD1MGv4CHHYIPQTKZJJVKoVKpSKfTKBQKxGLxz00SPJhX\n8G9tcUepkGc9ME/EP8v8wi3kMiXdPSexOjsRCIWMXf0uWr0Ds72ZaHCeSNjLamgOlULHo09+Gb3N\nBcDivQtMT1/Abm0imYwhkykRSxSsr68wuP85bPXdVMplAp47XLr0TQQCAXX2DoyWBjSGWlYXbiMW\nS+k79ClSiQhRv5u7986ynd7k4MAncbYNobM6CS2OMzvx3v3Ni7kMkZCHVGqLaNxPX9dJeg49h0Ag\nIJ9Jcu3sfyWTS6JVmymWC5gtDcQ2A0gEInYf/wISRRXb62sMX3mJhZVhau2t1NT1YK1pBYGQubHz\n9A48id5cR8w/z9LCbW7OvkODvZPWgVOYq9uQiCSMXn2JDkM7VlcX6TUfy6sTXA1cw6qyYt/zKGZb\nAwCrk9c4KHQhbWxFsLGBZ3WM7Y0gbfIaIvt7iYqy3AzcpDmjoKtsxrT7KJWNDe4uXOLICkgVKsrH\njjEnSZClSF+oQrKSI1Cn4/zSeZxSK53jIewFBYLGBm4r1jnY+STiO6PkamsJqsCX9LHXvpvAlTP4\nNRXEqTSKbJl9LScQ+HyUDxzAT4JwMsxucx87F88x4frR9stggJOGPQjW1ymfOEFRXcVl32W6TJ14\nr7xKVUM73ZomvBMXKWs0dInsVKxWtmstjKyNsBxf5rmqIfRLQZDLQaMhWKvjzaVzdAQLDDz6BRRq\nA+TzrIy+j2/sAuXqOmT9uxmoHkAmljHvu8vOnRtYTS48iUUauo/gqt/F3M3XSJaztO/5GO65KxSW\nvbQa21hb91LoaGdX6zFCyRDz/nvIp9xsBxdxPfopWruOUaZCaDvI1KXvMZtY4Ji2j07nHiSNLVQK\nBW5f+w6hWj1agRzZ+ibVRSWCZIolVZ6BE88jFyvwb6zgG7/E6OQ5Ws0d9LefwNrYg1ijZfLSSySV\nEkwmF2sr05RTW5ST22SFZU587I9QGe7fMH2zt7h2/VsYDTVIKyLMZidaQzVLC8O4WvZQ33WY5FaE\n8Mo012++RL6Qpb1hH5nsNt0DT37knYF0+v4Ey58WAxMTE3z5y1/mzJkzH5k/4CG/Gh4Kgg/Bg7ne\nQqGQnZ2dD/K3v2gnwb/1/d7lUpHYmpeI3000vEgw6qXO0c7Aoc+i0lvJpZPcfu+fyOfTWG0NxDbu\nt6CTqThisZRDj/8ecpWOSrmM+/br3Ln3Fkbd/Q2CVnsLcqWOxfnrNLcfoqZtiHh4mYB3jGsj30ch\nVbKr50mM1a2oDA68Y+fI51I0dR5ma91HJOQhGF4gV8hw5PCXcHbsQyAUEgt6uXX5nzEYqqFcJptP\no9FaCYU8NDfvpW3PEwBsRwNcfvcbxBJrVJubsDpaMNmaCQe97GyuMnTiC/e7Jr4ZpqfeZ2p1hIGW\nEzR1HsRS2056Z5PxG9+nu/kQMqWW9cAcy8FpJtYn6a0epOPIc5h1NeQKGUaufZeukhFTdTPx8ApL\n2TVuxMZokDtwHnoKi9ZBsVRk0X2Vg+tKJM4GBLEY7lyAVCmNs6gmsqeTcD7GzPoM3Vjp2ZRiaO0j\nHQkwHLjFQUkTipKA0unT+LJhwskwzvUywYCbjbZqNjdWacwq2buYQyCVUnzkEa7lPNRrGzAvRSll\nMmS62zjjPYNRqKTLE6dpS4RgaC+XpUF66/djXFyDSoVyVxc/nPsh+VKeoTVo9KcQdHQyZ4K0RkF/\nRkc5vIa7UYsv4SOTT/FUsgbF1RuUTp6k0trKZGIeT3QW28IavYc/g1pvpby4wLWpN+kqGtlpqsOr\nr9Bh6kAj03B76hwDnixVejPLsh0CVgVWo4uNkYvs73sKaW09qcAy7ol3CW4HkAjEnHz2f0IivT8C\nN7wV4P1X/5JCIcPH9nwBU+cekMkorkc5f+W/ETNV0ZyrwiUwYG8ZYCu8wr2deZyDj5JMbxFdmcYY\njLMVWkQzcJBd+z6BUCRmMx1j6sr3uOMfplffQYu5Faurm4pEwsjIK9h7DyOWKgktTxLze4gHF9A7\nGjl87AUEVVpUKhWeO2eZ8t7Abm0km4hh1NqRShQEwx4Gj/wGRnsDmXQC/9wwl298C4W0io6m/Vgd\nLRirm3HfOYtQLMHh7OHyhf/G4WMv/FrEAPATvimA6elp/uAP/oAf/OAHOJ3Oj6ymh/xqeCgIPgQP\n/AMAOzs7Hwzm+FlJgnK5jFKp/Alj4b8HKuUym6ElooFZIqEFhEIxq2tzNLgG2HfqP93f+ljIc/3c\n14nGVjHqbIjFMqz2FlI7m+zsRBk88htU6SxsRXzMjp1nZOYdnOYWWtsOYK3rQCqrYuz6yzhqO7HU\nthPxzRAKuJlZuo1BZWHPgc9jcLQgkUpZmbyA3zdBTW0nia0w2WwSoVDM5tYah46/gLmuDYDoygwX\n3vs6CmkVapUJk9mFweLCvzxGVZWBngOfIJfeJuAd59at7xFLRdnb+yS1Df1YatsJLU+wNHuDvt1P\nk00niAbm8frHWdvysbfrSVqHTqNWGdnejjJ66TvUK6sRqzREIl7WBCn88WUGLP10nfgcVTI1qXyK\n4Usv0h0TobbWsZ6NsajMMbI5wS5hDfV7T2Mx1pHMJ5mbeJ8jCwXE9mqQSHBXpdko7VAdLxJqcZAU\nlQinwnSKHAxMriOsqSWXTHBVuEqvrhtNKIbk0UdZryS55LuEvaSk4pmntnkQYWyTSCLIXssAgs1N\nSidP4t32sZ5cp7GgIzh5mXCLA/lOClUswV5pI4JEgtLTTxMpbjEfm2dQ1crstVdJdjbThJG52Ssc\nVLShjG1TOn0a1GourFwgtL1Gf7BEa8cRJKkMO6sLDFfFOSJrIyLOMqsvUq+rJ1vMUvSvsGsiSqW6\nmi2XjTHJBosbC+z1QfPBp5FarQhWVwnNDPNy6B267H3se/QFlJL7E+4211e58Npfo1bqsdS00dJz\nHJXeim/kXXyJFap7DuOfv41ycweXuZXVNTeS7j56244STUXx+acIDb9HfDPI0YPP4+w6CAoF+e04\nF97/B6KyItUCDY6SEntdF9lEjLnUMrsOf458pUBodYbA7G18i3fpbj/Orl1PorTXUS4WuPP+PxGv\nZFBXmYmHl9FKVORzKYoiOPyxP0Sh1FAo5JgbOcfN0R9i1jmoNjdiq25FpbczM3aOuqZBqpsHWffP\nElp1MzzxJmqZlp7248Q2V+nofwxbffdHdy78HDEwOzvL7/7u7/Lyyy/T0NDwkdX0kF8dDwXBh+CB\nIHhw08/lch8kDR4IgwfttJ++aP49UiwWCfvmifgmSCXXqVTKmMz1BINurNYmug88i1AkZivi48aF\nb7K67qXJ0UV1bRfW2g7SiXW88zfo3/8cIrGUyOoMSwu3mfaN0NtwkJ49T2GqbiGfSTJ65TtIpAoM\nxloi4fsz2eNbYWQyFXtP/DZqvRmxWMzS+HvcmziP1VBHuVLCZHYhU2gIrk7Q2fcY9qZ+sskt/PPD\nXLnxbUQiMX2dj2KtaUNlrGP61muIRNCz9xk2w0tEA3NMeq6RK6Q5sv83cHYcQK7UEPbNMDPyJq7a\nHnKFDOvRZdKiEtENH0Ndj9M69OT97zu1xe1z38CQEyHRGoiSoqTTshZbZpeyic6jn0YglZLZjjF8\n9dt0LKcQ1TiJmOQsyzLMJbwcShmp3/cERouLjfUVZibe48j0DuL6JipNTcxIEyykV7H7Ymw5bZjt\njWxshzFHc3TfWUFSXU25sZFrogBN9i6qp5aJt7lYFCV4f+V99qm76BvxodXZyBt1XJGuMdT6COp7\nMxTa29mQC3h57mVsMhO73Js0aJ2IFEquKaO0tOzHPheg4nQS0ks4u3gWg9zA6WUxyu0MFYuF9Wo9\nk+INDqbNeDbmiDhNtBnbWI7O4fRu4Jr2U3rsMdKuam5GR5kOjfP5hAvjvhMgEiH0eJgO3mMqNo+u\nrpnWgZM4tU4qVLg98Ra2ex4EegOL6gLVLbtxGFyMXfwW3a1H0Nd34HPfYGXxLpVigVypwLFn/hiF\nXE25UmYt4uW91/+aikDAIx1P4WgdRGy2kvBMcsN9Hl1rH9loEOXmDna1g2jEi7Cjm/6+x8kVc6yt\ne5m+9DJLkVkOtz5GY/MedK52UvEod258D21rH5JShWhwHmkyQ2wzgLG2jd3Hv0Qun0eukDN66du4\nl25h1FSjFiuxOlqQS5X4/OP0HfgkOnMdG2sLrC7c5cbYD6kx1NPbewpLbTtqo4Oxy99BKBSj0du5\nPfx9Hjn5+x+5GMhkMlQqlf/uXPN4PPzWb/0W3/3ud2lqavrIanrIr5aHguBD8GAl6AO/wIPXCoUC\nhUKBSqXygdFGJBL9uxYEhULhg+FLD/wP2xtBIr4ZZt2XUasMWO0tmGxNrHrvgAD6Dn2abCpBxDfN\n3buvE9ryc6D3aVxtezE6mn6UHHibhtZ9VEolwmvzbMYCRLcCtDXuY8+JLyCSSCnmswy/93+ztRVG\nr3eQSscxGOpIbK+Tz2YYPPJ5NEYrpXya2ZGzDE++iVVbQ339Liw1rShVBiaHX6Oufhc1zYNEfDOs\nLo4x7H4Hs8bOoYOfw1bfi0ypxj38JrHwEs7GQbY2g6xHl9nJJ0mnNjl67D9/YNbaDC1x893/C4vK\nSlEIWamAKr2N4NocA7VDOPecAiC3HuLiO99AGd9BUldPWq9Ga3Xij3roS2loOPosCIXk1/zcGj1D\n7WIUQd8uItYq1mVl1jZXOBxT0zT0OBKVlq1VD2PzFzi0UEC6aw+5zjbGSwFuLd2gOZynprkPR30v\nW34PW4EFhuaSVFpaKO/ezUwlQr6YRz+/woosjbS2nkwsgm27TM9kGOx2SgcPMiNYp0wF5/IWcykf\nUZsOSb5I1eY2B5fyCGUyyo89xqZKxGholNqUiKBvktq9j+EsaxmeeJP2LSm2tIDSM8+wKSny3vJ7\npDMJPr1hR9k9gCAepxz0c1UWRpcqEdNKsLTsosXQQjwdZ/T6KzyyKqBYV82MqUTGqKNSLKKZW6T/\n0GdApSK3OM+c5waXwzfpc+xm/+O/g0R0/7cZWZnm/Xe/jk5rxaavw9W8B2NdG5OXXiKnlOPqPoR/\ncYzN1TnUO3ki2Q2Gnvg9rLZGKpUK4dgKV978P9iqpNlt7MNR14WlvpvI8hTza+O07/s4O5shwqsz\npAJLRON++gc+Rteep+4/mslmuHr+GyTyCdRyPeVUmpradjLJOJlimt0nvohUXsVGZJm5u+cZdp+n\n3thKY8Nu7M5OqnQmRq+9hLNpNxpjNdHAHOHgHHMrd7Boq+nre4KVpTu/ls7AvyQGvF4vL7zwAt/+\n9rdpbW39yGp6yK+eh4LgQ/DSSy9RLBY5deoUarX6g9dnZmaorq7+YK93oVD4ic7Bv3aP+K+bB5MU\nlUrlvzhJMRmPEF11s7o8jm9thv7uU9jqOjE6mnAPv8nOzjrt/adIrPsJr82zsjpBMrvN4f2fp7Hn\nKCKJlK2Ij9uXX0SvtSEQidhORFFrLETXl6ir6b5vFBQKySa3uHb+7wlEPNgMTowmJ0ZrE+mdLdYC\nU+w6+Ck0eisbwXm87muMzL1HZ90euvtPYa5tJ5PJMH7te5iMDszVLYQDc0SjS0Q2V1ErtBx//A/R\nmGsAWJ68wtS9t3FYm0mm44jkSiTyKqJhLwf2fQZjfSdUKkS9k1y48PeoBTLk9jr0Fhd6Wz0rC8O4\npFYaDj4FqRRJ/yLv3f4WxONUdQ+gr23BYK3H55vEuZakceg0gkKB0lqAK3PnUcV2EPb0suHQoVLq\n8ceWOBSRU+PqAamU1OoiVwI3GUobULZ3EeqoxbPlZSo6xcmMgwZFDWprLXHfHPc2ZziME4neROno\nUeZic1zyXaI5Jacxr6K2cReZwDJ318c5rOpCWhZQfvRRwpl1Xpl9hZqiio5gEWtjP7KNGCNJN032\nTmriRVL7BpnPBZmITGCR6jm9KAKNBkE2y45OyQ1piNqNAkFZDkfbHpr0TcyFpxDcvUvfap780G7m\n9CWWKptEQks8tWPDcvxjUCohWFpibPEaNyN36O96lNbBxzEqjJQrZe4Ov4p0cQWRWktUlKGmoR+9\n3sH0zTP0DT2Dzl5PcGkc38IIS94RtDobp57+KnKNHoB13yzvXPoHVHobxpKEamsL1pp2PO4rlA0G\nugefILq+TGhliuWJSyQyWxw7+Dz17QcQValIRgNcu/JPqC21CIslsvF1TDoHkfAiJmc7HXs+Ti6X\no1hIMnb5W3jWJmmytOFwtGOpaaNSqTAzfp6+/Z9EJJUTWp5ixTvK1NJ12mp20bv7KWyuLkRiMfeu\nvEQ+n0Wp1DEx8x6nHv/yr0UMlMtlqqqqfuIMW15e5otf/CL//M//TEdHx0dW00M+Gh4Kgg+B1+vl\n5Zdf5vz58xiNRp5++mlyuRxf+9rXePvtt+nq6gL+3x0GP945eCAO/i13Dh6YIQuFwgeRyg9DOrFB\ndNVNeG2eUHiBbD7D4aNfxObqRiSR4r33PiuLd6mp62Y7EWE7EUUokhDbDHDg8G/iaN4FQDy0zIXz\nf4dIKEKl1GMw1mC2NRBadSOWyuk79On7w5ICc9y99Qre8Ay7mo9R7exFa2sivRXBM/Ue3bseB8H9\nYUlLKxOENhbpatrPnuPPo1AbKBXyjF3+DtuJCCZzPbENH3KFmnRmm3KpyKHHfheFxgiVCnN33mbk\nzquYNXYUOjNmexMKjYll9zXam/bj6NpPIRYlsHiPi7e/g1QooaX3BJbadoy2BmZGz6FPFmnb/QTl\neIzIqptLi++TySRoG3wCS3MvFrWded8o6tlF2uuHEJTLFMNB3snOUIpvIK9vQd3chUlhYm7NTZtv\nh2aREYFWS2knwTXJGvaMhIpCRqDehFgoZm1njUM7BupWt6iYzZQqJa5K1+ioakARS7DUbmMtt044\nGWaf0EXHqI+KxQIqFcOKGAZDDZaFIJ56DXFxiXKpjCyRYt/wGgKVCmFbGwm7nmsZN6aVKMUqOc29\nj2CVGRmeeIvaGT+uvJLsI0eZV2aY2ZyjlIjzXNKJ5MARBLEYxQUP70Zvk9+Jodq1l6amIWo1tcSz\nccYvf5d9GRNbcvCKE0hs1WSLObTBdfof+QICuZx0cIXZqQtcnnmTXc1H6Tv4KfTG++722dtvsLo2\ny//D3ntFx3meZ7sXpqIPpg8GwKB3gOjsJNg7RcqyZcqSJdlxj+14Oz5wsrLS/iwnWcvZceJE24lL\nLMeSLIkqpCRShb0BJNF7B6b3AswMytR9AJO/ZMlO7NiUFOM64QEGmJezvvf77nmf57lvpaaIgHMO\nTU4+2TIN03M91Gw6Rm5eFf4FF5bJ29y4/gypolS2r38QfUkjUoUG6+B1hmc6MFRtJOgyM+82k44E\nm3eW1q0feA8R3AAAIABJREFUp6h6MwDBgIsLr36HYDSEMk2DPEuHoaSBBZ8Vz7yNtp2PEotHcJlG\nGB+6xNBsJ+ur91JWtRWNoZpoZIlbF3+CNq8KsSQdh2UMr8eKb96KWmWgef1HGO1//X07GXgvMWA2\nm3nkkUf40Y9+RH39vVvTGveONUHwa5BMJpmZmeHLX/4yN27cYN++fezdu5fDhw+Tk5Pzjs3zYREH\nv61myOVQYFUcWMdYmHcRi0eJRpfZdeSPyMjRADDTf5Hbt19CqyoiGl1BocwnI1OOyThATf1u8qs2\nEIssr5olXXmSSGyZhsqd6PKr0BhqmBq4wELASeOWj7HgteE0jzIycQ3vgoONDcfIr95KRraSBbeF\ngVsvoNOWIpZIcTmmEIoleLxm8vNqWL/nU6QIBCRiMTre+D4myyBqRQGS1Ay0+gpi0Qgu2wQtWz9O\ntqaAkMvC5OBFrve9jE5eSHnNNrT51WTmaOi58gwFimIKqzfjNY9jMw9zdfo8OeIs1rc/grawlqxU\nGT39ZxHPzLGuop3AvB2HZ44bK5MkFubZsvEEutIGFGkK+oydJDs7aMmsICER4xQs8+bKGMF5Oy25\nzWgbtpKbpWfE1oeot49Gj4ikXk9Cp+MiM3gXHOQEllA0bSVfWYLdOYVgeoamQReJmhqSJSX0S3zM\nzRvJnjaTWlVPkaGBFY8D63QP23q8JKurSTY1YUxb4czsGxQ5linVVKOv2kTCYqFj9HVq7DH0CgOe\nXRuYjjqZDkyjXIRDIT3JqipSnE7CDhMXE1PkBFZYqq+muGAd+nQ9/eYeJL1dtEqLmRfHGc9Yxpkl\nIOAxs1dSjWbbwdWLymbj2q3nGJnuoKJhDyXrdpCnKSMSWeTW+ScpVJaCWIzJNIAwLYNYdJmUJGza\n/znE0jQi0WWm+s5z4fpPyM0poK5iO7nF68hU6em/9AzxVAn5FetxGodw2yZZ8bkIxZfYc+irKPPK\ngdWS0Vtv/AuZ2RokSVBkaVFrirAYB8lQ51PZfIhg0M+i30zXjZOYvZNsrD5AftE6NIW1BFwmhnrP\nUtd6hMhyCKd1HLttHJtnhvqK7TRtfZDULDmJeIxbb/6IhZAHoUDKrHWAnbu+QG5JA2KxGJFI9Du/\nZ/wqMWC1Wnn44Yf593//dxob751F8hr3ljVB8GsQjUb5whe+QG9vL6dPnyaRSPDCCy/wyiuvIJVK\nue+++zh8+DBKpfJdm/cXew4+COLgjuvYb7sZMrIUwj7Ti9M6yfy8E4Uyn0hkiXDIz6Y9nyIjR0Ms\nsszo7TN0dL+IPFNNkaHh593WOoZuv4I2t4LShl24LePY5ga41f8qUnEa2zZ9An1pI+kyFTP9FzHO\n9FBU1kZo3o3TOU0wFCCw4KSt9QEK67YhFouJLs5z5fUnSAHS07IRiiSotSW4XLOkSTNoan8IkSSV\neaeR7uvPMjJzk9L8dRiKm9H+3CVx6NZp6psOkiXT4DKNMDfXy+3py1Tq6mna8jE0+VWQTNJ17Rmy\nl0BfWIfLMYXdb2Jy0YIiKaX9wJdQaopISUlhaOQSi7evUamrx73sxZkeZwofIm+APeuOo6leTyIe\nZ3joCgvdl9gc1eEry8MmE9CXtLPssbNPWod+60EkCDFNd2MeuMJWcwrRLVuwadLoi5mZdgxzMJhL\nwYb9ZEgz8cwOMzh5hXarGEHbRuzlOkbDRnodPRxY0FBR0IREriJuNnLNfI3KlSyyFLlMNhpwLbkJ\nRULkhwS0OEREtVoSNhteSZSbiVnU4QTJ+npK9HVoM7R0Tl6g5NYkhgw9QXk6Yxkr9MZsSL1eHtDv\nIb11E6ysEDXNcu76TxD6/Qha15NX2kyRugKXexbTzdfZsO4IoaAHo6kfp2ARt99KU9Fm6rZ9dPWC\nSyTouvCfDI1eRKsuQZdbjr5oHekZcrquPE1l4x6yVHnYZ/qxGgeZne1Bqchn54Evka0pAMA4dJXu\ngdfJ1VUQnneRJckiK0uJyTrCuo3H0Rc3EI2u4Jjt59LFH7EcXaKmcANyVTGFVS1YJ7twe4w0bn2Q\neY8Zp2WM6enbuPxmtrQ+QHn9TtLlGhbnPXRe+DHZMi1isRSPaw6pNAOvz4xGXUx18wF6rj9HTdMB\nNIW1RKNRYrEYsVgMkUh0Vxz8tqeY7iS33slbefu9wOFw8NBDD/HEE0/Q0tLyW33fNT5YrAmCX4Nv\nfetbdHR08Mwzz7wj2zuZTGKz2XjppZc4deoUAEePHuXo0aNoNJr3FAexWIxoNEoikXjHRr9X4iCR\nSBAOhxGJRHfjnH8XxCLLuEwjTI9eJxT2oVIVosurJBaNMDt1i8ZNH0GmKsBtGWdm9Do3hl6jTFtD\nY/NhtEV1iMSp9Fx5BokkjVxDHW7bJG7XDA73LCKRmF37/xBVfgXxeJzZoQ76e06h15axHAkjSBGS\nli7Hah2honoHJevaEYvF+G1TXDn/feZDXoryasnNq0JrqMFpGcfrnKG1/eHVdRuHGR65xLh9gI01\nBymr2446v5Lwgofuy09TnFuDOCMbl3Ucx7wVS8BIqbKczYe+SGraard7340XWJoeRastwxV2sZQl\nJZhYQTIfZHf7HyDV6iEWY27kOpNXX6IwTY83T85CpoRliYSYdZZDBbtIa94Afj8u0whDnacoj2bj\nbarCJRMhyMzCa53k8FIBmS2bSQmFCJqnuDV7lbpgOt6mKqxqKWKRFEfAzG5XBmpNCYhEJGwWrq9M\nogoliWiUOIpVaNO1LEQWkJvcNLhSSKrVsLzMROYKnYFBNIsC1C3bKdZWIU4Rce32C7T0OsmS6fDk\nKZjLSTAQM1LoWGZv1WHElTVEXS7sYz0MDLxKnkSJp7ESraGGgpxCxiauozC5qWzcy7LbhtE8SH/c\nSsBn5eDmT5FftYGUlBSikWWuvfLPxAN+RDI5EoWG/MJ1rCwFcUz3sn734wiEYhyz/UxNdNA7eZmm\n8h00rD+GIreERCJO/6VnmI8soFYW4nJMIkFIMpEguDTP9sN/SEa2ikQywezwNS5d/g+yMuTkq8rQ\n6StQ6EoYHzhPukxFacM+HKYRgl4Tff1nWI4u0b7hBHmlLWSp83DODjHYc4ai0tbVcVbnNMl4DId3\njsb6A9RuPg5APLLCpVf/iYWgB7FISjDsZ+fez7+rTJBMJu+Kg2g0enf0WSQS/Y/9Tn6VGHA6nTz0\n0EN85zvfYePGjf+j91njg8+aIPg1WF5evvut/peRTCZxuVx3xcHKygpHjhzh6NGj6PX6dz14315W\nuFfiIB6PEw6HkUqlSCSSeyZC3u6SODh8nnx9FUUlq5a2iws++m++RNW63YjEqTjNo1itI8zZRyjR\n17F572fIlGtJxGP0X30ej3sOrbYUn9dMikDE8tIiK5EQOw59iWzVaj15bugal6/8mMy0HBQ5ehTq\nIjJlucxNdqJQ5lG78RjLCx6cxiE6br/A/JKfbc0fQV/SiCq/AttkN5MjV6htPMByyI/DOo7NPY0z\nYGF93SHqttyPWJLKylKIzjd/gCSWJFOmxhWwIs1R4VtwoBTL2LTvMwikqRCN0nftJLODl9Aqi1hU\nZqHQlRAXiwhODLC58RiphaXE7HamRzvo7j9FnqyASHUlan0F6dlKjP0X2SAuIbummRSPh6BlmjNz\nb6KOSog2N6IuqEKRrmTa3E/NbIjc/GpSolFiPg+vxUdJ8XqRFpejrWwhPysfo38GUXcvDcs5kJND\nJE3CdbGdQdcAjSl5FG0+RG6OgYV5Fz03X2TLaAhJWRWm3HSmpGEmw0ZaXGLaWu4DjZaE1cr46DUs\nQ9eQqwpx1Rai0ZWRKcrCOtVJa1yLvKyeqN2CyTHOuaUhUhdX2L33C+j0VQgFQtxeE/2v/ZCCNA1e\nYZQVWQbavGqclhFyRTlUbf8oyWgUj3GErq5TjFp72NR4nOLKjWjyK1lc8HD70k8xGBpIEQqxW0ZZ\nWQ7hn3eiVBaw/ehXEAhW9/Dg9RfpHXwdjbKQTEkmGn0F6RlyJseuUdW4F13xOryOGWwzfVy9+RxZ\nadm0NBxBri1HV1zFxO0zeL1mSqq34XfN4nZOE/A7CITcbN/xOEXVW0gRCAgH3Fx87Z/JyJAjFApJ\nxOOolAaczmkUqgKKq7fQc/05qhv2kvtfpBbeCVK7Iw7uNDLfEQe/zn7+VWLA7XZz4sQJvv3tb7Nl\ny5bfYMev8WFjTRD8Dkkmk/h8Pl5++WVeeuklwuEwBw4c4NixYxQUFPxKcRCPx++WFX6b4uDtGQsS\nieS38jd/ExLxGB7LBE7zKG7XDLO2YZpq9lDZvI+MHA0hv5OuS0+RnaMlNS0Lp30CQYoAb8CORmlg\n04HPIxRLiEaj3Hrzx8wYu9CqDEil6WhzKxAIxViM/dS1HEZTWEPQY2NurIMrt58jO1VGfd0+5JpS\nshR5THS/SooAqpv24bNP47CNMznXTTQeoX3LoxTVblntQbBO0n3tWXLVJcQSUbwBG2mZCuzOKeor\ntlG16b7Vz3gxzKUz32XBYyFHrkciV6HJq2Q+7CFqt9HW/jDiLBkRu4X+/tfpHX4LfV412spWFLoy\n4vEkpv63aDNsQpZfRsRqYtrUx0XTRbTpGko2HyU3r4psSTa3+1+l1LpEQUkTUb8Ha8jOW8tDiBdC\nNG96AH1hPco0Jb0z1xB13KQxvYTlNAnWzASdmPG7jOxTbSRv0wFSRam4zGMMd77MFlMKCw1VzCkE\nOFLjuAJmdvhzKNlyFMRisFrpGnmLpdlxUstrmC/Rk6+rRJQUYO25yObMGoSaXMKzU0z6pjgX6qFM\nrKVp36coUJcgEooYHLvEUscVDOpyLDEfgWwJ6Qod3tkhtlbuQ17TApEIAeMYb178PsGwj7rG/eiL\n1qErqME+O8Ds0BWa2o6xMO/EZh7G6bfg9ptpqTvAuq0fXe0VicfoOPtveAM2cmRaErEo2txyopFl\nfF4L63c/Rnq2Er/bxPTgZa71vEihqozqqu1oDDVkyXV0X3qKLLkOZV41DuMQC34zs6Z+JCIpO3av\nRnunCIU4Zge5feNZ8vQ1LC0GWFkJk52lwmIbp6nlyKoREqupo5de/1fmwz5k6UpIgQ3bPvFrNxDe\niVy/Iw7ulCNFItF/ed+4IwZisRiZmZnveK3X6+XEiRN861vfor29/TfY4Wt8GFkTBPeQQCDA6dOn\nefHFF/H5fOzfv59jx45RXFz8S8XBL9YP7xgh/SbcyVj4VWOF7wfJRAKvbQqXZQynfQKhQIzZMUZr\n81Eq2w4Bq30Jl175J1aiS2RnKEkRCJArDHjcJsRiMet3P4okLZMFj5WBzpfoHrtAia6GktJWtAU1\niCVp9N54npKKVW8El3EEi3mIgYnLqLP0tGw8gTy3DGlaOrMD53HbxikoasDvsxKYd5AUCAgEHOzY\n9QdoilanSgKOOS6c/RfSxWmIUtPJkueiVBdhs44gT5VTt+1jpADz1mmuXX8as3WY8opN6Isa0Bpq\nCAVczPSeo239A0hFUuwzg4xMdzLg7qOpaBPlGw6j1ZYSj0e5ffUZKqM5KPVlOB1TmFec3F4YpTRF\nSeu+T6NRFZJCCt0DZ0nt7qNcU42dINaMBFP4SPPNs6/6PnJqWiAaxTbTz+S1l6hZzMRVW4Q9C0QK\nNU7zKHujBhRb90EoRNxq5vLgaQQeL8n6eiTFZRSoyvAvOIgM9NKWv5EUqZRFyyz9SzNcc3XRpmmi\nvP0BcsRylpaXGBp8jYIZL+kqPbPLDjyZQiJiAWleP3u3fwqxTg9LS7gmenjz8g/IlmSjqG5Bb6hF\nl1fF8M3TSJej1G08jts8ht08zIi1j8XFALvaP01hzRaEQhGhgIsbb34fWYaSpEBAeCmASl2ExzWH\nXJ5L445PIBAICfoc9Fx7lsHp65Tq6jAU1qMpqEYsktLTcZKa5oOkZytxmUawmoYYmLpGobqc5g0f\nI0tTRFa2jPFbr2KzjZNfUIfXY2JpcX5VsM7b2bX/Syj0pQC4zWOce/1fSU/LJiM1C5WqEKWuBOts\nP6np2RRVbaLz0k+obz5EXvn/vD7/dnEQj8d/6X3j7ZNFGRkZ7+hJ8Pv9nDhxgr/8y79k9+7d/+M1\nrfHhYU0QvE8sLCzw6quv8uKLL+JwONizZw/Hjh2joqLiPcXBnU3+m4iDZDJJJBJhZWXlQ5GxcCfz\nwOc1kZIiQK7Ix2wepLxiM+Ut+1YNZebGuHb+BwQWnRTn1aHPq0FTUM2C24LZ2EfL9k+QkpKC0zjM\nxNg1hoy3aC7bQW3zftQFVUSXF+m+/BRpaTKUmkIc1jECASf+BScSURqbdn+OLIUWsViMefQ6PV2n\n0KqKWYksIlfkkZ6lwGIcoHbdXvIq20hEI9in+7h46UdEIktUVW5Bq69EU1DN7NgNlnxOWto/wZLf\nhdM0wsD4JYy+WbY23U9h3VYys7S4XUamel6jXttAMlWK0zaOZcXDXGCGJk0jjfseJ02aQSwRo+vK\n02TOWpFpC7FH/cxnS/AnFpEFlti97XFEGh0sLa32Jtw4RX5aLs5iNQKFijSlDvfILdrlzWQ0bSDF\n4yFsmeFsz7NkRUHQ1IqmqI5chYFZYx+ZU0ZqKrfD8jIe6wSdSxNMe8bZWnMYQ/NOVGkqFlbm6X7z\nP2hclLEiy2BuxY07PYWFWJDKuIy2PY9DWhqEQox0v87grVPIlIWk5BWgN9SSo9Azfus09fktaCtb\n8M2NYjEPcn3yHNnSbLbt/ANyi+oRiySYp3uY6DpLYcE6AgtOAos+0jLlOJxTtDXfh6F29Xg77Hdy\n4cx38c07yFOXodGVoi2oZnHBg2m2l/W7HiORiOM0DjM90Un/zHVaKnZS3bAXdX4liXiM2xd/Qlq6\njIwsDXbLKJFIkGDIh0QsZfd9f0xa1qrPwezQVTo7nkWnKiYej6BQFpCVrWFutpvqul3kV20gshTC\nMdvP5av/yeLSAuWGJqLRFRrWH/udjBb+4n3jTt+BWCwmEom8pxiYn5/nxIkT/Omf/in79+//ra/p\nV2E2m3n00UdxuVykpKTwuc99jq9+9av3dA2/76wJgg8AoVCIs2fPcvLkScxmMzt37uT++++nurr6\nXQ/8O81FvygOflnn8duPBX9x838YmHebccwOMjF5g6wMxWo9OieP2bEbZOeoaNj2MRYXvLhMI9y6\n9QLOeRtbGo9hKG9DlV9x1yWxonYH8dgKDus4HrcRp99Mdflm1u9adUmMRyN0XfgJHp8ZtbKQ+QUn\n2bJcFhcXCIf8rG9/FJlajyCZYKr/PNdvPossQ0lBQT26vEpkqgKGu15FrSqiomU/PusUDtMQN/pO\nk0wm2LbxBPqyFmSKXObGOzCOdFBb2U4w5MFqGsGyaGch5GZ7y0cobzuEUCBkaTlI55l/Qx4RIs7O\nwRnxIlZqcfstGIRKWvc8BlIphMP0dryAeeAqKm0xYZ0SdW45SamUwOBNNtUfIjW/mBSXC+NUF+f7\nXkCRpUXTso3cgloUWVr6ul+laCEFQ9UmVjwObLYxLoeGiIYCbNv6KPllzWRKMjG7Jpk5/xwtmZX4\nBCtYUhYIZIpwu+fYrl5P0ZYjrESjRDxu+m89T2hujExDOUmdDn1BLbFEHGffFTZs+Bip2QoCxnEm\nJju5PPkmpaoqqjceJ99QS6o0jf7OFxH6/eQW1GF3TuINu1khztKCh70HvopMtxqm47NOce7sP5Mh\nzUaanoVSXYgmtxzrbB8SSToN2z/OSngep2mY3u5XmHGOsaXhKIbSVtQFVYR8DnpuPE9ZzXZIJnBY\nxvB5TDh8JooK6mnZ/igIxWRkZNB/9VlM5kG06hKCC27kCj2CFCFu9xwbdz2OTJ1PdHkR4+gNLl17\nkgypjJKiJnR5lSi0JYz3vYlIkkZBSTMX3/oeW9sfQ3cPgoru9B3cuXcASCQSBALBXRO1YDDIiRMn\n+MY3vsHhw4d/52v6RRwOBw6Hg8bGRkKhEC0tLbz88stUV1ff87X8vrImCD5gLC4u8uabb3Ly5Emm\npqZob2/n/vvvp66u7l0P8/cSB3cEgkAguBtMkkwm39Uw9GEk6HNgmujGPNeH22+kqeEA2oIalLll\nDHW8xOJigJqWg/jsMzjtk8wY+wgvz7/DJXHBY6Xzwo+RZWsQiiX4fTZkOVrc7jl02jKadzxMilBI\nLLJMx5vfZ8rYg1ZuQK4oQKkpIZ5IYpzqpHH9MZR5ZfhtU5imu7ja+zIFyhKaWo6iLawhLVNB39Vn\nSYnHKarYiNs2gcsxhck3SzIaYeeez5Nb3MDy8jIu2ySjHSfRq0qIxFeYj4VIl6mxOyZoKt5CycbV\nsknM7+Pim08QdlnJ1hUi1ejR5lUyH/ISmZuirf1hRKnpRGxmBkbOc3vsLQwFDRTUb0VXUINEKKHn\nyjPUyypRF1ThtUxgcoxx1dtNnkjB+r2fRqcrRywUr9b3uzqp1K/DEXZgE4YJSlMIuSwcaHwQRXUz\nJJMsOi1ceuMJsheiRA15IFOg0pazELSS4QrQsOthUmIxAsZxekfO0WfqpLFqF8Xr2snVVxGLLHH7\n4n9SJi9DkqPEahzGvmDDHrShlirYceRrZMjkCAQC5oau0tN5Ep2qhKXECnKVgSyZBtNMF9U1O8mr\nWk8kvIB9tp/LV3/CUiRM67rD5BZUoy6oxjJ+C/NcHw0bP0LQZ8NhHcNsGcYVsLCp+ThVrYeQpGUS\nWQrR8eYPICWF1NRs3G4jGlUBC0EPEkkamw98DpEklVhkmaGOU3QNvIYmJx+NphhtbgUZMjUjva9T\nVrWF3LJmPJZx7MYhbvSeIlOaSV3lDvx+K7XNB++p6RCsNkZHIhFSU1OJx+M89dRTfPvb3+bAgQMM\nDw/z9a9/nQceeOCerumXcfz4cb7yla+slS3uIWuC4APMysoKb731Fi+88AIjIyNs3bqV48eP09TU\n9J7i4O3fAIRCIYlEAqFQ+L8icOkXU9eWFrw4jcM4bOM4nJOsRFfY1v7YXZfEmf6LzEzepKCwgYV5\nJ/MBByKRFLfXxKatnyC/sg2AkM/B+df+iVgsQnamihx5Llp9BW7nDJGVRVraP4FQJMFtGWeo+wz9\nM9eoK9pEYUkbOboykvEog7deorxiI1lyHS7LKHbrGFOOIfTyQrbt+zw5GgMAY11nMU92kZ9fg89n\nJRhZRCiSEAo62b7j0ygNq77wPtM45994ggyBFHGOErmmEHVeOebZPmSkUrf9QYhE8JsnuHH7BeYc\nw9TW7CK/rAWdoYaQ38nYzVdoqzuIWCzFaRphyj5Er2eAltxWanc+hCpHTzwZ5/a1nyGz+1HmlWP3\nzOKRRPEnFpGGlti3+wukqnMhmcQx0UPnhf9AL9UQVGeRqc5HrivBNN5JZWYR+RsPsOxy4TWO0jl0\nGs+8jYamQ+SVtaDLq8Rtm2Ti9lna6g6wFA1jt4xi8s9h8c/RUrKNht2PIBFJSSQTdJ//CX7bDApl\nPp6Qm8wcHYlkksV5B5t2PE62Jo/YYoiZ4atcvvEUWRlyKso2osuvRqErYejmKSTiNKpbD+G2jOG0\njjE8fpWV2DI7tz5GfuV6pOlZ+OzTdF17llx9FdHYCj63kdTULBzuGcpLN1C5/j6i0SipEjHX3/ge\nFtsYGkUBWVkqtPoKkskExtleWn8eF+6xTmKcuMW13hcp1FRQV7sbbWEtmTlaei4/jVichkyh58aN\np9m970v3XAy8PZr9zv0jkUjQ1dXFt7/9bUZHR5mfn+fw4cMcP36cffv2kZGRcU/XeIe5uTna29sZ\nHh5+x4j3Gr9b1gTBh4RoNMrFixd5/vnn6e/vZ+PGjRw/fpy2trZ39QTcCShKSUm5Kwrenq/wYSOR\nSLC4uIhQKHxPz4TlUACncQiHdZzggpt4MsHKcojdR75GhnzVJdE8dpMb159GJc8nEY+hUK5a2prm\n+ikqbaG0cTfxaATH3CBXLz+Jd8FBU9Uu9IZatIW1uEwjzE7eomXrCZaXFnCaR5iZ7mLONUZD2U4q\nmg6QKdeRjK0wcP05hAIhSmU+TscUcRIEw36kIik7Dn8VcXomi4uLzA1eZqDvFdTyfFIkElSaEjJy\nNBgnOqkq30Je3WZiwXns0/1cuvETViLLNKzbh8ZQg66ghumRqwTME7RtfpBwwIXDPMKw8TaWgIlt\nTfdT1rKP7EwloZCP2xeepEiqIyUzC7tzimCqAM+CDUN6HlsOfJ4UiQQSCUY6TjHVdw6dsoiFTDFy\nbRGSTBnOsdu01R9CVlpLwufFOtXDW50/RSqSUtG4F7m2FIWqGOPkNeIuO40tR/G5jNito4y5hvEF\nXezc8AlKmnYhEUkJh3zcfOP75IiyEaSl4Qk6yVLk4vVbUaWraN3zOAKRmPhimN7rz9Mz9CYaRSEq\ndQmq3HIyZWrG+s5QU7sTTWENLtMoNtMQNwdeRZGlZfOWT6ArrEOakc1033ksc/0Ulq0n4LXgcc+R\nIInHZ2br9kcxVK3O1y8t+Dj3yv9LCimIxelIxGnkF9bic5sgBVp2PIxQJMFrm2Kw6zX6Ji9RY2ij\nuKQFjaEGkSSVrstPUV69jXSZCpd5bPX/b7yNNsdAQ+Mh5qZv3XM7YnhvMQCwtLTEI488wuOPP87H\nP/5xTCYTp0+f5tSpU9TW1vKd73znnq4TVkuoO3bs4M/+7M84fvz4PX//32fWBMGHkFgsxtWrV3n+\n+ee5ffs269ev57777mPTpk10d3fz9a9/nTNnziCTyd5xchCLxe7WDH8bhib3gjsGSmKxGKlU+l+e\ndESWQjhm+rFZRggueFCqCkgmweczs779EWTqAmKRZWYGL3P5xlNkSDIpK2lFl1eFQlfCSPcZxJI0\n6jfdj882jdMyRs/gGyyuBGnfcAJD9UYyc7S4zWMM3DpNQWED8XgEp32KSGwFp3uOEkMz9dtOrH7O\nQiG3z/0Qh3MKtTyfCHFksnwSiTiheRvrtz9MpkrPyoKP6cFLXL75LIpsLeUVm9EVVCPXFNF7/Tly\n0hR8/CQkAAAgAElEQVRUNu/HYx7DaR3n9vh5SMTZvu0x8itaSUvLxmYcYvz2a1QYWgivLGB3TrMk\nEeDyzLG+ai9Vm1fHIuORFa6feYIlt41shZ7FVAEaXTmhSJC40876HZ9EIlMQ9TgZG7zI9e4X0GlK\nMVRtJLeghuwcHT1XniZfZqCgYgPmyV6ctnEGnN2kCSRs3/kH6EsaEYsk2OYGGe08RVFeHcFFP56Q\nC0lmDg7XNK21+yhp3gNANLTAxde+i89rRqEsQK4xoMurYmU5jHW6h7YdjyBNy8JtHmVq7AY3hs9S\noW+krLqd3MI60jKyGLz+HKmSNLT5NTit43jcc/iCLpKJOHsP/xFyXTEAbtMYVy/8ELWykGh0idTU\nTHLkeizmIYpKWymo2U40EmE5YKfj8pNYfXPUFLWRm1eNpqCKpZCf8cELtG5/mHgsgss8inG2h6G5\nmzSUbaO+9QhKfRnJRIKey08Tj0dJlWbRP3LungcVwf8NLcvMzHyHGFhZWeGTn/wkJ06c4JFHHnnX\n7yWTyXt+shiNRjly5AgHDx7ka1/72j197zXWBMGHnng8zvXr1zl58iRvvPEGLpeLb37zm3zhC1+4\nG198hzszy3fKCm9PZvwgioO3GyjdSZT8dYguL+IyjzI73oE/YCc3twJdXhViaTrDva9T3bAXjaEG\nt2Ucy3QvHf2nUWXp2LD+AXTF9aRlKRi5eZp5n52iyo343UZcjikWQl4Wwj62b3+MwprVsJtwwMXl\nM/9KqjQDkUhKLBFDLi/A4ZgiO0PBuu0nkKal43daGLr5IuPm2xRpqsgrrENbUINQKGbw1inqGg+Q\nozHgNo1gmu3n5tgb5CtK2Lj1ITSG1fHJwc6XWXRbKSxpwesx4vIYCcYXCQe97N79BbTFq2ORQa+d\ny699lxypjKRYRCItFaWmBLtjnNx07WrpQSBgyWGh4/rTTM12YShuRl9Yh85QSzKRYLjjJZqbj5KR\nrcRlHGZuro9bc9coU1fR0v4QmbJ8BAIhU4Nvsewwk2eow+Mx4gm5iAogNO9k794vIc8rA2DBbuSt\ns98hU5SBMD0TmSoPTW45NtMwqQIJje0PkYhFcZtH6e1+lVFTFy1VuykqX4/WUMPKYpDuaz+jqmo7\nAmkqDvMIdusERtc4ekUxG3d/BpkqF7FYzET360xPdKLXV+H3W5FK05FIMnC6pti043GUeasPbcfs\nIBfOfQ9IQasqQaUuJr9kHbbZPpaXg7TseIRQwInTOMzIyCVmnaNsbjhGSfVmlPoyFhe8dF36KXmG\n1XKV0zZBcMGNJ2BDqyqioe0YA7dPvW8nA+8lBiKRCI899hjHjx/n8ccf/0CUFJPJJI899hhKpZJ/\n/Md/fL+X83vJmiD4X8L3vvc9/uqv/oq/+Zu/YWRkhKtXr1JXV8exY8dob29/lwnRrxIHH4TY5jsG\nSmlpae8SNr8J8WgEl2kUp2WUkbErqBT5VNZsR1O4GmvcdemnaHRlKHQlOM0jOGyTWNyTyNIV7Dzw\nh+RoVzvazWOd9Ha9gj63knDIS0qKgLQMOXb7OM2t95FftQH4vx4FoaUAenUZSk0JOZoSfM455n0m\n2nY8gkgkwm0aYWzkMgNznTRX7KKqfgcaQw3RyBJdF3+KWlGATJWH0zKG22PCtWAjOzWHXYe/ercc\nYhq5Qd/Nl8nVlhFaCiDJkJGepcBqGaWl4SC5VW2QSOA3jXPu3PdYCs9jKGlCo69Aa6jBZRnHb5mg\ndecnSSwt4jQNMzp+jSFrDxtq9lPeuAd1bhmR5RC3L/0nuvRc0uUajLMDzC/7mY8EyBFnseu+/wdp\nRjaw6hLZ1fEcueoSFmNL5KgKyM7RYZrupqZqG3m1m4kvL+GYG+DK5SdZWPTTULOb3J+XaByzA5im\numjZ8iDhBS8Oyyizc72YvdNsqDtIzfojZMjURFeW6Dr/JPF4jBxlHg7bBEKhlGDIhzBFwPYjXyE9\nKwdBSgpTfRe40fEMyhw9WVlKtLpyshV6poavoDfUkle1hYDTxIJ7hs6uFwgvB9nS8gC5hXWo8iuw\nz/QzMXSRmsaDLAY9OO0TuN1GnH4TzfUHWLf5I4gkqcSjETrf/D6hcACJOBWTffR9ORm44zvyi6PG\n0WiUT3/60+zfv5/Pfvaz7/tev8O1a9fYvn0769atu7umv/3bv+XAgQPv88p+f1gTBP8L+Iu/+Aue\neeYZzp49S2npqiFKIpGgp6eHkydPcvHiRSoqKjh27Bi7du0iNTX1Hb//QRMHd3ogflcGSol4DLd5\n7OcuibPY3NMU5dXRvP0EGTL1z2OSnyYc9qHWlOB2zSASSVhZWWQlskj7wS/dTXA0Dl/nypUnyc5U\nkp2lQqsrJ0dtYG6sgxyFnpqN9xH0OTFN9tLbdxpfyMn6+iNoC+qQaYoJOGeYHrlIffNB4tFlHJYx\nbM5JHD4TdeVbadnxMJLUDBLxGN0Xf0rAa0WtLsLrs5CerSQWi7AY8rNtz2dIV2ghkWBm8ApXrj6J\nLFWOSl+KJrcCubaIqcGL5GSoqNl8nJDbitM0TGfPaXxhF9taP0ZeeSsqXclqimTXa9RWtrMSXcRu\nG8cTdOL0Gakr2Uzz7kdZXl4hBRjpeB6PfQq1uohA2EuO2kAyESfgtbJpx6NkqvTElxaZHbnGpWs/\nISsth+LS1RKNUl/OyO1XkYqk1G44htc2hcMyysDIBYLL8+zc9AgF1RvIyFbhd87Rc+05cvXVJJMx\nnI4phEIxTu8cRQUNrN/7KWDV5OrmWz9ixtiDMicfoUCMQlWEUCTBYRuhefNHUeWVEfTaME/c4vLN\nn5GdrqCmcgcKbSn5pfUMd54iElmksmEvXvsUTvsEc6YBQsvz7Nj6GEW1WxBJUgn5ndx46wfIFXmk\npKSsTqzItLg8c+i0pZTV7bgbVPRBEQOxWIzPfOYztLe386UvfekDIwbW+GCwJgj+F/DGG2/Q3NyM\nWq1+z58nEgkGBwd5/vnnOX/+PIWFhRw/fpw9e/aQnp7+jtf+MivUe5XMeOeI814ZKCUTCdzmMdy2\nCZz2SVJTM3G558jVVbB+72pMMsDtcz9mcvoWGkUBYknqqj2ySIJlro/6tqOr8+x+J6bRDi7f/Bnp\nqdk01+9HnVeJNFvH7MCbRKNL1LYexmefxmmbYHK2m+Cin02tD5JXuZHU9EyWg156rz1NjkyLSCTF\n4zWSkaXC4zGiVRfTtvtxUoRCErEo3Rd+yujEVdQKAzK5Dq2+ElFqOtPDV6hrOoimqJZ5+yyWmV4u\n3XqO7PQcWluOoTXUINcUMnzzNCGfg5qGvXidMzjsE1g8M8yHPLRv/iSlDTsQCIQsLni58ca/kyHN\nRCROwx2wI1fmMx90oshQ0brnMQQiMbGlML3XnqV/+Dw6ZRHavEp0+VWkZsoZvHWKquodaIvr8ZjH\nsBoH6eg7jSxDyeZNH0dXVE96tpKpvvPYjUMUlW9g3m/D5ZxmJbqM129h8+aHKFm3Y/U6WQxy8ZXv\nkIjHyMjIISVFgEZXht9vI5mI07bzUcSp6Sx4rIx0neHm0FnylWUUGhpR5JaTLdcyePMkhqImZLoy\nXKYR5j1zDE5eITMth+3tj6ErXodIkop1/DYjA29hKGwkGHTj99lITc3C7pqkre0jFK9btfZdCS9w\n4ZXvEFz0IRGmEotH2LrzUx8oMfDFL36R9evX89WvfnVNDKzxLtYEwe8ZyWSSkZERTp48yZtvvolO\np+P48ePs37//XeM9yWTyHfkKv0tx8HYr1fT09PelpyGZSOB3zmIcu8n8vAOhUIQ2twLvz7vMW3c8\ncvchM3jzNN1j5yjWVlFS2oa2oAZpejY9V5+h8OeBTdbpfkwz/YwZO5Fnqtm24zFyi9YhFEswDl9j\ncvQahsIGggtufD4rKQIxDvcMTY33UVi3FbFYTHxlkUtn/pmlpQVkmSoyslXo9BUszLsIBZy07vwk\nkrQs/LZpxvrf4ubI65TrG6mo3vrzNWXRdfE/0WpL0RXW4zQN47COMW7pI0OaSfvuz6IrrCNFIMA2\n3bvaKJlXQyjsJ7joJz1Lid0+QUvTIQx12wmHwySWQ1w/928EAg6UinyUmkJ0+dUshQLYjIO0tT+M\nND0bt3mUmfEObgyfpaagldp1e9AUrvZBdF38KempWegMtbis47ic07gDVkjC7gOrCZYAHssk1y/8\nCI26iMjKIilCAXJFAVbLMMUlrVS2HQRgwW3h+rkfYnKNU6KvW02wLKhZjdnuf4vmLQ8ikabjMA5j\nmu2la/wCZbp6ahsPocyvJCMji5HOl1henCevsB6XYwq/z0Y0HiG06GfPga/ctSP2O2Y5f/ZfkGWp\nSQEys5SotSXYzCNky7QUVm6g69rPqFm3F3158z29hn+ZGIjH43z5y1+mrq6Ob3zjG2tiYI33ZE0Q\n/B6TTCaZnJzk5MmTnD17FqVSybFjxzh48CDZ2dnvev3bywq/TXHwQXVTDDiNuMyjDA2dJydbczcm\nOeR3MjPRScu2hxAIhT+3vr3JwNwNGku2UNd6hBxtCeFQkImu0whFQjS6clyOKeYDDhaXFognYuw+\n/Ed3kxldxmGunPsBipxcEskEGZlKsmW5mOb60eWWU7PpGIIUCDhmuHHpJ5jck6wr30p+4To0BTWE\nFzyM9JylaeNHSEkR4DSNYDL2M2ruprqwlZYtH0euKyaZTNB/7XnCfic6fSVu1yyLK0HisNqUePDL\nZGsKAPCYxzj/xhNkpeYgTk0jI1OLWl+GxzZGemoW67Y9SDy6gts0Sk/XKcatfbRV76WwtBWNoYal\nkJ/e689TXb8boUiC0zKK3T7BnHOMQk0lW/Z/lswcLQBjt84wO32bPH0Vfr8NgVCEWJKKyz3Hlh2P\no8wv//nnNMKFN/8/kiTRqYrQ6MrQFFTjMA4TDnlp3flJVhYXcJlGGR46z5ill011hyip3IzGUE1k\nOcStC0+Sm1dDinC1AXBh3oHbbyErQ0X7wS+TJVcjFosxDl2lu/s0udpyFsN+srLVZGYqMZkGaGg9\ngr6smUQ8htM4zOULPyS4FMCgKSeeiNG88aP3/GTgTqntF8VAIpHga1/7GiUlJfzJn/zJmhhY45ey\nJgjWAFYfyrOzs5w8eZIzZ86QmZnJfffdx+HDh8nJyXnXTeSOOIjFYv+j2OYPi5ti0Gtf/XZtGWVs\nroummt0UVq4GJfmds/R1vEhxxUYEKSlYjcO43Sb8YSdF+lq2HvwiIulq38bg1ZNMz3ah05QQDHqR\nK/SIRak4nJO0bH4QVX4F8WgEy8RtLl7+IQIElBa1otSUItOUYB6/QXQlRMuOhwnPu3CZRxgeuYTV\nN8fWpvsprW8nR2MgHHDRdfkp1KoiJGmZOG3jLC2H8QedKLN1tB/9I4SS1cmN8a6z9PWeQasuIRaP\noFIXkZ4hxzjXQ+26vehKm/B7nPis43R0Ps3ySpimur3kFtSgLqjGPHELu2mI5i0fJzjvwmkeZdbY\ng8U7y8Z1h6lpPUy6TEVkOUzXuSdJEQiRyXW4HFOIxFKCYT8igYj2I19BkrZ6SjXdf5Hr159CJcsj\nPUOGRleGTJXPzMg1cgtqKGvaQ9jvxDE3RMfN55lf9LGp8T70xQ2o8ytxmUYY7X+LupYjrCwGcFrH\ncTimcfiN1Fdsp7L1PkTSdNJSpfReegqP14xaVYjHYyYtXU48FiMU9rJl72fJUeshmWBu+DqXrvyY\nrDQZel05Wn0lSl0pk0MXkUozMZS3ceWtf6dt08fu+cnArxIDf/zHf4xer+fP//zPP7D7a40PBmuC\nYI13kUwmMZvNvPDCC7zyyitIpVKOHj3KkSNHUCqVvzK2+dcRB8lkknA4jEAgIC0t7UNzswoHXHdd\nEkNBLzbPLOtbjlHVepBoLM68z8XgjZ8hEknIyMwh4LejUOTjD9hJFaexfu+nEaem37W+vdX/Kpqc\nPHJ15ejyKsnM0THU9QqG4maKarfisU3imBviRs9LCFOErG95AHV+NZmKXFwzvRinblJR285i0IvT\nPkEw7Mftt9DacIiazfeTkpJCPBrhxtnvsRD0IJfpWIqEUGtKWFoKshj2sXHX46RlK4mEF5jsv8DV\nW8+iyNJSUtRCtrIQdX4ZY12vkpWluusA6LCM0T/0FpF4hB1bH131Q8iU47FO0tf5IgUF64jGlnA5\npldPUjxGyopbadn1ybufZecb38dkGkSlLEAoFKHRlf08unqA5i0fQ64rJuRzYBq/yeXOZ8hKl7Ou\ndjfa/CpUeRUMdbzMykqI2tYjqw2A1nFmjH0sLPnYvulhSuq2I05NJzzvpuP8j5BlaUgkwOuzoMjR\nrv4r17Nh/2cQCEXEoxH6r52kf+QcalkeGZkqlOpiMrNVTI9dpXrdbvLKm/E7Z7HPDnL19nNIhBLq\nKraxEPRQ13zoA3Uy8M1vfpOcnBz+z//5Px+a/bXG+8eaIFjjV5JMJrHZbLz00kucOnUKgKNHj3L0\n6FE0Gs2vFAfxePxuWeEXxcEdwyGRSPSe7oMfFpaCPhyzA7jsU/gDTrKyNDhcEzQ07KOsaS+w2mx2\n6bXv4vKbUMvyUalXTXciK4sYZ7pp3fYJ0mUqPJYJZsZu0DH0GiXaGtY17kdbWEtquozeK88gSBFi\nqFiP2zqO0z6F0zPHUiTMli2Poy1eh1gsJuy303nxRyjkeZBMshxZRKEswOGYJFdXzrqtHyNFIGA5\n6OfmhScZn7tNvqacXH0luvxqhCIxQ91nqGs+RLbagGm8G499nNujb6BXFLJx04NoDLVIM7IZvfUq\nXuccRRUbVj0anDOsRJfxz9vZtv0xDNWrDoDLoQAXXv0nBAhIS80kRShAoy3H6zUhFAhp3flJRJJU\ngh4bQ92v0TX0OoWayrvR1elZCrqvPENBUSO64npcphHs5lEGxi+RnppNe/vj5JY0rDYATnYz3PcG\nhcXNhIMevB4z0tQM7M4pWprvQ1+1ebXcJYBLr/4TgQUX8mwtGZlydPpKVpZDuBxTtO34JGlZCnz2\nGaZHrnK97xR58hLKyjahKahGrjEweP050jNkyNWFXL3yY3bt/eL7JgZ+cSInkUjw53/+54hEIv7u\n7/7uA1OGW+ODzZogWOO/TTKZxOVy8dJLL/Hyyy8TiUQ4cuQIR48eRa/X/1JxEIvFiMVi70hlXFxc\nRCKR/LfcBz/o3OmBCC/4CHuMzEx0EI9HUaoMqHSlWI2DSKXpNGx78O7IY8/Nlxi39tJSuYui0la0\nhXUsh+fpuf4cVXW7EKdl4DSPYLeOM2sfJk9Vwra9nydbvdpzMNV7jsnxG+TlVTMfsBONRZGIM3A4\nJ2lu+yi6sgbEYjEhj4ULr/8rK9EltMpCVJoitPnV+Bwz+H0W2nY+CoDLNML40CV6pq/QXL6Tsqot\nZCgLkUolDFx/FoXKgFxduDqq6Z7F7bcilaSx+9BXkKlXew4cMwN0XH2KXE0py8tBRGIpMnkuFvMw\nFVVbKG1cDakJOI1cPfd9bJ45SvPr0edVo8mvIroUYnTwPC3bTiCWpOE0DmOc6aFn8iI1BW00tN2H\nxlCNQCii7+qzrCwukGuoweOcw+e1EI2tEFoKsPvAl1HqV42Q5l1mzp35Z7IzFMRicdLTZeQZqnFa\nx0nPlNO4/QQAXtsU/TdfYmi2k5rCNgqLm9EUrL5X99VnqFq3h/RsJU7TCFbTCCMzHahkedTU7MFm\nGaC++SC5pQ339Fr+ZWIgmUzy13/910QiEf7hH/5hTQys8d9mTRD8F3z3u9/liSeeQCgUcvjwYf7+\n7//+/V7SB4JkMonv/2/vzuOqrtP+j784h012OCyHfVFBQFRETNTczUgEbLd1pm2qaZrmUT2q23se\n8+uetnsm7+7qnqnGaZmmskYWt3FDRUVFBBFFQGTnsJxz2Hc42/f3B8HkxpgpB/Dz/M84xQUd+b75\nLNfV2sqWLVtIT0+nu7ub+Ph4kpKS8Pf3v2w4MBgM6HQ6jEYjMpkMGxsbrKysxnUgkCSJvr4+TCbT\nBWcghrokNlQXcq48m2lTBtv+egZGUl10BK26nOgF99L9/Z57RWUu9S1V3DJjNZGxCYN77n3d5B34\nO1hY4KrwRdtYjkwup7unHQsLGUsTnr+gEdCRI39H4eyNtbUdCvcg7F2UVJcex8tnKuG3JGDo76ap\ntpjs7O/QdtRzy8w1+AXPxNM/nJaGcorydzE9ZjUDfT2oKk/T2lZLQ0sl04LnMnfpI9g6uCCZTJw5\nmkJjw3mUXpNpba3D1tYBC5mc1rZ6Fi5/HOfvhzk1VhSwf99HWMltUHoEDx4A9AuntiwXg2GA2Ysf\noK+7DW1tMWcL91HWWMj86QmEhM/H3TeU/p52cg99jV/ADGxs7VDXl9LaUkdrhxoXJ0+WrXnhX19/\n4WFOntyGj1coPT2tgwcAHd1R1Z5h+sxVuPpHYjIa6Gmp5fCBT+nobWFaYCxK32l4BoTTrq2hujyX\nucseZaC3a7DDZUUuxbUniQlbRsTs21H4TBnsB3HwKyRJwsbagdNFGSxd/jSuvmFIknTNZ2l+rKHG\nXZcLA2+//Tbt7e188MEHIgwIP4oIBCPIzMzkrbfeYufOnVhZWdHU1HTFu/43u/b2drZt20ZaWhqt\nra2sWrWKpKQkgoODh38wHj58mKlTp6JQKAAuGNv8w9WD8eLiCYxXegAYdP00qc6hriuhsaEUbZuK\nhfPuxy80FlsHF7Q1xRTm7cA/cCY6Xc/gnruFDE1zNaFT44he8sDg5zOZyNn7KbX1Z/Fw88fCQoaX\n91QsZJbU1xYSPf8u3Lwn09vRTE1JNoeOb8Le2p6IaUtxU07ByT2QyjMZ6HU9zJx/J+3qKtT15yiv\nyqO9p5lFcQ8QGL4QgyRD0vdw8vDXODgosLGxp7mpmkl2zrS3N+Do4M7823+B3MoayWSiJGcHufnb\n8HDzxdFBgZd3KA4uXpQVHSR4ylwCIhfQ2VyPurqQoznfMaDvZ37MnXgHRaHwmUJj+SnKig8TGbOa\n3q5m1PWlaLVVaNpqiY5cwcyF92JpbYvJaCB33xd0dGhQKPxpa2vA2UWJUa+jq6uZ+bc9gb2LJyaj\n4YIDgO6KwTDiExhJRfEhLC1tmHnrvbRra9DUFnOmcC+NbSoWzbmHwLC5uHoF09XaSN7hbwicPAcL\nGD4v0tLegNJzMjPmrOH0iS0XNB26eLts6H19vUPvSGHg3Xffpb6+no8//nhc/V0SxgYRCEZw7733\n8vTTT7Ns2TJzlzKudHZ2smPHDtLS0mhsbGTlypU4ODjw3//936SlpRETEzP8WkmShn+IjqdwcK0H\nIo16HU11pWhUJTQ3VSOXW9GgLWPp8qfwnjwLgJ42LZm7/g8bK1usrGwHD9t5TaFJW421jS2zFz8w\nuOfe0siZnK3kl+wjyCuM4JAYvPwjsLV3Ge6HoAyegba2mIbaIk6XHsTO2oF589bh5heOrZ0DmsoC\nKs4dJiA4mq7OZjSNFdjZOaFtqWJ29GqmxqwCBkPN4R3/R3ObCjdnH+zsnPD0nopBP4C6oZQ5ix/E\nwdWLdk0N1eeyOZy3GaWLP1HTl+PpF46LZwAFWd8hs5Axdebywe9B43mqak7TO9DN0sU/JzA8DrmV\nNV0tjWQf+Bw3Fx8s5HJaW+pwcvKkubUWT/cg5ix/FAuZDKNex6lDmzhz7iBKtwBc3Xzx8p6KnaOC\nktN7CZu+FCdlKO2aKto05RzN24y1pS3z59yNV2AErspgqgsPU1t1imkzV9LZ2oC2sYzWtgY0bbXc\nMnstEbckDB82PLbnE/p6O5HLranTlI7YjnhoReyH7+uh9/ZPeV+PFAY++OADysrK2Lhx45icTSKM\nfSIQjCA6OpqkpCR2796Nra0t7777LnPmzDF3WeNKd3c3zz33HGlpacyfP5+YmBjWrl1LeHj4JQ/R\nH05m1Ov1Y3Zs878bx3zV/x2jgZaGcurK82lrq8fW1gEnZy9UqkIiZ6wk4PvBSa0NFRzK+AstnY1M\n9o1C+X0/hJ52LRWl2cxZ/CAy2WA/hMryExRUZBEVNI8Zc9bg4RcGQEHWdxj0A/gERKJtLKe1pY6+\ngR66eztYsORx3LwnYzKZGOjUkrX/E5zsFchkcuzsXfDwCkZdV4q9oxszb70XCwvZ4FXLY2kUVmUT\nETiHgKBovAIikFtak3f4a0KnL8XZ3Q9NzVkaaos4W5mNh7MPty75OR4B05DJLakpOsL54sMEBM2i\ns0NLR7saW1sHGrUV3DLvbgIiFgD/6gDY2dOCm5MXTs5eKH3D6OtpR9NYxtxlj2Jr70Jz/XkqS45y\n9PQ2QrzCmTxlPh6+03D3DiT/0NfY2DgQGHYLWlUJWnU5qoZz6I0DLFv+JL5T5mAhk9HRpOLY/s9w\nVwRgkkx0dTbh4uZLk6YSpXIqwRELfnQ74iu9r3/sxNErzfeQJImPPvqI06dP88UXX4gwIFyzmz4Q\nrFy5ErVafck/f/PNN1m/fj3Lli3j/fffJzc3l/vuu4/KykozVDk+SZLEa6+9xpYtW9izZw8eHh7s\n3buXlJQUysvLWbx4McnJyURFRV3ywL/S2GZzh4MfO475akkmE62NlTRWn6Gi/AQKhR+eyim4+0yl\nvOgQ1tZ2zFx4D93tWjS1RRSc2kldaxW3Rq8lIHQu7r6hdLbUk3/kO4ImxyK3tEJdf4621gaa2utQ\nuoewePVzWNkOtqouO7mXM4V78fEOo6NdyyRbFxwcFdSpCpkeHY9v6Bws5XKa60o4uH8jXX0dhAfF\novQLxysgkub689RW5TN32aPo+nvQ1BR9v+eex+zQpUyfk4Cbd8i/9txNEp7KyWjUZXR3tTCg60On\n72flmt/g4KYEBscSH8j4CFcnLyywwMXVGw+vEOprCnFw8mDGwruRpMFW06dy0jinOsXMybcSEDwT\nr8DpGA06TmZ9S/jM25BkVjTVnaOlqZLzqny8XQNZuPxx3LxDsJDJqDpziPMlhwkInEVbWz19vUmk\n8+cAACAASURBVJ3YTnKkUVPO/IUPDvcR6O1oZv/29+jp78TGchISEvMXP3LNtwmG3tdD7+2rnRsy\nUhj461//Sk5ODl9++eUNmf0h3Dxu+kAwkvj4eF599VUWLx7sVT5lyhRycnKG98CFkW3dupW3336b\nHTt24O7ufsHHBgYGyMjIIDU1leLiYhYuXEhycjLR0dFXHQ5+7G9YP9VPHcf8Y7Spq9CqzlFTlY+m\ntZY5sxJQBk3HVRlMWX4G6voSImbfQUezCnVDKU1NNTR1NDAvJpmIW9Ygk1ui7+8lJ+NT+nW9uDgr\naWtrwE3hR19vJzpdL/NvexKZtR09XZ1oKk5w5PgmXBw88PaaisJzMg4KfyoK9+Ho7EFU3Fo6W+rQ\nqoo5dXoXrV1aFs29j4DQubh4BdKmruLUsRSCpswFkxF1Qyk9Pe00t6nwUYaxMP4Z5FaDEzdLjm+n\nqOQg3p5T6O1tR+HuzyQ7F1S1Z5gxZw3K4CiMeh0NFac4dPBz+vU9RE5ZiLdfOJ4BEairC6mvLWTO\n4ofo7WpFoyqmsiKXisYi5kSsJCRiKc6eAVhbyr8PIyYUHoFo1WUMDPSi0/ej0/ezYs1vsHMefF9q\na4rZv/fPuDp5YSm3QuEegMIrmLrKUzg4eRAQOpfcw98QOWvVdWs69MOhYgaD4YrdP4fed5cLA198\n8QWHDh3i66+/vi5TQX+M3bt388ILL2A0GnniiSd45ZVXRvXzC9efCAQj+OSTT2hoaOD111/n/Pnz\nrFixgtraWnOXNW4MzSe4eLrixfR6PZmZmWzevJmCggLi4uJITk4mNjb2kgf+SJMZb2Q4GPqhbGtr\ne8ko6Ruts7keTU0RmsbzdHRq6ehqYunKp1EGRWEhk9Fcd57cI9+iVE5Bp+ujq7MJZ2clam0FwUHR\nTF9wJzB4DiB770bKa06hVATi4uyDi3sQDk6ulBVlMj1mNe5+obQ0lFNfcYqs/FRcJimYHZ2IwicU\nOxcvas4epLWpimkzV9DRrBrs+d/eSHNHI/NvuZfQ2bdhIZOh7+/l2J5P0On6cHL2oquzCXePIHp7\n29Hr+pm34jFs7J3Q9/dSVrCfIye+w83Rk0D/GSh9w3DznkxhzlYcHBVE3JJIc915tPXnKDizl66+\nNhbHPYD/1Lk4Krxp19SQf/Qf+AXNor+3hyZtBZJkoLWtHh9lGAvueGZ4SFVR9hbOFmfi7RGCTtc3\n2JXRwY3aqpNMj0lAGRyFrq8bdXUhBw9+zoC+lyn+0eh0fcycm3TD+gxcbm7IUODt7+/Hzs7ukjDw\n1VdfsWfPHr799ttRf08ajUbCwsLYt28fvr6+xMbGsmnTJsLDw0e1DuH6EoFgBENzwwsKCrC2tmbD\nhg0sWbLE3GVNaAaDgaysLDZv3kxubi5z584lMTGRuLi4S5ZDR2ts89ByrTnCwMW62zRoqs+iUZfR\n39eFnb0LDY3nWbTiyeGBQJ3Ndezb8T4Ajg5uKBT+ePmF06KupLu7hTlLHkJvMKGpLaGm7Bgnzx8g\nKiiOsPCFeAZEYGltS+6Bv+GmCMArMAJNbTGaxnJUjeewQMaCxY+h8AvDysqKLm01uUe/xctzMjp9\nL/19Xbi4+KDWlBEYFE1kXBIweA7g+P7PKa/Nx1sRjFI5BS+/cKysbTl7cidRsWtwU4agrS2hofo0\nx05vw91Bybx59+AVGImdsztlJ/eirj/HlMjFtDfXolWX09PbTlNbPfPn3Y936LzB1SO5BUd2/pn+\ngR6cnT3p7+vCwzOE3t52+vu6uGX5z7B1cGGgp5OKwkwOHx8MI1NC5uDlMxhGzhxPx87OBd+QWRzY\n82cWLn4UZciMUfv/bDKZGBgYQKfTAWBpaUlFRQUBAQG4uLiwadMmtm7dyubNm2/4atXlZGdn8/rr\nr7N7924A3nnnHQBeffXVUa9FuH5EIBDGLKPRyNGjR0lJSSE7O5vo6GiSk5NZsGDBJcujNyocDDV/\nuXi5dizo7WhGU32W6qqTmIxG3D2CcFb4UFWWQ0DQLCbPWo6+vxdNTRHHjnyNpl3FnOm34+k9DWev\nEAw9LRQX7GHmLWsxGnRoVCXU1xdT1VhEqP9sbln2KA6ug8OHirK30Fh/Dm+fabS21KLX65Bb2qBt\nqmbuwofx8A8dbITU2sD+f76PSTLi5uyNh2cInr5htGoq6WhXM2fpw1hYyNCqSjh/9iB55w8wa8oi\npkUswjMgEpncktzML3F28cbTLwyNqhitugJtSy0WFhasiP8VCt/BQUetjRUc3f857ooAenu7MJkM\neCpDUDeU4usXMbwy0tfVyonMLymtzsXfMxSldyhKv3CsbOw4c2IrkbPjcVOG0FR3jobqQo6f2YHC\n0YsZkcvRqMt/1AHC6+WHK1KWlpYYDAbWr1/Pl19+SVRUFF1dXWzbto3g4OBRrWtISkoKe/bsYePG\njQB89dVX5OTk8OGHH5qlHuH6EIFAGBdMJhM5OTmkpKSQlZVFZGQkycnJLF68+JLf2ofCwdC5g2ud\nzHilTnBjUX93O9raYmor81E1ljItdD5evmF4+E2jKGcben0/M+LuorGmBLWqmBrVKVq61Cyaex+T\nZyxhkqPb4INz/99wcPZg0iQntOpy5DJLOrqasZvkyKKEX2FpPbj9U3nmEMeObcLD1Q9LS+vhRkhV\n547hExBJaMwqTPo+mmqLOZ79HY2ttYPDhwKj8PQPp72plsLc7UyPWY3JZESjKqGh4RwqbRmT/aKI\nW/7Y8P7+uZx/Ul11Eh/fcNpa65DJ5NjYOqDWVDBv0UPYufkjk8no71CTOdyVMQhPr8l4+oXR0Vw3\n2I74+66MTaoSys4dJa90P7MmLyQiagUeAeGDNyQy/46trQN2Dm7knEhhxarnzBoGLn5v/+Mf/+Cb\nb77B1dWVvXv3Eh4eztq1a3nggQfw9fUdtRpTU1PZvXu3CAQTjAgEwrhjMpnIz88nJSWFzMxMQkND\nSUpKYtmyZZecV7jc3uzVhIMrzZUfD3R93WhritA0nEelKqJ3oJOFCx/CxTsMmZUN7XXFlBYfJGjy\nXHq7WtBqvh8+1FTFzKhVhM9bAwzefDiy8yM0TRUoXHyQyeR4eYcimUw0Npwj5tb7cfbwp7ejGVXp\nCQ5mf4WdtSOR0xbj6jUFZ89gqs7so7+vnVkL7qG9qQZNXQkVVSdp6dSwYM6dhEbfho29E7q+bnL2\nfY6llS2OTgq06gpsbR3o7m5FJpOzaPVzw5MQq85mkZX1JW5O3lhZTsLLeypefqFUlRzFReFLxLxE\n+rpa0dYWk3sinbqWSuJmrCFg8mw8/KfR3aYZbBEdtRwsQFN3Dq2mkobmSnw9JjMzNomiU7vMvjJw\ncRjYsWMHGzduZMuWLdjb2zMwMEBmZibp6ek89NBD3HrrraNW5/Hjx/l//+//DW8ZvP3228hkMnGw\ncJwTgUAY10wmE4WFhWzevJn9+/cTGBhIcnIyK1aswM7O7pLX/3Bb4UrhYGBggIGBgXEZBi5m0PWj\nrSlCVXmGllYVtjaTaG6rG+z3//3Se1dLIwd2foiDnTMymRxr60l4eE2mSVOBja0D0YvWIbeyprO5\nfrAR0rn9TPaOJCh49vDwodyDf7+gEZK67hynSzOxktmwIO5B3PwjsJlkT1t9KefO7CUgOJq+nnaa\nm6qxsXFA3VTOtNCFRC28GxgMI8f3/JVq1Rk83PywsbHDUzkVK+tJVFfkMmNuMrYu3vR1NtNSV8zh\n7G+wsrRhzsw78PQLw8N/GhUFB9A0nmfW/Ltp19agrj+Hqq4IbXsdcbOTmTbnDqwnOWDU6zix73MG\ndL1YW9tRVpU7YtOhG2WkMLBnzx4+/PBDtm7diqOj46jWdTkGg4GwsDD279+Pj48Pc+fOFYcKJwAR\nCMaxDRs28PLLL9Pc3Iybm5u5yzE7SZIoLi4mJSWFvXv3olQqSU5OZtWqVTg4OFzy+h9e+Roa2wyD\nP+wcHBzGVDOkazU0a0GSJGysLGlSnaO+6jTt7Q04OCpwdPJEVXuGqNl34Ds1BslkoqWhnIMZn9DW\n3USof/RwI6TuNjXlJUeYs+QhLCwsvu89kMeZiiNEBM5l1twkPPynYWEh43TWP+jracc3KIomdSWt\nLXUYjQaa2xuZv+jneAaEY2Vlhb63gwP/fB9LSytsre2xneSI0ieMlqYaDAYdscsewdLalo4mFSX5\ne8gp3EmwMhx//1l4+Yfj5ulP/uFvcHMPIDA8bjCM1JdyruwYkgUsXfI4vlNmY2ltS5u6irysb1H6\nhGIw6GhpqsHe3g1tUyW+PuFMnbmMk1nfmmVlwGQy0d3dfdkrrfv372fDhg1s3boVZ2fnUa1rJLt2\n7Rq+dvj444/z2muvmbsk4ScSgWCcUqlUPPnkk5SWlnLy5EkRCC4iSRJlZWWkpKSwa9cuFAoFiYmJ\n3HHHHTg5OV3yeqPRSF9fH0ajEeCKY5vHk5FmLZiMBprrzlNfdZqq6nyUXpNR+oTh7hNK6ekMrKxs\nmXnrvXS2DF55PF24l/qWKhbNvpug8Hm4egXT09FE3qGv8QuIwspmEur6Ujo7NLR2aHBx9GDpmhew\nthsMYnXncsg++i3eyqn093Vi76DA3sGD2uoCgibHMiV6OZZyOW3qSrIP/g1VUwXTQ27B2y8Cr8BI\ndP09FOZuZ+a8OzGYLGipP4e28RxnKo8R4hXO3IXrcPcLRSa35HzebupVxQSGRNPaXEtbawPW1pNQ\nN1ex8NaH8Q0d7Daq6+3mwPb/obevC0u5Nf26HhYte3xMhYFDhw7x9ttvs3XrVlxdXUe1LuHmIwLB\nOHXPPffw29/+lqSkJBEI/g1JkqisrCQ1NZWdO3fi4OBAYmIiq1evxsXFBb1ez3/8x3/wzDPPEBIS\ncsF8BaPROC7DwVAYsLCw+LezFoZWBTSqYmqqCmjr0hAbk4QyKAond1+qCw9TU3mSaTNX0tWmRtNQ\nSlu7mqa2OubMSmD6/LVYyGSDw4cyPqelrQF3hf/gECJ3fyQJWltVzFv6MxwV3hj1OlTnT3Ag81Ns\nrWwJ9JuBwnMyzl4h1J3PQTfQxZxlD9Pb0YRWVULpuSwq1EXEzUjENyQWd7+pyCQDeZlf4ujkiZOL\n1/Dwod6+zsHbCIkvMslp8O9EU20JBzP+gsLVF5PJgJOzJx5eIdTVFOLi6kNA2FzyDm8ifMaK69Z0\n6GoNdb4cGgX+Q1lZWfzXf/0X27ZtE83QhFEhAsE4tHXrVg4ePMh7771HcHCwCAQ/giRJqFQqUlNT\n2b59O5aWlnR3d2Nvb88333yDvb39Ba+/eILdUDAYy2Obr3Xw0pDWxgo0tcVo1eX09nXR1tHI0hVP\n4z15JjDYKOlIxl9wc/VDQqK3px2FewBabSUKN1+ilzw43CnxzNEU8osz8HLxx8cnDC+fUBxclZzJ\n2ULQlFgCwufTXH8eTW0x2flbkEwm4ubcg4d/BHYuXrQ3lnG+cB9TwhfR1d5Es7YSna4bbVstU4Pn\ncsvKx4abDhUeSaG8/AReniH09LShcPfHdpIzdapCoufdiYf/NIx6HY2Vpzl08DP69b0EKCMwGAaI\nvmWtWVYGrhQGsrOz+e1vf8vWrVvFhFVh1IhAMEaNNGPhrbfeYu/evTg5OREcHExeXp74DeIatLe3\nc/vtt2NhYYGjoyOSJJGQkEBiYiKenp6XPEgvN8HuRoy3/Smu1+ClIR1NKhqrztCkqcBoNODk5IWq\n7ixzF9x3wXTGAzs/oLO7BU83f9w9g1H6hdPf005NZT6xSx7C1t4FbW0J1edzOHZ2O1O8ZzArOh7P\ngMHpjGeOpKDr7yZo2nyaG8vQNJbT1qmhrUPL/LgH8Z46Z7CfhElH9t6/DJ45mOREb087Hp7BdHZo\nkSQT81Y+jpWtHfr+Xs6fyuDIie9QOCkv6IB49sR27B1c8Q2J5uCej5i38IHhr2W0/HAmxsU3Y3Jz\nc3n11VfZsmULXl5eo1qXcHMTgWCcOXv2LMuXLx8+QV9XV4evry8nTpzA09PTzNWNH1qtlttvv535\n8+fzwQcfYGFhgVarJT09nS1btqDT6UhISGDNmjX4+PhcdjLjWBvbPPSQsbS0vC5h4GJdLY2oqwup\nqjiBpaUNnsrJuHtPoaY0B1s7Z2YsvBv9QC/amiJOndzB+YbTxEXeQeDkGDwDIxno6yLv0NeEhM7D\n1t4FjaoETWMZ9c3luNi7szT+Vzh5DN6lb6w4TV72ZpTKUNrbNGBhwsXFh/r6EoJD5jI15jasrKww\n9HeTvfevVDWexdd98uAVRN8wLK1sOXvynxd2QKw5w7GCrSgcvIiKWEqTtspsBwivFAby8/N56aWX\nSE9Px9vbe1TrEgQRCMY5sWVwbdLS0igoKOD111+/7MO+tbWVLVu2kJ6eTnd3N/Hx8SQlJeHv7z8m\nw8GNmsJ4JT3tWrS1JahqTlNTd5YZkctRBkTi4T+N2uJj1FSeJHr+vXR3aNDUnUOlOktDSxUxkbcx\nY/5d2Ng7YTIaKDj0LW3tjXh6BtPcVI2VlS0WMjltbfUsWPEklnZugy2Sm2o4sOf/sLCQo3DxQeEe\nhItnCE315+npaSZ26SNYWsppqi0ebjo0e+oSpkUuwSMgHJnckrzMv2Nv78okB1eOH9/MilW/HFNh\n4MyZM/z6178mLS1tVJsMCcIQEQjGuZCQEPLy8kQguIHa29vZtm0baWlptLa2ctttt5GUlERISMhl\nw8HQtoJer0cul9/wsc0j7UWPhv7udjQ1Z9E0nKe5uRZtex2LFz5CwLR5yK2s6Wpp5MTBL1G4BwLQ\n3FSNvb0rra31uLn6cMuqJ5DJB698luRsJ/fkVtxd/bC0tMPbJwx3ZRDlxYfwDYgiZOZSejua0dYW\nc/z4ZrQd9cybmYiHbwTOnsH0dWgozt/B9Nl3IEkGNPWlaNUV1DdVEKAMY0ZsImdP/tPsKwMXh7ai\noiJ++ctfsnnzZgIDA0e1LkEYIgKBIPwInZ2d7Nixg7S0NBobG1m5ciVJSUmEhoaOGA5+OLb5eoaD\n0RzJfDWGuiSq68/R1tqAk5MHtfVFzIu7F//wOGCwWdLBbf9LW6caF0cv7B1cUfqEIZmM1FYXMHvh\nOmS2TvR3aFBXF3DoxHe4OXgya8YqvPwjcPMOoeTEDjra1UTNTaRNU4W6vvT7pkP1xM5MJGj6Umwm\n2WMhGSk4/DV6ow5rq0lmazokSRLd3d2X3c4pKSnh6aef5rvvviMkJGRU6xKEHxKBQBCuUXd3N7t2\n7SIlJYXa2lqWLVvG2rVrCQ8Pv+pwMDTi9lqYcyTz1dD396JVlVBTnktvTzsurt54KqdQX1OIrb0z\ns269D4CWhnLO5G7jdHkWkUHzUHpHoAyajqOzK7mZf8c/aBYe/tMGVyEayzhXkYONlS1Llz+FMjgK\nmdySlvpy8o5+i49POHp9Hy3NKuzt3WjUVOCtDCM4fCGFJ9KIirlj+LbEaBm69XG5g57nz5/nySef\nZNOmTUyZMmVU6xKEi4lAIAjXQW9vL3v27CE1NZXy8nIWLVrE2rVriYqKumQ1YKTJjFcbDsZ6GLiY\nUa9DW1tCY20hJaVHmBwUg7d/OF6B02mpL6OsJIvZt66js72FNnU5jfVFlKpOERl8C7MX3IuL1+Ay\n+tljabQ01+LrN53mpiq6u1qwtrZH21LNomWP4xkYAQxuY+zf9h59A91Yya0Z0Pdxy4IHcfUJu2Fj\nsi9npDBQUVHBY489xldffUVYWNgNq0EQrpYIBIJwnQ0MDJCRkUFKSgolJSUsXLiQpKQkZs+e/aPC\nwZUeVgaDgd7e3jE5kvlqmIwGmlTnBm8ZqMup1ZYyd1YinkGzcXH3xtjfRe7Bv6NwD8Taxg6tuhyD\nQUdXdys21nYsTXwBK9vBWzaNFQUcPPBXPNz8QZJQuAeg8AxGVX0KF1cf/KbEkHvoKyJmrsJn6uwr\nfr+HVmquZzgYKQxUV1fz6KOP8re//Y2IiIjr9jnHE0mSWLRoEevXr+f2228HYPPmzXz22Wfs2rXL\nzNXdnEQgEIQbSK/Xk5mZyebNmykoKCAuLo7k5GRiY2MvWQ24mnAw3sPAxSSTCa3qHKryAlpbarC3\nc6Ku8RxRUSuJmJc4/LoTGZ9TV1+Eh5s/eoMOT+VkrKztUdUUED3vLhS+U9D1ddNYeYaDhz9Hb9Ax\nxX8WA7oeZsYmXfbMwLVOwryqr2uE5lB1dXU89NBDfPrpp0RFje5ZhrGmqKiIe+65h1OnTqHX65k9\nezZ79uwhODjY3KXdlEQgEK6bl19+mR07dmBtbc3kyZP5/PPPx9QwFnMzGAxkZWWxefNmcnNziY2N\nJSkpibi4uOHBSkOGwsHQuQNJkpDL5RgMBuzs7CZEGIAL+/hbW1nRpqlCVZZHW2s9crklXt6htDTV\nIpPLmbP0YeRW1vR2NFN6ai/HTm3BVxFMcFAMXv7huHoGcurIdzg6eaAMiCRzz0csXPIzlCEzrqqW\niydh/vD66I8JByOFgYaGBh544AH+8pe/MGvW6DZDGqteeeUV7O3t6e7uxtnZmfXr15u7pJuWCATC\ndZORkcHy5cuRyWS8+uqrALzzzjtmrmpsMhqNHD16lJSUFLKzs4mOjiY5OZkFCxZc8rCXJAmdTkd/\nf//ww+V6/SZrTv/uhkS7pgZNbTFFRQdwcfLE+/upi0ajgcIT25gVdyd2jgq0tcXU1xSSV5KBj1sQ\nUVG3UVdz+iddLbxcy+qrCQcjzZBQq9WsW7eOP/3pT8yZM+ea6pqIent7iY6OxtbWlry8vAkTdscj\nEQiEGyI9PZ3U1FS++uorc5cy5plMJnJyckhJSeHw4cNMnz6d5ORkFi9ejLW1Nd988w3V1dW88sor\nyOXyS36THY/h4MceiuxqaURTW4SmoZTSqjymhcwjdMZSFD5TMBp05B74kkmTnLCd5MCJk1u57fbn\nr9vVwqFwYDAYRmxZPVIY0Gq13H///fzv//4v8+bNuy51XYuxuor3u9/9DkdHR1566SVzl3JTE4FA\nuCHWrFnDunXreOCBB8xdyrhiMpk4efIkqampZGZm4urqyqlTp0hJSSEmJuaS1w+FA4PBgMlkuuZl\n7tH0U29I9LRr0dQUoW4opa+3k46uJtzdA4iak8CpYyk3tOnQleZZyOXy4RWci8NAc3Mz999/P3/8\n4x9ZsGDBDanrao3VVbzXX38dBwcHXnzxRXOXclMTgUD4Ua40dOmtt95izZo1wOAApvz8fFJTU0e7\nvAnlww8/5K233uLee+/lxIkTBAYGkpyczIoVK4ZnWfzQD5e5x2o4uN7XJfu6Wqkvy6eluYaurmam\nz75j1JoOXdyyGsDGxgZLS8vhMyGtra3cd999vPXWWyxevHhU6rpaY2kVTwSCscHy379EEP4lIyNj\nxI9/8cUX7Ny5k/37949SRRPTH/7wBz7++GOOHTtGcHAwkiRRXFxMSkoKH3zwAd7e3iQnJ7Nq1Soc\nHBwAkMlkw/vxQ+FgYGCA3t7eq94Dv5FuRO+ESY5uTJm9AnO09Bm6BTLUotra2hqDwcD69es5cuQI\n8fHxHDhwgDfffHPMhQGAzz77jHXr1pm7jGFjJbTezMQKgXDd7N69mxdffJFDhw7h7u5u7nLGLb1e\nz5NPPskbb7yBn5/fJR+XJImysjJSUlLYtWsXCoWCxMRE4uPjL7sffLkDckOrB6P1Q3i8NVK6GpIk\n0dfXhyRJ2NnZDX8vdTode/fu5U9/+hOFhYX4+Phw5513ctdddzFjxowb/j0Xq3jCtRKBQLhupk6d\nik6nGx60FBcXx5///GczVzWxSZJEZWUlqamp7Ny5EwcHB9asWUNCQgIuLi6XPHyutAd+I8PBzRQG\nALq6uli3bh0vvvgi8fHxHD9+nLS0NFJTU3nwwQd54403zFj54Crexo0b2b9//yUTF4WbmwgEgjBB\nSJKESqUiNTWV7du3Y21tTWJiIgkJCSgUCrOMbR4KAxOlkRL8KwyYTCbs7e0v+L729PRw//3386tf\n/Yrk5OTL/nuXO/8xWsQqnjASEQgEYQKSJImGhgbS09PZunUrAAkJCSQmJuLp6Tkq4eBmCwO9vb08\n8MADPPXUU9x9991mrPLKxCqeMBIRCARhgpMkCa1WS3p6Olu2bEGn07F69WoSExPx8fEZcTLj0IG5\nHzu2eaK1WIaRw0B/fz8PPvggjz76KPfff78ZqxSEaycCgSDcRCRJorW1lS1btpCenk53dzfx8fEk\nJiYSEBBw1WObRwoHEzUM9Pf3YzQaLwkDAwMDPPzww9x33308/PDDZqxSEH4aEQgE4SbW1tbGtm3b\nSE9Pp6WlhVWrVpGUlERISMg1hYObLQzodDp+9rOfkZSUxM9+9jNxdU4Y10QgECa03bt388ILL2A0\nGnniiSd45ZVXzF3SmNXZ2cmOHTtIS0ujsbGRlStXkpSURGho6BXDwVBAsLCwQC6Xo9frJ9TwpZHC\ngF6v57HHHuO2227jqaeeEmFAGPdEIBAmLKPRSFhYGPv27cPX15fY2Fg2bdpEeHi4uUsb87q7u9m1\naxcpKSnU1taybNky1q5dS3h4+GXDwQ+HL11ubPN4NBQGDAYD9vb2F2yRGAwGnnzySRYtWsSzzz47\nbr9GQfghEQiECSs7O5vXX3+d3bt3A//q2T7Uw124Or29vezZs4fU1FTKyspYvHgxa9euJSoqCplM\nxsGDB8nPz+f555+/ZPjSeA0HkiQxMDCAXq+/JAwYjUaefvpp5s6dy/PPPz9uviZB+HdE62Jhwqqv\nr8ff33/4z35+fuTk5JixovHJzs6OtWvXsnbtWgYGBsjIyOCTTz6huLiYyMhItm3bxueffz7cv3+o\nl7+tre1wOOjt7R3+2HiYzDhSGHjuueeYNWuWCAPChCMCgTBhiR/W15+NjQ0JCQkkJCSwZ88e7rvv\nPuLj4/n973/Pvn37SE5OJjY2dviBPxQOJEkabqE81OFvrI5t7u/vv2wYMJlM/OY3vyEswWWX3QAA\nCUhJREFULIyXXnppTNUsCNeDCATChOXr64tKpRr+s0qluuxsAOHH27t3Lw8//DDbt2/n1ltvxWAw\nkJWVxebNm3nllVeIjY0lKSmJuLi44YFKcrkcuVx+wfClsRYOrrQyYDKZeOmll/D39+e1114TYUCY\nkMQZAmHCMhgMhIWFsX//fnx8fJg7d644VHgdSJLE6tWrWb9+PQsWLLjk40ajkaNHj5KSkkJ2djaz\nZs0iOTmZhQsXXvb2wQ/PHEiSZLaxzQMDA+h0usuGgddeew0nJyfeeOMNEQaECUsEAmFC27Vr1/C1\nw8cff5zXXnvN3CVNCJIkXdWD0WQykZOTQ0pKCocPH2b69OkkJyezePHiyw46+uFkRpPJNGrhYKQw\n8Lvf/Q65XM4777xz3WY8CMJYJAKBIAijwmQycfLkSVJTU8nMzGTq1KkkJyezbNmyy07du9zY5hsR\nDgYGBhgYGMDBweGCB74kSfz+97+nv7+f//mf/xFhQJjwRCAQBGHUmUwmCgsL2bx5M/v37ycwMJCk\npCRWrlx52WmAlwsHQ6sHPyUcDPVPuFwYeOedd2htbeXDDz8UYUC4KYhAIAiCWUmSRHFxMSkpKezZ\nswdvb2+Sk5NZtWoVDg4Ol7zeZDJd0EJ5KBj82HAwFAbs7e2Ry+UX1LNhwwbq6ur4+OOPRRgQbhoi\nEAiCMGZIkkRZWRkpKSns2rULNzc3kpKSiI+Px9nZ+bKvv5axzSOFgQ8++ICysjI2btx4wccEYaIT\ngUAQhDFJkiQqKytJTU3ln//8J46OjqxZs4aEhARcXFwu20L5asLBSGHg448/pqCggC+++GJMhIEN\nGzbw8ssv09zcjJubm7nLESY4EQgEwQxUKhWPPPIIWq0WCwsLnnrqKZ5//nlzlzVmSZJEbW0taWlp\nbN++HWtraxITE0lISEChUIw4mVGv1yOXy4evPA4MDFw2DHz66accP36cL7/8crjrojmpVCqefPJJ\nSktLOXnypAgEwg0nAoEgmIFarUatVjNr1iy6u7uJiYlhy5YtokfCVZAkiYaGBtLT09m6dSuSJLFm\nzRrWrFmDl5fXFcPBwMAARqMRmUyGtbU1XV1duLu7I0kSf/vb38jMzOSbb74ZM5Ma77nnHn7729+S\nlJQkAoEwKswfgwXhJqRUKlEqlQA4ODgQHh5OQ0ODCARXwcLCAl9fX5577jl++ctfotVqSU9P59ln\nn0Wn07F69WoSExPx8fEZnr6YlZVFeHg4Hh4eSJJEX18fcXFxKJVKZs6cSX19Pdu3bx8zYWDr1q34\n+fkxY8YMc5ci3ETECoEgmFl1dTWLFy+mqKjosqfqhasjSRKtra1s2bKF9PR0uru7iY+Px9XVlfXr\n17N9+/YLHrA6nY7333+f9PR0Ghsb8fPz46677uLuu+8mNDT0hte7cuVK1Gr1Jf/8zTff5K233mLv\n3r04OTkRHBxMXl4eCoXihtck3NxEIBAEM+ru7mbJkiX853/+J8nJyeYuZ0Jpa2vjjTfe4KOPPmLp\n0qXExcWRlJRESEgIFhYWpKSk8N1335GamoqVlRVZWVmkpKSQlpZGRkYGkZGRZqn77NmzLF++fLgf\nQ11dHb6+vpw4cQJPT0+z1CTcHEQgEAQz0ev1JCQkEB8fzwsvvGDuciacjIwMHnzwQbZu3UpkZCQ7\nduwgNTUVtVqNn58fLS0tbN++nUmTJl3w75lMpuGthrEgODhYnCEQRoUIBIJgBpIk8eijj6JQKHjv\nvffMXc6EU1FRQVxcHGlpaSxcuPCCj3V3d7Nhwwaee+65cbEMHxISQl5enggEwg0nAoEgmMGRI0dY\ntGgRM2bMGP5N9O233+b22283c2UTgyRJVFdXExwcbO5SBGHcEIFAEARBEAREk25hXFGpVISEhNDW\n1gYMHhwLCQmhtrbWzJUJgiCMbyIQCOOKv78/zzzzDK+++ioAr776Kr/4xS8ICAgwc2WCIAjjm9gy\nEMYdg8FATEwMP//5z/n0008pKCgYE33nBUEQxjPRqVAYdywtLfnDH/5AfHw8GRkZIgwIgiBcB2LL\nQBiXdu3ahY+PD4WFheYuZUIzGo1ER0ezZs0ac5ciCMINJgKBMO4UFBSwb98+srOzee+99y7b/lW4\nPt5//30iIiLGTJMeQRBuHBEIhHFFkiSeeeYZ3n//ffz9/Xn55Zd56aWXzF3WhFRXV8fOnTt54okn\nEEeNBGHiE4FAGFc2btxIUFAQy5cvB+DZZ5+lpKSErKwsM1c28fzmN7/hj3/8IzKZ+DEhCDcD8Tdd\nGFeeeuopNm3aNPxnmUzGyZMnufXWW81Y1cSzY8cOPD09iY6OFqsDgnCTEIFAEIRLHDt2jG3bthEc\nHMy6des4cOAAjzzyiLnLEgThBhJ9CARBGNGhQ4d499132b59u7lLEQThBhIrBIIg/FviloEgTHxi\nhUAQBEEQBLFCIAiC8FN8+OGHhIeHM336dF555RVzlyMI10y0LhYEQbhGmZmZbNu2jTNnzmBlZUVT\nU5O5SxKEayZWCARBEK7RRx99xGuvvYaVlRUAHh4eZq5IEK6dCASCIAjXqKysjMOHDzNv3jyWLFlC\nXl6euUsShGsmtgwEQRBGsHLlysvOy3jzzTcxGAy0tbVx/PhxcnNzuffee6msrDRDlYLw04lAIAjC\nuNXe3s4TTzxBUVERFhYWfPbZZ8ybN++6fo6MjIwrfuyjjz7izjvvBCA2NhaZTEZLSwsKheK61iAI\no0FsGQiCMG79+te/5o477qCkpIQzZ84QHh4+qp8/OTmZAwcOAHD+/Hl0Op0IA8K4JfoQCIIwLnV0\ndBAdHW3WJXq9Xs9jjz1GQUEB1tbWbNiwgSVLlpitHkH4KUQgEARhXCooKOAXv/gFERERnD59mpiY\nGN5//33s7OzMXZogjEtiy0AQhHHJYDCQn5/Ps88+S35+Pvb29rzzzjvmLksQxi0RCARBGJf8/Pzw\n8/MjNjYWgLvvvpv8/HwzVyUI45cIBIIgjEtKpRJ/f3/Onz8PwL59+4iMjDRzVYIwfokzBIIgjFun\nT5/miSeeQKfTMXnyZD7//HOcnZ3NXZYgjEsiEAiCIAiCILYMBEEQBEEQgUAQBEEQBEQgEARBEAQB\nEQgEQRAEQUAEAkEQBEEQEIFAEARBEAREIBAEQRAEAREIBEEQBEEA/j8tSLvzvnI/ygAAAABJRU5E\nrkJggg==\n", - "text": [ - "" - ] - } - ], - "prompt_number": 22 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# Univariate Rayleigh Distribution" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Probability Density Function\n", - "\n", - "$p(x|\\theta) = \\Bigg\\{ \\begin{array}{c}\n", - " 2\\theta xe^{- \\theta x^2},\\quad \\quad x \\geq0, \\\\\n", - " 0,\\quad otherwise. \\\\\n", - " \\end{array}$\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Derive a formula for the maximum likelihood estimate of $\\theta$ , i.e., $\\hat{{\\theta}}_{mle}$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$p(D|\\theta) = \\prod_{k=1}^{n} p(x_k|\\theta) $\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$= \\prod_{k=1}^{n} 2 \\theta x_ke^{- \\theta x_{k}^{2}} $" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Taking the natural logarithm to get the log-likelihood:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$\\Rightarrow L(\\theta) = \\sum_{k=1}^{n} ln \\; p(x_k|\\theta)$\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$= \\sum_{k=1}^{n} ln \\bigg( 2 \\theta x_ke^{- \\theta x_{k}^{2}} \\bigg) \\\\ \n", - "= \\sum_{k=1}^{n} ln (2 \\theta x_k) - ( \\theta x_{k}^{2})$\n", - "
\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Differentiating the log-likelihood:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "$\\Rightarrow \\frac{\\partial L}{\\partial (\\theta)} = \\frac{\\partial}{\\partial (\\theta)} \\sum_{k=1}^{n} ln (2 \\theta x_k) - ( \\theta x_{k}^{2})$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "\n", - "$= \\sum_{k=1}^{n} \\frac{\\partial}{\\partial (\\theta)}ln (2 \\theta x_k) - ( \\theta x_{k}^{2})\\\\\n", - "= \\sum_{k=1}^{n} \\frac{2x_k}{2\\theta x_k} - x_{k}^{2} \\\\\n", - "= \\sum_{k=1}^{n} \\frac{1}{\\theta} - x_{k}^{2}$\n", - "\n", - "#### Getting the maximum for $p(D|\\theta)$\n", - "\n", - "$\\Rightarrow \\sum_{k=1}^{n} \\frac{1}{\\theta} - x_{k}^{2} = 0 \\\\\n", - "\\sum_{k=1}^{n} \\frac{1}{\\theta} = \\sum_{k=1}^{n} x_{k}^{2}$\n", - "\n", - "$\\frac{n}{\\theta} = \\sum_{k=1}^{n} x_{k}^{2} \\\\\n", - "\\frac{\\theta}{n} = \\frac{1}{\\sum_{k=1}^{n} x_{k}^{2}} \\\\\n", - "\\theta = \\frac{n}{\\sum_{k=1}^{n} x_{k}^{2}}$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "### Code for univariate Rayleigh MLE" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# loading packages\n", - "\n", - "import numpy as np\n", - "from matplotlib import pyplot as plt\n", - "%pylab inline" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Populating the interactive namespace from numpy and matplotlib\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def comp_theta_mle(d):\n", - " \"\"\"\n", - " Computes the Maximum Likelihood Estimate for a given 1D training\n", - " dataset for a Rayleigh distribution.\n", - " \n", - " \"\"\"\n", - " theta = len(d) / sum([x**2 for x in d])\n", - " return theta " - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 3 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def likelihood_ray(x, theta):\n", - " \"\"\"\n", - " Computes the class-conditional probability for an univariate\n", - " Rayleigh distribution\n", - " \n", - " \"\"\"\n", - " return 2*theta*x*np.exp(-theta*(x**2))" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 4 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "training_data = [12, 17, 20, 24, 25, 30, 32, 50]\n", - "\n", - "theta = comp_theta_mle(training_data)\n", - "\n", - "print(\"Theta MLE:\", theta)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Theta MLE: 0.00123877361412\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Plot Probability Density Function\n", - "from matplotlib import pyplot as plt\n", - "\n", - "x_range = np.arange(0, 150, 0.1)\n", - "y_range = [likelihood_ray(x, theta) for x in x_range]\n", - "\n", - "plt.figure(figsize=(10,8))\n", - "plt.plot(x_range, y_range, lw=2)\n", - "plt.title('Probability density function for the Rayleigh distribution')\n", - "plt.ylabel('p(x|theta)')\n", - "\n", - "ftext = 'theta = {:.5f}'.format(theta)\n", - "plt.figtext(.15,.8, ftext, fontsize=11, ha='left')\n", - "\n", - "\n", - "plt.ylim([0,0.04])\n", - "plt.xlim([0,120])\n", - "plt.xlabel('random variable x')\n", - "\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAH4CAYAAADD83DxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X1czXf/B/DX6cZNKRWKbkiKypQwmbsrhjCaLXMzN7EY\n7cJcY+zOxK5rY34u5mbEKDdjNpthkrlrXLaYydzkJpFuVJhqSimnz++P7zrrdK86fc+3Xs/Hw+N8\nzzmf8z3vc06nXj6f7+fzVQkhBIiIiIhIsQzkLoCIiIiIqoeBjoiIiEjhGOiIiIiIFI6BjoiIiEjh\nGOiIiIiIFI6BjoiIiEjhGOioXjAwMMDNmzer9FhHR0ccPXq01PtOnjwJV1dXrbbHjh0DAHz88ceY\nOnVqlZ6zIvHx8TAwMEBBQYFO9g8AX375JXx9fWtsf+vWrYONjQ3Mzc2Rnp5eY/utyCeffKKzz+GD\nDz5AixYtYGtrq5P9R0ZGwsHBQSf7rkk+Pj7YtGlTpdqamZkhPj6+Um2r870t/t4988wzOHHiRJX2\nVVzx70Z16izN07xHRIUY6EhvOTo6wsTEBGZmZmjZsiUmT56M7OzsWq9DpVJBpVKVel+fPn1w9epV\nrbaF3nvvPWzcuBFA7QSwmjZu3DgcOnRIc706f7Ty8/MxZ84cHD16FH/++ScsLS1rqkwtpQWgd999\nV/M51KSEhAT897//xdWrV3Hnzp0a2WdNB4OiwsLCYGhoCDMzMzRt2hQeHh7Ys2dPjey7vO9IcQ8f\nPoSjo2ONPO/TuHTpEvr27Vtum8p+T4t/N6qjtDAs13tEysZAR3pLpVLhhx9+wMOHD3Hu3DmcPXsW\n//73v0u0e/LkiQzVVY3S1/Guav2pqanIzc2Fm5tbDVckn4SEBDRr1gzNmjV76seW9zOry5+RXr16\n4eHDh8jIyMCMGTPw6quv1mpvqVKU9xmo1eoafa7KBmGiijDQkSLY2tpi8ODBuHz5MgCpJ+Pzzz+H\ni4sLOnToAADYuHEjXFxc0KxZM7z44otISUnR2seBAwfQrl07tGjRAvPmzdP80o6Li0P//v3RvHlz\ntGjRAuPHj0dmZqbWY8+cOYOOHTvCysoKr732Gh4/fgyg/CGx4OBgTJgwAQA0PQMWFhYwNzfHiRMn\n0KxZM1y6dEnT/u7duzA1NcUff/xRYl8FBQWYO3cuWrRogXbt2uHAgQNa92dmZiIwMBC2trawt7fH\nggULNL0MYWFh6N27N95++21YWVnByckJERERmseGhYWhXbt2MDc3h5OTE3bs2KG5vU+fPlr1e3p6\nwtzcHF9//TU6deqEH374QbOf/Px8NG/eHL///rtWbdevX9cEOQsLCwwYMAC3b98u0RNStKeiopof\nPHiAyZMnw87ODlZWVnj55Zfx6NEjDBkyBHfu3IGZmRnMzc2RkpKi9TkAwL59+9CxY0dYWlqiX79+\nWj2sjo6OWL58OTw9PWFhYYExY8ZoPuuijhw5gkGDBmme67XXXqvUvj/99FN4eHjAzMysRC9Q0ffY\nzMwM33zzjea+//73v7CxsYGtrS3CwsI0tz9+/Bhz585FmzZt0LJlSwQFBSE3N7dEvYUKf+ZVKhXG\njx+Px48fIy4uDkD534Nly5Zh5MiRWvuaNWsWZs+eXerzbN68Ge7u7rCyssLgwYORkJCgua9oL+Qf\nf/yB4cOHo2nTpujevTs++OADzc9cocOHD6N9+/awtLTEjBkzynxtOTk5mDRpEqysrNCxY0f8+uuv\nWvcXPRzizJkz6NatG5o2bYqWLVti7ty5AEp+T6OiohAWFoZevXrhrbfeQvPmzREcHKz13ShU1u+X\n4j9/hb2AarUa77//Pk6ePIkZM2bAzMwMs2bNKvEeZWZmYuLEibC2toajoyP+85//aPZd0feE6hlB\npKccHR3FkSNHhBBCJCQkiI4dO4oPP/xQCCGESqUSgwYNEunp6SI3N1ccPXpUNG/eXERHR4vHjx+L\nmTNnir59+2r2pVKpRP/+/UV6erpISEgQ7du3F1988YUQQogbN26II0eOiLy8PHHv3j3Rt29fMXv2\nbM1j27RpIzp16iSSkpLEgwcPRK9evcQHH3wghBDi+PHjwt7eXqvmo0ePCiGECA4OFuPHjxdCCBEf\nHy9UKpVQq9Watm+88YaYP3++5vrKlSuFn59fqe/FunXrhKurq6YGHx8fYWBgoNnfiBEjxPTp08Wj\nR4/E3bt3Rffu3UVISIgQQojQ0FBhbGwsvvjiC1FQUCDWrVsnbG1thRBCZGVlCXNzc3H9+nUhhBCp\nqani8uXLmsf17t1b6z2Mi4vTXP/000/F6NGjNde///574eHhUWr9xV//rVu3SrwfPj4+YtOmTRXW\nLIQQQ4cOFWPGjBEZGRkiPz9fnDhxQgghRGRkpNbnUfxzuHbtmjA1NRVHjhwRT548EZ9++qlwdnYW\n+fn5Qgjp8/P29hYpKSniwYMHws3NTaxfv77U11T8uSrad5s2bYSXl5dISkoSubm5pe6z+Ht8/Phx\nYWRkJBYuXCiePHkiwsPDhYmJicjIyBBCCDF79mzx4osvivT0dPHw4UMxfPhw8e6775a676Kf55Mn\nT8SaNWuEpaWl+PPPP4UQ5X8PUlJShKmpqeZ58/PzhbW1tTh37lyJz+77778Xzs7O4urVq0KtVot/\n//vfomfPnqW+xtGjR4uxY8eKnJwcERMTIxwcHESfPn202g4fPlxkZmaKhIQE0aJFCxEREVHq65s/\nf77o27evSE9PF4mJiaJjx47CwcFBc3/R72aPHj3E9u3bhRBCZGdni6ioKCFE6d/T0NBQYWRkJNas\nWSPUarXIyckp9btR1u+Xoj9/QpT82S/63pX2Hk2YMEGMGDFCZGVlifj4eNG+fftKf0+ofmGgI73V\npk0b0aRJE2FhYSHatGkj/vnPf2r+EKpUKnH8+HFN29dee00rHGVlZQljY2Nx+/ZtTftDhw5p7v/8\n88/F888/X+rz7tmzR3h5eWmuOzo6asKREEKEh4eLdu3aCSHKD3QLFy7U/CIvLcBERUWJ1q1ba653\n7dpVfPPNN6XW1K9fP60afvzxR83+UlNTRcOGDUVOTo7m/h07doh+/foJIaRf+s7Ozpr7srOzhUql\nEmlpaSIrK0tYWFiIb7/9Vjx69EjrOSsKdMnJyaJJkybi4cOHQggh/P39xbJly0qtv/jrr0ygK6vm\nO3fuCAMDA024KKr45yGE9uewePFirRBaUFAg7OzsxE8//SSEkD6/L7/8UnP/vHnzxPTp00t9TcWf\nqzL7Dg0NLXVfhUoLdI0bN9Z6n6ytrcXp06dFQUGBMDU11Wr/888/i7Zt25a678JgYmFhIYyNjUXj\nxo3F//73vzJrKf49GDx4sNi4caMQQoj9+/cLd3d3zX1FP7vBgwdrBRS1Wi1MTExEQkKC1mt88uSJ\nMDY21vxnQgghPvjggxI/c6dOndJcHzVqlFiyZEmp9To5OWl9xzds2FDmd7Nv375i4cKF4t69e1r7\nKO3nMjQ0VOt7Wnhb8TrL+v1S9OevtOfw8fHRhL+i+yt8jxo0aCCuXLmiuS8kJET4+Pho6ijre0L1\nD4dcSW+pVCrs3bsX6enpiI+Px5o1a9CwYUPN/UWHOlNSUtCmTRvNdVNTUzRr1gzJycmltm/durXm\nQPa0tDSMGTMG9vb2aNq0KSZMmFBi2LOsx1aHt7c3GjdujMjISFy9ehVxcXHw8/MrtW1KSkqJGgrd\nvn0b+fn5aNWqFSwtLWFpaYnp06fj3r17mjYtW7bUbJuYmAAAsrKyYGpqil27dmH9+vWwtbXFsGHD\ncO3atUrVb2tri169emH37t3IyMhAREQExo0b91TvQXnKqjkxMRFWVlZo2rTpU+/zzp07Wu+dSqWC\ng4OD1s9J0edt3LgxsrKyKrXvlJSUCvddlRmrzZo1g4HB37+qTUxMkJWVhXv37uHRo0fo2rWr5nMf\nMmQI7t+/X+a+evTogfT0dKSnp8PPzw9Lly7V3FfR9yAgIADbt28HAGzfvh0TJ04s9Tlu376NN998\nU1NT4TGGRd8HALh37x6ePHmi9Z7Y29uX2F/xn4OyPo87d+6U+R0pbtOmTZpDAbp3717iEIbiKvO5\nVed3RFnH0d2/fx/5+flav9tat25d5s9r0e8J1T8MdKRYRX8J2traak3zz87Oxh9//AE7OzvNbUWP\n40lISNDc995778HQ0BCXLl1CZmYmtm3bVuL4puKPfdplKsr6hV34R3Lbtm145ZVX0KBBg1LbtWrV\nqkQNhRwcHNCwYUP88ccfmj/WmZmZuHjxYqVqGzRoEH788UekpqbC1dX1qZb4KKz/m2++Qc+ePdGq\nVatKPc7U1BQA8OjRI81tqamplXqsg4MDHjx4UOI4R6DiA8zt7Oxw+/ZtzXUhBBITE7V+Tp5mf0XZ\n2tpWuO+aPAC+efPmaNy4MWJiYjSfe0ZGBv78888KH2tqaop169bhp59+wk8//QSg4u/Biy++iAsX\nLuDSpUs4cOBAmeG9devW2LBhg6am9PR0ZGdno0ePHlrtWrRoASMjIyQmJmpuK7r9tMr7jhTn7OyM\nHTt24N69e5g/fz5GjhyJnJycMj+fynxuZf1+MTU1LffnvLx9N2/eHMbGxlq/2xISEkoNvkQMdFQn\njB07FqGhofj999/x+PFjvPfee+jRo4fW/9L/7//+DxkZGUhMTMSqVaswevRoAH/3VJmbmyM5ORnL\nli3T2rcQAmvXrkVycjIePHiA//znPxgzZsxT1deiRQsYGBhoDkAvNH78eHz33Xf48ssvy+zxAIBR\no0Zh1apVSE5ORnp6OpYsWaK5r1WrVhg0aBDeeustPHz4EAUFBYiLi6vUmlt3797F3r17kZ2dDWNj\nY5iamsLQ0LDUtjY2NiXqf+mll3Du3DmsWrWq3PqLa9GiBezs7LBt2zao1Wps3ry5xL7L0qpVKwwZ\nMgRvvPEGMjIykJ+fr3mtNjY2+OOPP8oMNa+88goOHDiAY8eOIT8/H8uXL0ejRo3Qs2fPUtuLp5hx\nOmrUqKfad2lKe4/LYmBggKlTp2L27Nma3tjk5GT8+OOPlXq8paUlXn/9dc3PUkXfg8aNG8Pf3x+v\nvvoqvL29ywwV06dPx8cff4yYmBgA0kH9RSd4FDI0NMTLL7+M4OBg5OTk4OrVq9i2bVu5Aae8z2PU\nqFH45JNPkJGRgaSkJKxevbrMttu3b9e8Z02bNoVKpYKBgUGZ39PKKOv3i5eXF06cOIHExERkZmbi\nk08+0XpceZ+5oaEhRo0ahffffx9ZWVm4ffs2VqxYgfHjxz91fVT3MdCRIhX/pf/888/jo48+gr+/\nP2xtbXHr1i189dVXWm1efPFFdO3aFV5eXhg2bJhmZuLChQtx7tw5NG3aFMOHD4e/v7/W/lUqFcaN\nG4dBgwahXbt2cHFxwQcffFBmLUVvL7zPxMQE77//Pnr16gVLS0ucOXMGgNTb1KVLFxgYGKB3795l\nvt6pU6fC19cXnp6e6NatW4kat27diry8PM3MwldeeUXTE1DaGmGF1wsKCrBixQrY2dmhWbNmOHny\nJNatW1fq44KDgxEQEABLS0vs3r0bANCoUSO8/PLLiI+Px8svv1xm/aW9Txs3bsSyZcvQvHlzxMTE\noFevXqW+d6U9ftu2bTA2NoarqytsbGywatUqAICrqyvGjh0LJycnWFlZISUlRWtfHTp0wPbt2zFz\n5ky0aNECBw4cwP79+2FkZFRmzeUFjKL3tW/f/qn2XZri73FFz7906VI4OzujR48eaNq0KQYOHIjr\n169X+rXMnj0bx48fx4ULFyr8HgBSj+ylS5e0Zm0WN2LECMyfPx9jxoxB06ZN0alTJ60124ruc82a\nNcjMzETLli0REBCAsWPHavVSl/YzUNb7sXDhQrRp0wZt27bF4MGDMXHixDLbHjp0CM888wzMzMzw\nr3/9C1999RUaNmyo9T21srLC6dOny/xZLH5bWb9fBgwYgNGjR8PDwwPPPvsshg8frvXYN998E7t3\n74aVlVWps4ZXr14NU1NTODk5oU+fPhg3bhwmT55cZh1cBqX+Uomn+S9oFURERGD27NlQq9WYMmUK\n5s+fX6LNrFmzcPDgQZiYmCAsLAxeXl6a+9RqNbp16wZ7e3vs378fgLRkwejRo3H79m04Ojri66+/\nhoWFhS5fBpHOBAYGws7ODosXL5a7lCr56KOPEBsbi61bt8pdCulYYmIiXF1dkZaWhiZNmtT4/ufP\nn4+7d+8iNDS0xvdNVNfptIdOrVZjxowZiIiIQExMDHbu3IkrV65otQkPD8eNGzcQGxuLDRs2ICgo\nSOv+zz77DO7u7lr/61iyZInmf6LPP/+81vATkZLEx8fju+++Q2BgoNylVMmDBw+wefNmvP7663KX\nQjpWUFCA5cuXY+zYsTUW5q5du4YLFy5ACIEzZ85g8+bNeOmll2pk30T1jU4D3ZkzZ+Ds7AxHR0cY\nGxtjzJgx2Lt3r1abffv2ISAgAIA06y8jIwNpaWkAgKSkJISHh2PKlClax04UfUxAQAC+//57Xb4M\nIp1YsGABOnXqhHnz5mnNYlOKjRs3onXr1hgyZEi5w8WkfNnZ2TA3N8fRo0exaNGiGtvvw4cP4e/v\njyZNmmDMmDGYO3dumTO9iah8lT+4owqSk5NLTEk/ffp0hW2Sk5NhY2ODf/3rX1i2bFmJA5zT0tJg\nY2MDQDqgtDAAEinJRx99hI8++kjuMqps6tSpOjvpPekXU1NTnSyF0a1bN8TGxtb4fonqI50Gusoe\nnFn8MD4hBH744QdYW1vDy8sLkZGR5T5HWc/j7OxcpdlKRERERLWtXbt2uHHjRpUeq9MhVzs7uxJr\nDBWf6l68TVJSEuzs7PDzzz9j3759aNu2LcaOHYtjx45plkWwsbHRzOBLSUmBtbV1qc8fFxcHIZ0N\ng/9q6d/ChQtlr6G+/eN7zve8Pvzje873vD78q04nlE4DXWF3enx8PPLy8rBr164Sx0f4+flpZsdF\nRUXBwsICLVu2xMcff4zExETN8hP9+/fXtPPz88OWLVsAAFu2bMGIESN0+TKIiIiI9JpOh1yNjIyw\nZs0a+Pr6Qq1WIzAwEG5ubggJCQEATJs2DUOHDkV4eDicnZ1hampa5nT1osOq77zzDkaNGoVNmzZp\nli0hIiIiqq90vg6dnFQqFerwy9NLkZGR8PHxkbuMeoXvee3je177+J7XPr7nta86uYWBjoiIiEgP\nVCe38NRfRERERArHQEdERESkcAx0RERERArHQEdERESkcAx0RERERArHQEdERESkcAx0RERERArH\nQEdERESkcAx0RERERArHQEdERESkcAx0RERERArHQEdERESkcAx0RERERArHQEdERESkcAx0RERE\nRArHQEdERESkcAx0RERERArHQEdERESkcAx0RERERArHQEdERESkcAx0RERERArHQEdERESkcAx0\nRERERArHQEdERESkcAx0RERERArHQEdERESkcAx0RERERArHQEdERESkcAx0RERERArHQEdERESk\ncAx0RERERArHQEdERESkcAx0RERERArHQEdERESkcAx0RERERArHQEdERESkcAx0RERERArHQEdE\nRESkcAx0RERERArHQEdERESkcAx0RERERArHQEdERESkcAx0RERERArHQEdERESkcAx0RERERArH\nQFdJwcHByM/P11yfNGkS1q5d+9T7CQsLQ2xsbE2WVq6NGzfCxcUFzs7OmDlzJoQQpba7fv06nnvu\nOXTo0AE9e/bEjRs3KnXf3Llz4eTkBAMDA8TExGhuf/DgAYYOHQpXV1d4eHjA398f9+/fL/G8ixYt\nKvFYIiIiejo6D3QRERFwdXWFi4sLli5dWmqbWbNmwcXFBZ6enoiOjgYA5ObmwtvbG507d4a7uzve\nffddTfvg4GDY29vDy8sLXl5eiIiI0PXLwOLFi5GXl6e5rlKpqrSfsLAwXL9+vabKKtetW7ewePFi\nREVFITY2FrGxsdi+fXupbadPn46ZM2fi2rVr+Oc//4lp06ZV6r6XXnoJJ06cQJs2bbT2p1Kp8M47\n7+Dq1au4cOEC2rVrh3feeUerzblz53D69Gk4OjrW3IsmIiKqj4QOPXnyRLRr107cunVL5OXlCU9P\nTxETE6PV5sCBA2LIkCFCCCGioqKEt7e35r7s7GwhhBD5+fnC29tb/O9//xNCCBEcHCyWL19e4fPX\n1Mt74403hEqlEh4eHsLLy0tkZGSISZMmienTp4v+/fsLFxcXMXHiRE37zMxMERgYKLp37y48PDzE\nm2++KdRqtdi8ebNo0qSJcHJyEp07dxZHjhwRFy9eFH369BFdunQR7u7uYuXKlTVSsxBCfPrpp2Lm\nzJma67t37xYvvPBCiXZpaWnCwsJCFBQUCCGkz83CwkLcv3+/3PuKcnR0FJcvXy6zlt27d4sBAwZo\nrufm5ornnntOxMfHV/hYIiKi+qA6ucVIl2HxzJkzcHZ21vTAjBkzBnv37oWbm5umzb59+xAQEAAA\n8Pb2RkZGBtLS0mBjYwMTExMAQF5eHtRqNSwtLYsGUV2WrmXt2rVYt24dfvnlF01NQghcvnwZR44c\ngUqlgpeXF44cOYIBAwbgrbfego+PD7744gsUFBRg3Lhx2Lx5M6ZMmYKtW7fi7bffxtChQwEAWVlZ\nOHLkCBo0aICsrCx4e3vD19cXrq6uJero1asXHj16VOJ2KysrHD16tMTtiYmJaN26tea6g4MDEhMT\nS21nZ2en6XU0NDSEra0tEhMToVary7yvWbNmlXr/CgoKsG7dOowYMUJz24cffogJEyaU6NkjIiKi\np6fTQJecnAwHBwfNdXt7e5w+fbrCNklJSbCxsYFarUbXrl0RFxeHoKAguLu7a9qtXr0aW7duRbdu\n3bB8+XJYWFjo8qWUoFKpMGLECDRo0AAA0KVLF9y8eROAFFJ//fVXLF++HADw6NEjrWBVNIxmZ2dj\n+vTpuHDhAgwMDHDnzh38/vvvpQa6U6dO6fIl6czMmTNhbm6OGTNmAAB++eUX/Pbbb1pD8LUZ0ImI\niOoanQa6yh5nVvyPedHeoPPnzyMzMxO+vr6IjIyEj48PgoKC8OGHHwIAFixYgDlz5mDTpk2l7js4\nOFiz7ePjAx8fn6d/IWVo2LChZtvQ0BBPnjzRXN+7d2+Zx4YVfV/ee+892NraYuvWrTAwMICvry8e\nP35c6uN69uyJnJycErdbWlri2LFjJW5v3bo1bt++rbmekJCgFZ4LOTg4IDk5GUIIqFQqqNVq3Llz\nBw4ODlCr1WXeVxlz585FXFwc9u/fr7ntxIkTuHLlCtq2bQsASEpKgq+vL8LCwjBgwIBK7ZeIiEjp\nIiMjERkZWSP70mmgs7Oz0xriS0xMhL29fbltkpKSYGdnp9WmadOmeOGFF3D27Fn4+PjA2tpac9+U\nKVMwfPjwMmsoGuiqw8zMDBkZGZoh1/L4+fnhk08+wbp162BgYID79+8jKysLjo6OMDc3R0ZGhqZt\nZmYmPD09YWBggEuXLuHkyZMYN25cqfv9+eefn6pmf39/9O3bFwsXLoSVlRU2btyI8ePHl2hnbW2N\nzp07Y8eOHRg3bhx27tyJLl26aIZUy7uvqOLB/L333sO5c+dw4MABGBsba26fP38+5s+fr7netm1b\nHDhwQKsHloiIqK4r3tG0aNGiKu9Lp7Ncu3XrhtjYWMTHxyMvLw+7du2Cn5+fVhs/Pz9s3boVABAV\nFQULCwvY2Njg/v37muCTk5ODw4cPw8vLCwCQkpKiefyePXvQqVMnXb4MAMCcOXPQv39/dOnSBZmZ\nmQDK7oFcuXIlDA0N4enpCQ8PDwwZMgR37twBALz++utYvHgxvLy8cPToUXzwwQfYuHEjPD09sWjR\nIvzjH/+osZrbtm2LBQsWoEePHmjfvj2cnZ01ge7s2bN44YUXNG3Xr1+P1atXo0OHDli7di3Wr19f\nqftmzZql6eEbMGCA5rO4fPkylixZgpSUFPTs2RNeXl7w9/evsddGREREf1MJHR+8dPDgQcyePRtq\ntRqBgYF49913ERISAgCa5S9mzJiBiIgImJqaIjQ0FF26dMHFixcREBCAgoICFBQUYMKECXj77bcB\nABMnTsT58+ehUqnQtm1bhISEwMbGpuSLU6l4bBYREREpQnVyi84DnZwY6IiIiEgpqpNbeKYIIiIi\nIoVjoCMiIiJSOAY6IiIiIoVjoCMiIiJSOAY6IiIiIoVjoCMiIiJSOAY6IiIiIoVjoCMiIiJSOAY6\nIiIiIoVjoCMiIiJSOAY6IiIiIoVjoCMiIiJSOAY6IiIiIoVjoCMiIiJSOAY6IiIiIoVjoCMiIiJS\nOAY6IiIiIoVjoCMiIiJSOAY6IiIiIoVjoCMiIiJSOAY6IiIiIoVjoCMiIiJSOAY6IiIiIoVjoCMi\nIiJSOAY6IiIiIoVjoCMiIiJSOAY6IiIiIoVjoCMiIiJSOAY6IiIiIoVjoCMiIiJSOAY6IiIiIoVj\noCMiIiJSOAY6IiIiIoVjoCMiIiJSOAY6IiIiIoVjoCMiIiJSOAY6IiIiIoVjoCMiIiJSOAY6IiIi\nIoVjoCMiIiJSOAY6IiIiIoVjoCMiIiJSOAY6IiIiIoVjoCMiIiJSOAY6IiIiIoVjoCMiIiJSOAY6\nIiIiIoXTeaCLiIiAq6srXFxcsHTp0lLbzJo1Cy4uLvD09ER0dDQAIDc3F97e3ujcuTPc3d3x7rvv\nato/ePAAAwcORPv27TFo0CBkZGTo+mVQBfLzgTt3gHv3gNxcuashIiKqX3Qa6NRqNWbMmIGIiAjE\nxMRg586duHLlilab8PBw3LhxA7GxsdiwYQOCgoIAAI0aNcLx48dx/vx5XLhwAcePH8epU6cAAEuW\nLMHAgQNx/fp1PP/881iyZIkuXwaVIisL2LIFGDcOaN0aaNgQsLMDrK2Bxo0BJyfA3x8ICwMePJC7\nWiIiorpNp4HuzJkzcHZ2hqOjI4yNjTFmzBjs3btXq82+ffsQEBAAAPD29kZGRgbS0tIAACYmJgCA\nvLw8qNUD+X+hAAAgAElEQVRqWFpalnhMQEAAvv/+e12+DCri3j3gX/8CbG2BSZOAHTuAxETpPmtr\noFkzwMgIuHUL+O47YPJkqe3rrwPXr8taOhERUZ2l00CXnJwMBwcHzXV7e3skJydX2CYpKQmA1MPX\nuXNn2NjYoF+/fnB3dwcApKWlwcbGBgBgY2OjCYCkOwUFwMqVgLOzdPnwIdCzJ7B6NXDxIvD4MZCW\nBty/Dzx6BFy+DHz+OTBgAJCXB2zcCLi7S2GQI+REREQ1y0iXO1epVJVqJ4Qo9XGGhoY4f/48MjMz\n4evri8jISPj4+JRoW97zBAcHa7Z9fHxKPJ4qlpwMBAQAR49K1wcPBj7+GPDyKr29sbEU3tzdgaAg\n4No1YNkyYPNmKQx+/TWwbRvQv3/tvQYiIiJ9ExkZicjIyBrZl04DnZ2dHRILx+MAJCYmwt7evtw2\nSUlJsLOz02rTtGlTvPDCC/jtt9/g4+MDGxsbpKamomXLlkhJSYG1tXWZNRQNdPT0zp0Dhg0DUlKA\nFi2AL74A/Pyebh8dOkiPmzFDCnhRUVLP3fvvA4sWAQaca01ERPVQ8Y6mRYsWVXlfOv1T2q1bN8TG\nxiI+Ph55eXnYtWsX/IqlAT8/P2zduhUAEBUVBQsLC9jY2OD+/fua2as5OTk4fPgwOnfurHnMli1b\nAABbtmzBiBEjdPky6q1Dh4C+faUw5+MjDa0+bZgrqnNn4ORJKcSpVMC//w2MGgVkZ9dYyURERPWS\nShQf76xhBw8exOzZs6FWqxEYGIh3330XISEhAIBp06YBgGYmrKmpKUJDQ9GlSxdcvHgRAQEBKCgo\nQEFBASZMmIC3334bgLRsyahRo5CQkABHR0d8/fXXsLCwKPniVKoSw7lUOUeOSD1zjx8DEyZIPWwN\nGtTc/n/8UQpzmZlAr15AeDhgbl5z+yciIlKa6uQWnQc6OTHQVc2pU8DAgUBOjjREunat1KNW065c\nAXx9pVmy3t5ARARQSi4nIiKqFxjoysBA9/Ti4qRw9ccfQGAgsGGDbo9xu3VLmhwRHw88+yxw7BjQ\npInuno+IiEhfMdCVgYHu6WRmAj16AFevAkOHAvv2AYaGun/ehATpGL1bt6Qeu/37pZmyRERE9Ul1\ncgvnFxIAQAhg6lQpzD3zDLBzZ+2EOUA608ShQ0Dz5tLllClSPURERFQ5DHQEQFr495tvpOHOPXtq\nf4KCiwtw4ABgYgJs3Qp8+mntPj8REZGScciVcOmSdPxabi7w5ZfAq6/KV8u+fcCLL0rH7R08CAwa\nJF8tREREtYlDrlRlT55IZ4HIzZXOuypnmAOkde4+/FA61diYMdJxdURERFQ+9tDVc//3f8Dbb0vH\nsV2+rB8zTAsKpF66H34AuncH/vc/TpIgIqK6jz10VCU3b0q9YQCwfr1+hDlAGm7duhVwcADOnAEW\nL5a7IiIiIv3GQFdPCQFMny4tHvzqq8CQIXJXpM3SEti2TVrQ+OOPpVOGERERUekY6OqpffuAw4el\n4LRypdzVlO4f/wDefVcagh0/Hvjr1L5ERERUDANdPZSXB8ydK20vWgS0aCFvPeUJDpaOo0tI+Ltm\nIiIi0sZJEfXQypXAv/4FdOgAXLyo/xMOrl4FPD2lIHr0qHSqMCIiorqGkyKo0h48kHrlAGmGq76H\nOQBwdQUWLJC2p04FHj2Stx4iIiJ9w0BXzyxbJh2L9vzzwAsvyF1N5c2bB3TqJM3MXbhQ7mqIiIj0\nC4dc65G7dwEnJyA7Gzh9Wjo2TUl+/RXo0UPaPndOGoYlIiKqKzjkSpWybJkU5oYNU16YA6TTk82c\nKc16nTlTWnqFiIiI2ENXb6SmSr1zOTnAb78BXbrIXVHVZGQA7dsD9+7Jf95ZIiKimsQeOqrQsmVS\nmHvxReWGOQCwsACWLJG2334bePhQ3nqIiIj0AXvo6oH0dOlcrVlZyu6dK1RQADz3nHRasHnzgKVL\n5a6IiIio+thDR+Vav14KcwMGKD/MAdK5XteskU4LtnIlcOuW3BURERHJi4GujsvNBT77TNqeN0/e\nWmrSs89KpwPLywM++EDuaoiIiOTFIdc6buNG4PXXgc6dpaU+VCq5K6o5t29LEyTy8oCzZ4GuXeWu\niIiIqOo45EqlKigAli+XtufNq1thDgDatAFmzZK2583jMiZERFR/sYeuDjt8GBg0CLC3l44zMzKS\nu6Kal54OtGsnXR48CAweLHdFREREVcMeOirV2rXS5fTpdTPMAYClJfD++9L2vHmAWi1vPURERHJg\nD10dlZAAtG0LGBoCiYmAjY3cFelObi7g6iodU8fFhomISKnYQ0clhIRIx9CNHFm3wxwANGoEfPih\ntL1oEfDkibz1EBER1Tb20NVBjx8DDg7S6bFOngR695a7It3Lzwfc3IC4OGDLFmDiRLkrIiIiejrs\noSMtu3dLYc7DA+jVS+5qaoex8d+9dIsXSwGPiIiovmCgq4NCQqTLN96oe0uVlOfVV6V16eLigG3b\n5K6GiIio9nDItY65cQNwcQFMTIDUVMDMTO6KateOHcC4cYCjI3DtGtCggdwVERERVQ6HXEkjLEy6\nfOWV+hfmAGD0aOlYuvh46Vg6IiKi+oCBrg5Rq/8OMZMny1uLXAwNgQULpO2lSznjlYiI6gcGujrk\n6FEgKQlwcgL69JG7Gvm88op09oi4OOCbb+SuhoiISPcY6OqQ0FDpMiAAMKjHn6yRETB/vrT9ySc8\nxysREdV9nBRRR6SnA61aAXl50nlb27SRuyJ5PX4s9VTeuQPs3w8MGyZ3RUREROXjpAjCrl1SiOnf\nn2EOABo2BObMkbY//pi9dEREVLcx0NURO3ZIlwEB8tahT15/HbCyAn75BThxQu5qiIiIdIeBrg5I\nTJRO8dWoETBihNzV6I8mTYA335S2P/5Y3lqIiIh0iYGuDti1S7ocNqx+rj1XnhkzpGD344/AuXNy\nV0NERKQbDHR1wM6d0uXYsfLWoY+srICpU6XtFSvkrYWIiEhXOMtV4a5fBzp0AMzNgbQ0adiVtN2+\nLc14NTCQZgDb28tdERERUUmc5VqPFfbOvfQSw1xZ2rQBRo6UzhqxZo3c1RAREdU89tApmBCAuztw\n9Spw8CAweLDcFemv06eBHj0ACwtpEkmTJnJXREREpI09dPXU779LYa55c+D55+WuRr95ewO9egEZ\nGX+fUYOIiKiuYKBTsG+/lS79/QFjY3lrUYK33pIuV64E1Gp5ayEiIqpJDHQK9t130qW/v7x1KMWL\nL0qTI27eBPbulbsaIiKimqPzQBcREQFXV1e4uLhg6dKlpbaZNWsWXFxc4OnpiejoaABAYmIi+vXr\nh44dO+KZZ57BqlWrNO2Dg4Nhb28PLy8veHl5ISIiQtcvQ+9cvQrExEjHhPn4yF2NMhgaArNnS9vL\nl8tbCxERUU3SaaBTq9WYMWMGIiIiEBMTg507d+LKlStabcLDw3Hjxg3ExsZiw4YNCAoKAgAYGxtj\nxYoVuHz5MqKiorB27VpcvXoVgHTQ4FtvvYXo6GhER0djcD2cDbBnj3Tp58fh1qcxebIUgn/+WZoo\nQUREVBfoNNCdOXMGzs7OcHR0hLGxMcaMGYO9xca69u3bh4C/TkDq7e2NjIwMpKWloWXLlujcuTMA\noEmTJnBzc0NycrLmcXV59mplFA63vvyyvHUoTZMm0jleAWD1anlrISIiqik6DXTJyclwcHDQXLe3\nt9cKZWW1SUpK0moTHx+P6OhoeHt7a25bvXo1PD09ERgYiIyMDB29Av2UkACcPQuYmACDBsldjfIE\nBUmLDH/9tbQYMxERkdIZ6XLnKpWqUu2K97YVfVxWVhZGjhyJzz77DE3+WjwsKCgIH374IQBgwYIF\nmDNnDjZt2lTqvoODgzXbPj4+8KkDB5wVDrcOHQo0bixvLUrk6AgMHy5NjNiwAViwQO6KiIioPoqM\njERkZGSN7Eungc7Ozg6JiYma64mJibAvdt6l4m2SkpJgZ2cHAMjPz4e/vz/Gjx+PESNGaNpYW1tr\ntqdMmYLhw4eXWUPRQFdXcLi1+mbOlALd+vXAO+/wOEQiIqp9xTuaFi1aVOV96XTItVu3boiNjUV8\nfDzy8vKwa9cu+Pn5abXx8/PD1q1bAQBRUVGwsLCAjY0NhBAIDAyEu7s7ZhdOTfxLSkqKZnvPnj3o\n1KmTLl+GXrl3Dzh5EmjQAHjhBbmrUa7+/QFXV+DOnb97PImIiJRKp4HOyMgIa9asga+vL9zd3TF6\n9Gi4ubkhJCQEISEhAIChQ4fCyckJzs7OmDZtGj7//HMAwKlTp7B9+3YcP368xPIk8+fPh4eHBzw9\nPfHTTz9hxYoVunwZeiU8XDrll48PYG4udzXKpVIBM2ZI2zy/KxERKR3P5aowo0YB33wjzdAsDCRU\nNQ8fAnZ20uX584Cnp9wVERFRfcZzudYTeXnAoUPSNodbq8/MDJg0SdpmLx0RESkZe+gU5Ngx4Pnn\ngY4dgUuX5K6mbrh2TTqWrnFjICkJsLKSuyIiIqqv2ENXT/zwg3TJ3rma06GDtJZfTg4QGip3NURE\nRFXDQKcghYFu2DB566hrCo9FXLsWKCiQtxYiIqKq4JCrQly/LvUmWVoCd+8CRjpdQbB+UasBZ2cg\nPh44eBCoh6cGJiIiPcAh13rgwAHpcsgQhrmaZmj49/ld/1pNh4iISFEY6BSCw626NXmyFJT37weK\nnW6YiIhI7zHQKUBmJnDihNST5OsrdzV1U8uWwEsvScOvZZwWmIiISG8x0CnA4cPAkydAz55cVkOX\npk2TLjdulN5vIiIipWCgU4DCxYSHDpW3jrquXz/AxUVajy48XO5qiIiIKo+BTs8JAfz4o7Q9aJC8\ntdR1BgacHEFERMrEZUv0XOGZDFq0AFJTpdBBunP/vnR+1/x84OZNwNFR7oqIiKi+4LIldVjhcOvA\ngQxztaF5c2DkSKln9Isv5K6GiIiochgR9ByHW2vf9OnS5aZNUk8dERGRvmOg02OPHwPHj0vbAwfK\nW0t90rs34OYmDXHv2yd3NURERBVjoNNjP/8MPHoEdOoE2NrKXU39oVL93Uu3fr28tRAREVUGA50e\n43CrfCZMABo1Ao4cAeLi5K6GiIiofAx0eqxwQgQDXe2ztARGjZK2N2+WtxYiIqKKcNkSPXX3LmBj\nI/USPXgANG4sd0X1z8mTQN++QKtWQEKCdK5XIiIiXeGyJXXQkSPSZd++DHNy6d0baN8eSEkBIiLk\nroaIiKhsDHR66vBh6ZKzW+WjUgGBgdI216QjIiJ9xiFXPSSEdIaChAQgOhro3Fnuiuqv1FTAwUH6\nTBITpeFXIiIiXeCQax1z86YU5qysAA8Puaup31q2BIYNA9RqYOtWuashIiIqHQOdHjp2TLrs14+n\n+9IHU6ZIl5s2ST11RERE+oZxQQ8Vnh2iXz956yCJr6+0sHNsrDTzlYiISN8w0OkZIf7uoevfX95a\nSGJkBEyeLG1zcgQREekjTorQMzExQMeO0rFbd+5IMy1JfjdvAu3aSesCpqQAFhZyV0RERHUNJ0XU\nIUWHWxnm9IeTk9RjmpsL7NwpdzVERETayl37/u7du/jmm29w4sQJxMfHQ6VSoU2bNujbty9eeeUV\nWFtb11ad9QaHW/XXlCnS5/PFF0BQkNzVEBER/a3MIdfAwEDExcVhyJAh6N69O1q1agUhBFJSUnDm\nzBlERETA2dkZX+jxQUVKG3ItKABatJBO9RUXJ/UKkf7IzZUmR6SnA+fOAV5ecldERER1SXVyS5mB\n7sKFC/CoYBG0yrSRk9IC3fnzUkho3RqIj+eQqz6aNQtYvRr45z+BNWvkroaIiOoSnRxDV5mgps9h\nTomKDrcyzOmnwjXptm8HcnLkrYWIiKhQhZMirl+/jpEjR8LNzQ1t27ZF27Zt4cSxQJ3g8XP6z8MD\nePZZIDMT+PZbuashIiKSVBjoJk+ejOnTp8PY2BiRkZEICAjAuHHjaqO2ekWt/nvRWh8fWUuhCgQG\nSpebN8tbBxERUaEK16Hr0qULzp07h06dOuHixYtat+k7JR1DFx0NdOkCtG0rrXlG+iszE2jVShpy\nvXlT+syIiIiqS6fr0DVq1AhqtRrOzs5Ys2YNvvvuO2RnZ1fpyahshb1zffrIWwdVrGlT4OWXpe0t\nW+SthYiICKhEoPvss8/w6NEjrFq1CmfPnsX27duxhX/FatyJE9Jl377y1kGVU3gqsLAwabkZIiIi\nOVUY6G7dugUzMzM4ODggLCwM3333HRISEmqjtnpDCPbQKU2/fkCbNsDt20BkpNzVEBFRfVdhoPvk\nk08qdRtV3fXrwN27gI0N4OIidzVUGQYGQECAtB0aKm8tREREZZ766+DBgwgPD0dycjJmzZqlOUjv\n4cOHMDY2rrUC64PC4dY+fbj+nJJMmgQsXiwtX7JmjXRsHRERkRzK7KGztbVF165d0ahRI3Tt2hVd\nu3ZFt27d4Ofnh0OHDtVmjXVe4XArj59TlrZtpSVmcnKAr7+WuxoiIqrPKly2JD8/H/n5+UhISICr\nq2tt1VUjlLJsiaOjdCxWdDTQubPc1dDT2LpVGnp97jng55/lroaIiJRMp8uWHDx4EF5eXhg8eDAA\nIDo6Gn5+flV6MiopIUEKc02bAp06yV0NPS1/f8DMDPjlF+DqVbmrISKi+qrCQBccHIzTp0/D0tIS\nAODl5YWbXPm2xhQOt/bqBRgaylsLPT1TU2DUKGk7LEzWUoiIqB6rMNAZGxvDwsJC+0EGFT6MKonH\nzylf4Zp0W7cCT57IWwsREdVPFSazjh074ssvv8STJ08QGxuLmTNnomfPnrVRW73ABYWVr2dPoH17\nICUF+PFHuashIqL6qMJAt3r1aly+fBkNGzbE2LFjYW5ujpUrV1b6CSIiIuDq6goXFxcsXbq01Daz\nZs2Ci4sLPD09ER0dDQBITExEv3790LFjRzzzzDNYtWqVpv2DBw8wcOBAtG/fHoMGDUJGRkal69En\n9+4BV64AjRsDXbvKXQ1VlUolLWECcE06IiKSR4WzXKtDrVajQ4cOOHLkCOzs7PDss89i586dcHNz\n07QJDw/HmjVrEB4ejtOnT+PNN99EVFQUUlNTkZqais6dOyMrKwtdu3bF3r174erqinnz5qF58+aY\nN28eli5divT0dCxZsqTki9PzWa579kjnBO3XDzh2TO5qqDqSk4HWrQEjI+DOHaBZM7krIiIipdHp\nLNdr165h6tSpGDhwIPr164d+/fqhf//+ldr5mTNn4OzsDEdHRxgbG2PMmDHYu3evVpt9+/Yh4K8l\n9729vZGRkYG0tDS0bNkSnf9aw6NJkyZwc3NDcnJyiccEBATg+++/r/wr1iM83VfdYWcHDBoE5OUB\nO3bIXQ0REdU3ZZ4potArr7yCoKAgTJkyBYZ/TcNUVfJ0BsnJyXBwcNBct7e3x+nTpytsk5SUBBsb\nG81t8fHxiI6Ohre3NwAgLS1Nc7+NjQ3S0tIqVY++KVy3rHdveeugmjF5MhARIQ27zpwpdzVERFSf\nVBjojI2NERQUVKWdVzb4Fe9eLPq4rKwsjBw5Ep999hmaNGlS6nNU9nn0SU4OcO6cdPzVXzmVFM7P\nD7C0lBaI/v13wNNT7oqIiKi+KDPQPXjwAEIIDB8+HGvXrsXLL7+Mhg0bau63srKqcOd2dnZITEzU\nXE9MTIS9vX25bZKSkmBnZwdAOkuFv78/xo8fjxEjRmja2NjYIDU1FS1btkRKSgqsra3LrCE4OFiz\n7ePjAx8fnwrrrg2//Qbk50uLCZuby10N1YRGjYBXXwXWrpV66Z5i7hAREdVDkZGRiIyMrJF9lTkp\nwtHRsdyer1u3blW48ydPnqBDhw44evQobG1t0b1793InRURFRWH27NmIioqCEAIBAQFo1qwZVqxY\nobXfefPmoVmzZpg/fz6WLFmCjIwMxU2K+PRTYP58YNo0YP16uauhmvLbb0C3bkDz5tJEiQYN5K6I\niIiUojq5pcweuvj4eABAbm4uGjVqpHVfbm5u5XZuZIQ1a9bA19cXarUagYGBcHNzQ0hICABg2rRp\nGDp0KMLDw+Hs7AxTU1OE/rXuw6lTp7B9+3Z4eHjAy8sLAPDJJ59g8ODBeOeddzBq1Chs2rQJjo6O\n+FqBZ0b/5Rfpkkv61S1duki9rhcvAj/8IM1iJiIi0rUKly3p0qULzp07V+Ft+khfe+iEAFq2BO7e\nBa5fB1xc5K6IatKKFcBbbwHDhgH798tdDRERKYVOeuhSUlJw584dPHr0COfOnYMQAiqVCn/++Sce\nPXpU5WIJuHlTCnPNmwPOznJXQzVt/Hhg3jzg4EEgNVUK70RERLpUZqA7dOgQwsLCkJycjDlz5mhu\nNzMzw8cff1wrxdVVhcuV9OwpzXKluqVFC6l37vvvgW3bgLfflrsiIiKq6yocct29ezdGjhxZW/XU\nKH0dcn3jDWDdOmDJEmliBNU9+/YBL74IuLkBly8zuBMRUcWqk1vKDHQJCQkAoBlqLU/r1q2r9OS6\npq+BrnNnaZ2yn34C+vaVuxrShfx8wN5eGlqPiuJag0REVDGdBDofH59KL9h7/PjxKj25ruljoPvz\nT2nxWQMDIDMTMDGRuyLSlblzgeXLuTQNERFVjk4CXV2gj4HuyBFg4EDg2WeBM2fkroZ06fJl4Jln\npIWjU1OBxo3lroiIiPRZdXKLQUUNjhw5UuK2LVu2VOnJSHtCBNVtHTtKwf3PP4E9e+SuhoiI6rIK\nA92iRYsQFBSE7OxspKamYvjw4di3b19t1FYnFS4o/Nxz8tZBteO116TLzZvlrYOIiOq2CodcCwoK\nsHz5coSEhEClUmHRokV49dVXa6u+atG3IdeCAsDKSjp2LiEBcHCQuyLStYwMoFUr4PFjaf1BR0e5\nKyIiIn2l0yHX9PR0/Prrr2jXrh0aNGiAhIQEvQpJSnLlihTm7O0Z5uoLCwvp9F9CADxSgYiIdKXC\nQPfcc8/B19cXhw4dwq+//ork5GT06tWrNmqrc6KipEsOt9YvkydLl2FhUi8tERFRTSvzTBGFDh8+\njDZt2gAATExMsHr1avz00086L6wuOn1auuSaZPVL//5A69ZAfLy09mC/fnJXREREdU2ZPXRxcXEA\noAlzRf3jH//QakOVU7hMSffu8tZBtcvAAJg0Sdrm5AgiItKFMidFjB49GtnZ2fDz80O3bt3QqlUr\nFBQUIDU1FWfPnsW+fftgZmaGr776qrZrrjR9mhSRnS2tR6ZSScfRmZrKXRHVplu3ACcnaS26lBSg\naVO5KyIiIn2js4WFb9y4ga+++gqnTp3C7du3AUg9dr1798bYsWPh5ORUtYpriT4FupMnpdN8eXoC\n58/LXQ3JoV8/IDISCAkBXn9d7mqIiEjfVCe3lHsMnbOzM+bMmYPGjRvj5MmTMDAwQO/evREUFITG\nXPb+qfD4OXrtNSnQhYYy0BERUc2qcJbrxIkTERMTgzfffBMzZsxATEwMJk6cWBu11Sk8fo78/QEz\nM2m285UrcldDRER1SYWzXC9fvoyYmBjN9f79+8Pd3V2nRdVF7KEjExNgzBhg40apl+7TT+WuiIiI\n6ooKe+i6dOmCXwrPVwUgKioKXbt21WlRdU1qqnRmiCZNADc3uashORWuSbd1K5CfL28tRERUd1TY\nQ3f27Fn06tULDg4OUKlUSEhIQIcOHdCpUyeoVCpcuHChNupUtMLh1m7dAENDeWshefXoAXToAFy7\nBkREAMOHy10RERHVBRUGuoiIiNqoo07j8XNUSKWSJkfMny8NuzLQERFRTSh32RKl05dlSwYNAg4f\nBr79VjqvJ9VvKSnSuXxVKiA5GbC2lrsiIiLSB9XJLRUeQ0fVU1DAHjrS1qoVMHgw8OQJ8OWXcldD\nRER1AQOdjsXGSmeGsLUF7O3lrob0xWuvSZehoYAedCITEZHCMdDpWOFyJeydo6KGDQOaNwcuXgR+\n+03uaoiISOkY6HSscLiV689RUQ0aAOPHS9uhofLWQkREysdAp2PsoaOyFK5Jt2MHkJsrby1ERKRs\nDHQ6lJsL/P67NJuxWze5qyF94+EBdOkCZGQA338vdzVERKRkDHQ6dP68dDYANzfA3FzuakgfFZ0c\nQUREVFUMdDrE4+eoImPHSsfTHT4snR6OiIioKhjodOjsWeny2WflrYP0l5UV8NJL0tIlW7fKXQ0R\nESkVA50OFQY6Hj9H5SmcHBEaKi1ETURE9LR46i8dycqSjpszNAQePgQaNZKlDFIAtRpwdASSkoDI\nSOAf/5C7IiIikgNP/aWHoqOlYbROnRjmqHyGhkBAgLS9ebO8tRARkTIx0OlI4er/XbvKWwcpw6RJ\n0uXu3VKPLhER0dNgoNMRHj9HT8PZGejTB3j0CPj6a7mrISIipWGg0xH20NHTKlyTjsOuRET0tDgp\nQgcePgSaNgWMjKTthg1rvQRSoKwsoGVLIDsbuHoV6NBB7oqIiKg2cVKEnik6IYJhjiqrSRNg9Ghp\ne9MmeWshIiJlYaDTAR4/R1UVGChdbtkC5OXJWwsRESkHA50OFAY6Hj9HT+u55wB3d+DuXWD/frmr\nISIipWCg04HCCRHsoaOnpVIBU6dK2198IW8tRESkHJwUUcMyMwELC+mE6w8fSpdET+OPPwBbWyA/\nH7h1C2jTRu6KiIioNnBShB6JjpYuPTwY5qhqmjUD/P2liTVcwoSIiCqDga6G8fg5qglTpkiXmzdL\n53olIiIqDwNdDePxc1QTfHyAdu2ApCTg0CG5qyEiIn3HQFfD2ENHNcHA4O9euo0b5a2FiIj0n84D\nXUREBFxdXeHi4oKlS5eW2mbWrFlwcXGBp6cnogsPQgPw2muvwcbGBp06ddJqHxwcDHt7e3h5ecHL\nywsRERE6fQ2VlZEB3LghLSbcsaPc1ZDSTZoEGBpKy5ekpMhdDRER6TOdBjq1Wo0ZM2YgIiICMTEx\n2OWqcvQAACAASURBVLlzJ65cuaLVJjw8HDdu3EBsbCw2bNiAoKAgzX2TJ08uNaypVCq89dZbiI6O\nRnR0NAYPHqzLl1Fp585Jl5wQQTWhZUtg+HDpGLotW+SuhoiI9JlOA92ZM2fg7OwMR0dHGBsbY8yY\nMdi7d69Wm3379iEgIAAA4O3tjYyMDKSmpgIA+vTpA0tLy1L3rY+rrfD4OappRdekKyiQtxYiItJf\nOg10ycnJcHBw0Fy3t7dHcnLyU7cpzerVq+Hp6YnAwEBkZGTUXNHVwOPnqKb5+gIODkBcHBAZKXc1\nRESkr4x0uXOVSlWpdsV72yp6XFBQED788EMAwIIFCzBnzhxsKuNs5sHBwZptHx8f+Pj4VKqmqmAP\nHdU0Q0PgtdeARYukXrr+/eWuiIiIakpkZCQia+h/6zoNdHZ2dkhMTNRcT0xMhL29fbltkpKSYGdn\nV+5+ra2tNdtTpkzB8OHDy2xbNNDpUnq61IvSsKF0Lk6imjJ5MrB4MfDtt9JZJJo1k7siIiKqCcU7\nmhYtWlTlfel0yLVbt26IjY1FfHw88vLysGvXLvj5+Wm18fPzw9atWwEAUVFRsLCwgI2NTbn7TSky\n5W/Pnj0lZsHK4fx56dLDAzA2lrcWqlvatJGGXvPygG3b5K6GiIj0kU4DnZGREdasWQNfX1+4u7tj\n9OjRcHNzQ0hICEJCQgAAQ4cOhZOTE5ydnTFt2jR8/vnnmsePHTsWPXv2xPXr1+Hg4IDQ0FAAwPz5\n8+Hh4QFPT0/89NNPWLFihS5fRqUUrrbSpYu8dVDdVDg5YuNG6ZRgRERERamEPk4XrSHVOcnt05ow\nAdi+HVi3Dpg+vVaekuqR/HzA3h64exc4dQro2VPuioiIqKZVJ7fwTBE1pLCHzstL3jqobjI2lo6l\nA4C/OreJiIg02ENXA3JyADMzaSjs4UPAxETnT0n10M2bgLOztGh1cjInRxAR1TXsoZPZxYvSav6u\nrgxzpDtOTtLkiMePeeYIIiLSxkBXAwpnuHK4lXSt8Mx469fzzBFERPQ3BroawOPnqLYMHSpNjoiN\nBY4dk7saIiLSFwx0NYCBjmqLkRHw+uvS9vr18tZCRET6g5MiqkmtliZE5ORIq/hbWen06Yhw5w7Q\nurW0nZAA2NrKWw8REdUMToqQ0bVrUphr3ZphjmqHrS0wYoT0n4kvvpC7GiIi0gcMdNXE4VaSQ+Hk\niI0bgSdP5K2FiIjkx0BXTQx0JId+/QAXFyApCThwQO5qiIhIbgx01cQlS0gOBgZ/n2Ju3Tp5ayEi\nIvlxUkQ1CAE0bw48eCAdnO7goLOnIirhwQPpeLrHj4EbN4B27eSuiIiIqoOTImSSmCj9UW3WTFob\njKg2WVkBo0dL2xs2yFsLERHJi4GuGooeP6dSyVsL1U+FkyM2b5Z66oiIqH5ioKsGTogguXl7A56e\nwP37wDffyF0NERHJhYGuGgoDXefO8tZB9ZdKBbzxhrS9Zo28tRARkXwY6KqBM1xJH4wbB1hYAKdP\nA7/+Knc1REQkBwa6KvrjD2lmq4kJ0L693NVQfWZqCgQGSturV8tbCxERyYOBrooKe+c8PABDQ3lr\nIXrjDWn49f/bu/e4qqr8/+Ovg2gmWZgjkGJiyh0ivGTZZUgGHPkKmZZZfctMfZim1dTUNDO/0prJ\nSz0cs7FmtDEvXUy/lel8UybLnKlvXjLNLBzFBgxFrES8KwLr98eKI6ggKIfNOef9fDzO4+xzzt6b\nz1mZvll7r7UWLoTvv3e6GhERaWwKdOdIAyKkKbniCsjMhNJSTWEiIuKPFOjOkQKdNDXjxtnnv/wF\nTpxwthYREWlcCnTnSIFOmprUVIiNhcJCWLzY6WpERKQxKdCdgyNHYOtWe+9cQoLT1YhYLheMHWu3\nNThCRMS/KNCdg82boaLC9oa0bOl0NSIn3XMPXHwxfPrpyV5kERHxfQp052DTJvusCYWlqbnoIhg2\nzG6rl05ExH8o0J2DykCXlORsHSJn8sAD9vnNN+2SYCIi4vsU6M7BV1/ZZwU6aYoiIyEjA44fh7/9\nzelqRESkMbiMMcbpIjzF5XLR0F/PGLvM0oEDUFQEoaENenqRBpGdDf36QceO8J//QGCg0xWJiMjZ\nnE9uUQ9dPeXn2zAXGqowJ01Xerpdkq6gAN55x+lqRETE0xTo6kmXW8UbBATAr35lt6dOtT3LIiLi\nuxTo6qlyQMSVVzpbh8jZ3HMPtG0Ln38O//d/TlcjIiKepEBXTxrhKt6iVSsYPdpu/+lPztYiIiKe\npUER9RQZCdu320uviYkNemqRBldUBJ062bVdc3OhSxenKxIRkZpoUEQjOXQIvv0WmjeH6GinqxE5\nu7AwuOsuew/dCy84XY2IiHiKAl09bN5s/2GMi4MWLZyuRqRuKgdHvPoq7NvnbC0iIuIZCnT1UDnC\nVQMixJskJkJaGhw5AjNnOl2NiIh4ggJdPWhAhHirRx+1z3/+M5SWOluLiIg0PAW6elCgE2+Vng7x\n8VBYCIsWOV2NiIg0NAW6OqqosPfQgS65ivdxueCRR+y2JhoWEfE9CnR1lJ8PBw/aUYMhIU5XI1J/\nd95p/+x++SV8+KHT1YiISENSoKsjXW4Vb9eyJTz0kN2eMsXZWkREpGEp0NWRRriKLxgzBlq3ho8+\nskuCiYiIb1CgqyP10IkvCA4+uRyYeulERHyHlv6qoy5d4D//sQMjEhIa5JQijti9GyIi7HJgOTkQ\nE+N0RSIiAlr6y+MOHrRhrkULLfkl3u+yy+Dee+1I1+efd7oaERFpCAp0dVA5XUlcnF3HVcTbPfYY\nBATAa6/Bzp1OVyMiIudLga4OdP+c+JquXeHWW+1l12nTnK5GRETOl8cDXXZ2NjExMURGRjKlhruw\nH3zwQSIjI0lKSmLjxo3u9++77z5CQ0NJTEystn9xcTFpaWlERUWRnp5OSUmJR7+DRriKL3riCfs8\ncyYUFztbi4iInB+PBrry8nLGjh1LdnY2OTk5LFiwgC1btlTbZ9myZWzfvp3c3FxmzZrF6MoheMCw\nYcPIzs4+7byTJ08mLS2Nbdu2kZqayuTJkz35NdRDJz4pORn69oXDh+Gll5yuRkREzodHA926devo\n2rUrERERNG/enCFDhrBkyZJq+yxdupShQ4cC0KtXL0pKSigqKgLghhtuoE2bNqedt+oxQ4cO5b33\n3vPYd6ioUA+d+K7KXrrp022wExER7+TRQLdr1y46duzofh0eHs6uXbvqvc+p9uzZQ2hoKAChoaHs\n2bOnAauuLi/P/kN32WXQrp3HfoyII37+c+jVC/butZdeRUTEOwV68uQul6tO+50650pdj6vct7b9\nJ0yY4N5OSUkhJSWlzucGXW4V3+ZywZNPQv/+8NxzcP/90KqV01WJiPiHVatWsWrVqgY5l0cDXYcO\nHSgoKHC/LigoIDw8vNZ9du7cSYcOHWo9b2hoKEVFRYSFhbF7925CQkJq3LdqoDsXCnTi6zIyoHt3\n+OILmDULHn7Y6YpERPzDqR1NTz/99Dmfy6OXXHv06EFubi75+fmUlpaycOFCsrKyqu2TlZXF/Pnz\nAVizZg3BwcHuy6k1ycrKYt68eQDMmzePAQMGeOYLoPvnxPe5XPDUU3Z7yhQ4etTZekREpP48GugC\nAwOZMWMGffv2JS4ujttvv53Y2FhmzpzJzJ9u2MnIyOCKK66ga9eujBo1ipdfftl9/B133EHv3r3Z\ntm0bHTt2ZM6cOQA88cQTrFixgqioKFauXMkTlXd2e0BlD50CnfiyzEw76rWoCP72N6erERGR+tJa\nrrU4dAhat7arQxw+rFUixLe99x7ccgu0bw/ffgstWzpdkYiIf9Farh7yzTf2OTZWYU58380323tF\nCwth9mynqxERkfpQoKtF5RqupyxUIeKTqt5LN3kyHD/ubD0iIlJ3CnS1qAx0CQnO1iHSWAYMsL/A\n7NwJP92yKiIiXkCBrhbqoRN/ExBg56UDmDhRvXQiIt5Cga4GxijQiX8aNMiO6i4o0OoRIiLeQqNc\na1BUZJf7uuQS2LfP3l8k4i/+/nfIyoKQEDvi9aKLnK5IRMT3aZSrB1S9f05hTvxN//5wzTXw/ffw\n4otOVyMiImejQFcDXW4Vf+Zy2XvowK7xum+fs/WIiEjtFOhq8PXX9lmBTvzVTTdBairs3w/PP+90\nNSIiUhsFuhpoyhIRePZZ+zx9ur2vVEREmiYFujMoLz+5SoR66MSf9eplV5A4cuTkJVgREWl6NMr1\nDHJzISoKOnSwE6yK+LPNm+2SYIGB9v+NTp2crkhExDdplGsD04AIkZMSE+HOO+HEiZOTDouISNOi\nQHcGCnQi1T3zDLRoAa+/Dhs2OF2NiIicSoHuDBToRKq74goYN86uoPLrX9tnERFpOhTozkCBTuR0\nv/89tGkDH38M77/vdDUiIlKVAt0pjh6F7duhWTOIiXG6GpGmo00beOopu/3YY1BW5mw9IiJykgLd\nKbZsgYoKiIyEli2drkakaRkzBrp0gX//G/72N6erERGRSgp0p9DlVpGatWgBkyfb7fHj4cABZ+sR\nERFLge4UCnQitRs0CHr3hu+/t+u8ioiI8xToTqFAJ1I7lwumTrXbU6fCd985W4+IiCjQnUaBTuTs\nrrkGbr8djh2z05iIiIiztPRXFXv3ws9+BkFB9t6gAMVdkRoVFNiR4EeOwEcfQZ8+TlckIuLdtPRX\nA6nsnYuPV5gTOZuOHeF3v7PbDz5olwYTERFnKLZU8fXX9jkhwdk6RLzFo4/aVSS++QZeftnpakRE\n/JcCXRW6f06kflq2hBdesNvjx9uRryIi0vgU6KpQoBOpv/79oV8/2L8ffvtbp6sREfFPGhTxE2Pg\nkkvg4EHYswdCQjxcnIgP2bbN3qpw4gSsWQO9ejldkYiI99GgiAawY4cNcyEhCnMi9RUVZe+nAxg1\nSuu8iog0NgW6n+hyq8j5efJJiIiATZtO3lcnIiKNQ4HuJwp0IuenVauTI13Hj4f8fEfLERHxKwp0\nP1GgEzl//frZFSSOHIEHHrD3poqIiOcp0P1Ec9CJNIwXXrADjJYtg7ffdroaERH/oFGuQGmpXe6r\nvNwOjAgKaoTiRHzYzJlw//0QFgZbtkBwsNMViYg0fRrlep62brWj8q64QmFOpCGMHAm9e0NRETz+\nuNPViIj4PgU6dP+cSEMLCIBZs6BFC3jlFVixwumKRER8mwIddh1K0P1zIg0pPh4mTLDbw4fDgQOO\nliMi4tMU6Dg5ICI+3tk6RHzNY49Bjx5QUAC//rXT1YiI+C4FOtRDJ+IpgYEwd+7JS68ffOB0RSIi\nvsnvA92RI/Cf/9h/eKKinK5GxPdUvfQ6YgTs3+9oOSIiPsnvA92WLXby06go24sgIg3vscegZ097\n6fWRR5yuRkTE9/h9oKu83Kr750Q8p/LS6wUXwKuvwjvvOF2RiIhv8ftApwERIo0jLg6ee85ujxwJ\nO3c6W4+IiC/x+0CnAREijWfcOLve6759MHQoVFQ4XZGIiG9QoNMlV5FG43LBnDnQrh2sXAlTpzpd\nkYiIb/DrtVwPHoSLL7aDIQ4ftvf5iIjnvf8+9O8PzZvDmjXQrZvTFYmIOE9ruZ6jnBz7HBOjMCfS\nmP7rv2DsWDhxAoYM0SoSIiLny+OBLjs7m5iYGCIjI5kyZcoZ93nwwQeJjIwkKSmJjRs3nvXYCRMm\nEB4eTnJyMsnJyWRnZ59TbRoQIeKc556z6yfn5tpBEr57rUBExPM8GujKy8sZO3Ys2dnZ5OTksGDB\nArZs2VJtn2XLlrF9+3Zyc3OZNWsWo0ePPuuxLpeLRx55hI0bN7Jx40Z++ctfnlN9GhAh4pwLL4S3\n34bWrWHRIpgxw+mKRES8l0cD3bp16+jatSsRERE0b96cIUOGsGTJkmr7LF26lKFDhwLQq1cvSkpK\nKCoqOuuxDXHrn3roRJwVFQWzZ9vtRx+199OJiEj9eTTQ7dq1i44dO7pfh4eHs2vXrjrtU1hYWOux\nf/7zn0lKSmL48OGUlJScU33qoRNx3m23wUMP2fvpBg+GH390uiIREe/j0aEALperTvvVt7dt9OjR\nPPXUUwA8+eSTPProo8yu/DX/FBMqF5EEUlJSSElJAew8WIWF9rJP5871+vEi0sCeew7WrrU9dP/9\n33YUbLNmTlclIuJZq1atYtWqVQ1yLo8Gug4dOlBQUOB+XVBQQHh4eK377Ny5k/DwcE6cOFHjsSEh\nIe73R4wYQWZmZo01VA10VVX2zsXFQYBfj/UVcV6LFvY+uuRk+Mc/4He/gxrGUImI+IyqHU0ATz/9\n9Dmfy6NRpkePHuTm5pKfn09paSkLFy4kKyur2j5ZWVnMnz8fgDVr1hAcHExoaGitx+7evdt9/OLF\ni0lMTKx3bZpQWKRp6djRhrpmzWyP3WuvOV2RiIj38GgPXWBgIDNmzKBv376Ul5czfPhwYmNjmTlz\nJgCjRo0iIyODZcuW0bVrV4KCgpgzZ06txwL85je/4csvv8TlctG5c2f3+epDAyJEmp4+feDFF+GB\nB+xUJlFR0KuX01WJiDR9frtSRJ8+8PHH9l6djIxGLkxEajV6NPz1rxAWBp9/DqfcqSEi4pO0UsQ5\n0CVXkabrxRchJQWKimDAADhyxOmKRESaNr/sofvhBwgJgYsusksO1XEwrog0oh9/hKuvhrw8uPlm\neOcdjXwVEd+mHrp6qto7pzAn0jT97Gf2log2bWDJEhg3TsuDiYjUxC8DXeWACE0oLNK0xcbC0qVw\nwQXwl7/ApElOVyQi0jT5ZaDT/XMi3uP66+HNN21v+u9/Dz/NciQiIlX4ZaDTlCUi3mXgQJg+3W4P\nHw7Z2c7WIyLS1PhdoDNGa7iKeKNx4+Dxx6GsDG65xU47JCIilt+Nct29G9q3h+BgKC7WoAgRb2KM\nnaNu5kwICoIPPoDevZ2uSkSkYWiUaz1UHRChMCfiXVwuePlluPtuOHwY+vWDL75wuioREef5XaDT\ngAgR7xYQAK++CrfdZueRTE+Hr75yuioREWf5XaDTlCUi3i8wEN54AzIz7a0TN92knjoR8W9+F+jU\nQyfiG5o3h0WLoH9/G+r69IHPPnO6KhERZ/hVoKs6wlWBTsT7tWxplwSrevlVo19FxB/5VaArKICD\nB6FdO7uWq4h4vxYt7MTDlQMlMjJg+XKnqxIRaVx+FejUOyfimwIDYe5cGDUKjh2DrCz7WkTEX/hV\noNOACBHfFRBg13t94gk7+fCwYfD00/ZWCxERX+dXgU49dCK+zeWCSZPgpZdswJswAUaMgBMnnK5M\nRMSz/CrQqYdOxD+MGQPvvgsXXmjnrMvMhJISp6sSEfEcv1n6q6ICWreGI0fsFAdt2jhcnIh43Nq1\ndlqTH3+EyEhYsgRiY52uSkTkzLT0Vx3k59swd9llCnMi/qJXL1i3Dq68EnJz7eu//93pqkREGp7f\nBDpdbhXxT5072wmHBw+20xZlZcEf/mB77UVEfIXfBDoNiBDxX0FB8NZbdsCEywVPPWXnq/v+e6cr\nExFpGH4T6NRDJ+LfXC47pcn770PbtvCPf0BSEnz0kdOViYicP78JdOqhExGAfv1g0yb4+c+hqAjS\n0uD//T87d52IiLfyi1GuZWVw0UVw/Djs3w8XX+x0ZSLitPJyey9d5f10PXrY1SX0S5+IOEWjXM/i\n229tmLv8coU5EbGaNbMTD69caf9uWL8eunWDKVPUWyci3scvAp0ut4pITX7+c9i8GUaOhNJSe5/d\n9ddDTo7TlYmI1J1fBDoNiBCR2lx8McyaBdnZ0KGDnZA4KcmGu8OHna5OROTs/CLQqYdOROqib1/7\nC+CoUfYeuylTIC7OrjAhItKU+UWgUw+diNRVcDD89a+wejUkJ8N338GAAXbeuspfDkVEmhqfH+V6\n/LghKMj+tn3oELRq5XRVIuItysrgL3+x05ocOAABATB8ODzzDISFOV2diPgajXKtRW6u/Uu5c2eF\nORGpn8BAGDcOtm+HBx6wkxO/8gp07Qrjx0NJidMViohYPh/odLlVRM5Xu3YwY4a95DpggB0o8cwz\nEBFhpz5RsBMRp/l8oNOACBFpKNHRsHgxfPIJ9OljJyp/+mno1Mn22O3d63SFIuKvfD7QqYdORBra\n9dfbNWD/9S9ITbX31z3zDHTsCGPGwLZtTlcoIv7G5wOdeuhExFNuuAE+/ND22P3yl3D0qB1EER0N\nmZl2FQrfHXYmIk2Jz49yDQgwuFx2hGvLlk5XJCK+LCcHXngB5s+3yw0CREbCiBFw770QEuJoeSLS\nxJ3PKFefD3RgiI6Gf//b6WpExF/88IPtqZs1C3btsu8FBsLNN8N990FaGjRv7myNItL0KNDVoDLQ\nDRwI77zjdDUi4m/KyuxyYq+8Au+/b+fDBGjbFm69Fe64w162DfD5m19EpC4U6GpQGeieesqORBMR\ncUphIcydC2+8YS/NVmrfHm67DbKybLhTz52I/1Kgq0FloFu4EAYPdroaERE7SOLrr2HBAvvIzz/5\n2SWXQL9+dkBFv37Qpo1jZYqIAxToalAZ6L75xi6wLSLSlBgDa9fCe+/B3/9evecuIAC6dbPToqSm\nwnXXabUbEV+nQFcDl8tF8+aGw4d1GUNEmr5vv7XBbulS+PRTOHHi5GctWsC119rLstdeC9dcA5de\n6lytItLwFOhq4HK5SEgwbN7sdCUiIvVz+LANdR99ZB8bN54+p11UlA13114L3bvb+TYvvNCZekXk\n/CnQ1cDlcnH77Ya33nK6EhGR81NcDP/8J3z2GaxZA+vXw7Fj1fcJCLCTGiclnXxceaUdeOFyOVO3\niNSdAl0NXC4XzzxjePJJpysREWlYpaXw1VewerUNeF9+aefbrKg4fd+LLrK9edHR9rlyOzISLr64\n8WsXkTNToKuBy+Xi3XcNt9zidCUiIp539Khd7nDTppOPr7+2vXs1CQ6GTp3g8svtc9Xt9u0hNNTe\nvycintekA112djYPP/ww5eXljBgxgt/85jen7fPggw+yfPlyWrVqxdy5c0lOTq712OLiYm6//XZ2\n7NhBREQEixYtIjg4+PQv53KxdashKsqT31CqWrVqFSkpKU6X4VfU5o3P29p8717Ytg22brXPldvf\nfmtD4NlceimEhdlwFxZ28tGunf3s0kvtFCuV255YZtHb2twXqM0b3/kEusAGrqWa8vJyxo4dy4cf\nfkiHDh3o2bMnWVlZxMbGuvdZtmwZ27dvJzc3l7Vr1zJ69GjWrFlT67GTJ08mLS2Nxx9/nClTpjB5\n8mQmT558xhq6dPHkN5RT6S+Axqc2b3ze1uZt254cPFGVMfDjj7Bjx8nHd9+d3C4qgu+/tz18xcXV\np1WpTcuW1YPeJZfYy76Vj9atq7+u+l6rVvb4Ux8ff+xdbe4LvO3Pub/zaKBbt24dXbt2JSIiAoAh\nQ4awZMmSaoFu6dKlDB06FIBevXpRUlJCUVEReXl5NR67dOlS/vnPfwIwdOhQUlJSagx0zZp57vuJ\niHgzl8v2srVrBz16nHmf8nLbw7dnjw14RUV2e/duGwb37TsZ+Pbts/seO2ZXxigsbNh6n3vu9KB3\nwQX2uXlzu15u5XPV7dreq/pZs2Z2YEldHi5X3fetekzl4JSzPddlH08fu3OnnSfRqQE1Tg7k8cZB\nRB4NdLt27aJjx47u1+Hh4axdu/as++zatYvCwsIaj92zZw+hoaEAhIaGsmfPHk9+DRERv9WsGYSE\n2Edi4tn3NwaOHKke9A4etI9Dh+yj6nbV1wcP2kvAx46dfBw/bp9LS0++J41n9mynK5C68migc9Ux\n4tblerEx5oznc7lcNf6cLl261LkGaThPa+HcRqc2b3xqcyeozRuf2rwxdTmP+8Q8Gug6dOhAQUGB\n+3VBQQHh4eG17rNz507Cw8M5ceLEae936NABsL1yRUVFhIWFsXv3bkJCQs7487dv396QX0dERESk\nSQrw5Ml79OhBbm4u+fn5lJaWsnDhQrKysqrtk5WVxfz58wFYs2YNwcHBhIaG1npsVlYW8+bNA2De\nvHkMGDDAk19DREREpEnzaA9dYGAgM2bMoG/fvpSXlzN8+HBiY2OZOXMmAKNGjSIjI4Nly5bRtWtX\ngoKCmDNnTq3HAjzxxBMMHjyY2bNnu6ctEREREfFXPj2xsIiIiIg/8OglV6dkZ2cTExNDZGQkU6ZM\ncbocn1RQUMBNN91EfHw8CQkJvPjii4Cd9DktLY2oqCjS09MpKSlxuFLfU15eTnJyMpmZmYDa3NNK\nSkq49dZbiY2NJS4ujrVr16rNPWzSpEnEx8eTmJjInXfeyfHjx9XmDey+++4jNDSUxCpDl2tr40mT\nJhEZGUlMTAwffPCBEyV7vTO1+WOPPUZsbCxJSUkMHDiQ/fv3uz+rb5v7XKCrnJA4OzubnJwcFixY\nwJYtW5wuy+c0b96cadOm8c0337BmzRpeeukltmzZ4p70edu2baSmptY4P6Ccu+nTpxMXF+cewa02\n96yHHnqIjIwMtmzZwldffUVMTIza3IPy8/N55ZVX2LBhA5s3b6a8vJy33npLbd7Ahg0bRnZ2drX3\namrjnJwcFi5cSE5ODtnZ2YwZM4aKMy0aLLU6U5unp6fzzTffsGnTJqKiopg0aRJwjm1ufMxnn31m\n+vbt6349adIkM2nSJAcr8g8333yzWbFihYmOjjZFRUXGGGN2795toqOjHa7MtxQUFJjU1FSzcuVK\n079/f2OMUZt7UElJiencufNp76vNPWfv3r0mKirKFBcXmxMnTpj+/fubDz74QG3uAXl5eSYhIcH9\nuqY2njhxopk8ebJ7v759+5rVq1c3brE+4tQ2r+rdd981d911lzHm3Nrc53roapqoWDwnPz+fjRs3\n0qtXL0367GG/+tWveP755wkIOPm/rtrcc/Ly8mjXrh3Dhg2jW7dujBw5ksOHD6vNPejSSy/ln2m5\nTQAACJ9JREFU0Ucf5fLLL6d9+/YEBweTlpamNm8ENbVxYWFhtSnH9O+qZ7z66qtkZGQA59bmPhfo\nNJFw4zp06BCDBg1i+vTptG7dutpntU36LPX3v//7v4SEhJCcnFzjZNxq84ZVVlbGhg0bGDNmDBs2\nbCAoKOi0S31q84b17bff8sILL5Cfn09hYSGHDh3i9ddfr7aP2tzzztbGav+G9eyzz9KiRQvuvPPO\nGvc5W5v7XKCry2TG0jBOnDjBoEGDuPvuu91zAVZO+gzUOumz1N9nn33G0qVL6dy5M3fccQcrV67k\n7rvvVpt7UHh4OOHh4fTs2ROAW2+9lQ0bNhAWFqY295D169fTu3dv2rZtS2BgIAMHDmT16tVq80ZQ\n098lZ1oAoHKifzl/c+fOZdmyZbzxxhvu986lzX0u0NVlMmM5f8YYhg8fTlxcHA8//LD7fU367DkT\nJ06koKCAvLw83nrrLfr06cNrr72mNvegsLAwOnbsyLZt2wD48MMPiY+PJzMzU23uITExMaxZs4aj\nR49ijOHDDz8kLi5Obd4Iavq7JCsri7feeovS0lLy8vLIzc3l6quvdrJUn5Gdnc3zzz/PkiVLaNmy\npfv9c2rzBrrPr0lZtmyZiYqKMl26dDETJ050uhyf9MknnxiXy2WSkpLMVVddZa666iqzfPlys3fv\nXpOammoiIyNNWlqa2bdvn9Ol+qRVq1aZzMxMY4xRm3vYl19+aXr06GGuvPJKc8stt5iSkhK1uYdN\nmTLFxMXFmYSEBHPPPfeY0tJStXkDGzJkiLnssstM8+bNTXh4uHn11VdrbeNnn33WdOnSxURHR5vs\n7GwHK/dep7b57NmzTdeuXc3ll1/u/nd09OjR7v3r2+aaWFhERETEy/ncJVcRERERf6NAJyIiIuLl\nFOhEREREvJwCnYiIiIiXU6ATERER8XIKdCIiIiJeToFORHxKREQExcXFTpdRTWFhIbfddlut+6xa\ntYrMzMwzftYUv5OINC0KdCLSJBhjalyjtj6a2hqTZWVltG/fnv/5n/8553M0te8kIk2PAp2IOCY/\nP5/o6GiGDh1KYmIiBQUFjBkzhp49e5KQkMCECRPc+0ZERDBhwgS6d+/OlVdeydatWwHYu3cv6enp\nJCQkMHLkyGqh8E9/+hOJiYkkJiYyffp098+MiYlh2LBhREdHc9ddd/HBBx9w3XXXERUVxeeff35a\nnddeey05OTnu1ykpKWzYsIHPP/+c3r17061bN6677jr3EmFz584lKyuL1NRU0tLS2LFjBwkJCe6f\nf+ONN9K9e3e6d+/O6tWr3ec9cOAA/fv3JyYmhtGjR58x4L7++uv06tWL5ORk7r//fioqKqp9vn//\nfmJiYty13HHHHcyePbte/11ExAt5ZoELEZGzy8vLMwEBAWbt2rXu94qLi40xxpSVlZmUlBSzefNm\nY4wxERERZsaMGcYYY15++WUzYsQIY4wx48aNM3/4wx+MMca8//77xuVymb1795r169ebxMREc+TI\nEXPo0CETHx9vNm7caPLy8kxgYKD5+uuvTUVFhenevbu57777jDHGLFmyxAwYMOC0OqdNm2bGjx9v\njDGmsLDQREdHG2OMOXDggCkrKzPGGLNixQozaNAgY4wxc+bMMeHh4e6lk/Ly8kxCQoIxxpgjR46Y\nY8eOGWOM2bZtm+nRo4cxxpiPP/7YtGzZ0uTl5Zny8nKTlpZm3n77bfd337t3r8nJyTGZmZnunzl6\n9Ggzf/780+pdsWKFufbaa82CBQtMv3796vOfRES8VKDTgVJE/FunTp2qLTq9cOFCXnnlFcrKyti9\nezc5OTnu3q2BAwcC0K1bN959910APvnkExYvXgxARkYGbdq0wRjDp59+ysCBA7nwwgvdx37yySdk\nZWXRuXNn4uPjAYiPj+cXv/gFAAkJCeTn559W4+DBg0lPT2fChAksWrTIfT9cSUkJ99xzD9u3b8fl\nclFWVuY+Jj09neDg4NPOVVpaytixY9m0aRPNmjUjNzfX/dnVV19NREQEYHvWPv30UwYNGgTYS9If\nffQRX3zxBT169ADg6NGjhIWFnfYzfvGLX7Bo0SLGjh3LV199VWv7i4hvUKATEUcFBQW5t/Py8pg6\ndSrr16/nkksuYdiwYRw7dsz9+QUXXABAs2bNqoUnc4ZLky6Xq9r7xhj3vWiV5wEICAigRYsW7u2q\n563Uvn172rZty+bNm1m0aBEzZ84E4MknnyQ1NZXFixezY8cOUlJS3Me0atXqjN932rRpXHbZZbz2\n2muUl5fTsmXLajVXrTcg4PS7YoYOHcrEiRPPeO5KFRUVbNmyhaCgIIqLi2nfvn2t+4uI99M9dCLS\nZBw4cICgoCAuvvhi9uzZw/Lly896zI033sibb74JwPLly9m3bx8ul4sbbriB9957j6NHj3L48GHe\ne+89brjhhnMeeHH77bczZcoUDhw44O4xPHDggDsszZkzp87fsbJXbf78+ZSXl7s/W7duHfn5+VRU\nVLBw4UKuv/5692cul4vU1FTefvttfvjhBwCKi4v57rvvTvsZ06ZNIz4+njfeeINhw4adMaSKiG9R\noBMRR1XtlUpKSiI5OZmYmBjuuuuuaoHm1GMqjxs/fjz/+te/SEhIYPHixXTq1AmA5ORk7r33Xq6+\n+mquueYaRo4cSVJS0mk/89TXNY0ovfXWW1m4cCGDBw92v/f444/z29/+lm7dulFeXu4+tmp9p553\nzJgxzJs3j6uuuoqtW7dy0UUXuT/v2bMnY8eOJS4uji5dunDLLbdUOzY2NpY//vGPpKenk5SURHp6\nOkVFRdV+ztatW5k9ezZTp07l+uuv58Ybb+SPf/zjGb+TiPgOlznXX1dFREREpElQD52IiIiIl1Og\nExEREfFyCnQiIiIiXk6BTkRERMTLKdCJiIiIeDkFOhEREREvp0AnIiIi4uX+PwXeajKDJsphAAAA\nAElFTkSuQmCC\n", - "text": [ - "" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Univariate Poisson Distribution" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Probability Density Function\n", - "\n", - "$p(x|\\theta) = \\frac{e^{-\\theta}\\theta^{xk}}{x_k!}$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Derive a formula for the maximum likelihood estimate of $\\theta$ , i.e., $\\hat{{\\theta}}_{mle}$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$p(D|\\theta) = \\prod_{k=1}^{n} p(x_k|\\theta)$\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$= \\prod_{k=1}^{n}\n", - "\\frac{e^{-\\theta}\\theta^{xk}}{x_k!}$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Taking the natural logarithm to get the log-likelihood:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$p(D|\\theta) = L(\\theta) = \\prod_{k=1}^{n} p(x_k|\\theta)$\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$= \\sum_{k=1}^{n} ln \\bigg( \\frac{e^{-\\theta}\\theta^{xk}}{x_k!} \\bigg)$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$= \\sum_{k=1}^{n} ln(e^{-\\theta}\\theta^{xk}) - ln({x_k!})$ (simplify by removing the scalar, which becomes 0 in the derivative)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$= \\sum_{k=1}^{n} ln(e^{-\\theta}\\theta^{xk})$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$= \\sum_{k=1}^{n} ln(e^{-\\theta}) + ln(\\theta^{xk})$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$= \\sum_{k=1}^{n} -\\theta + x_k \\; ln(\\theta)$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Differentiating the log-likelihood:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$\\frac{\\partial \\; L(\\theta)}{\\partial \\; \\theta} = \\frac{\\partial \\; }{\\partial \\; \\theta} \\bigg( \\sum_{k=1}^{n} -\\theta + x_k \\; ln(\\theta)\\bigg)$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$= \\sum_{k=1}^{n} \\frac{\\partial \\; }{\\partial \\; \\theta} \\bigg( -\\theta + x_k \\; ln(\\theta)\\bigg)$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$= \\sum_{k=1}^{n} \\bigg( -1 + \\frac{x_k}{\\theta} \\bigg)$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Getting the maximum for $p(D|\\theta)$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$\\Rightarrow -n + \\sum_{k=1}^{n} x_k \\; \\cdot \\frac{1}{\\theta} = 0$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$\\theta = \\frac{\\sum_{k=1}^{n} x_k }{n}$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "### Code for univariate Poisson MLE" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def poisson_theta_mle(d):\n", - " \"\"\"\n", - " Computes the Maximum Likelihood Estimate for a given 1D training\n", - " dataset from a Poisson distribution.\n", - " \n", - " \"\"\"\n", - " return sum(d) / len(d)" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 36 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "def likelihood_poisson(x, lam):\n", - " \"\"\"\n", - " Computes the class-conditional probability for an univariate\n", - " Poisson distribution\n", - " \n", - " \"\"\"\n", - " if x // 1 != x:\n", - " likelihood = 0\n", - " else:\n", - " likelihood = math.e**(-lam) * lam**(x) / math.factorial(x)\n", - " return likelihood" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 46 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Drawing training data\n", - "\n", - "import numpy as np\n", - "\n", - "true_param = 1.0\n", - "poisson_data = np.random.poisson(lam=true_param, size=100)" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 37 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "mle_poiss = poisson_theta_mle(poisson_data)\n", - "\n", - "print('MLE:', mle_poiss)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "MLE: 1.05\n" - ] - } - ], - "prompt_number": 40 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Plot Probability Density Function\n", - "from matplotlib import pyplot as plt\n", - " \n", - "x_range = np.arange(0, 5, 0.1)\n", - "y_true = [likelihood_poisson(x, true_param) for x in x_range]\n", - "y_mle = [likelihood_poisson(x, mle_poiss) for x in x_range]\n", - "\n", - "plt.figure(figsize=(10,8))\n", - "plt.plot(x_range, y_true, lw=2, alpha=0.5, linestyle='--', label='true parameter ($\\lambda={}$)'.format(true_param))\n", - "plt.plot(x_range, y_mle, lw=2, alpha=0.5, label='MLE ($\\lambda={}$)'.format(mle_poiss))\n", - "plt.title('Poisson probability density function for the true and estimated parameters')\n", - "plt.ylabel('p(x|theta)')\n", - "plt.xlim([-1,5])\n", - "plt.xlabel('random variable x')\n", - "plt.legend()\n", - "\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAH4CAYAAAAPakoaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8E3X+P/DXZJK2tA096UFLW0o5CgpUDilyVEQR3JZD\nQRQLuKwCv0VhV78qcgiICK4noruscgiIIOqCKBSWo4C4UhQRAREEelCucpZetJl8fn+EDE2bNE1p\n0pK+no8HD5pkZvKZT46++p6Zz0cSQggQERERUb2gqesGEBEREdFNDGdERERE9QjDGREREVE9wnBG\nREREVI8wnBERERHVIwxnRERERPUIw5mbueOOO7Bz5866bkatW7p0KXr27FmjddPT09GsWTObj48f\nPx6zZ8+2uqwz+3PGjBlITU11yrbNBgwYgOXLl9fKtoqLi5GcnAx/f388+uijtbLN6nLW63Du3Dn0\n6tULjRs3xv/93//V+vYBYPTo0Zg2bZpTtn27SUpKwqJFi5z+PHq9HpmZmU5/nprQaDQ4ceJEXTeD\n6jmGs3oqJiYG3t7e0Ov1CAsLw5NPPonCwkK76x08eBC9evVyQQvdxz//+U9MnTrV6mPl+7O2w5Qk\nSbW2LVs2bNigtvlWAi4AfPHFFzh//jwuXbqE1atX11YTK7EWZpz1vv73v/+NkJAQ5Ofn4x//+Mct\nb89aH0uSVGuvtavCjbPUZl+YWeuTa9euISYmplafB7j1z5A7Y+isXQxn9ZQkSfjmm29w7do17Nu3\nDz/++KNa3XFHiqLUdRPIjqysLLRq1Qoajft8bWRlZSE+Pr5G6xoMhlpujX32gk1dtKmuueKPnNuR\n0Wh0+XPWdEz7hvi+tUtQvRQTEyO2bt2q3n7++efFn/70JyGEEOvWrRNt27YV/v7+IikpSfz222/q\nctHR0ep6e/bsEZ06dRKNGzcWoaGh4u9//7sQQoji4mIxYsQIERQUJPz9/UWXLl3EuXPnhBBC5Obm\niuTkZBEYGCji4uLERx99pG77lVdeEUOHDhUjR44Uer1etGvXTvz4448290GSJDF//nwRGxsrgoOD\nxf/93/8Jo9EohBBiyZIlonv37uJvf/ubCAoKEtOmTRNXr14VqampokmTJiI6OlrMnj3bYvl77rlH\nTJgwQfj5+Yk2bdpY9M/ixYtFfHy80Ov1IjY2VixcuFB9bPv27SIyMlLMmTNHBAcHi5iYGPHpp5+q\nj48aNUpMnTrVYtny/bllyxaxceNG4eHhIXQ6nfD19RUdO3YUa9asEZ06dbLY57feeksMHDjQan+c\nOHFC9OrVS+j1enH//feLCRMmiCeeeEJ9/H//+59ITEwU/v7+okOHDiI9PV19rHfv3mLatGninnvu\nEXq9XjzwwAPiwoULNl/P8+fPq+t9/PHH4rfffhOenp5ClmXh6+srAgICxN69e0VISIjax0II8eWX\nX4oOHTpUavv06dMt9n/RokXilVdesWj/yZMnhSRJQlEUu20WQohdu3ap+9usWTOxdOlS8e9//1vo\ndDrh4eEhfH19RUpKisXrIIQQJSUlYuLEiaJp06aiadOmYtKkSeL69evq6xcRESHeeustERISIsLD\nw8WSJUusvh6jRo2yeK6tW7eK69ev2932vHnzRFhYmBg5cqTF9g4fPiy8vLws+lgIIUaPHi3++te/\nioceekjo9Xpx9913i+PHj6vr/fbbb6Jv374iMDBQtG7dWnz++edW2/vyyy8LWZaFl5eX8PX1Fc88\n84wQwvQ5++CDD0RcXJyIjY0VmZmZFq9D+feB2aJFi0R8fLwICAgQ/fr1E1lZWVafUwghHnnkEREW\nFib8/PxEr169xKFDhyz68P/9v/9nc982b94sWrduLfz8/MSECRMqtaM8o9EoXn/9ddGiRQsRFBQk\nhg0bJi5duiSEsP2dVVWfmNsxatQoMX78eNG/f3/h6+srevToIc6cOSOeffZZ4e/vL9q0aSN+/vln\ntR3mNuj1etG2bVvxn//8p8rXt6SkRDz33HMiKipKhIaGinHjxoni4mJ1e2+88YYIDw8XERERYtGi\nRRZtq6h3797ipZdeEl27dhWNGzcWAwcOVPugOq/FuHHjRP/+/YWPj4/YunWr+Oabb0THjh1F48aN\nRbNmzcSMGTPU5c2f1yVLlohmzZqJwMBA8c9//lNkZGSIO++8U/j7+4sJEyZYtM/W+6Znz55CkiTh\n4+MjfH191ffw+vXrRYcOHYS/v7/o3r27OHDggLqt6OhoMW/ePHHnnXcKLy8vYTAYxNy5c0VERITQ\n6/WidevWFt/xDQ3DWT0VExOj/jLKzs4W7dq1E9OnTxe///678PHxEVu2bBEGg0G88cYbIi4uTpSV\nlanrmd/Q3bp1EytWrBBCCFFYWCj27NkjhBDiX//6l0hOThbFxcXCaDSKffv2ifz8fCGE6UP217/+\nVVy/fl3s379fNGnSRGzbtk0IYQpnXl5eYuPGjcJoNIrJkyeLbt262dwHSZJEnz59xOXLl0V2drZo\n1aqV+sW8ZMkSodVqxYIFC4SiKKK4uFikpqaKQYMGiYKCApGZmSlatWolFi1aZLH8u+++KwwGg1i9\nerXw8/NTv7i+/fZbceLECSGEEDt27BDe3t5i3759QgjTL1WtViuee+45UVpaKnbs2CF8fHzE0aNH\nhRCmX57Tpk1Tly0fzsr354wZM0Rqaqr62PXr10VgYKBFOO7YsaP46quvrPZHt27d1Dbs3LlT6PV6\ndXunTp0SQUFBYuPGjUIIIf773/+KoKAgNcz07t1bxMXFiWPHjoni4mKRlJQkXnrpJbuvZ1JSktqH\nS5cuFT169LBoU9u2bdXnFEKIQYMGibfffttq+yvu/4wZM+yGM1ttzszMFHq9XqxatUoYDAZx8eJF\nsX///kqvh7XXYdq0aSIxMVHk5eWJvLw80b17d4vXT6vVildeeUUYDAaxYcMG4e3tLa5cuWJ1nyo+\nV3W2/dJLL4nS0lKLX8Bm1vp41KhRIigoSOzdu1cYDAYxYsQIMXz4cCGEEAUFBSIyMlIsXbpUKIoi\nfv75ZxEcHCwOHz5stb3lX08zSZLEAw88IC5fvixKSkoqvQ4V11u7dq2Ii4sTR44cEYqiiNmzZ4vu\n3btbfT4hTJ+9goICUVpaKiZNmiQ6duxYrX3Ly8sTer1efPnll8JgMIh33nlHaLXaSu03e/fdd0Vi\nYqLIzc0VpaWlYuzYseKxxx4TQlT/PV6+T8qHs+DgYLFv3z5RUlIi+vTpI6Kjo8Xy5cuF0WgUU6dO\nFffee6+67po1a8SZM2eEEEKsXr1a+Pj4iLNnzwohrL++kyZNEgMHDhSXL18W165dE8nJyWLy5MlC\nCCE2btwoQkNDxaFDh0RhYaF47LHH7IaziIgIdfmHH37Y4jNm77Xw8/MT33//vRDCFBrT09PFwYMH\nhRBCHDhwQISGhoq1a9cKIW5+XsePHy+uX78uNm/eLDw8PMSgQYNEXl6eyM3NFSEhIWLHjh1CCPvv\nm4r7tW/fPhESEiIyMjKE0WgUn3zyiYiJiRGlpaVCCFM4S0hIEKdOnRIlJSXiyJEjolmzZmrfZ2Vl\n2eynhoDhrJ6Kjo4Wvr6+wt/fX0RHR4u//vWvori4WMyaNUs8+uij6nJGo1FERESoH6Dyv8R69eol\nXnnlFZGXl2ex7cWLF1f6K0YIUwiUZVkUFBSo902ePFmMHj1aCGEKZ/fff7/62KFDh0SjRo1s7oMk\nSWLTpk3q7Q8//FDcd999QgjTl0xUVJT6mMFgEB4eHhZBZ+HChSIpKUldvmnTphbb79q1q1i+fLnV\n5x40aJB47733hBA3f6kWFRWpjw8bNky8+uqrQgjTL2hblbPy/VmxUiSEEOPGjRNTpkwRQghx8OBB\nERAQoH75lJeVlVWpDY8//rgadubOnWsRfIQQol+/fuKTTz4RQph+Ab322mvqYx9++KF48MEHhRC2\nX0/zeuUDbsVfLHPnzhUjRowQQghx8eJF4e3trf4iqqji/turnFXV5jlz5oghQ4ZYfZ7yr4dZ+deh\nRYsWFoFy06ZNIiYmRghhev0aNWpkEUxCQkLUP0zsPZe9bXt4eKiVNGus9fHo0aPFU089pd7esGGD\naNOmjRBCiFWrVomePXtaLP/000+LmTNnWt1+UlJSpcqTJEli+/bt6m174ezBBx+0CDOKoghvb2+R\nnZ1tc7/MLl++LCRJUoNRVfv2ySefiMTERIv1IyMjbYaz+Ph4i0rJ6dOnhU6nEwaDwe573FqfmH+x\njx49Wjz99NPqY++//75o27atevvAgQPC39/f5j537NhRrFu3TghR+fU1Go3Cx8fHIkR8//33onnz\n5kIIIZ588kk1qAkhxNGjR6sMZ0lJSRbLHz58WHh4eFhUt80qvhajRo0So0aNsrkfQggxceJE8be/\n/U0IcfN9cvr0afXxoKAgi8rtww8/rH6P2nvfVNyvcePGVfojq3Xr1mLnzp1CCNNnunxV+9ixYyIk\nJERs2bLF6ndoQ+M+J4+4GUmSsG7dOly+fBmZmZlYsGABvLy8cObMGURFRVks16xZM+Tm5lbaxqJF\ni3D06FHEx8eja9eu+PbbbwEAqamp6NevH4YPH46IiAi8+OKLMBgMOH36NAIDA+Hj46NuIyoqymLb\noaGh6s/e3t4oKSmp8tyG8lc+RkVF4fTp01Yfu3DhAsrKyhAdHW3zuSMiIiy2HR0djTNnzgAANm7c\niG7duiEoKAgBAQHYsGEDLl68qC4bEBCARo0aWV33VowaNQorV64EACxfvhyPPvoodDpdpeVOnz5t\ntQ3ixjkaWVlZWLNmDQICAtR/u3fvxtmzZ9Xlw8LC1J8bNWqEgoICALZfz+oYMWIE1q9fj6KiInz+\n+efo1auXxWt8q2y1OScnB7GxsTXa5unTpyu9T8q/r4KCgizOi/P29laf91a33aRJE3h4eDjc5vJ9\nWr4fsrKysGfPHovXfeXKlTh37pzNbVk7x6qqq5ErysrKwsSJE9XnCwoKAgCr3yFGoxEvvfQS4uLi\n4Ofnh+bNmwMwfV7t7dvp06cRGRlZ7XZmZmZi8ODBarvatm0LrVaL8+fP232P2zvvLCQkRP3Zy8vL\n4nb5NgPAsmXLkJCQoLbj4MGDFt8l5eXl5aGoqAidOnVSl+/fv7/aP2fOnKn0HWhPxeXLyspw4cIF\nKIpS5Wth/l1Q3p49e3DvvfciJCQE/v7+WLhwYaV9qfj6VfVere77xrz8W2+9ZfHePnXqlM3fAXFx\ncXj33XcxY8YMhIaG4rHHHquV7+jbFcPZbaZp06bIyspSbwshkJOTUym4AKY3+8qVK5GXl4cXX3wR\njzzyCIqLi6HVajF9+nQcOnQI33//Pb755hssW7YMERERuHTpksUXVXZ2dqUvWEdkZ2db/Fy+neW/\nUIODg6HT6Swuf6/43BW/BLKystC0aVNcv34dDz/8MF544QWcP38ely9fxoABAyxOTr18+TKKiooq\nrWutLbZYW6Zbt27w8PDAzp078dlnn9m8mjM8PNxqG8zbjIqKQmpqKi5fvqz+u3btGl544QW77bL1\nelan/ZGRkejWrRu++uorrFixosqrUSuu7+vra7E/5YOkPVFRUTh+/Hi1nqeipk2bVnqflH8tb4W9\nbdtrm6Mnp0dFRaF3796VXvcPPvjAoe2Xv9/8x5Wt1yYqKgr//ve/LZ6zsLAQ3bp1q7TdTz/9FF9/\n/TW2bt2Kq1ev4uTJkwCqd+J306ZNkZOTo942f1fZEhUVhbS0NIt2FRUVITw8vMr3eG1eEJCVlYWn\nn34aH3zwAS5duoTLly/jjjvuUPe34nMFBwejUaNGOHz4sNrmK1euID8/H4Dpc1/xO9CeisvrdDoE\nBwdj5cqVDr8Wjz/+OAYNGoRTp07hypUrGDduXI0vFHDkfWNefsqUKRbLFxQUWAzDU7E/H3vsMeza\ntUv9bnzxxRdr1FZ3wHB2mxk2bBi+/fZbbNu2DWVlZXjrrbfg5eWF7t27V1p2xYoVyMvLAwD4+flB\nkiRoNBps374dv/76KxRFgV6vh06ngyzLiIyMRPfu3TF58mRcv34dBw4cwOLFi/HEE0/UuL1vvvkm\nrly5gpycHMyfP9/m+FiyLGPYsGGYMmUKCgoKkJWVhXfeecfiuc+fP4/58+ejrKwMa9aswZEjRzBg\nwACUlpaitLQUwcHB0Gg02LhxIzZv3lzpOV555RWUlZVh165d+PbbbzF06FAApi+36vyyCQsLQ2Zm\nZqVlU1NTMWHCBHh4eFh9HQBTlaxz585qG7777jt888036uNPPPEE1q9fj82bN0NRFJSUlCA9Pd0i\nkNpqo63Xs6LQ0FCcOnUKZWVlFvePHDkS8+bNw8GDBzFkyBCb+1/x+Tt27IidO3ciJycHV69exeuv\nv253HbPHH38cW7ZswZo1a2AwGHDx4kX88ssvajuruiT/sccew+zZs3HhwgVcuHABs2bNqvEQJxXb\nd6vbDgsLq9THVb23HnroIRw9ehQrVqxAWVkZysrKsHfvXhw5csTq8qGhoTZDrVmTJk0QERGB5cuX\nQ1EULF682GKdcePGYc6cOTh8+DAA4OrVq1izZo3VbRUUFMDT0xOBgYEoLCzEyy+/bPF4Vfs2YMAA\nHDp0CP/5z39gMBgwf/78KgP8uHHj8PLLL6vhJC8vD19//TUA0/iDtt7j9vqkOp9ts8LCQkiShODg\nYBiNRixZsgQHDx5UH6/4GdJoNHjqqacwadIk9bs2NzdX/f4ZNmwYli5dit9++w1FRUWYOXNmlc8v\nhMCKFSvU5adPn46hQ4dCkqQavRYFBQUICAiAh4cHMjIysHLlSofDrHm79t43FV+Hp556Cv/617+Q\nkZEBIQQKCwvx7bff2qxiHz16FNu2bcP169fh6ekJLy8vq99jDQXD2W2mVatWWLFiBZ555hk0adIE\n3377LdavXw+tVltp2U2bNuGOO+6AXq/H3/72N6xatQqenp44d+4chg4dCj8/P7Rt2xZJSUnqL6DP\nPvsMmZmZaNq0KYYMGYJZs2ahT58+AKyPUWTvgz5w4EB06tQJCQkJ+NOf/oQxY8bY3Nb7778PHx8f\nxMbGomfPnhgxYgSefPJJdflu3brh2LFjaNKkCaZNm4Yvv/wSAQEB0Ov1mD9/PoYNG4bAwEB89tln\nGDhwoMW2w8PDERAQgKZNmyI1NRULFy5Eq1atrLbF1j6Zw1xQUBA6d+6s3p+amopDhw7ZDbErV67E\nnj17EBgYiFmzZmHUqFHqY5GRkVi3bh3mzJmDkJAQREVF4a233rL4wq3YRvPtql7P8u677z60a9cO\nYWFhFod1hgwZguzsbAwePBheXl4221+xn/r27YtHH30U7du3R5cuXZCcnFzl+6P8+lFRUdiwYQPe\neustBAUFISEhAQcOHAAAjBkzBocPH0ZAQIDVsDh16lR07twZ7du3R/v27dG5c2eLceoc+eVTcZ9u\nddt9+vSp1MdVfW70ej02b96MVatWISIiAuHh4Zg8eTJKS0utbn/ixIn44osvEBgYiEmTJtlsx0cf\nfYR//OMfCA4OxuHDh3HPPfeojw0aNAgvvvgihg8fDj8/P9x5553YtGmT1e2MHDkS0dHRiIiIwB13\n3IHExESbr2nFfQsODsaaNWvw0ksvITg4GH/88Qd69Ohhs80TJ05ESkoKHnjgATRu3BiJiYnIyMgA\nYKr82XqP2+sTa59vW21u27YtnnvuOSQmJiIsLAwHDx60aLO1z9C8efMQFxeHbt26wc/PD/fffz+O\nHj0KAHjwwQcxadIk9OnTB61atcJ9991X5XtIkiSkpqZi9OjRCA8PR2lpKebPn1/j1+LDDz/E9OnT\n0bhxY7z66quV/jh25IiBvffNjBkzMGrUKAQEBOCLL75Ap06d8NFHH2HChAkIDAxEy5YtsWzZMpvP\nef36dUyePBlNmjRBeHg4Lly4YPUPvoZCEo78WVEDaWlpmDRpEhRFwV/+8hebZcq9e/ciMTERq1ev\nxsMPP+zQulQ/aTQa/PHHHzU+t+h2UVxcjNDQUPz8889o0aJFXTenRlq2bImFCxeqQZyIXO/ee+9F\namoq/vznP9d1U6iOObVypigKJkyYgLS0NBw+fBifffYZfvvtN6vLvfjii3jwwQcdXpeorv3zn/9E\n165db9tg9tVXX0GSJAYzonrAyfUSuk1UPhZWizIyMhAXF6dOozF8+HCsW7eu0ojc77//Ph555BHs\n3bvX4XWp/moII3fHxMRAkiSsXbu2rptSI0lJSThy5Eitzb9JRLemIXxvkn1ODWe5ubkWl8pGRkZi\nz549lZZZt24dtm3bhr1796pvzOqsS/VbQ5iSqb5Orlxd6enpdd0EIrph+/btdd0EqiecGs6q8xfA\npEmTMHfuXEiSZHHVXHX/eoiLi7N79RIRERFRfdCiRQv88ccfVS7j1HAWERFhMa5NTk5OpTGzfvrp\nJwwfPhyAaTC9jRs3QqfTVWtdADh+/DiP0bvYjBkzMGPGjLpuRoPCPnc99rnrsc9dj33uetUpPjk1\nnHXu3BnHjh1Th2ZYvXo1PvvsM4tlyo9n9OSTTyI5ORkpKSkwGAx21yUiIiJyN04NZ1qtFgsWLEC/\nfv2gKArGjBmD+Ph4LFy4EAAwduxYh9clIiIicmdOH+fM2cznqpHrpKenIykpqa6b0aCwz12Pfe56\n7HPXY5+7XnVyC8MZERERkYtUJ7c49bAmERGRLYGBgbh8+XJdN4PIKQICAnDp0qUarcvKGRER1Ql+\nf5M7s/X+rs77nhOfExEREdUjDGdERERE9QjDGREREVE9wnBGREREVI8wnBERERHVIwxnRERERPUI\nwxkRERHVS5MnT8Z7771X182w6u6778bhw4edsm2GMyIiIhtiYmKwbdu2um5GveeMfsrLy8Py5csx\nbty4Wt1uefv378fzzz9f5TJr167FnDlzMHfuXCxfvly9//nnn8f06dOd0i7OEEBERGRDVQOGGgwG\naLX189eoq9t2KwMK22rr0qVL8dBDD8HT09Pi/vnz5+Ps2bOYM2dOjZ7P7O2338Z3330HPz8/m8tc\nvXoVr776Kn766ScAQGJiIvr374/g4GAkJydj3LhxOHfuHEJDQ2+pLRWxckZERGRFamoqsrOzkZyc\nDL1ej3/84x+IiYnBG2+8gfbt20Ov10NRFGg0Gpw4cUJdb/To0Zg2bZp6+/Tp03j44YcREhKC2NhY\nvP/++zafMyYmBnPnzkW7du0QGBiIP//5z7h+/br6+Ny5cxEXF4fGjRujXbt2WLt2rcW6Fdtmb/k3\n33xTXX7MmDE4d+4c+vfvDz8/P9x///24cuWK3f2o2E9vvvmm3f2u2Faj0VipL9LS0tC7d+9K9z/z\nzDP4/PPPce7cOZv9WB1///vfMXDgwCqX2blzJ9q2bave7tChA7Zv3w4A8PLyQqdOnbBp06Zbaoc1\n9TPyExERAZgx49but7VcdSxfvhzfffcdFi1ahD59+gAAPvjgA6xatQobN25EcHAwZFmutJ4kSZAk\nCQBgNBqRnJyMwYMHY/Xq1cjJyUHfvn3RunVrPPDAA1afd+XKldi8eTO8vb2RnJyM2bNn49VXXwUA\nxMXF4bvvvkNYWBg+//xzPPHEEzh+/LhauanYtqqWlyQJX331FbZu3YqysjIkJCTg559/xpIlS9Cm\nTRsMGDAA8+fPx/Tp06vcD2v9VJ39Lt9WjaZyrejXX39F69atrfbv448/juXLl1c6JHnixAl89NFH\nNl/Tbt26WQQye9W+U6dOwd/fX73t7++PY8eOqbfj4+Pxyy+/VLmNmmA4IyIiqiZJkvDss88iIiKi\nyuXMv/T37t2LCxcuYOrUqQCA5s2b4y9/+QtWrVplNZxJkoQJEyao258yZQqeeeYZNZw98sgj6rLD\nhg3D66+/joyMDCQnJ1ttW1XLA6YqVJMmTQAAPXv2RGhoKDp06AAAGDx4MLZu3Vqj/bC3fHX68cqV\nK9Dr9VYfGz16NFJSUiqFs9jYWLz++us2t1mROURX1QYvLy/1toeHBwoKCtTber0eZ86cqfbzVRfD\nGRER1VuOVr5upVJWXc2aNbO7jPmXflZWFk6fPo2AgAD1MUVR0KtXr2ptPyoqCqdPn1ZvL1u2DO+8\n8w4yMzMBAAUFBbhw4YLNttlbvvy5Uo0aNbK47eXlpQYRR/ejOsvb68eAgABcu3bN6mN5eXkoKipC\nRkYGunbtWuV2qmKvcqbX63Hx4kX1dnFxsUUf5efnW+xjbWE4IyIissFaZaXifd7e3igqKlJvnzlz\nRg0ezZo1Q/PmzXH06NFqP2d2drbFz02bNgVgCjxPP/00tm3bhsTEREiShISEBIuAUb5t1Vm+IluP\n2duPin0SFRVld7/tVa3at2+P33//HZ06dbK4Py0tDceOHcPUqVOxZMkSi3Dm6GFNe21o0aIFfvzx\nR/X2hQsXcNddd6m3f/vtN4wcObLKbdQELwggIiKyITQ0FMePH69ymY4dO+LTTz+FoihIS0vDzp07\n1ce6du0KvV6PN954A8XFxVAUBQcPHrT4hV+eEAIffvghcnNzcenSJbz22msYPnw4AKCwsBCSJCE4\nOBhGoxFLlizBwYMHbbbL0eWrYm8/KvaTo/ttzYABA7Bjxw6L+1auXIlt27bhmWeewdChQ7F+/XqU\nlJSoj5sPa9r6V/ECAGth9Pjx4+r9vXr1Uq/UBIB9+/bhvvvuAwCUlJRg3759uP/++6u9T9XFcEZE\nRGTD5MmTMXv2bAQEBOCtt96yWml57733sH79egQEBGDlypUYPHiw+pgsy/jmm2+wf/9+xMbGokmT\nJnj66aeRn59v9fnMJ7s/8MADaNGiBVq2bKmet9W2bVs899xzSExMRFhYGA4ePIgePXrYbLujy5uf\nv/zP5tv29qN8P7399tvQaDQO7bc1I0eOxIYNG9Tw9cMPP2DLli144403AJgOOQ4aNAirVq2q9jbL\nW7BgARYvXoz09HTMnDlTbdvQoUOxf/9+AICPjw9eeOEFzJ49G7NmzcILL7yAkJAQAMD69etx7733\nIiwsrEY+6swGAAAgAElEQVTPXxVJ1HRgknriVsZWISKiusPv78qaN29ucdVjQzdlyhSEhIRg4sSJ\ndd2USrp164bFixdbDLVRnq33d3Xe9zznjIiIiOql1157ra6bYNMPP/zgtG3zsCYRERFRPcLDmkRE\nVCf4/U3u7FYOa7JyRkRERFSPMJwRERER1SMMZ0RERET1CMMZERERUT3CcEZERERUjzCcEREREdUj\nDGdERERE9QjDGVE9V6aU4UrJlbpuBhERuQjDGTnkm2+AxYuBvLy6bknD8cXhL/DeD+8h/3r1Jwwm\nIqLbF8MZOeTcOSA7GygpqeuWNBwXCq9AMQpcLWE4I2oIJk+ejPfee6+um1Ftd999Nw4fPlzXzXAr\nDGfkEM2Nd4yi1G07GpIdOxXs3AlcvMROJ3K1mJgYeHp64uLFixb3JyQkQKPRIDs7W11u69atNrfh\n7e0NvV6v/nv22WetLpuXl4fly5dj3Lhxtbsj5ezfvx/PP/+8zcfXrl2LOXPmYO7cuVi+fLl6f4sW\nLeDp6YnQ0FAsW7ZMvf/555/H9OnTndbehkhb1w2g24ssm/5nOHMdRdzobA07ncjVJElCbGwsPvvs\nM0yYMAEA8Ouvv6K4uBiSJFksV/52xW1888036NOnj93nW7p0KR566CF4enpa3D9//nycPXsWc+bM\nuYW9Ad5++21899138PPzs/r41atX8eqrr+Knn34CACQmJqJ///4IDg7GSy+9hH79+qFp06bQam/G\nh+TkZIwbNw7nzp1DaGjoLbWPTFg5I4cwnLleUbGpsy9dYacT1YUnnnjColL0ySefYOTIkU6ZtD0t\nLQ29e/eudP8zzzyDzz//HOfOnbul7f/973/HwIEDbT6+c+dOtG3bVr3doUMHbN++HQDg4eGBqKgo\ni2AGAF5eXujUqRM2bdp0S22jm1g5I4cwnLmeEabOvnzFWMctIXKtGekzamc7Sbe2nW7dumH58uU4\ncuQIWrZsidWrV2P37t2YOnVqtbdR3SD366+/onXr1pXulyQJjz/+OJYvX17pkOSJEyfw0UcfVdn+\n8oGsqracOnUK/v7+6m1/f38cO3YMALB3715cv34d+fn5aNWqFVJSUtTl4uPj8csvv9jfQaoWhjNy\nyL33AomJQJMmdd2ShkPcCGdGwURMVFdSU1OxbNky9OrVC23btkVERES11xVCYNCgQRYVpzfffBNj\nxoyptOyVK1eg1+utbmf06NFISUmpFM5iY2Px+uuvV7s9tg6/mp/fy8tLve3h4YGCggIAwH333YfB\ngwcDADp27IhevXqpQU6v1+PMmTPVbgNVjeGMHMLTCVzPyHBGDdStVrxqiyRJSE1NRc+ePXHy5EmH\nD2lKkoR169ZV65yzgIAAXLt2zepjeXl5KCoqQkZGBrp27Vrt56+oqrbr9XqLix+Ki4vV88jKV98C\nAgKQnp6OQYMGAQDy8/MREBBQ4zaRJYYzonouLFzB6TM3QxoRuV5UVBRiY2OxceNGLF682GnP0759\ne/z+++/o1KmTxf1paWk4duwYpk6diiVLlliEM0cPa1ZVOWvRogV+/PFH9fbFixdx1113YcWKFfj6\n66/x+eefAwAKCwstKoG//fYbRo4cWf0dpSoxnBHVY0IIQDKda1bGE/2I6tSiRYtw5coVNGrUCAaD\nodLjpaWlKCk3CKROp4N840Td6lbaBgwYgB07duDxxx9X71u5ciX279+PN954A9euXcP06dPxzjvv\nqIcfHT2saa0tx48fR2xsLHr16oUXXnhBvf+nn37C3LlzcfToUXV4j6KiIuTl5amVwJKSEuzbt89i\n2A26Nbxak6geMwojAgOBqCggIIjhjKguxcbG4q677lJvV6xADRgwAN7e3uq/mTNnqo8lJydbjHP2\n8MMPW32OkSNHYsOGDWrI++GHH7Blyxa88cYbAEyHHQcNGoRVq1bVaB8WLFiAxYsXIz09HTNnzkR+\nvmlw66FDh2L//v3w8fHBCy+8gNmzZ2PWrFl44YUXEBISgh49euDMmTN49913MWXKFKxatQre3t4A\ngPXr1+Pee+9FWFhYjdpElUnCGdcCu5AkSU65nJmoPihVSjFnl2lco34t+iGxWWIdt4io9vD727op\nU6YgJCQEEydOrOumVEu3bt2wePFiiyE4yPb7uzrvex7WJIfs2wf88guQkAB07FjXrXF/ivFmtUzh\nBQFEDcJrr71W101wyA8//FDXTXA7PKxJDsnPB7KygCtX6rolDYPBqMBgAIxGy6BGRETui5Uzcgjn\n1nStS1cUfPcd4OkJJDVnpxMRNQSsnJFDOEOAa5UZTB2t0ZguDiAiIvfn9HCWlpaGNm3aoGXLlpg3\nb16lx9etW4cOHTogISEBnTp1wrZt29THYmJi0L59eyQkJNzSgHtUexjOXKv0RjgrLgayc9jpREQN\ngVMPayqKggkTJmDLli2IiIhAly5dkJKSgvj4eHWZvn37qoPj/frrrxg8eDD++OMPAKYrGtLT0xEY\nGOjMZpIDGM5cy1w5A4DsU+x0IqKGwKnhLCMjA3FxcYiJiQEADB8+HOvWrbMIZz4+PurPBQUFCA4O\nttgGL7OuX1q3BkJCABtTv1EtKy0XzjgILbmbgICAKkerJ7qd3cp0Vk4NZ7m5uWjWrJl6OzIyEnv2\n7Km03Nq1azF58mScOXMGmzdvVu+XJAl9+/aFLMsYO3YsnnrqKWc2l6ph19lvcaHoApJDkgGwouls\n5a/QNDCckZu5dOlSXTeBqF5yajir7l9EgwYNwqBBg7Br1y6kpqbi999/BwDs3r0b4eHhyMvLw/33\n3482bdqgZ8+eldafMWOG+nNSUhKSkpJqo/lkRe61XJy+dholhhL7C9MtCws3om1b4PBhjnNGRHQ7\nSk9PR3p6ukPrODWcRUREICcnR72dk5ODyMhIm8v37NkTBoMBFy9eRFBQEMLDwwEATZo0weDBg5GR\nkWE3nJFzyZLppDOOueUailGB+W8cVs6IiG4/FYtG5af1ssWpV2t27twZx44dQ2ZmJkpLS7F69Wqk\npKRYLHP8+HH1vLJ9+/YBAIKCglBUVIRr164BAAoLC7F582bceeedzmwuVYOsuRHOWMVxCUUo8PY2\nza0Z3pR9TkTUEDi1cqbVarFgwQL069cPiqJgzJgxiI+Px8KFCwEAY8eOxZdffolly5ZBp9PB19dX\nncz17NmzGDJkCADAYDBgxIgReOCBB5zZXKoGVs5cSzEq8PEBYmOBiED2ORFRQ8CJz8khH+5aiU0/\nHsWAqMcw9uHWdd0ct3fw/EF8cfgLAEBz/+YY1XFUHbeIiIhuBSc+p1onFBlXrwLn81jFcYXrZQoU\nBZAkzhBARNRQcPomcohWazqsyZPTXePI7wp27QKOHeN5fkREDQXDGTlEd2OKAA6I6hrmGQIkief5\nERE1FAxn5BBzODMwKLiEOQSfPg0cP8k+JyJqCBjOyCHmcMYqjmuUr1CeYDgjImoQeEEAOcTXR0bH\njkDvaAYFV1CUmxcBsFpJRNQwsHJGDvHUyfD3BwKDGBRcwYib/cwLAoiIGgaGM3KIOkMAqzgucced\nCu65x/Qz+5yIqGFgOCOHqDMEsIrjEoq4ObcmwxkRUcPAc87IIaycuZZiVKDRmObW1MnscyKihoDh\njBzCyplrKcIUzmJjAQnscyKihoCHNckhskbGL78AG9NM0wqRc5WvUAoITuFERNQAsHJGDpGlG3Nr\nGk3h7MawZ+Qk5rk1NZqb82tqJP5NRUTkzvgtTw7RarTQaExDPLBy5nz/22OaWzMvz3Sb5/oREbk/\nhjNyiKyRIUmAYDhzCfME85obn1Se60dE5P4YzsghsiSzcuZC5lkBzpwBMjOBwiJ2OhGRu2M4I4eU\nr5wZeW660xlvdPLFizfCWTHDGRGRu+MFAeQQWZLRti0QpVfg61vXrXF/FefTLDUwnBERuTtWzsgh\nskZG48aAf4ACna6uW9MAaBT1fDOA4YyIqCFgOCOHmAehNRgNddyShuHubgp69QL0etPtMoYzIiK3\nx3BGDuH0Ta5l7mdzKGY4IyJyfzznjBzC6Ztcy9zPzSI84BdQjEbevAqDiMjdMZyRQ1g5cy1zP8dG\neeDq9WL46tnvRETujoc1ySGyJOPECWD3/xRkZ9d1a9yfuXLmIXtY3CYiIvfFyhk5RNbIKCoC8q8o\nKCqq69a4v5JS02C/OnM4Y8WSiMjtsXJGDpElTt/kSjt3mebWlIymcUtYOSMicn8MZ+QQWcPpm1xJ\nuTFDgKeOlTMiooaC4YwcwsqZa5krZZcveCAzEzh7np1OROTuGM7IIea5NVk5cz5FETAKBZCAvDMM\nZ0REDQUvCCCHaCQNoqIkhIUJtGptBPO98xgU0yFNWdJAK3MQWiKihoLhjBym95FhaGRAI28FDGfO\nU2pQoNUCWo0M3Y1wZmC5kojI7TGckcNkSYYBBihCgQ6c/dxZtDoFPXoAXloZ0llzOOMMAURE7o5l\nD3IYZwlwDfPFALIkQ3ujz8tYOSMicnusnJHDOL+ma6iTnmtkhIfLiL4KNAllnxMRuTuGM3KYVmN6\n27By5lzlK2eR4Ro0vw6EMJwREbk9HtYkh50/L2PfPuB/exgUnKl85YyHkomIGg6GM3KYoVRGfj5w\n6QqDgjMZFCMMBgBC5qFkIqIGhOGMHGYe1oEnpztX7hkF330H7PkfK2dERA0Jwxk5zBwUDBwQ1anM\n4VerYeWMiKghYTgjh7Fy5hrmAWdljYyrV2RkZgKZWexzIiJ3x6s1yWHqVEKKoY5b4t5KDeZwpkH+\njXDmX8ZwRkTk7hjOyGGhTWQkJAB3t2VQcCbzPJpajQyd9sahZJ5zRkTk9nhYkxzm7SXDzw9o7M+g\n4ExGoUCWAQ/dzbk1FU7fRETk9lg5I4fxykHXiIpR0LMn0K6JDJ3CyhkRUUPBcEYO45WDrlF+EFqd\nxHBGRNRQMJyRw1g5c43y0zf56TWIjgYieSiZiMjtMZyRw1g5c43ylbMAPxnNmwPhvuxzIiJ35/QL\nAtLS0tCmTRu0bNkS8+bNq/T4unXr0KFDByQkJKBTp07Ytm1btdelulFcJOPnn4H/bmFQcCajMJ38\nL0schJaIqCFxauVMURRMmDABW7ZsQUREBLp06YKUlBTEx8ery/Tt2xcDBw4EAPz6668YPHgw/vjj\nj2qtS3VDEjKuXgXOMyg41fUy5ebcmjyUTETUYDi1cpaRkYG4uDjExMRAp9Nh+PDhWLduncUyPj4+\n6s8FBQUIDg6u9rpUN9QxtzhDgFP98qtpbs1Dv7JyRkTUkDg1nOXm5qJZs2bq7cjISOTm5lZabu3a\ntYiPj0f//v0xf/58h9Yl11PH3GIVx6luTt+kYeWMiKgBcephTUmSqrXcoEGDMGjQIOzatQupqak4\ncuSIQ88zY8YM9eekpCQkJSU5tD45hpUz11AnPpdlGA0ysrIAL60CdK/jhhERUbWlp6cjPT3doXWc\nGs4iIiKQk5Oj3s7JyUFkZKTN5Xv27AmDwYBLly4hMjKy2uuWD2fkfJxKyDXM4VenlSFBxsmTgJeW\nMwQQEd1OKhaNZs6caXcdpx7W7Ny5M44dO4bMzEyUlpZi9erVSElJsVjm+PHjEEIAAPbt2wcACAoK\nqta6VDc8daa5Nfvcx3DmTGo4k2V4MBATETUYTq2cabVaLFiwAP369YOiKBgzZgzi4+OxcOFCAMDY\nsWPx5ZdfYtmyZdDpdPD19cWqVauqXJfqnodWCz8/wD+QQcGpNOXm1tTevCBACKCaZwwQEdFtSBLm\nstVtSpIk3Oa7cNv55ewv+M+R/6BDaAcMjh9c181xW+uOrMPPZ39GSusUJIQloM+smRAC2DJtOrSy\n04coJCIiJ6hObuE3PDlMvXKQwzo4VfnpmyRJgubGcBplBp53RkTkzjh9EzlMHXOL5z85lTpDwI0w\nHBsjo8yowCgU8KNLROS++A1PDmPlzDXUuTVvhOG4WBnFBkCS2e9ERO6MhzXJYbIk4+BBYMs2BQUF\ndd0a96Ue1rwRhjkQLRFRw8DKGTlM1sgoKAAMJQrKyuq6Ne6r5Lp5bk3T31CcwomIqGFg5YwcZjpB\nHTDCAE4S4Dy7/2eaW/P8WVbOiIgaEoYzcpiskaHRAEYoDGdOZB5wVntjLlNz5cx8oQAREbknhjNy\nmLlyJhjOnMpcITMPQJt7yjSF05V8djoRkTtjOCOHsXLmGubKmXnqplM5psnPr1xlpxMRuTNeEEAO\nkyUZrVoBvloFISF13Rr3VbFyJmtMf0uVMRETEbk1hjNymKyR4esL6D0UeHrWdWvclyTfmFvzRjjT\naswzBDCcERG5M4YzchiHdHCNxEQjrl4HggIqhDNWzoiI3BrPOSOHcUgH17A1CC0rZ0RE7o2VM3IY\nK2euUXH6pugoGQWegN6P/U5E5M4YzshhrJy5RsXKWfNoGYWNAD9/9jsRkTvjYU1ymEbSIDtbwk/7\nBA7/xgFRncUcfjUSp28iImpIGM6oRkpLZOTnA/nXGBScwWgUKCk1za1pDmXmChpnCCAicm88rEk1\nYrpy0IBSgwJAV9fNcTtlBiN27wY0Gg2kvhKAcpUzHk4mInJrrJxRjZjnezRwWAenKDVYXgwAlDvX\nj4c1iYjcGsMZ1YhWYyq6cswt5ygtuzHpueZmODt/TkZmJnDqNPuciMid8bAm1Yi5csYxt5zDHHrL\nV87yzmmQmQmcDmCfExG5M4YzqpHoZjI8GgPt7mRQcAb1sGa5ypkaiFmtJCJyawxnVCO+3jIaC8Db\nh0HBGRTFCK0W8NCVC2canudHRNQQMJxRjfDkdOfS+yno0QMI9r4ZznRahjMiooaAFwRQjXBYB+eq\nOHUTwMOaREQNBcMZ1QgrZ85l7lfz7AAAEBYiIzoaCGvKPicicmc8rEk1Yq7oGIyGOm6Je1IrZ+Uu\nCAgPldG8ORAWxnBGROTOWDmjGrl4Qca+fcB3uxkUnEGd9NzKILScvomIyL0xnFGNKAbT3JqXrjCc\nOcP1MgVlZYAQ5cIZz/MjImoQGM6oRnhyunOdzFSwezfwUwanbyIiamgYzqhGOOaWc5lDrzkEAzcv\nDmDljIjIvfGCAKoRHSc+dyrztFjl59YsvGaaW1NzVQHa11HDiIjI6RjOqEZ0PKzpVAbFdNJ/+cpZ\nYcGNcJbPPicicmcMZ1QjwUEyEhKA7rEMCs5gMFaunHmYZwjgYU0iIrfGc86oRrw8ZPj5AY39GBSc\nQUCpNLemefomnnNGROTeWDmjGlGvHGRQcIq4lgp6SECXiJt/P+lYOSMiahBYOaMaUcfc4rAOTmFt\nEFoPVs6IiBoEVs6oRlg5cy5r0zf5+pjm1gzy5gwBRETujOGMaoSVM+eyVjnz9TbNrdnYk31OROTO\neFiTasRQZppbc9N/GRScwVrljNM3ERE1DKycUY3oZC3y84GLxQwKzlBSappbE8LKDAGsVhIRuTVW\nzqhGeOWgc/30s2luzWO/W5lbk31OROTWGM6oRtTpm4wKhKjjxrghxVh5hgCe50dE1DAwnFGN6GQZ\nkACjYDhzBvOcpboKE59nZQHHTxihKOx0IiJ3xXPOqEZkjQyNBAihQFEADWN+rTKHs/KVM0mSkJ0l\nQzEqKDUoaCTz40tE5I747U41IksyOnYEYvwUlMsPVEvM5/LpKnSuVnMjnJUpaOTJjy8RkTtivYNq\nRNbIaNwY0Dc2sGrmBJLGPLemZeeazzsrNfC8MyIid+X0X6tpaWlo06YNWrZsiXnz5lV6/NNPP0WH\nDh3Qvn173HPPPThw4ID6WExMDNq3b4+EhAR07drV2U0lB/DkdOe6q7OCHj2AuFjLypn5ik2DwlkC\niIjclVOPiyiKggkTJmDLli2IiIhAly5dkJKSgvj4eHWZ2NhY7Ny5E35+fkhLS8PTTz+NH374AYDp\nHJv09HQEBgY6s5lUAxzWwbmsDUJb/jYrZ0RE7suplbOMjAzExcUhJiYGOp0Ow4cPx7p16yyWSUxM\nhJ+fHwDg7rvvxqlTpyweF7wUsF5i5cy5rE3fBACxMaYpnLQ69jsRkbtyajjLzc1Fs2bN1NuRkZHI\nzc21ufyiRYswYMAA9bYkSejbty86d+6Mjz76yJlNJQexcuZctipnLZqbJj/34PyaRERuy6mHNSVJ\nqvay27dvx+LFi7F79271vt27dyM8PBx5eXm4//770aZNG/Ts2bPSujNmzFB/TkpKQlJS0q00m6pB\nlmQcOQIYixUMjwWaNKnrFrkXW5UzTuFERHR7SU9PR3p6ukPrODWcRUREICcnR72dk5ODyMjISssd\nOHAATz31FNLS0hAQEKDeHx4eDgBo0qQJBg8ejIyMDLvhjFxD1sgoKgJK8hVcv17XrXE/JdeNKCsD\nJFg/54wVSyKi20PFotHMmTPtruPUw5qdO3fGsWPHkJmZidLSUqxevRopKSkWy2RnZ2PIkCFYsWIF\n4uLi1PuLiopw7do1AEBhYSE2b96MO++805nNJQfIkgxJAgRMg9BS7frue9PcmvlXK4QznutHROT2\nnFo502q1WLBgAfr16wdFUTBmzBjEx8dj4cKFAICxY8di1qxZuHz5MsaPHw8A0Ol0yMjIwNmzZzFk\nyBAAgMFgwIgRI/DAAw84s7nkAFljCmdGhjOnsDUILStnRETuz+lDjPfv3x/9+/e3uG/s2LHqzx9/\n/DE+/vjjSuvFxsZi//79zm4e1ZAsydBoWDlzFnP40mktw9npXBknzwN5kQqaB1hbk4iIbncc251q\nhJUz57oZziw/oqdPycjKAi5eYqcTEbkrTs5HNaKRNIhrISEmRiAq2gjm/NplDmceFSpn5onQy3hY\nk4jIbTGcUY3pfWUYjAboPBQwnNUujVaBFlbCmXn6JgOnbyIiclcMZ1RjsiTDAAMUoUAHXV03x610\nS1SgCKCRl43KGY8lExG5LZY7qMZ45aBzCCFsDkJ7c+Jz9jkRkbti5YxqTKsxvX045lbtMgrTIUuN\npKk0y0azCA1iFCAgiH1OROSuGM6oxtQBUVk5q1W2qmYAEN1MxlkNEMhwRkTktnhYk2rsVI6Mn34C\nfv6FQaE2mStnFSc9L38fAzERkftiOKMaK7su49o14Oo1BoXaVGZQUFoKGBUr4YzTNxERuT0e1qQa\nU68cNDAo1KYr+Qq+/x7w85KB3paPsXJGROT+WDmjGuOwDs5hDrsaqfLHk5UzIiL3x3BGNWYeELXM\nYKjjlriX0hvhTGvlnLOLF2ScPAlk5TCcERG5Kx7WpBpj5cw5zJUzaxcEXLpomlvzlCdnCCAiclcM\nZ1RjUZEy7pKBhDsZzmpTVZUzncxzzoiI3B0Pa1KN+TSS0bgx4O3LoFCbjEKBTgd4eNgOZ6xWEhG5\nL1bOqMZ45aBzNAlVcM89QLRf5XCmlU1/T3H6JiIi98XKGdUYrxx0DnPYtXbOmU57Y25NBmIiIrfF\nyhnVGCtnzqHOEGBl+qbgQBkxMUBEGPuciMhdMZxRjbFy5hzq3JpWKmdNgk3hLDyQfU5E5K54WJNq\n7Mpl09yaO3YyKNQm9bCmlcoZAzERkftjOKMaE0bT3JqXrjAo1KaSMtPcmsLIic+JiBoihjOqMQ7r\n4By/HzXNrfnzPk7fRETUEDGcUY1xQFTnMM8QYO7f8syVM/NFA0RE5H4YzqjGOKyDc5jHMNNaCWcl\nxaa5NY8dZ58TEbkrXq1JNWYODxwQtXaVVRHODKWmuTWLfNjnRETuiuGMasy/sRZ33QV0CmdQqE3m\nSqS1cObBaiURkdvjYU2qMU+daW5NfWMGhVolmebW9NRZOefsxvRNPM+PiMh9sXJGNaZeOcigUKva\ntjPigi+Q0Nx25Yx9TkTkvqoMZ+fPn8eaNWuwc+dOZGZmQpIkREdHo1evXhg6dChCQkJc1U6qh9Qx\ntzisQ62qahBaNZyxz4mI3JbNcDZmzBgcP34c/fv3x7hx4xAeHg4hBM6cOYOMjAwMGzYMcXFx+Pjj\nj13ZXqpHWDlzjqqmb/LyNE3f5KFlnxMRuSub4WzixIlo3759pfvj4+PRp08fvPTSSzhw4IBTG0f1\nGytnzmGvchYTA2gk9jkRkbuyeUGAtWBWk2XIfcmSjH37gP9uUWDkmKi1xhx2NVLlj6f5PqMwQgjh\n0nYREZFr2L0g4OjRo3j55Zdx6NAhlJSUAAAkScKJEyec3jiq32SNjIICQDIaYDQCGl77WyuKryso\nKwMgKlfOJEmCLMlQhAKjMFqtrhER0e3N7q/TJ598EuPGjYNOp0N6ejpGjRqFESNGuKJtVM/JkgxJ\nAgQUcBza2pOxV8Hu3UBWpvXgxcPJRETuzW44Ky4uRt++fSGEQHR0NGbMmIFvv/3WFW2jek7WyNBo\nACPDWa0yz7hgbW5NgBdiEBG5O7uHNb28vKAoCuLi4rBgwQI0bdoUhYWFrmgb1XOsnDmHefR/89yl\nFeVky8gvAQrvUtBI58qWERGRK9gNZ++99x6Kioowf/58TJs2Dfn5+fjkk09c0Taq52SNKZyxcla7\nFLvhTIOrJUBhsYLgxq5sGRERuYLdw5onT56EXq9Hs2bNsHTpUnz11VfIzs52RduonpMlGXfeCSR2\nV+DrW9etcR/mypmHrcOaN845KzMwERMRuSO74ez111+v1n3U8MgaGb6+gI+vAi0nAqs1stYInQ7w\nsDK3JgBob4SzUoYzIiK3ZPNX6saNG7Fhwwbk5ubi2WefVcdUunbtGnQ6nuhC5U5M51WDtapzFwXh\n14DIpqycERE1RDbDWdOmTdGpUyesW7cOnTp1ghACkiRBr9fjnXfecWUbqZ5Sh3TgVYO1qqrpmwBW\nzoiI3J3NcNahQwd06NABI0aMQFlZGbKzs9GmTRtXto3qOVbOnMMcdq3NEAAAsTEytFcBbx/2OxGR\nO7J7ztnGjRuRkJCABx98EADw888/IyUlxekNo/qvfOWMUwnVHrVyZmP0/+YxMqKjGc6IiNyV3XA2\nY2FBYToAACAASURBVMYM7NmzBwEBAQCAhIQETt1EAEyVnT/+kLD3R4HMLIaz2qJOfG7jsKY5tBkF\nJzQlInJHdsOZTqeDv7+/5UqcRJFuKC0xza9ZWMwqTm0pKjHNrakBp28iImqI7A6A0K5dO3z66acw\nGAw4duwY5s+fj+7du7uibXQbMAUFw40rB3kVb2347nsFxWVA2d0y4FX5cU7fRETk3uyWwN5//30c\nOnQInp6eeOyxx9C4cWO8++671X6CtLQ0tGnTBi1btsS8efMqPf7pp5+iQ4cOaN++Pe655x4cOHCg\n2utS3dNpTPmeVw7WHnPo8rAxQ4D5QgFWzoiI3JPdypmPjw/mzJmDOXPmOLxxRVEwYcIEbNmyBRER\nEejSpQtSUlIQHx+vLhMbG4udO3fCz88PaWlpePrpp/HDDz9Ua12qexxzq/aZQ5et6ZvOnJZxIgc4\nE6jgjhBXtoyIiFzBbjj7/fff8eabbyIzMxMGgwEAIEkStm3bZnfjGRkZiIuLQ0xMDABg+PDhWLdu\nnUXASkxMVH++++67cerUqWqvS3VPy3BWq4xGAcVoOtFfp7Ve2D53RkZ2NnA+hn1OROSO7IazoUOH\nYvz48fjLX/4C+cZcf5IkVWvjubm5aNasmXo7MjISe/bssbn8okWLMGDAgBqtS3WjZZyMxqFAi5YM\nCrVBMQoAAhpJA9nGhTdamYGYiMid2Q1nOp0O48ePr9HGqxviAGD79u1YvHgxdu/e7fC6VHf0PjKK\nAHh6MSjUhjKDAg8PQGtjjDOgXDhT2OdERO7IZji7dOkShBBITk7GBx98gCFDhsDT01N9PDAw0O7G\nIyIikJOTo97OyclBZGRkpeUOHDiAp556Cmlpaep4atVdFzCNxWaWlJSEpKQku22j2sFhHWqXRqug\ne3fAy8b5ZgDDGRHR7SQ9PR3p6ekOrWMznN11110W1as333zT4vGTJ0/a3Xjnzp1x7NgxZGZmomnT\npli9ejU+++wzi2Wys7MxZMgQrFixAnFxcQ6ta1Y+nJFrcViH2mVv6iYA0HFOUyKi20bFotHMmTPt\nrmMznGVmZgIASkpK4OVlOdhSSUlJtRqk1WqxYMEC9OvXD4qiYMyYMYiPj8fChQsBAGPHjsWsWbNw\n+fJl9dCpTqdDRkaGzXWpfjFXzgxGQx23xD3Ym7oJACIjZDQvAEJCOUMAEZE7koSdSRHvuusu7Nu3\nz+59dUWSJM7rWIeW/7Icxy8fxxPtn0BcYJz9FahKl4sv470978Hfyx+Tuk2yusyurF3YenIrekb1\nxH2x97m4hUREdCuqk1tsVs7OnDmD06dPo6ioCPv27YMQApIkIT8/H0VFRbXeWLo95ebK+PEw0LpU\nQdwDdd2a2191Kmc8z4+IyL3ZDGebNm3C0qVLkZubi+eee069X6/X12hAWnJPhlLT3JpXrzEo1IbS\nMgWlpYDRo4pwxvP8iIjcms1wNnr0aIwePRpffPEFHnnkEVe2iW4jOl45WKvOnlfw/fdApJ8M2JjC\nltM3OV9eYR7OF55Hu5B2dd0UImqAbIaz7OxsAECXLl3Un22Jioqq3VbRbcM8rIOB4axWGBTTSf7m\nAZ+tkXm1ptN9c/QbZF3NQqhvKIK9g+u6OUTUwNgMZyNHjqz2QLDbt2+vtQbR7YWVs9plnkC+qnPO\nrlySceIE4FeiAG1c1bKGpaC0AABQWFrIcEZELmcznDk6YBo1TKyc1S7zlEzmOUutyb9qmlsziJUz\npykzlgEASpXSOm4JETVEtke6vGHLli2V7vvkk0+c0hi6/USEy+jUCejclUGhNpgrkNoqDmvqtAzE\nzmYOZeaQRkTkSnbD2cyZMzF+/HgUFhbi7NmzSE5Oxtdff+2KttFtwNtLhl4PePswKNQGAdPcmp4e\nVcwQIHMoDWcrU1g5I6K6Yzec7dixA7GxsejQoQN69uyJxx57DF9++aUr2ka3AZ6cXrsim5nm1ky8\n237lTFE4Q4AzKEZFDb4MZ0RUF+yGs8uXL2Pv3r1o0aIFPDw8kJ2dzRH5SaWOucUqTq2oziC05sqZ\ngYHYKcoHMnMFjYjIleyGs8TERPTr1w+bNm3C3r17kZubi3vuuccVbaPbACtntcvcj3IVFwQE+Mto\n3hxoFs0+d4by55mxckZEdcHm1Zpm//3vfxEdHQ0A8Pb2xvvvv48dO3Y4vWF0e2DlrHZVp3IW4Ccj\nOhpoqmefO4NF5YwXBBBRHbBZOTt+/DgAqMGsvN69e1ssQw1XYYEWP/4IbN/BoFAbqlM5U2cIYLXS\nKcqUMhQWAufPs3JGRHXDZuXs5ZdfRmFhIVJSUtC5c2eEh4fDaDTi7Nmz+PHHH/H1119Dr9dj1apV\nrmwv1TMSTHNrXpYYFGpDSakRpaWAMFZjbk1WK52iVCnF3r2mnzuElQGt6rY9RNTw2Axnq1evxh9/\n/IFVq1ZhypQpyMrKAmCqpPXo0QPvv/8+YmNjXdZQqp88eHJ6rTp4SMH3PwH+12Q81Nr6MjzPz7nK\nH8q8eIWVMyJyvSrPOYuLi8Nzzz2HRo0aYdeuXdBoNOjRowfGjx+PRo0auaqNVI+pA6IyKNQKdRDa\nKg5rsnLmXOUPZRrBc86IyPXsXq05cuRIHD58GBMnTsSECRNw+PBhjBw50hVto9vAzTG3GBRqg3nU\nf10VMwQoBhknTwJH/2CfO0OZUoYmTUw/Cw0rZ0Tkenav1jx06BAOHz6s3u7Tpw/atm3r1EbR7cOD\nlbNaZa6cybLtv5skISMrC/DSss+doVQpRXQ0EBEB+AWyckZE/7+9ew+Sqr7z//88ffp099yY4X6Z\nAUcuMtwFBhAVl0TFxUQqmmxiyv3GNSblmh+b2q1v1Vblj62Y2nxTZW25lht3q4yVn7smu1mS/FZN\nZQ2l2Z/8IsIwoKBRlItyGQaH2zD36ds55/dHz2nAgZnuPqe7gXk9qqhiZrrh45HLi/fn83m/S2/U\nytmKFSvYuXNn9uOWlhZWrlxZ1EXJtSMWyczWvP2OdLmXcl3wzpGNVDmLWNrWLKaUk6K6GurqwDBV\nOROR0hu1crZnzx5uu+02Zs6ciWEYHD9+nPnz57NkyRIMw+C9994rxTrlKmWFM7M1q9VzKxCGaWNZ\nELVGCGfeVrKj8U3FoD5nIlJuo4azrVu3lmIdco3S4fRgLVlqk5oMi24a4UJAKAQGOK6N47iEQkYJ\nV3j9u3hkk/qciUg5jBrOGhsbS7AMuVaprUOwcmpCGzIwDRPbtUmlHaKRK79W8tcfT9LVBZYFZrUq\nZyJSeqOGM5GRqHIWrFzGNwHMmR0i7dg42IDCWZDOdaXYtw9qamDlShvbsUcMyyIiQRv1QoDISFQ5\nC1YulTOA2Y0ms2YBmswQuMFkZiuztxc++UTnzkSk9BTOxBfTMHnvPfjDdpv+/nKv5trnuJlD/qNV\nzlSxLJ548kIY6+/XuTMRKT1ta4ovZsikvx/chE1a3TR8G4jbJJOAO0o4U8WyaLzKGYBtK5yJSOmp\ncia+mIZJKAQuNhoS4N/OXTY7dsCpT1U5K5d46tJwdvHtTRGRUlA4E1/MkIlhgKNwFohsE9qwKmfl\nYoRThMMQpkKVMxEpC4Uz8UWVs2B5Y7DC4ZF/a7YdM/n4Y+jq0UMP2oTJSZqbIUJVpnKmCwEiUmI6\ncya+XFw5S6ddQA1R/fDCWWSE8U0A7e0mJ7qgp9eB6aVY2diRslNEIrD+1ipOJc6qciYiJadwJr6E\njBALFhg4jsvkKQpnfuW6rRke2tZMpVU5C1rSThIKQWN9FQNndOZMREpP4Ux8G1dtknbShEwb7ZT7\nE7ZGn60JF4Uz7SUHynEdbNfGwKAiXAHozJmIlJ7CmfgWDoVJO2ls18bCKvdyrmmrVtt0J2DihNzC\nWVKVs0B5QcwyLSJmBNCZMxEpPZU5xLdsWwfdHPQt1/FNZijzW1fbmsFK2Sl6e2GgN4JrZ/6hocqZ\niJSaKmfiW7atg3pu+ZadEDDK+KbGRpPBSqit0zMPUtJOcvgwJLotlk0cqpzpzJmIlJjCmfimyllw\nsrM1R6mcNc406Y9BTa2eeZBSTgrHAZMI7+y2+CAJN1UlYU65VyYiY4m2NcW3jw+b7N4NHx1UUPAr\nu605SuVMTWiLI2knse1MOBvoi9DTA32DqpyJSGkpnIlvqURmvmbfgIKCH47jMjCYma0ZMkb+ranx\nTcWRslND4cyipiKzrXnxrE0RkVLQtqb4FjbVcysItuOyY6eLYRiENowSzlQ5K4qLK2c1VRach3hK\nlTMRKS2FM/HtQluHdJlXcm1LpnLb0oQLlTPvAoEEI+WkGDcOJhsWNZWZyllclTMRKTFta4pvphqi\nBsJ7fuFRLgMAdHRkZmu2teuZBylpJ1m6FO7dEKGqItNKQ5UzESk1Vc7EN21rBiOfytnZ0yZtbfDp\nZD3zIHltMyzT4pZVEfaFYNIEVc5EpLQUzsS3eXNM0jWwYJGCgh9et/9QDpUzaygQp1WtDJTXcDZi\nRpg6yaK2FkJhVc5EpLS0rSm+VVeaVFdDNKag4Ift2EQiUBHN4cyZNyFA4SxQ2fFNoQvjmzQhQERK\nTZUz8U03B4NRXeNw660wsSKHyllYlbNi8OZoRswIVkjjm0SkPFQ5E9/UcysYuTagBW1rFkvvQJLz\n56GvxyIcCmNgYLu2bsWKSEkpnIlvqpwFI9fRTQDTp5nMng3T6/XMg9RxJsW778LulgiGYWCZqp6J\nSOkVPZxt3bqVpqYm5s2bx5NPPjns6x999BFr164lFovx1FNPXfK1xsZGli5dyvLly1m9enWxlyoF\nUuUsGPlUzqZNMZk1C6ZM1TMPkjcNoCJi8emnsO/tCAcOaPi5iJRWUc+c2bbN5s2b+f3vf099fT2r\nVq1i06ZNLFiwIPuaiRMn8uMf/5iXX3552PsNw2Dbtm1MmDChmMsUnzo+NdmzB8Z32qx+oNyruXZ5\nlbPRRjeBAnGxeD3NKiIRbBt6uiwsW5UzESmtolbOWltbmTt3Lo2NjViWxYMPPsgrr7xyyWsmT55M\nc3MzlmVd9sdwXbeYS5QAOLZJXx/09Coo+BFP2iQS4KRzua2pCQHF4E0DqIhaWFZmjJPjXLgoICJS\nCkUNZ+3t7cycOTP7cUNDA+3t7Tm/3zAM7rrrLpqbm3n++eeLsUQJQFgTAgJxvM1m5054++3cxzfp\nnF+wEkOVs5gVIRLJDEC3VTkTkRIr6ramYRi+3v/WW28xffp0zpw5w913301TUxPr1q0b9ronnngi\n+/3169ezfv16Xz+v5EdtHYKRHd+Uy2zNkLY1i8GMJqmrgykTraFwltne1JkzESnUtm3b2LZtW17v\nKWo4q6+vp62tLftxW1sbDQ0NOb9/+vTpQGbr8/7776e1tXXUcCall23roCqOL974q1zCWW+PySef\nQKjLhiXFXtnYMWVaiuqJ0Lw8QsSAkCpnIuLTZ4tGP/jBD0Z9T1G3NZubmzl06BBHjx4lmUyyZcsW\nNm3adNnXfvZs2cDAAL29vQD09/fz2muvsWSJ/ha6GkXCmYyvypk/+VTOBvpCHD8Ox9r0zIN08fim\ncBju/lyE5ct15kxESquolbNwOMyzzz7LPffcg23bPProoyxYsIDnnnsOgMcee4yOjg5WrVpFT08P\noVCIZ555hv3793P69GkeeCBz9S+dTvPQQw+xYcOGYi5XCjRlsklzM6yaoaDgRzacmXlMCFC1MjCO\n65B20hgYmQa0BtRPi9DhqnImIqVV9PFNGzduZOPGjZd87rHHHst+f9q0aZdsfXqqq6vZt29fsZcn\nAaiIZmZrVlQpKPhhGA6RCMRymK3phTOdOQuOd67MMq3seVmvCa3OnIlIKWm2pvimm4PBmD3X5lYX\nVtWPHs4iXjjTVnJgvK1Lb6YmoOHnIlIWCmfim24OBiOf8U3a1gxe0k7S3Q2uFSGZhEjkQlDTmTMR\nKSWFM/FNlbNgeOE2lwkBNVUmN94IE7WVHJiUneLAATAGLLpXweTJqpyJSHkonIlvqpwFI1s5y+G2\nZnWlyQ03wLionnlQknYS24YomQa0AHtaLfZ8AvVmCuaVd30iMnYUffC5XP9Sicxszf93W7rcS7mm\nZQef57CtqfFNwfPCWYjM6CaAwb4IfX3QN6DKmYiUjipn4psZyszW7EqoiuPHQDwzW9N1NL6pHFJO\nCtvOTAXwKmexoZQ2mFQ4E5HSUeVMfMu2dVBQ8GXfu5nZmocOanxTOQwmk7guhA0Lr9VcRTST0uIp\nXQgQkdJR5Ux8i+jmYCC8CQtWDk1oVTkLXiKVYsIEqI9G8MYCV0QylbN4SpUzESkdhTPxzQsTjmvj\nuuBz3v2YlXJyH98UMkJ88gk4jo2zziUU0kP3yw0lWboU1tRf6HNWOVQ5S6RVOROR0lE4E9/Cpolh\nZMKZbUNYv6oKYtuZw/3eNvFIDMPgxIkQjuOQSjtEI6O/R0bm9TLz2mcALF9qsWIQptSqciYipaO/\nRsU30zBZuRJqozY57MjJFXjbwrnM1oTMc3dwSKZthbMAeL3MvJFNAJPGRxg3DkJhVc5EpHR0IUB8\nM0OZ2ZqVVba2NH0ww3ZmtmaOQcvb/kylde4sCN78zIsrZ15QUxNaESklVc7Et+zhdN0c9OXm5TYV\ns2Du7NwrZwBJhbNAZCtnF83W9L6fdtI4rpPT9AYREb/0J434lm3roJuDvuQzvgkuPHeFs2B096Xo\n7IS+nguVM8MwLszXtLW1KSKloXAmvqlyFox8xjdBpsI2Zw5YEU0JCMKJT5O89x588G7kks9725wa\nfi4ipaJtTfHt4sqZ67oYOnhWkHzGNwHc2GhydgCsiEJxELxGs1Hrwrbm+fPwdmuEtNVPco3OnYlI\naSiciW8hI8SH+w36+l1OL3SZOkXhrBD5Vs7UiDZY8aERTV5vM09vt4Ud07amiJSOtjUlEPFBk/5+\nGNR8zYL1D2ZmaxpujuFMI5wCFR9qNFsRvVA5i0QyszZtWzc2RaR0FM4kEOFQpgibTCkoFGpHS2a2\nZtf53MKZd3FAlbNgJFLDK2eWBSEsbFtnzkSkdBTOJBDqueWf42QO9kdymBAAuogRtEhFivHjYdL4\ni1ppWBA2IjiO5muKSOnozJkEwttiS9kKCoXyJgRErNzC2Yk2k4/PwOkGm8a6Yq5sbJg2I8nEabB4\nwcWtNCBiWpCGwYQqZyJSGgpnEoiwwplvXgUsl9maAB0nTdo6oPO8nrlfrutmty0vbkILsOHOCB90\nghNS5UxESkPhTAKxeJHJ1H6YUa+gUCjv7Fiu25reDM60zpz5dnEw+2wrmKmTLI4mIO0onIlIaSic\nSSBqqkwGgLCloFCocMQmYoAVzm9CgM75+Xe5oeceNaEVkVJTOJNAqK2Df6vX2KQdqIzlN/g8bWtC\ngF+XG3ru0fBzESk1hTMJhHdzMO2ky7ySa1e+TWi9bU2d8/MvaSfp7ARiFuk0hC/6kzFbOVMTWhEp\nEYUzCYSGn/vjuA4uLgZGzoPPG2eZdAATJ+mZ+5VyUuzfDxXpCMn1l4Yz74KAKmciUioKZxII9dzy\nJ9+qGcDMepOTQN14PXO/knYS2wYTi8hndjbf2xth936oW5aCpvKsT0TGFjWhlUB88rHJ7t3w3vsK\nCoXId+g5XDQhQIHYt3gqhetmGs6an/lfEB+06O+H3gFVzkSkNBTOJBCpZGa2Zv+AgkIhUmmbeBzS\nqdzDmbaSgzOQyASvSNjiM500qBwqpSVSOnMmIqWhbU0JhGWqrYMfPX0OLS1QEzXh87m9R1vJwRmI\nZ4JXNDz8tmZFJHPmbFDjm0SkRBTOJBC6OeiPF2rDeZw5U+UsOCknycSJ0DBueDjzBqGrciYipaJw\nJoG40HNLQaEQyXT+FwLOnDL5+GOYiQ2zi7WysSESS7FkCdw+a3gT2srYUDhLq3ImIqWhcCaBUOXM\nnwvhLPdjoOc7TdraoL1Sz9wvr03G5ZrQLmqyaD4HdVWqnIlIaSicSSDm3GjSbMCSmxQUClHItqZ3\nzk/VSv+uNPQcYPy4CNXVYGjwuYiUiG5rSiCqKkyqqyEaU1AohOPaRKNQEc09nHnVStvR+Ca/Rqqc\neYEt5aRwXbek6xKRsUmVMwmEDqf7M2myzdq1MKs2j8pZWJWzoHijmS43+NwwDKyQRcpJkXJSlw1w\nIiJBUuVMAqG2Dv4U0oQ2u62pQOzbue4kZ8/CQO/lg5cX2jRfU0RKQeFMAqHKmT+FjG+aOtlk9mxo\nmKVn7texE0nefx8Ofji8cgYXtjs1X1NESkHbmhKIcCjzS0mVs8IUUjmbOCHErFkwdaKeuV/xoR5m\nXk+ziw0OQssOi34Xks0KZyJSfKqcSSDOnsnM1nxrh4JCIRw3c6g/n8qZqpXBSQx1/49FhlfOTBP6\neyL091+41SkiUkwKZxIMJzNbs6dPQaEQ8URmtqadziOc6ZxfYBIjVM4sC0wsHAfiGuEkIiWgcCaB\n0OF0fw59bNPSAu/tU+WsHOJD3f8ro5e7rXlh5uZgQpUzESk+hTMJhNo6+FPQbE1VzgJTWZ1iwgSY\nOP7ytzUjQ7c1BxKqnIlI8elCgAQiG85UxSmIN/bKNHP/91J8MDNbs7fKhpXFWtn1z3VdZjSkmN4A\ncxovf1szakUgAQOqnIlICSicSSAubGumy7ySa5MXzrznmItkIjNbM1GtCQF+pJ00Li7hUJiQcflw\nfOd6iwmnIVKhypmIFJ/CmQRifJ1JczPMHq/KWSG87eB8bmtGVK0MhNe77HJzNT2TJ0So7AMHVc5E\npPiKfuZs69atNDU1MW/ePJ588slhX//oo49Yu3YtsViMp556Kq/3ytUjamVma1ZUKigUwjDzn63p\nbSXrQoA/XnuMkcYyecFNTWhFpBSKWjmzbZvNmzfz+9//nvr6elatWsWmTZtYsGBB9jUTJ07kxz/+\nMS+//HLe75Wrhw6n+zO/yWZtBdzcmH/lTOHMn5GGnnu8r6nPmYiUQlErZ62trcydO5fGxkYsy+LB\nBx/klVdeueQ1kydPprm5Gcuy8n6vXD3U1sGfQsY3WeHMb18FYn9SdoozZ6DznIXrXv41Gt8kIqVU\n1HDW3t7OzJkzsx83NDTQ3t5e9PdK6aly5k92QkAe45sqopnZmjfO1jP3YzCZ5IMP4O3WEbY1Nfhc\nREqoqNuahmGU5L1PPPFE9vvr169n/fr1Bf+8UhhVzvzJztbM50KAZTJrFpiGnrkfg8lM4IqaFlf6\nY2f/HyO0vgPW/CQsLOHiROSat23bNrZt25bXe4oazurr62lra8t+3NbWRkNDQ+DvvTicSXmEyMzW\njGGzeTVX/EtOLi+7rZlH5eziaqXrur7+MTSW9cczW5VR68qVMztlMTAAfYOqnIlIfj5bNPrBD34w\n6nuKuq3Z3NzMoUOHOHr0KMlkki1btrBp06bLvtb9zGGPfN4r5Rc2TQYGoLffxlHbrbz1D2ZmazpO\n7uHMMIxsXy5vW1Ty5zWWjYav3ErDm7mp2ZoiUgpFrZyFw2GeffZZ7rnnHmzb5tFHH2XBggU899xz\nADz22GN0dHSwatUqenp6CIVCPPPMM+zfv5/q6urLvleuTqZhYhjguja2DXn0UhXg7Xdsdh+HVdUh\nVuVWXAYyz91xHWzXxkQPvRDeSKaRKmexSCa4JdKqnIlI8RW9Ce3GjRvZuHHjJZ977LHHst+fNm3a\nJduXo71Xrk5myCQUAsfJhDPJj9dINp8JAZB57iknpcqZH6EUkydD/eQrV86qVDkTkRLShAAJhFc5\nc1A4K4Q3IcBrLJurY0dMehMwsNImVlOMlV3/KmuSLFoEtzZeuXJWGfUqZwpnIlJ8CmcSCK9ylsIm\nnXYBHU7Ph1c5C+dxWxPgZLtJdzxzZm2CwllBsuObzCtXzubNjrBqFVTGtK0pIsWncCaBCBkhli0z\nAJeqaoWzfGW3NfOsnHmtN1JplSsL5fUuG2lCQE2VRVUVGKR0M1ZEiq7oszVl7KitDlNZCajvVt7C\nVma2ZiySZzgbuq2ZVDgrWC6Dz0NGiHAojItL2kmXamkiMkapciaB8Q6n266NxZX/opPhVjY7TO2B\nhvrCKmdpHfQrWC6DzyET3tJOmqSdHHELVETEL1XOJDDZpqiaEpC3QprQwoUzaqqcFe50Z5IzZ6C/\nd+TApeHnIlIqCmcSmOwIJ83XzFsh45sA5sw2mTMHKqr0zAt15GiKDz6AtqOjVM6GqmUafi4ixaZw\nJoFR5axwhVbOGmeZzJwJFZV65oXyepd57TIux3Vhx5sRWlogqUa0IlJkOnMmgdn/gUnbOTg2w2b8\nTeVezbXFq5x545hypYHz/nld/70RTZdjGBAfsIjb0J9Q5UxEikuVMwlMMpGZrzkwqKCQr74Bm0QC\njDxHMF08/FwK4zWWHSmcAUTDma8PxFU5E5HiUuVMAnPhcLpaDeRrx06bgRSk1phQkfv7vMqZxjcV\nztumrIyNfCEgFo5A4sIsThGRYlE4k8B44Syltg558ypfeTeh1Tk/X1zXpao2iWvChNqRK2cRKxPe\nBhKqnIlIcSmcSWBMU93qC+WFq0ie4az9hMnhNjg5wWbRlGKs7PpmuzaNjS6mYTJ1ysinPGLetqYq\nZyJSZApnEhhVzgrnVc4iVn7h7PQpkxMn4MwcPfNCeG0xRmtAC/An6yxiJ6F2gipnIlJcCmcSmCWL\nTKwpcONsBYV8pG0nO68xbOZ3Ryccyrxe1crCeHM1c+n4P7E2QsV5cFDlTESKS+FMAlNdaVJVBeGI\ngkI+0rZDLAahPG9qAoRNjW/yI5/KmRfgvEAnIlIsCmcSGPXcKowRsrnlFoiaPsKZnnlBvFFMIw09\n93gBThMCRKTYFM4kMOq5VZhCRzfBhXCmc36FGUgkOXUKYvEcKmchjW8SkdJQOJPAqHJWmEJHNwHM\najCZMwBTp+mZF6KnP8mHH0J3zII/Hfm1GnwuIqWiCQESGFXOClPo6CaAGdMyszUnTNQzL8TgyiWL\n0gAAIABJREFUUM8yr/v/SA4dsGhpgfc+UOVMRIpL4UwCc/SISWsrvLNPQSEf2cpZAduaXiDWhIDC\neHMyo+HRz5wZToR4HPoGVTkTkeLStqYExk5lZmv29Suc5SORshkchHQBFwKyW8mqVhYkWzmzRq+c\nVUQzAS6eUuVMRIpL4UwCo8PphTl91mbXLpgxzoR1+b1X45v88br9x6zRK2eVkaHbmmlVzkSkuLSt\nKYGx1HOrIF4D2XAh25qqnPkSjqaYMgXqp+VQORsajJ5Iq3ImIsWlypkExgpnfjmp51Z+kunCz5yd\nOxvi8GGoHbRhftAru/6Nq0uycCGsnD165awqqsqZiJSGwpkERt3qC5NOZw7zhws4c9bTnZmtOdXQ\nMy+E1xYjlwkBs+otVq8Gy0pmx22JiBSDwpkEpnGWyapVcHODgkI+vDN6hWxrWmFNCPAjn/FNsahJ\nTZWJ7drYrk3Y0B+fIlIcOnMmgamMZWZrRmMKCnkxbGKxzPPLl875+ZPP4HPQCCcRKQ39008Co5uD\nhZnRkJmtuXBy/uEsEtYz9yOfyhlkQtxgejAT6nLLcyIieVPlTAKjm4OF8YJVIRMCLA0+96XjTIrT\np2GgT5UzEbl6KJxJYFQ5K0x28HkBszUnTjCZMwduaNSEgEIcOpJk/34405Fj5Wxo+LnmawbvZO9J\n9pzcg+u65V6KSNlpW1MC41XO0k66zCu5tvgZ31Q3LjNbc1qNAnEhkqlMyKqM5lY5a9kRob0PvnpT\nkhk1xVzZ2PPbg7/lZO9J6mvqmV4zvdzLESkrVc4kMN1dmdma23coKOTDT+VMW8n+xIcaylZGc6uc\npRMWySQMJFQ5C9q5gXMAdA52lnklIuWnypkEJkRmtmZvSEEhHwODmdmadrrwwefaSi6M11C2Mpbf\nmbP+uM6cBSmejpOwEwB0xbvKvBqR8lPlTAKTvTmoKk5e9n+Uma25/4P8w5l3iUDPPH+u62YP9lfl\nWDmLDs3g9GZySjAuDmQKZyKqnEmA1BC1MGk7c5jfKmBCQHZbU888b7ZrM36CQ2VliJrq3J59zMqE\nuEFtawZK4UzkUgpnEhj13CpMdkJAAeEsnTQ5fBiqLBvWBr2y61vKTjFnDsTCEWpyPNwfU+WsKC4O\nZN2J7jKuROTqoHAmgQmr51ZBvDBbSOUMNzNbs8LSM8+Xt6XptcfIxe1rI7gNMG2GKmdB6op3cf48\n9PSAdWOXZpfKmKdwJoGpqsjM1hxfoaCQDz+VM1UrC5fP0HNPbbVFNAo2qpwFqTvezbvvZr5fXZ1k\nMD1IpVVZ3kWJlJEuBEhgrLBmaxbCDGdma8ai+f92jFi6hFGobOUsx7macCHIqQltsM4PbWsahIjH\nde5MROFMApNt66CgkJdFi4dmazYVMPg8PHRb03FwHHVWz4c39DyfypkX5DS+KVinuzNhrIYZpFKZ\nSprIWKZtTQmMbg4Wxl8T2hAhI4TjOtiOSyikczq56ulP0tEB1ckCKme2KmdBSaQTxO1B6qeHmWXN\nwJp1QpUzGfMUziQwqpwVxs/4JoCb5pqkXQfHtVExPHed3Sk++gjSdRHYkNt7vMsDqpwFpyveRSQC\na5fXsWJ6Ha99rG1NEf1JLoG5uHKm4cW581M5A2i8waShAVxDoTgfXpf/aDj3bc3jRyPs3Al79qly\nFhSvdUZdrI66WB2gcCaiypkEJmSE2LfPIJFw6V/lUl2lLbZc+K2caYRTYeJDQ8+j4dy3NcNESCSg\nf1CVs6B4QUzhTOQCVc4kUMnBMIODkEgqKOSqb8AmHgfXKSycaYRTYbxGsrFI7pWzimgmyCXSqpwF\nxQtitdHabDhTI1oZ6xTOJFBe9SeZVlDI1e49Di0tcOrTAitnuohRkHgyE7C8rv+5qIplglwircpZ\nUC6unFWEK4iYEQZTceLpeJlXJlI+RQ9nW7dupampiXnz5vHkk09e9jXf/e53mTdvHsuWLWPv3r3Z\nzzc2NrJ06VKWL1/O6tWri71UCYDCWf68iQrebNJ86SJGYSIVSaZOhfpp+VfOdFszOGf6ujh0CI4d\nrGPHDoNdf6jlxAltbcrYVtRwZts2mzdvZuvWrezfv59f/OIXfPjhh5e85tVXX+Xw4cMcOnSIn/zk\nJzz++OPZrxmGwbZt29i7dy+tra3FXKoEJDwUzlIKZznzKl6RAsPZsaMmhw5BV7eeeT4mTk6xYAEs\nWZh75axalbPAnTrfTXs7HNhXh2mCmapjcFDhTMa2ooaz1tZW5s6dS2NjI5Zl8eCDD/LKK69c8prf\n/OY3PPzwwwCsWbOGrq4uTp06lf26bv1dW0KGKmf58ipnhYxvAvj0pEl7O/T06Znnw2uHkU8T2okT\nTG5dG2L5CkfbyAFI2knO9fZjYDJ9YjXjx0MMhTORooaz9vZ2Zs6cmf24oaGB9vb2nF9jGAZ33XUX\nzc3NPP/888VcqgRk5XKT1athwkT9xZWrC4PPC/vtqGplYbwRTPkMPjdNGFcVwbLU6ywI3fFuBgch\nRi0TJhhMmJAJZ/G4pgTI2FbUVhqGkVsrhStVx7Zv386MGTM4c+YMd999N01NTaxbt27Y65544ons\n99evX8/69esLWa4EYFy1yaABhNLlXso1w4rYRKMQjfi7EJCynSCXdd0rpHIGmTAXJ07STlJhVRRj\naWNGV7xrKJzVMX481NVdCGedg6qcyfVh27ZtbNu2La/3FDWc1dfX09bWlv24ra2NhoaGEV9z4sQJ\n6uvrAZgxYwYAkydP5v7776e1tXXUcCblpZuD+Vu5yqYrDpMmFBbOvMpZ2tYzz0chg89Bw8+D1BXv\nIh7PBLIJE8CyYFJ1LfTDqS6FM7k+fLZo9IMf/GDU9xR1W7O5uZlDhw5x9OhRkskkW7ZsYdOmTZe8\nZtOmTbz44osAtLS0UFdXx9SpUxkYGKC3txeA/v5+XnvtNZYsWVLM5UoAdHMwf36b0Hpn1bStmZ/2\njhQdHZAczLNypuHngelOdFNfnxndNHVq5nPf+WYdd9wBCUPhTMauolbOwuEwzz77LPfccw+2bfPo\no4+yYMECnnvuOQAee+wx7r33Xl599VXmzp1LVVUVL7zwAgAdHR088MADAKTTaR566CE2bMhxAJ6U\njSpn+fM7vmnOjSbJahhXp2eej4OHk7Sdg64lFkzP/X0afh6crngXkybB+gV1jBuX+dzU8VVYZpjB\n9CCJdIJoOFreRYqUQdHHN23cuJGNGzde8rnHHnvsko+fffbZYe+bPXs2+/btK+raJHiqnOXPb+Vs\nZkOI3ihU1+iZ58Pr8u81ls1Va4vFx53wpzOS3FBXjJWNHRdPB/AYhkFdrI6zA2fpTnQzJTylXMsT\nKRtNCJBA7f/AZNcuOHhIQSFXjps5yF9o5UyBuDDetmRlNL8zZ24qQioFAwlVzvy6eDrAxTRjU8Y6\nDT6XQKUSJoODMJhQUMhVb78NxoUecfnSVnJhkkOVs+qK/CpnkaFB6d5sTilM2knTl+wjZISoidZc\n8jWvkqZwJmOVwpkESofT85O2HVp2ORiGgbEht9Yzn6XKWf5sxyZl24BBRTS/UByzMmFuUJUzX7w+\nZrXRWkLGpZs4tdE6kkk4r3YaMkYpnEmgsuFMbR1ykrYvbGmGQgWGM1XO8pZyUkyZAtgRotH8nrs3\nKH0gqcqZH13xLo4ehW6jjrNzYdKkC1/7zS/r2DMATRMVzmRsUjiTQGW71Suc5SSZ8i4DFH7882R7\nZrbmopjNmobRXy+Z82bz5kFNJNPtPx+xSKZyFk+qcuZHV7yLM2cg3l/LZ3PuhKo6GICO85oSIGOT\nwpkEylLlLC/eDNJCz5sBdJ7NzNY8PU0TAnLltcHItwEtwC3NEfonwaxGVc78OD+YaUA7eWg6wMXq\nJ9TBGejoVuVMxiaFMwnUwgUm3dUw/yaFs1x44azQNhqgreRCFDq6CaCmyiISAQdVzvw41d2FbWfO\nl1V8ZgrW9InVGJh09vaTtJMF/X8SuZaplYYEqrrSpLISwhEFhVykbZuKCqiqKDycedVKjW/KXSFD\nzz1eUNCEAH8+HdqynFo7vFncxIkGMWo1AF3GLFXOJFA6nJ6fqmqbNWtggo9w5lXO0nrmOfNTOfMC\nnWZr+tMxNDtzxoTh4Wz8eKgy63DdTrriXUyumlzq5YmUlcKZBCocyvySUluH3Pgd3QQQNjMFcFXO\ncne+O8XJkzDeVuWsHGzHJlLTy+JFButW1gz7emMj/K8/q2NvR2b+pshYo21NCVS255aqODnJTgfw\nceasfrrJ3LlQ36BnnquOs0kOHoSPDxVQORu6RKDZmoXrTnQTibjMaRjHnNnDf+2HQjC+QlMCZOxS\nOJNAZbc1VTnLSXaupo/K2dTJJg0NMHGynnmuvAaysXD+lbNTJyPs2AE7dqlyVqgrjW26mKYEyFim\ncCaBajuWma3ZukdBIRfZbU0flTOd88vf4FBjrahVWOUsmdRsTT+8Q/4jhTPN15SxTOFMAuXYmdma\n/QMKCrkYTNgMDkIq6SOcaXxT3rxwFsu3Ay1QFcsEukRalbNC5VI5UziTsUwXAiRQVlg3B/Nxot1m\n1y7onhKCNYX9GKqc5c/r7l8Ryb9yVhnNBLqELgQUzAtctbHaK76myqohmQhxeqCPtJPOXjYSGQtU\nOZNAqedWfoJoQutVzrzLBTK6ynFJpk+HGVPzr5xVVwzd1kxrW7NQB9u62LsXjnx45crZ4UMh3tlZ\ny+HD6nUmY4/CmQTqQuUsXeaVXBu8rv5er7JCdHeZHD4MBw4rEOdqyrQU8+fD/Ln5V85iERMwSNu2\nqpUFaj/XRXc32P1XDmfjx0OMWgYHtbUpY4/qxBKobDhT5SwnqaHKWdhH5Sw+YHLiBMTieua58nqU\nFTJbMxYz+JPbI9gkSDkpX1XPschxHTr7egGDGRPHXfF1mXBWR3ccOge7mFO6JYqUnSpnEqgZ00xW\nr4YVqxQUcpEOoHLmBWJVcXLn9SgrZEKAYUBNpUU4rEa0hehJ9NA/4BClhimTrlwfiEQyvc5cFz7t\nVOVMxhaFMwlURTQzWzOi2Zo5MUybWAwqYwpnpZStnBUwWxMuhDo1os1fV7yLeByi1DJ+/Miv9eZu\ntp/TmTMZW7StKYFSW4f83Hijwy1paJ7hZ/D50PgmhbOceXMxC6mcwYVQp8pZ/joHMuGshjrqrnzk\nDIBZU+qo7oOepCpnMrYonEmg1NYhP0E0oVX7kvwdO5Hk7ACkk4WFs2zlTMPP89ad6KK5GZbU1jFa\nm7n7N9ZyfBdYUYUzGVsUziRQqpzlJ4jxTeNqMrM1J1bpmefqwKEUZ/sgfqsFk/J/v4afF64n0U1V\nFSyaPUrZDBgXHYeBQW+iF9uxdflCxgydOZNAqXKWnyAqZ9WVmdma06bpmefKayDrdfvP19u7LbZv\nhyPHVDnLVy7TATxmyGRcdBwuLt0JnTuTsUPhTAKViJu0tsL2HQoKuQiicqZqZf68g/xVscIuBBhO\nhHQa+uOqnOUrl+kAF/NCnBrRyliicCaBMg2TgQHo02zNnPQPDs3WTBX+W1HVyvw4rkMynQYMKmOF\nnezwZnLGU6qc5cNxnWwFrDaaXzhTI1oZSxTOJFCRsDdKSEEhF+/+MTNb8+NDGt9UKsl0CscBE4tI\nxCjox4hame3QgYQqZ/noTfTiuA7VkeqcGwCH03V0dsKn5xXOZOzQhQAJVMTSzcF8BNGENls5UyDO\nSTyVpL4eokYEo7BsdqFyllTlLB9d8W5aWmBqRR2pVYx6WxPgg3dqee8IzKnqgoXFX6PI1UDhTALl\nDT63XRvXpeC//MYKL5xZPsKZQYjDh8F1bZzbXUIhPfSROEaKefNgfIHnzQAqIpnK2WBSlbN8dHRl\nepyl7TrCOf7tM318HRzJvFdkrFA4k0BZYRPDyGxrOo6LaSoojMSrMHq9ygphhkKcbA/huA6O6xJC\nz3wkXvuLQhvQAqy42eJ0Ndw0S5WzfLSdyQSsSTW1Of/DrWFS5szZ6R5dCJCxQ+FMAhUyQqxZHcLF\nAcMFBYURBVE5g8xzd1yHZMombOoo6Uj8DD33VMciWBbYripn+Tg5NCPTG8uUi4bJ4wCDzv4eHNch\nZOjXd1Be+/g1Dnce5hvLvkF1pLrcy5GL6Fe5BK6myqSiQpcCcmFFHWIxiEX9hTPv3FkyrWc+Gj9D\nzz1esFMT2vyc6spUv2ZMyD2cTZ4YJkoNA4MOPYmeYi1tzDk3cI6dbTs53X+alhMt5V6OfIbCmQRO\nB9Rzt3SZzS23wNzZPsPZ0I3NZErPfDR+h56DBp8X6nRPpnLWMDH3cFZbC9Mn1FJXB+cHde4sKDva\nduDiArC7fTfxdLzMK5KLKZxJ4LJNUXVjc1RBNKEFVc7ycfpcivZ2OH/OR+VMg8/z5rouDfO6WLMG\nmpfk1uMMwDThvrvqWLAgM5dT/OtN9LKvYx8GBlOqppCwE+xu313uZclFFM4kcKqc5S6I8U0A8+eZ\nzJsH4Yie+WjaO5IcOgRtRwOonGnwec76kn242EwcV0ldTX7BWFMCgrXzxE5s12bB5AXcM+ceHAd2\nnmhRJfgqonAmgVPlLHfeM/J7yPmGmSb19RC29MxHMzjUmyxmFV456+rMzNbc9qYqZ7nKZ6bmZ2lK\nQHAGU4PsObkHgNtn3U7y1Gw+2jOdYyf72dexr8yrE4/CmQRu7zsmLS1w+qyCwmiylbOAtjU1JWB0\nXm+yWKTwylnMyszW1Pim3HljmxTOymv3yd3EU0nmjJ/DjJoZ9PUZTBq4nU8+ge3Hd+jPkKuEwpkE\nLpkwicdhMJEu91Kuer39mdmauMFcCFC1cnSJlP/KWeVQA9tEWpWzXPmpnHlD0hXO/EnZKf7wSQst\nLUDb7TgOrFgB8ycsgMGJfHjkPB+c/qDcyxQUzqQIwkNVnJStoDCaXa2Z2Zrd54OpnOmc3+i8ypnX\n5b8Q1bHMe5M6o5OzcwNduG5h4azKrOXsWfjoWLcqOz7s7djLRx8PEE3W43Y2EgplLlzcfVeIWdzG\n0aOw7ch2XNct91LHPIUzCZwXFFK6OTiqICYEgCpn+aibkGLGDJg22cf4pmgYMEjZaWxHYSEXb7Z2\nsX07fHok95uanhAWB9+v5sABh95EXxFWd/2zHZvXD7xFezvcYNzOhg0XGoQvWAAr6pdCsoa3PzrF\noc5DZVypgMKZFEFY4SxnXpiK+AxnR4+GOHhQ5/xyMXVGkptugtk3FF45C4cNwiELXBhMqHqWizO9\nXdg2TKzOv3IWjcK4aB2OAyfOamuzEO+ffp93P+qmwp3E5xY3MW3aha8ZBvzphjCLa9dSUwPbj28v\n30IFUDiTItC2Zu68LRq/lbPTp0xOnoSubj3z0XjtL/w0oQX4/B0R1q0Dx9C5s9G4rsu5/syFgFlT\n8g9nAJOHQt3x0wpn+XJdl1fff4vTp6ExdDt33jl8rN4NN8D/+b9WUj81xvHu4xzvPl6GlYpH4UwC\nt3KFyZo1MG2GgsJogtrWDBsKxLkKYvA5QFXMwjQh7apyNpq+xAD9gynCVDBtUrSgH2PKuMx2aHun\nwlm+Dp47SFfqNLOmjuO+NUuou0I+rohEWV2/GlD1rNwUziRw3mzNkKmgMJpozCYWg6jlM5yZ2krO\nlddo08/gc7gQ7jQlYHRtZzOXAWqjdRR6D2Pa+Eyi6DivcJYP13V58/ibVFTAd+67lT/dMPKfNWvq\n12CFLA6eO8ipvlMlWqV8lsKZBC57c1CH00e1sjkzW7Oqwmc401ZyzoKqnHnhTl3VR3eyswvDgEk1\n+V8G8MxrqGPaNLBqNCUgH8e6j3Gi5wQV4QpWTF+BMXxH8xJVkSpWTF8BqHpWTgpnErjszUG1dRiV\n94z8TgjIVs4Uzkb1ybEUJ0+Ck1blrFQq6rq44w6493OFnTcDWDa/jqYmqByvylk+vIC1pmFNzv8g\nWTtzLa4T4vV336dz4HwxlydXoHAmgVPlLDeu62YvBPgNZzc2ZmZrTp6stg6j+ehQkoMHwXB8Vs6G\nLhRovubouhPdGAZMrS08nHmNaLsT3erDlaOOvg4Odx4mYkayZ8lyURut49N3l/DRAZdf7dpRxBXK\nlRQ9nG3dupWmpibmzZvHk08+ednXfPe732XevHksW7aMvXv35vVeKb1t27aN+HVVznJz8egmY5S9\nhtGeecOMzGzNcXV65qPxKl2V0ZErZ6M98/f2RvjDH+CDj1Q5G02u0wFGeuYRM0KlVUnaSdOXVK+z\nXGxp2c7AAKycvpJKq/Kyr7ncMzcM+NKK2wD47Z699MT1vEutqOHMtm02b97M1q1b2b9/P7/4xS/4\n8MMPL3nNq6++yuHDhzl06BA/+clPePzxx3N+r5THaH9pffRhZrbmBx8qKIzEqyx6lcaR5ByIVa0c\nke04pOzMWDG/4SxkWDgODCQUzkYTRDi7+P0a4zS69s5OfrvrA/bsNpkbW3vF113pmW+4bQqzKufT\n25/mP/6/XUVapVxJuJg/eGtrK3PnzqWxsRGABx98kFdeeYUFCxZkX/Ob3/yGhx9+GIA1a9bQ1dVF\nR0cHR44cGfW9cnVKpzKzNY+fPs87h04SDsOkScNfl0rBuXPDPz9WXh9PJzh7FibV+bsMABcC3vn4\ned795CSXO3o2aVJmbZ915gxj5vUD8Uwws0wL0xzlZPQoKoZmcx4/e473j51kwoThr0kk4PxljuxE\nIoyp17ef68KKQW208AsBkAlnxzpP8vbHxzhTc+nvm/HjM81qP6uzE5KXyc/X++v/n10tpFIuS6cs\nZXb9uOEvHEU4DP/rT9bxf353gJd2t7Kh+SZikUufuW1nfv99lmnC5MnDPz8WXm8aJlOrpw5/UZ6K\nGs7a29uZOXNm9uOGhgZ27do16mva29s5efLkqO+Vq5NlZn5ZvXGwlTcOtlJZCasvc9yhvx927x7+\n+bH2+ppoGO4a/vl8eJWz1vZWWlpaiceHv+aWWyAWG/75lhbGzOvTmWzm+6YmXJjN+fqHO9n96U5u\nvnn4a7q6YN++4Z+vq2PMvX7Nyiix8GX+B+bBGaijvR3eeuv3w752881ctn/X3r3QfZkLnmPj9Qbf\nvue2UW9oXsldqxv4+Y5GTg4c5f/e+9Nh/9hJJGDnzuHvi0Tg1luHf34svL4mUsP/vvV/D39Rvtwi\n+vWvf+1+61vfyn78s5/9zN28efMlr/niF7/obt++PfvxnXfe6e7Zsyen97qu686ZM8cF9E3f9E3f\n9E3f9E3frvpvc+bMGTU/FbVyVl9fT1tbW/bjtrY2GhoaRnzNiRMnaGhoIJVKjfpegMOHDxdh5SIi\nIiLlUdQLAc3NzRw6dIijR4+STCbZsmULmzZtuuQ1mzZt4sUXXwSgpaWFuro6pk6dmtN7RURERK43\nRa2chcNhnn32We655x5s2+bRRx9lwYIFPPfccwA89thj3Hvvvbz66qvMnTuXqqoqXnjhhRHfKyIi\nInI9M1xX3fxERERErhbXxYSAX/3qVyxatAjTNHnnnXfKvZzrmhoDl9Y3v/lNpk6dypIlS8q9lDGj\nra2Nz33ucyxatIjFixfzT//0T+Ve0nUvHo+zZs0abr75ZhYuXMj3vve9ci9pzLBtm+XLl3PfffeV\neyljQmNjI0uXLmX58uWsvty1/iHXRThbsmQJL730EnfccUe5l3JdU2Pg0nvkkUfYunVruZcxpliW\nxdNPP80HH3xAS0sL//zP/6xf50UWi8V444032LdvH++99x5vvPEG27dr6HYpPPPMMyxcuHDUKSUS\nDMMw2LZtG3v37qW1tfWKr7suwllTUxM33XRTuZdx3bu4qbBlWdnGwFI869atY/z48eVexpgybdo0\nbh5q4lVdXc2CBQs4efJkmVd1/auszIwXSiaT2LbNhMt1uZVAnThxgldffZVvfetbmldaQrk86+si\nnElpXKlhsMj16ujRo+zdu5c1a9aUeynXPcdxuPnmm5k6dSqf+9znWLhwYbmXdN37m7/5G/7hH/6B\nUEhRoFQMw+Cuu+6iubmZ559//oqvK+ptzSDdfffddHR0DPv8j370I+2Vl4jK3jKW9PX18ZWvfIVn\nnnmG6urqci/nuhcKhdi3bx/d3d3cc889bNu2jfXr15d7Wdet3/72t0yZMoXly5ePOtNUgvPWW28x\nffp0zpw5w913301TUxPr1q0b9rprJpy9/vrr5V7CmJdLU2GR60EqleLLX/4yf/7nf86XvvSlci9n\nTKmtreULX/gCe/bsUTgroh07dvCb3/yGV199lXg8Tk9PD9/4xjeyfUelOKZPnw7A5MmTuf/++2lt\nbb1sOLvuapnaNy8eNQaWscB1XR599FEWLlzIX//1X5d7OWPC2bNn6erqAmBwcJDXX3+d5cuXl3lV\n17cf/ehHtLW1ceTIEf7zP/+Tz3/+8wpmRTYwMEBvby8A/f39vPbaa1e8iX9dhLOXXnqJmTNn0tLS\nwhe+8AU2btxY7iVdly5uDLxw4UK+9rWvqTFwkX3961/n1ltv5eDBg8ycOTPbpFmK56233uLnP/85\nb7zxBsuXL2f58uW6MVtkn376KZ///Oe5+eabWbNmDffddx933nlnuZc1pujYSvGdOnWKdevWZX+d\nf/GLX2TDhg2Xfa2a0IqIiIhcRa6LypmIiIjI9ULhTEREROQqonAmIiIichVROBMRERG5iiiciYiI\niFxFFM5EREREriIKZyJyTWpsbKSzs7Pcy7jEyZMn+bM/+7MRX7Nt27Yrjpy7Gv+bRKT0FM5EpKRc\n1w1kksfV1jQznU4zY8YMfvWrXxX8Y1xt/00iUh4KZyJSdEePHmX+/Pk8/PDDLFmyhLa2Nr7zne+w\natUqFi9ezBNPPJF9bWNjI0888QQrV65k6dKlHDhwAIBz586xYcMGFi9ezLe//e1LAt4//uM/smTJ\nEpYsWcIzzzyT/Tmbmpp45JFHmD9/Pg899BCvvfYat912GzfddBO7d+8ets61a9eyf/+xjdMQAAAF\nSUlEQVT+7Mfr16/nnXfeYffu3dx6662sWLGC2267jYMHDwLwr//6r2zatIk777yTu+++m2PHjrF4\n8eLsz3/HHXewcuVKVq5cyc6dO7M/bk9PD1/84hdpamri8ccfv2xY/fnPf86aNWtYvnw5f/mXf4nj\nOJd8vbu7m6ampuxavv71r/PTn/40r/8vInKVckVEiuzIkSNuKBRyd+3alf1cZ2en67qum06n3fXr\n17t//OMfXdd13cbGRvfZZ591Xdd1/+Vf/sX91re+5bqu6/7VX/2V+/d///eu67ruf//3f7uGYbjn\nzp1z9+zZ4y5ZssQdGBhw+/r63EWLFrl79+51jxw54obDYff99993HcdxV65c6X7zm990Xdd1X3nl\nFfdLX/rSsHU+/fTT7ve//33XdV335MmT7vz5813Xdd2enh43nU67ruu6r7/+uvvlL3/ZdV3XfeGF\nF9yGhgb3/Pnz2f/OxYsXu67rugMDA248Hndd13UPHjzoNjc3u67rum+88YYbi8XcI0eOuLZtu3ff\nfbf761//Ovvffu7cOXf//v3ufffdl/05H3/8cffFF18ctt7XX3/dXbt2rfuLX/zC3bhxYz7/S0Tk\nKhYudzgUkbHhhhtuYPXq1dmPt2zZwvPPP086nebTTz9l//792arTAw88AMCKFSv4r//6LwDefPNN\nXnrpJQDuvfdexo8fj+u6bN++nQceeICKiorse9988002bdrEjTfeyKJFiwBYtGgRd911FwCLFy/m\n6NGjw9b41a9+lQ0bNvDEE0/wy1/+Mnt+rKuri2984xscPnwYwzBIp9PZ92zYsIG6urphP1YymWTz\n5s28++67mKbJoUOHsl9bvXo1jY2NQKbitX37dr785S8DmW3f//mf/+Htt9+mubkZyAwDnzZt2rCf\n46677uKXv/wlmzdv5r333hvx+YvItUPhTERKoqqqKvv9I0eO8NRTT7Fnzx5qa2t55JFHiMfj2a9H\no1EATNO8JAi5l9n+Mwzjks+7rps9u+X9OAChUIhIJJL9/sU/rmfGjBlMnDiRP/7xj/zyl7/kueee\nA+Dv/u7vuPPOO3nppZc4duwY69evz76nsrLysv+9Tz/9NNOnT+dnP/sZtm0Ti8UuWfPF6w2Fhp8w\nefjhh/nRj3502R/b4zgOH374IVVVVXR2djJjxowRXy8i1wadORORkuvp6aGqqopx48Zx6tQpfve7\n3436njvuuIP/+I//AOB3v/sd58+fxzAM1q1bx8svv8zg4CD9/f28/PLLrFu3ruBLB1/72td48skn\n6enpyVbyenp6ssHnhRdeyPm/0at2vfjii9i2nf1aa2srR48exXEctmzZwu233579mmEY3Hnnnfz6\n17/mzJkzAHR2dnL8+PFhP8fTTz/NokWL+Pd//3ceeeSRywZOEbn2KJyJSElcXC1atmwZy5cvp6mp\niYceeuiScPLZ93jv+/73v88f/vAHFi9ezEsvvcQNN9wAwPLly/mLv/gLVq9ezS233MK3v/1tli1b\nNuzn/OzHV7oZ+ZWvfIUtW7bw1a9+Nfu5v/3bv+V73/seK1aswLbt7HsvXt9nf9zvfOc7/Nu//Rs3\n33wzBw4coLq6Ovv1VatWsXnzZhYuXMicOXO4//77L3nvggUL+OEPf8iGDRtYtmwZGzZsoKOj45Kf\n58CBA/z0pz/lqaee4vbbb+eOO+7ghz/84WX/m0Tk2mK4hf7zUkREREQCp8qZiIiIyFVE4UxERETk\nKqJwJiIiInIVUTgTERERuYoonImIiIhcRRTORERERK4iCmciIiIiV5H/H6dX4rAHMyDYAAAAAElF\nTkSuQmCC\n", - "text": [ - "" - ] - } - ], - "prompt_number": 60 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -} \ No newline at end of file diff --git a/parameter_estimation_techniques/.ipynb_checkpoints/maximum_likelihood_estimate-checkpoint.ipynb b/parameter_estimation_techniques/.ipynb_checkpoints/maximum_likelihood_estimate-checkpoint.ipynb deleted file mode 100644 index 6c95d2a..0000000 --- a/parameter_estimation_techniques/.ipynb_checkpoints/maximum_likelihood_estimate-checkpoint.ipynb +++ /dev/null @@ -1,889 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:63283541f64bcfc0e839e859a18aaf406ea69bf352d52c6ff78c60b4bb942089" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Sebastian Raschka \n", - "last updated: 04/14/2014 \n", - "\n", - "[Link to this IPython Notebook on GitHub](https://github.com/rasbt/pattern_classification/blob/master/stat_pattern_class/supervised/parametric/parameter_estimation/maximum_likelihood_estimate.ipynb)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "I am really looking forward to your comments and suggestions to improve and extend this tutorial! Just send me a quick note \n", - "via Twitter: [@rasbt](https://twitter.com/rasbt) \n", - "or Email: [bluewoodtree@gmail.com](mailto:bluewoodtree@gmail.com)\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#Maximum Likelihood Estimation for Statistical Pattern Classification" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Sections\n", - "\n", - "- [Introduction](#introduction)\n", - "- [1) A simple case where the parameters are known - no MLE required](#one)\n", - " - [Generating some sample data](#sample_data)\n", - " - [Plotting the sample data](#plotting_data)\n", - " - [Defining the objective function and decision rule](#objective_function)\n", - " - [Implementing the discriminant function](#discriminant_functions)\n", - " - [Implementing the decision rule (classifier)](#decision_rule)\n", - " - [Classifying our sample data](#classifying)\n", - " - [Drawing the confusion matrix and calculating the empirical error](#confusion_matrix)\n", - "- [2) Assuming that the parameters are unknown - using MLE](#two)\n", - " - [About the Maximum Likelihood Estimate (MLE)](#about_mle)\n", - " - [MLE of the mean vector $\\pmb \\mu$](#mle_mu)\n", - " - [MLE of the covariance matrix $\\pmb \\Sigma$](#mle_cov)\n", - " - [Classification using our estimated parameters](#classifying_mle)\n", - " - [Conclusion](#conclusion)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "# Introduction" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Popular applications for Maximum Likelihood Estimates are the typical statistical pattern classification tasks, and in the past, I posted some [examples](https://github.com/rasbt/pattern_classification#param) using Bayes' classifiers for which the **probabilistic models and parameters were known**. In those cases, the design of the classifier was rather easy, however, in real applications, we are rarely given this information; this is where the Maximum Likelihood Estimate comes into play." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "However, the Maximum Likelihood Estimate still **requires partial knowledge** about the problem: We have to assume that the **model of the class conditional densities is known** (e.g., that the data follows typical Gaussian distribution). In contrast, non-parametric approaches like the Parzen-window technqiue do not require prior information about the distribution of the data (I will discuss this technique in more detail in a future article, the IPython notebook is already in preparation). " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**To summarize the problem:** Using MLE, we want to estimate the values of the parameters of a given distribution for the class-conditional densities, for example, the *mean* and *variance* assuming that the class-conditional densities are *normal* distributed (Gaussian) with $p(\\pmb x \\; | \\; \\omega_i) \\sim N(\\mu, \\sigma^2)$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To illustrate the problem with an example, we will first take a look at a case where we already know the parameters, and then we will use the same dataset and estimate the parameters. This will give us some idea about the performance of the classifier using the estimated parameters. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "# 1) A simple case where the parameters are known - no MLE required" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Imagine that we want to classify data consisting of two-dimensional patterns, $\\pmb{x} = [x_1, x_2]^t$ that could belong to 1 out of 3 classes $\\omega_1,\\omega_2,\\omega_3$. \n", - "\n", - "Let's assume the following information about the model and the parameters are known:\n", - "\n", - "####model: continuous univariate normal (Gaussian) model for the class-conditional densities\n", - "\n", - "\n", - "$ p(\\pmb x | \\omega_j) \\sim N(\\pmb \\mu|\\Sigma) $\n", - "\n", - "$ p(\\pmb x | \\omega_j) \\sim \\frac{1}{(2\\pi)^{d/2} \\; |\\Sigma|^{1/2}} exp \\bigg[ -\\frac{1}{2}(\\pmb x - \\pmb \\mu)^t \\Sigma^{-1}(\\pmb x - \\pmb \\mu) \\bigg]$\n", - "\n", - "$p([x_1, x_2]^t |\\omega_1) \u223c N([0,0]^t,3I), \\\\\n", - "p([x_1, x_2]^t |\\omega_2) \u223c N([9,0]^t,3I), \\\\\n", - "p([x_1, x_2]^t |\\omega_3) \u223c N([6,6]^t,4I),$\n", - "\n", - "#### Means of the sample distributions for 2-dimensional features:\n", - "\n", - "$ \\pmb{\\mu}_{\\,1} = \\bigg[ \n", - "\\begin{array}{c}\n", - "0 \\\\\n", - "0 \\\\\n", - "\\end{array} \\bigg] $,\n", - "$ \\; \\pmb{\\mu}_{\\,2} = \\bigg[ \n", - "\\begin{array}{c}\n", - "9 \\\\\n", - "0 \\\\\n", - "\\end{array} \\bigg] $,\n", - "$ \\; \\pmb{\\mu}_{\\,3} = \\bigg[ \n", - "\\begin{array}{c}\n", - "6 \\\\\n", - "6 \\\\\n", - "\\end{array} \\bigg] $\n", - "\n", - "\n", - "#### Covariance matrices for the statistically independend and identically distributed ('i.i.d') features: \n", - "\n", - "$ \\Sigma_i = \\bigg[ \n", - "\\begin{array}{cc}\n", - "\\sigma_{11}^2 & \\sigma_{12}^2\\\\\n", - "\\sigma_{21}^2 & \\sigma_{22}^2 \\\\\n", - "\\end{array} \\bigg] \\\\ \n", - "\\Sigma_1 = \\bigg[ \n", - "\\begin{array}{cc}\n", - "3 & 0\\\\\n", - "0 & 3 \\\\\n", - "\\end{array} \\bigg] \\\\\n", - "\\Sigma_2 = \\bigg[ \n", - "\\begin{array}{cc}\n", - "3 & 0\\\\\n", - "0 & 3 \\\\\n", - "\\end{array} \\bigg] \\\\\n", - "\\Sigma_3 = \\bigg[ \n", - "\\begin{array}{cc}\n", - "4 & 0\\\\\n", - "0 & 4 \\\\\n", - "\\end{array} \\bigg] \\\\$\n", - "\n", - "#### Equal prior probabilities\n", - "$P(\\omega_1\\; |\\; \\pmb x) \\; = \\; P(\\omega_2\\; |\\; \\pmb x) \\; = \\; P(\\omega_3\\; |\\; \\pmb x) \\; = \\frac{1}{3}$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "## Generating some sample data\n", - "Given those information, let us draw some random data from a Gaussian distribution." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import numpy as np\n", - "\n", - "np.random.seed(123456)\n", - "\n", - "# Generate 100 random patterns for class1\n", - "mu_vec1 = np.array([[0],[0]])\n", - "cov_mat1 = np.array([[3,0],[0,3]])\n", - "x1_samples = np.random.multivariate_normal(mu_vec1.ravel(), cov_mat1, 100)\n", - "\n", - "# Generate 100 random patterns for class2\n", - "mu_vec2 = np.array([[9],[0]])\n", - "cov_mat2 = np.array([[3,0],[0,3]])\n", - "x2_samples = np.random.multivariate_normal(mu_vec2.ravel(), cov_mat2, 100)\n", - "\n", - "# Generate 100 random patterns for class3\n", - "mu_vec3 = np.array([[6],[6]])\n", - "cov_mat3 = np.array([[4,0],[0,4]])\n", - "x3_samples = np.random.multivariate_normal(mu_vec3.ravel(), cov_mat3, 100)" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 35 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "
\n", - "\n", - "## Plotting the sample data\n", - "To get an intuitive idea of how our data looks like, let us visualize it in a simple scatter plot." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%pylab inline\n", - "\n", - "import numpy as np\n", - "from matplotlib import pyplot as plt\n", - "\n", - "f, ax = plt.subplots(figsize=(7, 7))\n", - "ax.scatter(x1_samples[:,0], x1_samples[:,1], marker='o', color='green', s=40, alpha=0.5, label='$\\omega_1$')\n", - "ax.scatter(x2_samples[:,0], x2_samples[:,1], marker='s', color='blue', s=40, alpha=0.5, label='$\\omega_2$')\n", - "ax.scatter(x3_samples[:,0], x3_samples[:,1], marker='^', color='red', s=40, alpha=0.5, label='$\\omega_2$')\n", - "plt.legend(loc='upper right') \n", - "plt.title('Training Dataset', size=20)\n", - "plt.ylabel('$x_2$', size=20)\n", - "plt.xlabel('$x_1$', size=20)\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Populating the interactive namespace from numpy and matplotlib\n" - ] - }, - { - "output_type": "stream", - "stream": "stderr", - "text": [ - "WARNING: pylab import has clobbered these variables: ['f']\n", - "`%matplotlib` prevents importing * from pylab and numpy\n" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAcMAAAHPCAYAAAAvRLGlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd8VGX2/z93JmWSSQ9JJoUUIGAoSwcBlQACK4guZX+7\n6q6Cfd1dxbrWBdRVEHR13a+7rutSdFmVXhKBUEKRIgQILXQmpPfeJpm5vz+ONzOTzIRJMi0z5/16\n3VfIc9u5E71nPs9ziiCKogiGYRiGcWNkjjaAYRiGYRwNO0OGYRjG7WFnyDAMw7g97AwZhmEYt4ed\nIcMwDOP2sDNkGIZh3B52hgwDQCaTYdKkSd2+TnJyMmQy/t+KYXoa/H8t4xTIZLJObatXr7a6DYIg\nWOUa1riONUlPT2/3+SmVSkRFRWHixIl45ZVXcPr0aavdb/78+ZDJZLh586bVrmkrepKtjG3xcLQB\nDAMAixYtMnIioiji448/RlVVFRYuXIigoCCj44cPH27V+1+8eBG+vr7dvs6aNWvQ0NBgBYusT3x8\nPObPnw8A0Gg0KCkpQUZGBlasWIEVK1bgwQcfxOeffw6lUtnteznbF4KO6Em2MraDnSHjFCxatKjd\n2MqVK1FdXY2FCxciNjbWpvfv37+/Va7Tu3dvq1zHFsTHx+PPf/5zu/HMzEw8/PDDWLt2LcrLy5Ga\nmtrte4miiJ5S3Kon2crYDp4mZXoc0rpcc3Mz3n77bQwYMAAKhQILFiwAAFRXV2P58uWYPHkyYmJi\n4O3tjfDwcNx///04evSoyWuaWjNcvHgxZDIZ9u/fj/Xr12PMmDFQKpUIDQ3FAw88gPz8fLO2GSJN\nUy5ZsgSnT5/GzJkzERQUBKVSieTkZBw5csSkTQUFBViwYAHCw8Ph6+uL4cOHY82aNUbXswZDhw7F\n7t27ERYWhh07dmDLli1G+zdv3ozf/OY36N+/P/z8/ODn54dRo0bh008/bedEZDIZ1qxZAwBISEho\nnZZNSEhoPSYjIwPPPfcchg4ditDQUPj4+KB///546aWXUFlZ2c4+jUaDv/3tbxgxYgRCQkKgVCqR\nkJCAX/ziF9izZ0+74y9evIj58+ejd+/e8Pb2hkqlwkMPPYTLly932lbGfWBlyPRY5syZgxMnTmDG\njBmYM2cOwsPDAQAXLlzAm2++iYkTJ2LWrFkIDg5GdnY2tm7diu+//x7btm3D9OnT213P3HTZZ599\nhq1bt+L+++/HpEmTcPToUXz77bfIzMzE6dOn4eXlZdF1Tpw4gQ8++ADjx4/Hk08+iezsbGzYsAFT\npkzB6dOnjdRpcXExxo0bh5s3b2LixIkYP348CgoK8Mwzz2Dq1Kkd3qcrhIWF4amnnsK7776L//73\nv7j//vtb97322muQy+UYN24coqOjUVVVhT179uC5557D8ePHWx0KQAp/8+bNyMzMNJreNpzm/uKL\nL7B582YkJydj2rRp0Ol0OHHiBD766CN8//33OHbsGPz8/FqPnz9/Pr755hsMGTIEjzzyCHx8fJCX\nl4cffvgBO3fuxJQpU1qP3bFjB+bMmQOtVotZs2ahX79+yMnJwcaNG5GSkoJ9+/a1TrFbYivjRogM\n46TExcWJMplMzM7ONhqfOHGiKAiCOHToULGsrKzdeVVVVSbHc3NzxaioKDEpKandPkEQxEmTJhmN\nLVq0SBQEQQwMDBTPnTtntO/BBx8UBUEQv/vuu3a2yWQyo7F9+/aJgiCIgiCIq1evNtr3+eefi4Ig\niM8884zR+KOPPioKgiC++uqrRuOZmZmit7e3KAiCuGTJknbPYQrp/m2fry179uwRBUEQ4+Pjjcav\nX7/e7lidTic+8sgjoiAI4rFjx4z2SeNt/24S2dnZok6nazf+5ZdfioIgiMuWLWsdq6ysFAVBEEeP\nHm3yHMO/c3l5uRgUFCSGhYWJWVlZRsedO3dO9PPzE0eMGNEpWxn3gadJmR7LO++8g5CQkHbjAQEB\nJsejo6Mxd+5cXLx4Ebm5uRbf59lnn8WgQYOMxp544gkAwPHjxy2+zh133IGHH37YaOzRRx+FXC43\nuo5Go8H//vc/BAUF4c033zQ6/mc/+1m7a1iLqKgoAEBJSYnRuKlpQ0EQ8OyzzwIAdu3a1an7xMbG\nmlS1CxYsgL+/v9H1pOO8vb1NnmP4d16zZg2qqqqwZMkS3HbbbUbHDRo0CI8//jhOnTqFrKysTtnL\nuAc8Tcr0SARBwJgxY8zu/+GHH/DJJ5/gyJEjKCkpgUajMdqfl5eHmJgYi+41atSodmPSuRUVFRbb\nbOo6Hh4eiIiIMLrOpUuX0NjY2LpG2ZYJEybg3//+t8X3tRTxp/W/tk6nrKwMy5cvR2pqKq5fv476\n+nqj/Xl5eZ26T3NzMz7//HN88803uHDhAqqrq6HT6UxeLyAgALNmzcK2bdswbNgwzJ07F3feeSfG\njBnTLvpXWns9ffo0Fi9e3O6+0pphVlYWkpKSOmUz4/qwM2R6LBERESbHN23ahHnz5sHX1xdTp05F\n3759oVQqIZPJsG/fPuzfvx9NTU0W38fUGpKHB/2vo9Vqu3Ud6VqG16mqqgJg/vnMjXcXKSAoLCys\ndayyshKjR4+GWq3G2LFjMX/+fISEhMDDwwMVFRX45JNPOvVZAsCvfvUrbN68GX379sXs2bOhUqng\n7e3dmk7T9nrffvstli1bhrVr17ZGHSsUCsybNw8rVqxoXSsuKysDQGuS5hAEAXV1dZ2yl3EP2Bky\nLsdbb70FhUKBEydOYMCAAUb78vLysH//fgdZZhkBAQEAgKKiIpP7zY13l3379gEAxo4d2zr273//\nG2q1GosXL26XlnHkyBF88sknnbrHiRMnsHnzZkydOhXff/+9UeStKIpYtmxZu3MUCgUWLVqERYsW\nITc3FwcOHMCqVavw9ddfQ61W48CBAwCAwMBAAMCZM2cwePDgTtnFMLxmyLgcV69excCBA9s5Qp1O\nh0OHDjnIKstJSkqCQqHAmTNnUFtb226/LZ6huLgYn3/+OQRBwEMPPdQ6fvXqVQDA3Llz251j7kuF\nXC4HYFo1S9e777772qWgHDt2DI2NjR3aGRMTgwcffBA7d+5E3759cejQodYp5nHjxgFAq3O0hI5s\nZdwLdoaMy5GQkIDLly+joKCgdUwURSxevBhZWVlOX3HE09MTv/71r1FZWYl3333XaF9mZqZRKoM1\nyMzMxNSpU1FWVoYZM2bg3nvvbd0nBc9IqlHi1KlTeP/9901eLzQ0FACQnZ3dbp+56xUXF+P3v/99\nu+NLS0tx9uzZduO1tbWora2Fp6dna2rLggULEBQUhCVLlpgMbNLpdEhPT7fYVsa94GlSxqkRzVQG\nMTcOAM8//zyefvppDB8+HHPmzIGnpyd++OEHZGVltQZj2JKObLOUpUuXYu/evfjggw9w7NgxjBs3\nDgUFBVi3bh1mzpyJzZs3d7og+I0bN1oDS5qbm1FaWoqMjAycPHkSgiDgt7/9Lf75z38anfPwww9j\n+fLlWLhwIfbt24d+/frhypUrSElJwdy5c/HNN9+0u8/dd9+NFStW4IknnsCcOXPg7++P4OBg/P73\nv8fo0aMxYcIEbNy4ERMmTMCECRNQVFSEHTt24LbbbkNUVJTR55ebm4sRI0ZgyJAhGDJkCHr37o3q\n6mps374dRUVFeO6551qDjEJCQrB+/XrMnj0bt99+O6ZMmYKBAwdCEATk5OTgyJEjqKioMAoA6shW\nxs1wXFYHw3RMfHy8yTzD5OTkdrl8bVm1apU4bNgwUalUimFhYeKcOXPEc+fOiYsXLxZlMpm4f/9+\no+NN5eGZO1YURfHGjRuiIAjiggULbmmblOdnLi8wPj5eTEhIaDeel5cnPvLII2JYWJjo4+MjDh8+\nXFyzZo24fv16URAE8ZNPPunwM5BIT08XBUEQZTJZa76jj4+PGBUVJU6cOFF85ZVXxMzMTLPnX7hw\nQbzvvvvE8PBwUalUiqNGjRK//PJLUa1Wm/wMRFEUP/roIzEpKak1J9Lw+crLy8VnnnlGjI+PFxUK\nhdivXz/xjTfeEOvr69t9FpWVleLbb78tTp48WYyOjha9vb3FqKgocdKkSeI333xj0l61Wi3+4Q9/\nEBMTE0WFQiEGBgaKSUlJ4sMPPyxu2bKlU7Yy7oMgis5RlO/RRx9FSkoKwsPDW6dFXn75ZWzfvh1e\nXl7o27cvVq5c2bpIzjDuyhtvvIH3338fO3fubK1GwzBM93CaNcMFCxZgx44dRmPTpk3D+fPnkZmZ\nif79+5tdo2AYV8RU7dOzZ8/ib3/7G0JDQzFx4kQHWMUwronTrBneeeedUKvVRmOG33rHjh2LDRs2\n2NkqhnEco0aNQmJiIgYNGgSlUtm6VgdQLl3bmqgMw3Qdp3GGt+I///kPHnjgAUebwTB24+mnn8bm\nzZvxzTffoKamBsHBwbjnnnvw0ksv4a677nK0eQzjUjjNmiEAqNVqzJo1q10o9V/+8hecPHmSlSHD\nMAxjE5xeGa5atQqpqakm+5YBQL9+/XDt2jU7W8UwDMM4M3379m0t8mAJThNAY4odO3Zg+fLl2LJl\nCxQKhcljrl271tqpmjfLt0WLFjnchp648efGnx1/bj1j66xIchpn+MADD2D8+PG4dOkSevfujf/8\n5z/44x//iNraWkydOhXDhw/HM88842gzGYZhGBfEaaZJ//e//7Ube/TRRx1gCcMwDONuOI0yZOxL\ncnKyo03okfDn1nX4s+sa/LnZB6eKJu0KgiCghz8CwzAMY2U66xucZpqUYRiGsS4hISGtLa5cleDg\nYJSXl3f7OqwMGYZhXBR3eD+ae8bOPjuvGTIMwzBuDztDhmEYxu1hZ8gwDMO4PewMGYZhGLeHnSHD\nMAzj9nBqBcMwDGOETtQhIz8De67vQY2mBiMiR2BywmQE+wQ72jSbwakVDMMwLoq592OtphYHsw/i\nZMFJKD2VSE5IxtCIoRAEAQDw7flvsf3SdgT7BMNL7oXyhnIEK4Lx5l1vGjnEmqYaFNcVI8A7AGHK\nMLs9lyHWSq1gZ8gwDOOimHo/1mpq8d7B95Bfk49gRTA0Wg1qmmowa8As/HLQL1FcV4w/pf0JMQEx\nkMvkrefdrLqJe/rdg18O+iV0og4bL2zEjms7IIoidKIOwyOH47Hhj0HppbTYvqqqKhw6dAgzZ840\nGh8zZgy2bNmCyMjILj1jR+Pm4DVDhmEYNyJdnY78mnzEB8UjUBGIMGUY4oLikHolFUW1RbhRcQMA\njBwhAIT6hCKjIAMAsOf6Hmy5tAUqPxV6B/ZGbGAsTheexsrTKztly549ezBjxgwAQEZGRuv47Nmz\nIZPZ1z2xM2QYhnEjjucfR6hPqNGYXCaHCBHXKq5B4WG6d6xGq4G/lz9EUUTKlRRE+kfCQ0ZhJ4Ig\nICYgBhn5GSitL7XYFkEQWqdmly1b1joeEhIChUKBjRs34v333+/sI3YJdoYMwzBuhI/cB826ZpP7\nvOReuK3XbVB6KVHVWNU6rhN1KG8ox5SEKdCKWlQ2VsLHw8foXJkgg0yQobqp2mJbTp06BQBIS0uD\nv78/AGDdunWIiopCYGAgRo4cCY1G09lH7BLsDBmGYdyISQmTUNFQAZ2oax2r1dRC4aFAUq8keHt4\nY+HtC9Gsa0Z2ZTbUlWrcrLqJ6f2mY0zMGMgFOeIC41DVVGV03RZdCwRBQLgy3GJbZDIZ4uPjkZaW\nhsbGRvTp0wf5+fmYNWuW1Z7XUjiAhmEYxkUx9X7UiTp8lfkV9qn3AT/t8vbwxh/H/BGDIwa3HtfY\n0oiLpRfR0NyA+KB4RPrrg1nOFJ7Bh0c+RJAiCEGKIDS0NKCgpgCzk2ZjTtIcq9mfnZ2NVatWYdGi\nRZ16xo7GzV6HnSHDMIxrYu79KIoicqtzcb3iOrw9vDE4fDD8vPw6de2zRWex/sJ6ZFdlI8QnBPcm\n3ovkhGTIBOtNOKrVaqxevZqdoSWwM2QYhjGNPd6PWp0WMkHWGghjLWpra/H5559j//79eO+99zB4\n8GCTx7Ez/Al2hgzDMKZxh/cj5xkyDMMwjJVgZ8gwDMO4PewMGYZhGLeHnSHDMAzj9rAzZBiGYdwe\ndoYMwzCM28POkGEYhnF72BkyDMMwbg87Q4ZhGMbtYWfIMIzr4OLVVhjbwc6QYRjXYe1aYN8+R1vB\n9EA8HG0AwzCMVSguBtLSAKUSGDcOUJju2M7cmldfBQoL24+rVMDSpfa3xx6wM2QYxjVITQU8PIC6\nOuDQIeDuux1tkdNyK2dXWAjEx7ffr1Z3fL7hNSyhqqoKhw4dwsyZM43Gx4wZgy1btiAyMtLMmdaH\nnSHDMD2f4mLgwAEgOhrQaIBNm4A77mB1aIZbObuunt+ZawDAnj17MHv2bABARkYGRo4cCQCYPXs2\nZDL7ruLxmiHDMD2f1FRAJgPkcsDHR68OGadGEITWPojLli1rHQ8JCUFNTQ02bdqEJUuW4OTJkza3\nxSmc4aOPPoqIiAgMGTKkday8vBxTp05F//79MW3aNFRWVjrQQoZhnBZJFRpOqUVEkDpsbHScXcwt\nOXXqFAAgLS0N/v7+AIB169YhMjIS27ZtQ3R0NF544QWsWLHC5rY4hTNcsGABduzYYTS2dOlSTJ06\nFZcvX8aUKVOw1FVXbRmG6R4HDpASLCgAcnNpKyujLSPD0dYxHSCTyRAfH4+0tDQ0NjaiT58+yM/P\nx3333Yfnn38eY8aMQU5ODhISEmxui1OsGd55551Qt5lo3rp1K/bv3w8AeOSRR5CcnMwOkWEYWhO8\neRPo149+nzwZGDbM9LEqlf3sciFUKtNrf9b+OBcvXozFixd3eMymTZvwxhtvWPfGJnAKZ2iKoqIi\nREREAAAiIiJQVFTkYIsYhnEKfviB8gk/+AAIDgZCQmhjLOZWzs5ZdMfWrVvx7LPPIi8vD4mJiTa9\nl9M6Q0MMF1kZhnFjmpqAjRtpWnTXLuBXv3K0RT2S7jo7c85U2mcNNm3ahPfeew+ffvopkpOTba4O\nndYZRkREoLCwECqVCgUFBQgPDzd7rKHMTk5ORnJysu0NZBjG/hw+DNTUAAkJlGA/bRqpQ8au2EM5\nzp49uzXtwhLS09ORnp7e5fsJougcxfzUajVmzZqFs2fPAgBeeeUVhIaG4k9/+hOWLl2KyspKk2uG\ngiDASR6BYRhb0tQEvPQSpU74+gI5OeQMWR2axR3ej+aesbPP7hTRpA888ADGjx+PS5cuoXfv3li5\nciVeffVVpKWloX///ti7dy9effVVR5vJMIwjkVShry/9rlKROqyocKxdjEvgNMqwq7jDNx+GcXua\nmoAXX6R/S84QAPLzgVmzWB2awR3ej9ZShk67ZsgwDNNKeTkQGkppFYb07k37GKabsDJkGIZxUdzh\n/ehSa4YMwzAM40jYGTIMwzBuDztDhmEYxu1hZ8gwDMO4PewMGYZhGLeHnSHDMAxjmqIioBslznoS\n7AwZhnEMOp2jLWCOHSOHZ44NG4AvvwRKS80f0zb3s4fCzpBhGPvT0AC88w5VkHEE5vLP8vKAn/qo\nujxVVcA//0kOzxS5ucCPPwJeXsD335s+pr4e+POfgRs3umhCFVJSUtqNjxkzBgUFBV26ZldhZ8gw\njP05dIi60G/fbv97nzwJfPZZe4coisB335EScod6p7t3089jx6joeVu2biVHGBkJ7N1rWh3u3w9c\nvAhs3mz+C0YH7NmzBzNmzAAAZGRktI7Pnj0bMpl93RM7Q4Zh7EtDA708Bwyg4tv2VIdaLfDNN+SM\nr1833qdWA6dPAx4ewM6d9rPJEVRVkdqLjAQUCmDbNuP9kipUqejzkMvbq8P6enKYAwYAmZnmGxx2\ngGGv2mXLlrWOh4SEoKamBps2bcKSJUtw8uTJTl+7s7AzZBjGvhw6RM15lUpSHvZUhydP0hpZUBCw\naZNezYgiOWhfX3IQu3e7tjrcvZvWbL28gIiI9upQUoWSOlOp2qvD/fuBxkZqqaVQdEkdnjp1CgCQ\nlpYGf39/AMC6desQGRmJbdu2ITo6Gi+88AJWrFjRrce1BHaGDMPYD0kVRkTQ7yqV/dShVgusW0cF\nv8PDgbNn9epQUoXh4YCnJ73UXVUdSqpQakkvkxmrQ2ndVKulf+fl0ReIqipgxw46RlKF0t8xIqJL\n6lAmkyE+Ph5paWlobGxEnz59kJ+fj/vuuw/PP/88xowZg5ycHCQkJFjn2TuAu1YwDGM/JFUYFka/\ny2R6dfjkk7a9t6QKpRerry+pwxde0KvCn6bsoFKRepo+HQgOtq1d9mb3bur04dHm9b9/P7XD8vam\nllimVJ7kQCVVKDlDQdCrw4UL9Z/jLVi8eDEWL17c4TGbNm3CG2+8YdH1ugM7Q4Zh7IOktrRa4yk5\nnY7Wp+bNA0JCbHNvQ1UoIanDAwdInQYE0FqZRFkZsGuX6/VKDA8HZs9uPy4I9OUkPByYM6fja6Sn\n09/N8O8oikBWFlBSQtewAlu3bsWzzz6LvLw8JCYmWuWa5uAWTgzD2I+CAmrU2xaZDIiJ0a9RWZuz\nZ4GlS2l9y5DaWmDkSMDcizY6Ghg92jY22QGbvR+rqkznF8pk9IXGQmXYEZs2bcJ7772HoKAgJCcn\nm1WH1mrhxM6QYRjXp7GR1r5MERCgn7Z1Mdzh/cjO8Cfc4Y/NMAzTFdzh/cjNfRmGcV1++MFx1WkY\nt4SdIcMwzkVlJfCvfwHfftulqiYM0xXYGTIM41ykpVHFk9Onu1TVpFMcPEj3YdwedoYMwzgPlZWU\nfhEZSZGfXax5aRH19cDatcCaNUBzs23uwfQY2BkyDOM8pKWR8/P0pIRuW6pDKXG8vBw4ftw292B6\nDOwMGYZxDiRVKFU5EQTbqUPDcmKhocD69awO3Rx2hgzDOAe7d1PVl5ISiiTNz6fKMUeOANnZ1r2X\npAoVCsDf32XVYXBwcGtnCFfdgq1ULo/LsTEM4xzExAAPPmh6n5eX9e7Ttsg0oFeHo0fTFK2zUVVF\nTruTFXrKy8ttZJDrwc6QYRjn4PbbabM1Bw9SWbiGBuPxykpqOGwPGzqDRgO89x5w333AhAmOtsZl\nYWfIMIx70b8/daowRUyMfW2xhGPHKIho3TpgzBjnVK4uAJdjYxiGcVY0GuCVV6jdUkkJtblidWgR\nXI6NYRjX5+BBCrZxdY4do+lbPz8qJs5RrzaDnSHDMD2L4mLg88/1ndldFY0G2LAB6NWLfvfzo6jX\nH390rF0uCjtDhmF6Fjt20LrZ/v3kGF0VQ1UowerQZrAzZBim51BcDOzbR4EucjmQmupoi7pOZSWl\nTJjj+HHqJp+drd/Kyqgh8Y0b9rPTTXD6aNL3338fX3/9NWQyGYYMGYKVK1fC29vb0WYxDOMIduwg\nJyiXU/3SAweAGTOA8HBHW9Y5RBH4z38ob3DhQtPHPPcc0NJieh+/A62OUytDtVqNL774AidPnsTZ\ns2eh1WrxzTffONoshmEcgaQKIyPpd7mcnElbdajTUeSlM3PjBpCZCZw6Zb72qlxOTs/Uxlgdp3aG\nAQEB8PT0RH19PVpaWlBfX4/o6GhHm8UwjCPYsQOoriZHV1hImyBQcW/DtcOTJ4F33qHpRGdEFKne\nqq+vvvYq43Ccepo0JCQEL774ImJjY+Hj44Pp06fj7rvvdrRZDMM4gpgYYM6c9uOCoP+3Vgt89x1V\nmElPB+69127mWYykCuPj6feMDBpLSHCoWe6OUzvDa9eu4eOPP4ZarUZgYCB++ctf4r///S8eeugh\nR5vGMIy9mTz51secOkUqsV8/Sr1ITjaOxnQ0hqpQEGhKNysL+PvfgQ8/dLR1bo1TO8MTJ05g/Pjx\nCA0NBQDMmTMHhw8fbucMFy9e3Prv5ORkJCcn29FKhmGcAkkVBgfTulpzs/Opwxs3yGH37k32FRQA\ndXU0BfzMM0Dfvo62sMeSnp6O9PT0Lp/v1OXYMjMz8dBDD+H48eNQKBSYP38+xowZg9///vetx3A5\nNoZhAAAnTpDCkqYfm5ooSf3DD51HHe7eDWzaRP8WReDoUXLijY3A888DTz/tWPtciM76BqdWhkOH\nDsXDDz+MUaNGQSaTYcSIEXjyyScdbRbDOB9aLb1cPZz6f2nLqK+nlk2deRZDVSi9AL28qIpLV9Sh\nKAJffglMn04qzlrcfTdtAK0V1tXRWmFVFUWVarUURcrYHaeOJgWAV155BefPn8fZs2exevVqeHLF\ndoZpz3ffAf/9r22uLYrAtWvW7zZv7l6ffgqkpHTuvMJCih6tqDBOUhdFClbpLFlZwPff2y7SU6ul\nLhQhIfR7YCBNmZ4+bZv7MbfEBb5GMoybU1ZG6QWiCNxzj/UT0G/cAN5/H/jTn4DEROteuy2XLwPn\nzpHznTyZGtpaQnQ08Nln1rFBFKkmaGQkTb1mZwNxcda5tsTp0+T8DCNIQ0LIQQ4bxurQATi9MmQY\n5hbs3EmRibYoTyZFP1ZVARs36tWhLVSi5IQCAqjyyr591r+HJWRlAVevAqGhlAe4dav175GeTpGk\nOTn6rboaKCqiezN2h5Uhw/RkysooKCMqihzi/v3WLU8m5cQlJQEXLtCL2teXAlWeftq6iunyZeDS\nJQqAaW4Gtm8HJk2yXB1aA0OHLAj0OdpCHT71FNDQYHrfT9HzjH1hZcgwPRlJFXp46Gt2WksdGubE\nyWSAUkmOYvlyWqNcv94695HutWEDRX0KAgW/OEIdSqpQWsuTyWyjDqX+hKY2Gb+WHQF/6gzTU5FU\noVSrE9AXr7ZGayNJFUoqMyyM2gqlppKzSkszX1ezs0iqUOrdBwAqFanDmhrr3MMStm8nxZabq5++\nbGqiFIi8PPvZwdgdniZlmJ7K8eOUOlBQYDze1EQNYLuTbC6pQg8Puoc0duUK5e4lJpJz2LABePFF\n/XnFxZTe0Nmo7+PH6fo5OcbjOh1Nz44d2/Vn6QyzZwNTp5reJ6lFW7B7NxARAQwZYrt7MB3i1En3\nlsBJ90yPp6WFpjcNa2xagkZDQRem8PfvXneDpiZg6VLquSdRXk4pD97eQJ8+pNhUKuCf/6R1vqYm\n4PXXKTefQ93LAAAgAElEQVRv2rTO3a+lRe9026JQuPbUYXU1JdyHhgLvvecauaJOgEsl3TOMyyOK\nwD/+QQEqnS1C7+VlPK1oTby9gUWL9L+LIvDCC6SOoqJozNfXWB0ePUoqddMm4I47aL+leHi4rxPY\ns4c+3+JiKtU2erSjLXJLXPjrFsP0ANRqmtLctMl8dKEzcP06TeVJL+3iYlKNtbXArl20vrhhA+X7\nNTYChw452uLOcfaseWVqS6qraQ1WpdLnGZpr6MvYFDf9KsYwToC0LqdUUgmyQ4fMr1c5Go2G2ieZ\nchhJSeQsq6tpulQu75o6dBSFhcCKFcCCBdTlwp7s2UPVaLy8aFOrWR06CHaGDOMo1GqK1oyLIzW1\neTM5EB+frl1PFCknbsQI61cwSUoCliwxva+pCXj5ZYo2BWiNr6iInHtn1w4dQUoKqbENG4Bx4+zX\nSd5QFUpI6nD4cPedNnYQPE3KMI5AUoUKBQXO+Pjo1WFXuXIF+OQT+9e3PHqUpkwVClI5Wi2tZW7a\nRM/kbBgGVRQW0mcuBQQdOWI/O9LTgZISID+fvhip1RSkdPVq1+qpMt2Cv3owjCMwVIUS4eFdV4dS\n0rog2L++ZVaWXg0a4uVF+Xr9+3f92lVVpJCUStP78/IoLeMXv7D8mt9+C8TGAuPHkyqUChaEh9tX\nHQ4ZQoraFNHRtr8/YwQ7Q8Z9KCoiJ2SvnLWOOHSI1t9yc43HNRrgzJnO23jlCnDxIikctZrU4ciR\nVjO3Q6zVgy81laYJb7+dfhdF4F//oo4O5lq3bdgAHD5Mz2pJq6XiYmqkGxgIxMTQ3yEmhvb5+tL+\nI0fss3aYkGBcqJtxKOwMGffhu+8oOOG22+hl6EjmzDG/ntbZ5O62pcycrfvB6dOkvgYPNn+MVAhc\nqaQ1Ty8v6lxx7hw906xZxpV2AKoXmpFBdUS3bgUMmn4DoM+lvt5YVaamki1VVVRfVaOhnoISCgWV\nmbPn2iHjFPCaIeMe3LxJwSWiSBF8jkappIojprbOVm+RVKGUc+hMvfE0GmDlSmDVqo5TBnbvpmoz\nVVWkzESR1hyVSnKM27a1P2fLFppOVqloqrRt9Zrz54HFi/UpK8XFVKouMpKCfTIyqJJOSIh+i4mh\nqWt7loBjnAJWhox7sGULfesPDaWmrVOmOF4dWgNJFUqOREIudw51ePSo3q4TJ/RToIZUVdHfRKWi\nbhUbN5KzOneOUjVEkaZCDdWhpArj4qg6jbe3sTrU6UjhXbumT1lJTaVj5XJysr17U1eMiRPt8lEw\nzg0rQ8b1kVRhRASpDK3WOdShNdBqqRbokCFUGUbabruNVE5jo+Ns02j0ji00lJyTKXUoqUIvL3JS\nlZXU7V6ppClSmay9OpRUoVSmLSLCWB1euECFABITKSgpO1uvCiXCwsg+RyTbM04HK0PG9ZFUofTi\nVKlcRx16eBgHsIgiKaS77iIn6UiklIv4ePpdrW6vDg1VoYSXF6UdzJ5NThKgSM8ffiB12NJCas/H\nx7hrRmUldZ146ilaD/Tyor97cTHwxRdULSc/n64p/bdQV0fryB0FLOl0wNdf070d/ZkyNoOdIePa\n3LxJL86gIMopkygvJ3U4Z47jbLMFV68CX31FgSMPPGDfezc1kQMSBGNVKCGpw1Gj9AnlBw7Q30Jy\negCpu8ZGKpEWEaEf9/KiVk9DhwJ/+INpG4KCqM1UWpo+GCciglIwXnuNrr1vH/D443qHeKs0hsxM\nWr/08gJ+/evOfy5Mj4CdIePayGT0jd5U9XprdYO3NxoNUFqqL5gtIYrkgEJCaOpx+nTbth0yRKcD\nPvwQmDCB1uCOHaOpydBQoKJCf1xZmbE6HDHCvDOKjTVfiPyuu8zb8etf02eRm0tOd8YM2ldcTFOp\nubmkLocOtey51q0jG6XPlNWhS8LOkHFtYmKA3/zG0VZYl/R0ShZfutQ4Of/qVVori4+nF/7OnfZR\nh6JI9z17lnI5x42jLxoLFpg+3tDBRUdbN8H84kVScg0NtJ6an0+BNuHh9EWhsZG+RKxbR+ust2oN\nlZlJqjIhgVTlzp2sDl0UdoYM05Oor6cpu8pK48LekiqUgk4iI22jDrVaUnx9+ujH/vMf6rwRFqZP\njZg4ERgwwHr3tZSLF4GBA+mLgb8/fU7h4VSI+69/pTXCoCBaazx7tmN1KKlCSQmqVKwOXRiOJmWY\nnsShQ6RuYmMpSlLKoZNUobRGJ63J7dpl3fsfPw68/z5N0wKkljZupOCWwED7RmiKIjnimzfp96oq\nSp+oqaFUCymA5sYNCirKyyNHKAj0c90647XKtkiqMCiIfvf0pHvu3Nk1Wxmnhp0hw/QUJFUYEUHT\no3V1+sLemzZRtGRODjmHmzcpZy8lxXjNrju0tFAATHU1lTQDKFK3sJD2FRaSMpXUoa25fJmc34YN\n+mIKBQXkwGQy+qIgl5Pj/vvf9RV6AHJwOTmkDs2xcSN95tnZ+q2piZ7dMKfTEjZvBvbu7fqzMjaH\np0kZpqcgqUIpwjIiQl/Ye/x4WgNri0xmvVZAJ06QY0lMpBf7kCGkPFtayLlcuEA/Kyv1Ba+9vKxz\nb4CcV2Eh9fqTig2Eh5OCU6tJuQUGGucfyuVkQ1mZPkpVcogtLRR1am6qdPZs03magtC5Um0VFZTy\n4eVFgUM9ocejG8LOkGF6AvX1+kjR5mYa8/AglWaPpsCSKgwNpfvKZMBHH9GLXhRJMdXUkDqrqKD9\nWVmWRWxagihSrt+NG7QmmJsLXLpEwUJFRfSlYOFCWqtsW0qtpYUiSX/4gZz1lCn6fea6YQAU6WoN\npKnqxsae0+PRDWFnyDA9gYICUjyNjcZqJSCASo7Z2hlKqlBKoPf1pSnKmTNpXQ4gh3P0KCnVfv06\nLszdWaT6qzIZ5QmeOaOf9oyI0KvDhAT6TNqiVAL/+Aepx3nz6Fx7UFFB6lOlouCjTZvo82F16HSw\nM2SYnkDfvhQN6QgkVahU6h3x1as0fvo0OT6AVFtTE73or1+n36V93cGwK4e/PylEuVx/bUEghyyp\nQ2ka1JCdO8mRNjeTM501q/t2WcKuXWS/pydtRUWsDp0UDqBhGGdHFEkVOSoisaKCnI1CQc6kuZmi\nWSdNojWwl18GnniCpnCnTaOpVKWSVJA1bDbsyqFQkBK+edM4WKipSZ9Q35bSUpq+ValIRW7fTsFG\ntsZQFUpERNDnUl9v23tfvkxpIIzFsDJkGGfnyhXggw+onFhiov3uu3cvvcgHDgTefbfjY9eupdw7\n6cUvdZ24dq176rBtr0YAGD6cAmIee8y46EBpqelC4JIq9PCgzV7q8OBBWtNt+4WgtpYct626Zeh0\nVJIvL49K30mpIUyHsDNkGGdGSqavraWfr7xiehrQ2lRXk4MLCyNH2FEbqPJyfXskKecPoECWzZuB\nl17quh0XL1IFmZAQWjcF6PlFkaJWJ0ygMVEkO0+coC8N0mckqULD0nWSOpw0qf3aYUODsYPtDuPH\nm//y0rZRsSFpabTe2tExHXHuHP0d5HJ69rlzu3YdN4OdIcM4M1euUFRmUhKlLly9ah91uHcvKYz8\nfApO6Siy0tOTSt6ZmhI1FcxiKVotJdXffnv7OqyAcRHwrCz6bACaIpSq3xw+TFOShkXaAcrR/PFH\nYPJk/VhNDfD228DvfmdcYaer9OplvraqOYqKqBHy+PH63oydQaqaExREjl7qzsLq8JawM2QYZ0VS\nhdIUoZ+ffdRhdTUl66tU5EjWraMUCXPq0N8f+PnPrW/H6dMUhOPnRzVWzT2zNJUaEKD/t6QOJ040\nnX8JGDtTgKZOL1+mQgLmAnFsTUoKrYv++CNN48bGdu58SRXGx+sVNKtDi3D6AJrKykrMmzcPSUlJ\nGDhwII4ePepokxjGPkiqUFIXvXrp1aEt2buXVJmXFykKSR3aE62WnHDv3hSZeuGC+WMlVRgSQsE7\nly6RUwMoCT8hwfRmOEVaU0OOaOBAcsKGfRLtRVERrTNGRZFDNGxmbAmGqlBy5FLvzspK69vrYji9\nM3zuuecwY8YMZGVl4cyZM0hKSnK0SQxjeyRV6OFB6QwNDfTTw4PGbRVZaqgKJYKD6SWr1drmnqY4\nfZrWCAMDSfGtX2/6mQ1VoSDQ5u+vL9FmKfv2UT1Vb29KDdm82f7Ruykp9PeVy2ld88cfjddgb8WF\nC8D58+T41Gra8vKAkhIuBWcBTj1NWlVVhYMHD2L16tUAAA8PDwT29M7kDGMJTU30TV9ShVotbb16\n0c+mJn2yuzVJT6fk+baFtrOzKdF9+HDr37MtkioMCSFVGBioV4eDBumPE0VykufOUasuKV3C25tq\njhquHXaEpAqlLwDh4Xp1mJBg9ccziaQKY2Lod5lMrw4tXTvs1Qt47jnT+wy/3DAmcWpneOPGDYSF\nhWHBggXIzMzEyJEj8cknn8CXqzcwro5CAbz+uv73tWvp5WwYKWkLkpKAF14wvc9eL1RJFapUND0b\nEkJOcP16msaUnv/SJeBf/yI1GxZmHKwyYAClX1iCoSoE6PqSOrTX2mFqKik6w/6KOh2wfz9w3300\nXXwrVCp2et3AqZ1hS0sLTp48ib///e8YPXo0Fi5ciKVLl+Ltt992tGkMYz/KyiiBuqWFHMBtt9nu\nXomJ9s1lNIX0rD/+SNPDOTnkEGtqSCH27aufHvX0pA4S4eHAW2913nGJIikynY7uI6HTUVpHWVnn\nI0K7wuDB9AymsFaqB9MhTu0MY2JiEBMTg9GjRwMA5s2bh6VLl7Y7bvHixa3/Tk5ORnJysp0sZBg7\nsHMnveQDAsgBvP66YyIdO+LMGXJcY8d2/1qPP05BO+++S06ipoYc0rPPAtHRdMylS7RVV5OaOn68\na18UBAFYvFhf/LztPnsty/z0jmO6Tnp6OtLT07t8vlM7Q5VKhd69e+Py5cvo378/du/ejUGGawY/\nYegMGcalkFRhVBQFVly+bHt12Fmamyk3TqOhFIzurmWGhlLiuZ8f/TskhKaIa2vpM5BUodQpIyCA\nplW/+65r6rCjzhVMj6GtEFqyZEmnznf6aNJPP/0UDz30EIYOHYozZ87gdcN1FIZxdSRV6OHR9UhJ\nW3PiBFWhqaujJPfu0ramp6EqFkW9KszLoylEqWaqpA4Zpgs4tTIEgKFDh+L48eOONoNh7I+hKpQI\nDXUuddjcTJGfUp/DjRupekp31GFaGqUDtE3lyMujnMJNm8j5lpXRNKbUsLc76pBxe5zeGTKM23Lp\nEikhU50YzpyxjzNsbKRSZlIfw7ZIqlDaX1xM6tCwzFlnGTyYojhNERBA06ZaLUV/SoW5pSLcFy/a\nNyWCcRkEUXSm+ZbOIwgCevgjMIxpbvXftT3Uz7ZtwI4dwPLl7RvSNjcDf/qTfvoWoCCaujpgxYr2\n6rCxkRz80KHdt6u4mO5jipgYijJl3JrO+gZWhgzjrDh6qq+2Vt/7b/9+4J57jPdnZFCqQ3AwqUOJ\nigrgyBHqCmHIgQPUmHfFCvNpBJbS3fMZpg3sDBmGMY2UjN67N7B1KxW9NlSHkZHAM8+YPrdtknhD\ng77Zb0oKsGCB7exmmC7AzpBhmPZIqlClorW5oqL26jAujjZLOHiQHGJ8PCnEmTNZ3TFOhdOnVjAM\n4wDaliiLiCB1WF/f+WtJqjAigvIEPTxIHTKME8HOkGEYY2prqadfYCA5soYGmt6sriZ12FkkVSiV\nFVOpSB0WF1vXbobpBuwMGYYxpqREPz1qSExM5x1YQwPlHioUVIi6spKqxjQ2sjpknApeM2QYxpiE\nBKoLag1qa6mDRNuWUJGRNGXaEVotcOwYMG6c4yNrGZeH8wwZhnFOMjKADz8E3nyTWje5C01NQGmp\nvig50yU66xt4mpRhGOdDavDr4UE/3ekLb1oa8MEHNJXM2A12hgzDOB9Sg9+EBErsz8pqf4wrOou6\nOkppKSmxTtFzxmLYGTIM41xIqjAkRN+xoq06rK8H/vxnKlreFqleaU9k3z6aJo2JocAjV3T4Tgo7\nQ4ZxRfbsoXWnnoikCqXGuiEh7dXhoUPkCDduNHaSzc3AO++YVpLOjqQKVSqq9FNby+rQjrAzZBhX\no6AA+Pe/KUn+VrRtk+RoJFUoCFTvtLycap3qdHp1WF9PSfwDBpDTu3JFf/7x48DZs8D69T1vnVFS\nhVJKS3g4q0M7ws6QYVyNbdtIWRw8SGXUzJGbCyxeTLmAzoJGA/TpAwwbRj+lbeRImjpsaSFV2NhI\nSfx+fnp12NxMTjAhAbh6ldo59RTq6ujLS0gIfQYaDQUPVVayOrQTnGfIMK5EQQG9PGNj6d8pKcCj\nj5o+dutWIDOTnOa0afa10xw+PsCTT5rfL6nCiAj6vVcvvTosLdX3VtRoyDG++WbPyFHMz6c2WM3N\ntEmEhAA3bjjOLjeCnSHDuBLbtgFeXoBMRmtPBw9SUWzJeUjk5FBC+223AZs3A3feqS+X1lnq64HV\nq4FHHmnf89DaSKpQeh5BIHW4bh11vg8NpfGQEL06TEqyrU3WIDGRcioZh8HTpAzjKkiqUKWi3zsq\nir1tG5VI8/UlZ3bwYNfve+AAkJpKjsrWpKfTuuLNm/qtoQH48Uea9i0rI6UoRaGuX0/rjQxzC7gC\nDcO4Cl98AXz/vV4dAeQ4GhqAjz/Wq6mcHJo+jIsjBdnQQPVCP/yw8+qwvh548UUK+mhqomvYUh3W\n1rYv7QZQw+Dr12naV6sFxowhm8rKqJzbn/5kO5sYp4Q73TOMu3LbbcaOUEIQSCFKSKpQ9tPEkI8P\nBdp0Ze3wwAH9tGV2NqlDW64/+vmZHn/lFWDnTvq3IAB33QXcey+wdCmlaqjVtJbIMGZgZ8gwrsKd\nd976mLIy4NQpUk+5ufpxnQ7YtQuYOtU44CQvj7YxY9pfq76eWj1JijMigoJb7rjD+uqwrAy4dAkY\nP970fm9vcsxxceT4jx2j1IuqKspX3LwZWLjQujYxLgU7Q4ZxJ0JCgCVLTOfgeXkZO0JRBNaupeT2\ngQPbqzJDVQiQ2iwqso063LKF8vAGDDCtfg8dovSEsDC97X/9K6nBwEBWh8wt4QAahnEnBAGIiqKO\nCG03yZFIXLsGnDtHuX3p6cb7mppoulWjMQ5m0WgoZcPUul5XkaZwPTyAHTva729oIOVnGDErCMD5\n86QYBYEc9ebN1rOJcTlYGTIM0x5RpClPpZKU1bZtQHKyXh16eABPPGG6DqiHx617FXaGlBS6nkpF\nZeZ+/nNjdXjiBDliX1+yTxSp/RNA4wMGkKM0pw41GlLFjFvDzpBhmPZIqjA+npRVczOpw3vvpf1y\nOVWJsTWSKoyJoXvKZKQOH3qI9osiMGgQ2dnYCDz7LEWVFhaSGhQEip4FKDF/7Vrg9df11y8ooOnU\nN97Q10Jl3BJ2hozTI4oi8mvycb3iOhQeCgwMGwill9LRZrkuhqpQWkOMiGivDu2BpAolpWmoDs+e\nBYqLgZ/9DKiupv0tLcDddwP9+xtfp7SUegRWVtLzSc+VkkJ5iXv2AHPm2O+5GKeDnSHj1OhEHb4+\n8zX23tjbOubj4YM/jvkjBoa7Ufdze3L9OiWxBweTcpIoKTFWh7amqAjYvZucb2GhfryqitYlT5yg\niNZTp6iUmdQI+N1321edWbmSHHpRkb4qTUEBBd4MGkRFA6ZMYXXoxrAzZJya43nHkXYtDQnBCZAJ\nFO9V01SDT3/8FB9O/xC+njYu/+UIGhq6XhrNGnh6ArNnm97Xq5f97BBF4J57TFeQKS6m6NHaWpr+\nnDKF1N6NG5R4P3y4/tiiIop8jYmhDhgbNtC0aEoKrRUqFHQPVoduDTtDxqnZd2Mfgn2CWx0hAPh7\n+6OsoQxZJVkYGTXSgdbZgPx8quLyxhuUBuEIYmOBBx90zL0NUamA3/62/XhjI1W9CQ8n51dWRl8g\nfH1Jza5bBwwdqi8qkJqqD+oJDSXnefAgqcLevfX3YnXo1nBqBePU1DXXwVPmaXKfRmvF8H1nYft2\nellL1VRcmbIy6rvY2Z6KUk5hfT1dQy4Hzpyh9UCAgn8yM+nfkiqU6rUKAk2pfvQRKWBpLdLLS68O\nGbeEnSHj1IyOHo3yhnKjMa1OCwEC+gT3cZBVNiI/nwptDx5Ma2Xl5bc+pyfz/ffk/E+ftvycxkZ9\nC6fmZiAykhRiWRkpuqgo6n1YX0/H79pFTjI3l8rFZWfT53rmDJ2Tk6PftFpg/37T6SKMy8PTpIxT\nkxyfjB9yfoC6Uo0QnxBotBpUNVbh3gH3IsIv4tYX6Els304KRcp527kTeOABx9p0KyoraR0uIaFz\n55WWAnv30jTlunWUpmFJbmJGBp0rdX+PjaWfNTV0jbZrnWPGUHNgQ0QR+M1vaLztVLSnJ6nOgICe\n0QeRsRrctYJxemqaarA/ez8y8jPg7+WPSQmTMEw1DIIrvazy8yn/LTaW1rpaWijacflyx60dWsKX\nX5LKWr68c4nrX39NkakxMbTu94c/UO3Re+8FgoLMn1dVZRzhakivXt0P8KmtBd56C3jsMVLoTI+F\nu1YwLoe/tz/u7X8v7u1vp5B+RyCpQinoQ+oy4azqsKUF+N//aD1OpwOOHqVOEZYgqcKoKPo9JAT4\nxz9o+tLLC/h//8/8uYGB1g9wEUVygv7+5KBv3qQ+iAMH6v8ejMvTI/7SWq0Ww4cPx6xZsxxtCsNY\nn9paWjdrbm6/hnXkCI07GydPUo/EigoKTtmwwfJ6pDt2kJORHH5AAOUMenqS86+osJ3dpjhzhoqX\nl5RQYYH+/UmtXrhgXzsYh9IjlOEnn3yCgQMHoqamxtGmMIz18fMDli0zHVXp4UFOwploaQFWraJ1\nuqIiSmMoKbFMHVZUUHCQTkcKDCBFWF1N1/L3B9LSOlaH1kSnozXLGzeAzz+nLx7e3qQ+WR26FU7/\nV87NzUVqaioef/xxXhtkXBd/f1ora7vZs/SZpZw8SUrWz4+6V+TnU8cLS9Shry+tD/7xj8Dvfgc8\n9RRNk95+O1WCiYwkdSilSdias2dJhcfG0rSvVAA8OJjVoZvh9M7w+eefx/LlyyHjb2cM43gkVVhR\nQet7crl+ireoiNRhR3h7A6NGAaNH06ZQkCKWOkt4etIaXlqa7Z9FUoVBQWR7UxP9BCiSVFKHpirg\nMC6HU3uY7du3Izw8HMOHD2dVyDDOwMmTpARVKnJk/v7kzGpqqN5nVZX+2F27gLy8jq+3fj2lMmRn\nU3sltZrUZUqKvvi2rZBUYVAQ2alQAMePU23W7Gx6psJCvYNkXBqnXjM8fPgwtm7ditTUVDQ2NqK6\nuhoPP/ww1qxZY3Tc4sWLW/+dnJyM5ORk+xrKMO6AVktKyteXEt0l6upIRb3xhj4oprgYWL2a1N/C\nheaved99wLRp7ccFgZSnKNJ9Paz8qjJUhYIATJxIY9nZwK9/TWXZJLy9rXtvxiakp6cjvW0T6k7Q\nY/IM9+/fjxUrVmDbtm1G45xnyDB2ormZ6nc2NbXf5+1NRbWlXMNVq6hsWksLsHhx+4a6lpKeTl0p\nFi60bhJ8Tg7wzjv0TIbX1WqBvn2BP//ZevdiHIJL5xm6VJI1w/Q0PD2B+++/9XHFxVTWLCaGokw3\nb+5YHZqjsZGmUSsqaOqyb9/OX8McvXtTaogprK1CmR6BU68ZGjJx4kRs3brV0WYwDHMrDLtERERQ\ngI1a3fnrHD5MOZiBgVSP1NozQL6+prfOVNJhXAb+CsQwjHWQAk4kVQjQFKRCYV4diiIFzLRdl2ts\nBDZupLVJHx8KdrG2OnRiXn3VuJ+xISoVsHSpfe1xB9gZMgxjHb76isqzNTQYr8OJIvDDD1REOy7O\n+JxDh+ic114zTm6XVKFUa1SpJHX44otuUUC7sND8MmtXRDZza9gZMow7U11N5dC6S04OcOwYObC5\nc6nuqFRSTnqrK5XG52g0lKhfVETJ7VJhbENVKBEW5nbqkLEvPWbNkGEYK5OXRx0aiou7f61t22g6\nNDaW+gROmQJcvkzb5MnA9OntO0ocPUqVZsLCKM1BSm4/d47yFQ37DebmUmTqgQPdt5VhTMDKkGHc\nlW3baM4tNRWYP7/r15FUYVwcTWGePUvXLiqi30+cAMaNMz5HoyH1FxZGQStqtV4dDh1KLaFM0cny\ndLz2xlgKO0OGcUfy8kiZDR5MuXwzZhhPS3YGSRVKa34+PsAnnwDDh9PY+vVUgs2w4LikCqUp1MBA\nUocDB9JxKlV3nq4VXntjLIWdIcO4I9u2UQqBpyelQXRVHebkkGPr3ZumMQFKys/JAX72M3JyarWx\nOjRUhRLBwcbqsIdjTpFaqkZVKvPO2krfE5g2sDNkGHdDUoWxsfR7ZCSlQ3RFHV67RtOcpaX0uyhS\nxRilktb8QkKoE4ShOrx4kVShXE7tmyR0OloTdAFnaE6RWqpGefrW/rAzZBh3Q1KF0rSmXE5bV9Rh\ncjJtEidOkGOUVF9BAf0sKdGrw8GDgY8+Mn09H5/O3b+HsHs3BdrW1hp/xLxu6Tx02Rnm5+fj8OHD\nSExMxNChQwEA2dnZKCgowODBg+HnjH3YmB5DfXM9LpRcQFNLE/qG9IXKj+eGrEJdHXD+PE1VZmfr\nxyVF98AD3StMrVQC8+aZ3ufvTz9lMlKM1karpcjYyEjrX7ub1NZSTXDAWDGq1d2fUmWsQ5ec4YED\nB3DPPfegoaEBAPDiiy9i+fLlUKlUOHnyJCZMmACtqa7dDGMB54vP4+8//h0NLQ2tYz/v93P8atCv\nuD5td1EqKVLTVI8+ubz7HRqSkmhzBMePA19/Dbz3nnVyJ+1Ed6dUGevQpTzDd999F6tXr0ZlZSXO\nnTuHwsJCvPrqq/D29sa4ceO4iwTTZeo0dfj0x0+h9FIiPige8UHx6B3QG6mXU3Gq8JSjzXMNFArT\nNTl7cquilhZalywuBvbubR2WAlFMbRyIwhjSJWU4fvx4zPtpKmTgwIH46quv8OWXX2LlypWYMWOG\nVXfY8CoAACAASURBVA1k3IvzJefR2NxoNC0ql8kRqAjEvhv7MCJyhAOtY5wWaa2yXz9qDDx5MhAQ\n4LBpxrbRoLW19JNXj5yXLjnDgJ+mIK5fv44+ffoAAB577DGkpKQgJSXFetYxbodGqzE57in3RK2m\n1s7W2J5mbTMAej6mi0iqMDSUAoO0WlKHv/iFw0xq64Tnz+96S0fGPnRpmnTChAl47bXX0K9fPxw9\nerR1fObMmejbty8HzzBdJiEoARAAnWi8plXeUI6RUSMdZJX1Kakrwf/9+H94evvTeHr70/jH8X+g\nrL7M0Wb1TCRVKAXoqFSkDqurHWuXAeama3mq1nnocqf7+vp6XL16FT/72c/a7TNUjLaGO927Hl9l\nfoVd13ZB4aGAVqdFfUs94oPi8cadb8Df29/R5nWbWk0t/rzvz6hpqkGkfyREUURhbSGCfYKxJHkJ\nfDxdM73AJrS0UDhmS4veGQLAzZvUJcOB6tBSzKlGtRpYtcq+trgSVu90f/36dWzZsgXz589HcHBw\n67ivr69JRwjAbo6QcU3mDZyHrJIs7Lq+C1qdFqG+oZjQewK85K7RdPV43nFUNFQgLuindkYCEB0Q\nDXWlGhkFGbgj9g7HGtiTKC4mR9jQQJuEQkFFwq2ArVMfzFWbYdVoX27pDBctWoS1a9eioKAAH3zw\nAQBykMuXL8f8+fMxduxYmxvJuBcbsjYgryYPMxJnQCbIoBN1OJF/AqG+oXhwyIOONq/bXCu/ZlL9\nKTwUUFeq2Rl2hqgo4OOPbXoLW6c+cC6hc3DLNcPo6GgcPHgQzz77bOtYnz598H//93/YtWsX9uzZ\nY1MDGfeitK4U6y+sh07UoVZTC1EUIRNkiAmIwb4b+9DY0mjxteo0ddh3Yx8+O/4Z1p1fh7zqPBta\nbjkqfxUam9s/R5O2CRHKCAdYxDDMLZ1hUFAQZDIZYmJijE+UyfDWW29hy5YtNjOOcS8uFF/AS2kv\n4XzxeZwtPos91/cgsygToijCU+4JrahFfXO9RdeqaKjAkv1LsDpzNc4Xn8fOazvx1r63kJGfYeOn\nALQ6LfJr8lFSV2JyzWJczDh4yj1R2VjZOlbeUA6FhwKjo0fb3L5u0dJCDXmbmhxtCcNYlVtOkz71\n1FO4/fbbERISgrvvvhuTJk3C+PHjoVAoAAAajelQeIbpDA3NDfj78b8jWBGMYJ9geMo84SHzwPWK\n6+jl0wshviHw9/JHgLdllUW2Xd6G0vpSxAfFt47VN9fjy1NfYnD4YHh72CbBPLMwE6tOr0JVUxVE\nUURiaCIeH/E4wpX6AtihvqF4afxL+OLkF7hZeRMQgHBlOJ4c+SSCFEE2sctqnDxJVV5CQoBJkxxt\njU2R1goPHQJOn9aP+/kBd9/tOLsY23BLZ/j4449j3LhxqKurw8qVK/GXv/wFXl5eGDp0KLy9vTlY\nhrEKWaVZaGhuQLgyHIPCBiGjIAO+nr5QyBXIKs1C35C+eGLkE/CQWZYaezjncLt6pr6eviitL4W6\nUo0BvQZY/RmyK7Px8dGPEeITgtjAWIiiiJuVN7Hi8Aq8O/ldowCgxNBELL17KQpqCiAIAlR+KsiE\nLmU62Y+WFuC77yiyY+NGYPz4nl215hZIa4WnT1NdUU9dE2LrLyKjdqijTbMaXBdVzy3fLPHx8fjw\nww9bf7906RL27t2LtLQ0XL16FZ999plNDWTcA8Nk+9jAWHjIPHCx9CIqNBUI8gjCs2OfxchIy/MM\n5TK52bBqWzmdvTf2wlPu2Zr+IQgCVP4qqCvVuFByAcNUw9rZER0QbRNbbMLJk5TPFx9P0SOHD/d8\ndVhURL0UvcxHKvv5UcepsTUHcW/5GpwP/ABqtapb0Z5dcULmzrnVeR3BdVH13NIZti24PWDAAAwY\nMAC/+93vcPHiRbz99ttY6m5fIRir0yeYZhi0Oi3kMjmiA6IRHRCNGxU3MHfgXIyKGtXh+S26FsgF\neWsh74lxE5F6JdVomrS6qRr+Xv5GY9YktzoXfl7tC06Ioojy+nITZ/QgJFUodZsID7ebOrSFEwBA\n657LlgHTpgE//7nZw+6+G/BoacS0XZvhrdThCf8UPLbqsS7elOiKEzJ3zq3OM6TtZylNAfPUrwXO\n8Le//S3+8Ic/YNmyZVAqla3j586dw/nz56EzVf2eYTpJuDIcMxJnYOulrQhUBMJL7oXyhnKo/FVI\njk82e965onNYn7Ue6ko1ghRBmJk4E1P6TMHMxJnIKsnC9Yrr8JJ7oUXXAi8PL7xw+ws2K33WL6Qf\n9tzY025dUybIoPLv4UljJ09CV1KMkjAlKkrz4ePhg8gqDbw6UocFBUBaGvDb3wLd6DZiDSfQSlER\nEBhIeYhHjpCNW7YAd91FxcrN0Dv7EDw1tagMSkD//ENA4UynTQTsSHW2/SylKeDKyvbHuxu3dIYj\nR45EcHAwXnnlFbz88suI/+mTXLNmDVasWIH5nW0GyjBmmDdwHvqF9MM+9T7UaGowOX4yJsZPNFt1\n5lzROSw/vBxBiiDEBcahoaUBazLXoKqxCvMGzcPrd76Oc8XncKX8CkJ9QjEicgSCfYJNXssaTE6Y\njHR1OkrqStDLtxe0IkWVJgQnYECo9dco7YZWi+b//ReXc06hNK8BAmQARBQ1i0j8r4DgCRNMTzNu\n2ULOcMwY4Lbb7GdvSgowbBgQ3WYKurkZ+PBD4PbbgZkzSdn27k2Nhw8cMKsOPVoakXRpM+qUERBl\ncrTIPOgej3VPHdoKnvrsGhZFI0h5hYYsWbIEY8eORbJhl2uG6QaCIGB45HAMjxxu0fEbLm5AkCKo\n1cH5evoiLigO31/7HtP7TYe/t3+nrtddIvwi8Nqdr2Ht2bW4UnYFcpkcd8TegV8O/CXkMrldbLAV\nRwcH4bhvOML9IiBpvLrmemTI6/CErgUeaOMM8/KAo0eBiAhKxXj99W6pQ4vJz6do12vXAIPcaABU\nwzQvD/j+e3Le1dU07RsRYVIdSpVhBuYfQlN5Lcr8egEA/HupaH5xpvOqQ6bzdLnTvY+PD+bOnWtN\nWxjGYnSiDjcqbiAuMM5o3EPmAYhAUV2RQ+qYxgfF4/U7X0dDcwPkMrlrlJCTy/FdZDmUcaNR7aEw\n2nWz6iam1uejn6Kf8TnbtpHDCQujsmiXLtlHHW7fTgtgGRlAdjYQ99N/H83NwLp15LxKS4HPPgMG\nD6Z9CgVNn7ZRh0uXAmhsBF7YCPRRAD5V+vsUNTm1OrQUKTiottZYObqjj++yM2QYRyJAQIhPCOqb\n66H00q9li6IIrai1OB/RVtiz2HZTSxMulV1CY0sjEoISEKYMs/o9mnXNkAum1W2LrsV4QFKFsbGk\nBv39u6YOd+6kQB1YqOzz8ynCNTaWapZu2aJXhydOAOXlNH9YWEgOeuBACgwCgF69gM2b268d1tYC\niYlA23xqlQqQd13tO0s9UilohouCszNkeiiCIODexHux8vRKxAXFwUPmAVEUkVOVg+Gq4UZJ7rei\nTlOHi6UX0aJrQb+Qfgj1DbWh5dblavlVfHz0Y9Rp6lrHZibOxNyBc1sja63BuJhxOJB9AL0De7eO\nNTQ3wEvu1T46V1KFsp9SWEJDO68Oq6ooejUoCDLdEFj0qtq+XX/f8HC9OoyKIlUYGqq/tlwOnDkD\nJCToz/fyAnJzgf799WO9egHPP2+ZzZ2gKxGw5hyotK8713BHJdgWdoZMjyU5IRmVjZVIuUINpXWi\nDsNUw/DYCMunrjILM/HZ8c+g0Wogguqgzkmag5mJM63qTKyFVqdFVmkWcqtzofRU4uszX7eulUr7\nt17eij7BfTAiaoTV7jtrwCycKT4DdaUa/l7+aGxpRIuuBU+NegoKw6nTwkKabvT0JEckUVcHbN1q\nuTPcswcQRaCsDKPE4/hRPc7kYa0vcUNVCJBD9PEhdTh6NCnFuDiaLh06lFRhWRnwwQcUXdoDsNSB\nduTwOAvOPF3uZ+gscD9DplZTi6LaIgR4B3RqirCysRIv73oZQYqg1qnWFl0LblbdxGt3vIaksCRb\nmdwl6jR1+OuRv+JqxVUIEFBaX4prFdcwve90BCr0L/Sy+jLEBsbi5QkvW/X+NU01OJJzBBdKL6CX\nby/cFXcXYgNjjQ+qrwfOnSNHVltLuXySIvPzAwYNuvWNqqqAF18kdSfVQF22DPDo4Lv7F1+QMjRo\nMwdRpLZO48cDV660P8fDA3jiCf3aYSfh6i3OjdX7GTKMs+Pn5Qe/kPbJ7rfibNFZNOuajdYcPWQe\n8PX0xcGbB53OGW69tBXXKq4hLjAOgiBAEARcKb+CE/knMDlhcquS9fbwRrXG+l3e/b39Ma3fNEzr\nNw1YvRrwqgfaiipfX0qlAIB//IPWD99+Wz9lagl79gA6HU1benmRzDl+HBhnWh0CoHv27Wt637Bh\n+mIBVsTRKQw2K0bgprAzZNyW+uZ6CGg/Feol90J1k/WdSXcQRRHp6nRE+Ue1Or0gRRAUHgrUaGpQ\n3VTdqg7L6sswa8As2xmTnQ3s2AFcvw4sWmTa0eXmAseOkVM7e5amJi2hqgpITTVexAoNBdavp+lO\nc+rQ0uu7EFYtRsA4vzPMycnBww8/jOLiYgiCgCeffNKotyLDdJW+IX2hgw6iKBqtD1Y3VWNEpPXW\n26yBCBEancYoXzHAOwDxQfE4V3wOlY2V8JR7oqSuBCE+IZicMNl2xmzZgqNZAWj5UY3vT19AXrB+\nmrFVkUhBND4+FAgzZMit1aEoAn/9K1WFaVvZqqoKOHWKHCLD2ACnd4aenp7461//imHDhqG2thYj\nR47E1KlTkZTkXFNYTM+jb3Bf3B59Ow7nHEaobyg8ZB4orS9FTEAMbo+53dHmGSETZBgZORJni84i\n0j+ydbxfSD/IBBniguLQ0NyAGYkzcHefu23XCio7G8jIQKEYh8helZhauQ77hw2E+FPxc7UaelUo\npVao1ZapQ7WaUiDGjgWmT2+/Py6u/RjDWAmnd4YqlQqqn6ZM/Pz8kJSUhPz8fHaGTLcRBAFPjHwC\nQyKGYJ96H5pamjBv4DwkxyfD19N8nUpHMW/gPFwqu4SblTcRoAhAvaYezbpmvH7n67csZG41/j97\n5x0eV3nm7ftMb9KojHqXLMtyb9gGY8cGG4zpCRBISJYAoS0kLBs2ZfPlg3wJJMACSSDZZTeE3YQQ\nOgaMKQbM4t5t3C2s3ttIml7O+f6YaKzRjGRJVhnb731dXNhHc855z4DmN8/zPs/vWbMmFO1JKtyG\nZJLsVaS1HqIlvU8RSv/WiqSkU0eHihLq8+sthSwtHZN9PoFgIOJeDPtSVVXFnj17WLhw4UQvRXCW\noFFpuDD/Qi7Mv3Cil3JKMi2ZPLzsYT6v/pwjbUfItIRMzHvbKsacv0eF4QhNkvAarEw9+CqtaaHo\nMNlZB5s2QVZWqJITQg4vlZWDR4dVVSHX6MLCUGT5wQdw003j8VQjZig9e6Li9MzhjBFDh8PBdddd\nx29+8xssluFXDgrGBlmR438obT/8QT+V9kpkRaYwqTCyTy7OSTGmcPWUq7maq8f/5h9+GGqdqKsj\nxQGWv2+zmpwtpLYfo802hUR3ExTnhCK9vmXtubkhkYslhr1RodEYSqtmZYUMvi+9dEyiw9GqwhzK\n62IVuaxfH7I27b8GIZATyxkhhn6/n6997WvcfPPNXHPNNVE/f+ihh8J/XrZsmTAPHwd2N+7mzcNv\nUttdS7o5navKrmJx3uK4bFTvy9G2ozy741kcPgcQqhy9bc5tnJcjCjNOyaWXhtsmPmoLGbv00p2Y\nC0C1bT78epgp275RIYQqRiVpzKLDia7CdDhCLZf91zDce4+GI83ZxIYNG9iwYcOIz497MVQUhdtu\nu42pU6dy//33x3xNXzEUjD3b6rbxzPZnsJlsFFgLcPgc/MfO/8Dpc3LppBiFD3FCl6eLp7Y+hUlr\nCjeLu/1u/rDzD2QlZJH79w90wQDk54cdXvxTYVvfyKYh9K8RfQivWQM9PaGexF6CwVCLxRhFh2cD\npxtFnm0p3P6B0MMPPzys8+NeDDdt2sRf/vIXZs6cyZw5IcPeRx99lFWDTKYWjB2yIvPqoVdJN6eH\np0Ik6BPQqXW8eeRNlhUuQ68Z28nnI2VX4y68AS+ZlpOf2EatEbWkZmP1Rm6cceO4rMPhc3Co9RC+\noI9JKZMi1nOmMKoflrNnxw7V1OrTMsMWDM5EmwbEG3EvhhdeeCFy/54jwYTh9DnpcHdE2XDpNXr8\nQT/t7nayE7IHOHtisXvsMecK6jV62txt47KG/U37eXbHs2EvVIDVpau5fur1cZ9iHjPEtoYgDoh7\nMRTEFwaNAb1ajy/oi5jVF5SDKCgk6MZ/huBQKU4uxi/7o5rsHT4HU9Omjvn9e7w9PLvjWRL1iWEL\nuKAc5N2j71KWWsaszHPPReVsJ9a+nsNxbu7pxTtCDAXDQqvWcsmkS3jz8JsUWAtQq9TIikxtdy1L\n8pdMyEDdoTI9fTqlyaUc7zhOVkIWKklFk6OJdHM6C3PGvl3nQMsBvEFvhBeqWqUmQZ/AhqoNQgzH\nifEsPImVTu7dq+u/BiGQE4sQQ8GwuXLylfR4e9hQtQEJCRmZRbmL+ObMb57y3E53J8fajyFJElNs\nU045hDcoB9nfvJ8tdVuA0Fy9mRkzY6Y7T4VGpeGBCx5g3fF1fFb9GQE5wEVFF3F56eURAjUcTnSe\nYM3RNRxrP0aaKY3VpatZmLMwZsrTE/DEvIZWrcXpd8b8mWD0mejikIm+vyA2QgwFw0aj0vDtWd/m\nqrKraHO1kWRIwmaynfK8j098zItfvIisyOHrfGfOd1ictzjm62VF5r92/xcbazeG069b6rZwYd6F\nfHfed0fU32jSmvja1K/xtalfG/a5/anoqOCRzx/BoDGQYkgJpUG3P0v79HYun3x51OsnpUwConsz\n7R47qyetPu31CATDQQz6jUSIoWDEJBmShuyBWW2v5s/7/0x2QnZ4r9ET8PDH3X+kJLkkoqIyKAfZ\nUb+DVw+9yieVnzAjfQYpxhQ0Kg1ppjQ21W7iwvwLmZY+hNl4Y8irh17FpDWFvwhY1VZMWhNvHXmL\nZYXLoqLN3MRclhcuZ33lepINyWhUGjrcHeQm5rI4P/YXAsHIOdtaB0Yb8R5EIsRQMC5srd+KRqWJ\nKLoxaAygwM76nVxRdgXQJxqs2Uizs5mAHGBf8z7qeuq4IO8CNCoNBo2BPU17JlQMZUXmaNtRCqyR\nVmhatRZf0Meao2sIyAEyzZksyF1AkiEJSZL41qxvUW4r57Pqz3AFXKwsXsmSgiWYdWa6vd009DRg\n1prJTcw9d6tLRwnROiAYDkIMBeNCj6cHrUobdVytUofdYCCUetxcu5ni5GI8AQ+NPY2oJBV13XXU\ndtVSlFyErMho1dHXGk8kJBL1iXgCHoxaY/i4w+tgV+Mu3AE3KcYUvEEvbx59k3+54F8oSi5CJalY\nkLuABbkLwufIiswbh99g7bG14b+XpJRwz3n3kGIUDecCwXggxFAwLszMmMnnNZ9HtDUoioIv6GNq\n+sm2hqNtR1Gr1Cgo2D126rrrUFDwBDw09DQwO2M2mQmZnJc9sfZpkiSxatIqXvripbDIKYrC5trN\nGDVGym3l4efscHfwn7v/k19e9MuY0d7m2s2h6tykAjQqDYqiUNNVw7Pbn+WnS386ZhGimJR+5iFS\nv2OHEEPBuDA7azZltjKOtB3BZrKhKArt7nZmZ85mWtrJdKdBY0BRFGq7aml2NmPUGOnwdIQn0h9s\nO4hBa4gZZY43l5RcQquzlQ3VoaragBzAHXCzonhFhIAlG5Kp6a6hydEUMYuwl3XH15FmTkOjCv06\nSpJEliWLE50nqOmqGbOpFBPt0SkYPiL1O3YIMRSMCzq1jgfOf4DPqz9nU+0mJEkKmXvnL45ok5id\nOZuXDrzE0bajaFVaZGRSjak4/U7SzeloVVpSDCmsq1jHHfPumMAnClXD/sPsf2B16WqaHE3oNXoe\n+fyRiLQphMQNZYCLAG3uNtJMaVHnqCQVPb6esVi6QCDohxBDwbhh0BhYWbKSlSUrB3xNmjmN2+fe\nznff+S4evyfsdJObmEuqMZVubzdmnZlDrYcGvVdtVy1rj6/laPtR0k3prJq0itmZs8ck5ZhmTiPN\nHBKzuVlzOdB8gOzEk5Z0ne5OMiwZZFgyYp5fbivnaNvRiJ/3OvrEq7XdmYBoHRAMByGGgrjjgrwL\nuG/Bfbx88GWkLol0czo6tQ5ZkVFQ0Kl1g/Y1VnZW8sjnj6CSVCQbk2l0NPLU1qf45oxvjvlUjRun\n38iv7L+iyl6FUWPEG/SiU+v43sLvDdgXeXXZ1fyi+Re0OFuwmWy4/W6aHE2sLl0tCmhOg5HsoYl9\n1HMXIYaCuORr5V/jQMsBOlwduHwuAuoAnqCH0pRSXH4Xq0oGnlry+uHX0aq1pJvTgVBEatFZeP3w\n6ywpWIJJaxqzdaeb0/n58p+zo34HlfZKsixZLMxdOKioFSUX8a9L/5U3Dr/B4dbDJBuTuWX2LSwr\nXDZm6zwXGEmxidhHPXcRYiiIS9LMaTy07CFeP/Q6/7P/f/D4PRRaC0kyJPHV8q8yL3tezPNkReZg\ny0HyrHkRx3VqHUE5SENPQ9gJZqyw6CwsL1rOcpYP+Zzi5GJ+cMEPxnBV0YzEo7O/yXk8Ew/FJqNd\n/SlSv2OHEENB3GIz2bhz/p3cMe8Oartrcfld5CbmYtFZBjxHQsKis+AL+kJN/X9HURRkRcaoOVnc\n4va7OdF5AkmSKEkuGbU5jA09Dfxv1f/S4GigNKWUC/MvJNmYPKxruPwuDrcexhv0UpxcPCYzD4f6\nYewJeFh3fB0fV36MO+BmftZ8ri25nMxjDbBwYWgqvSAmoy3IIk07dggxFMQ9kiRFzU8c7LWXlFzC\nK4deoTipOBzFNDmaKEkpCRekbK3byp/2/Am/7AclNOT37vl3Mz1j+mmt9UDzAZ7a9hQSEiatiQMt\nB/jwyw/58ZIfD7kY5lDLIX63/Xe4A+7wsVWTVvH1aV8f96hMURSe3f4s+5r3kZ2QTbIhmT1Ne3B/\n+hH/uEuF/tHHoLh4XNc0GgwUse3aNXCadDwR/YTjjxBDQVxQ113HJ5WfUNddR0lKCcsKlg1YfXkq\nVk1aRUNPA1vrtiIhoaCQa83lrvl3IUkSdd11PLfrOdJMaeE2CIfPwW+2/4Zfr/j1iItWAnKAP+75\nI0n6pPAoqxRjCo09jbx68FW+v+j7p7yG0+fkd9t/h0lrCj9/UA7y6sFXaXG0kJ2QzbT0aZTZykZk\nVD5cKjoq2N+yn6KkorAQ5xkymPH5JpokGwVvvQX/9E/jFh2OpMBl/frQDMFeev9ssYT+WbHi5M82\nbhy9tZ4O8ZDiPdcQYiiYcA40H+DJrU+iltRYdBZOdJzgkxOf8OMlP6YwqXDY19Oqtdw5/06uLLuS\nxp5GEvWJlKSUhMVjU+0mVJIqoh/QorPQ7mpnV8OuQVs/BqOxp5Eub1dUFJthyWBv096ogcixONR6\nCHfAHfFFoLarlkOth6jprmFWxizeOfYOC3MXcse8O8KN+mNFQ08DElJERJp9uA6rB6qyJQr27YPK\nynGLDkdS4OJwQFIMP/mkJLDbI48ZjeM361AQXwgxFEwoQTnIn/b+iSRDUni2odVgpdXZyov7X+Qn\nS34y4tRgdkJ2zNRkh6sDvTp6f1Cj0tDp6RzRvSDks6ooSlSRiazIqFXqIUVy3qA3okHf7Xezr3kf\nCboETFoTuYm5KIrClrotzMmcw/l550ecrygKuxt38/axt2nobqAgqYBrp1w7YlPzBH1C2P0HQO0P\nMvWzw9gTNCTrzaA2wThHh0Olt9ikb1QIoWiw/7Fe5s2DF14Y65WdJN7TtecSQgwFE0qrq5VOT2dU\nNGUz2ajoqMDld0WNQur2drOzYScNPQ3kJeYxP3v+sIbzTk2byrb6baRx0vVFURR8so/JqZNPeb7T\n56S+px6jxhgxXSLLkkVuYi5trrZwEz6EIsbF+YuHFMUVJRWBdHLmYaurFRkZn+xjkiVUBStJEsmG\nZDbWbIwSw8+qPuP5Pc+TYkoh05JJi7OFX2/6Nfcvup+5WXOH9P70ZVraNKwGK22uNmwmG9mH69A6\nnDiTVMxLKgZjCoxzdDhUelOmt9wSLSxvvTV69xlsf+9U1Z8DRbrxkq49lxBiKJhQtCotCrGjqaAc\nZHPtZjo9nRRYC5iVOYtWZyuPbXoMh8+BXqPHG/Cy5ugafrj4h1gNVo63HyeoBClJLgnv2/VnQc4C\nPvjyA6rt1WRYMlAUhSZHE5NTJ0f4pPZHURTer3ifNw6/gazIyIpMpiWTb8z4BuVp5WhUGu6cfyeP\nb3qcKnsVaklNUA6Sl5THdVOvG9L7kZOYw8VFF/PhiQ9JNiTj9Dlx+pxkWDIiPEp7vVD74gv6ePXQ\nq2QlZIVTwL1zIP924G/Mzpw97H1GvUbPDy74Ac9sf4a61hMs/nAnHjnIAuN0Uj0SeDrB74/b6HA8\nGGx/bzyjTMHpIcRQMGIURaG2u5YuTxdZCVlDmnbfnxRjCmWpZVR2VkaYWB9rP0aLs4UXv3gRnVqH\nL+gjwxzaR5MVOUIYGnsa+bfN/4bD78AT8ACgklTcPONmlhUti7qnUWvkRxf+iPcr3mdTzSbUKjVf\nLf8qK0tWDjoaak/jHl764iVyrbnIiszuht1srtvMe8ffY0nBEm6eeTOLchfx6IpH2de0jzZXG3nW\nPKalTRvWyKlvzvwmZallfFL5CWpJTZurjTmZc8KtH4qi0Onp5KvlX404r93VjifgiYhKARL1idR0\n1eD0OQf8gjAYuYm5PHLxI9TWHkRf/QYpkgld3+cpLgarddjXnUgsltB+ocMRGbkdORKKJGMxHpWc\nvcU+zc2R0Wv/Qh/B6CPEUDAiujxdPLvjWY61H0MtqZEVma8UfoWbZ948rKIOSZK4dc6tPLH52y7V\nxwAAIABJREFUCarsVUDow77R0ciU1CkRHp8VHRWc6DgRVeCSqE9kzdE1rJq0inRryHXGG/Dywr4X\nyE/Kpzg5On2XqE/khmk3cMO0G4a81nVfriPJmIRWpeWz6s/o9naTac6ky9uFJ+DhDzv+QJIhiSm2\nKVHpy+HQf+bh2mNreeXgK3R5u9CqtTh8DqalTWNR7qKI88w6MwoKQTkYYX7uD/rRqrSn1UepklQU\n5M+AH8wY8TVGg5EYBcSiV1j6R299U6qxqlCbmsZWFHuLfYx/r+1qaIBAIBR8NzWFjt9yi2ixGAuE\nGApGxHO7nuNExwkKrAVIkoSsyHxc+TFppjQun3z5sK6Vbk7nFxf9goMtB2l3t6NRaXhh7wtR447S\nTelsr9tOUA6iUZ/8X7fZ0UxQCUbsG+o1enQqHRtrNsYUw5HQ5mrDpDXR4e7A7rGTZDhZoqiSVFh0\nFtYdX8cU25QBr6EoCjvqd/DBiQ+wu+1MT5/OZaWXDdpUv7p0NWW2MrbUbsEVcDE3cy6zM2dHRZuJ\n+kQW5S5iS+0W8q354f8udd11rJ68+pSVrGcCo+na0vuzgYhVhVpYOD7tDdnZcM01oeiwt+r1mmtO\n/ly0WIw+QgwFw6bF2cKh1kPhD1wIiUFOQg7vV7zP6tLVw64A1al1zMmaA4TK+VWSKuoaZp0Zk85E\nu7s9ovWg2dlMiiEl6sNer9HT6Y6uDq3rruOL5i8AmJ4+PaIIppegHAwX8ORZ87CZbJTbytnZsDO0\nv8nJAcUACboENCoN9T31gz7nm0fe5M3Db5JiTMGoNbKpdhPbG7bzs6U/iznrEELR86SUSWEbOYfP\nQaW9EpPWRE5CTsTab555My6/i71Ne8MR++L8xVw75dpB13U2E88RVH+h7tsDKRhfhBgKho3D54gp\nVnq1niZfE0EliEYa+f9amZZMUk2pUdFXi7OFq8quotXVSo29BhkZh89BsjGZRH1iVBFOj7eHmRkz\nw39XFIW3j77Nm0feDIvZywdf5pop13B12dXhcxt6Gnh669O0OlvD0dWqSatYNWkVOxt24g64kRUZ\nX8CHw++gwFpAgj6BJkdTxP36c6LjBP+z73/IScghyZCEJEnkJubS0N3Au8fe5bvzvjvo+6IoCmuP\nr+WtI2+F7eVKUkq4e/7dpJpSATBpTdy/6H4aexrp9HSSZkqL2kOMJ851p5X+zxir8lUwPggxFAyb\nTEsmKkkV1UTe4e5gUsqk024EV0kqvjv3uzyx+Ql6vD0YtUacfieJukTuOe8evEEvv/jsFxxtPYpF\nbyHdlI5Za6bSXkm6OT3UkuBsJTsxm4W5C8PXrbJX8eaRN8lNzA2vMSAHeOvIW8xIn0FJSglBOcjT\nW5/G6XOGi3SCcpC1x9aSb83nX5f8K68fep2j7Ufp9HQyM2MmpSmldLo78QV9rC5dHfU8siLzysFX\n+NuBv3Gw9SDV9moS9YksyFmAWWfGZraxr3nfKd+X7fXbefnAy+Rb89GqtaECpq5afrf9d/zfr/zf\niC8CWQlZA0aa8cTZ4LQizLPPDoQYCoaNSWvi2vJreemLl7CZbJh1Zjrdnbj8Lu6deu+o3GNy6mR+\nedEv2VS7iYaeBoqTizk/93wS9Yk8tukxFBRWFK9AkiT8QT8nOk8wP3s+ra5W/LKfK8uuZEXxiohx\nTTsbdqKRNBFirVFp0Kq07KjfQUlKCRUdFbQ6WyOqVdUqNTaTjQ8qPuDh5Q/zwAUPcNf8u3jjyBt8\nVvUZ9Y568hPzuXv+3WHHHEVRqOmqYV/zPr5o/oIdDTvIMmdRZa/CarDS4+the/12lhUuwxvwYtWf\nuhrzvYr3SDWlhvcKJUki05JJtb2aSnvlqO2Nnsv0FbZYzfqxGM0Idihp0/XrQ18iYlW9nisR9Vgg\nxFAwIi6bdBmpxlTWHl9Li7OFSSmTuGbKNaM6HinNnMY1U66JOFbfXc+RtiMR+5VatZashCza3e38\nasXAnwR+2Y9KFd1np5JUIcNuQtMiYu13GjQGurxd4b+bdCZunnkzN0y7AX/Qj0lrCp+nKApvHnmT\nt4++jQoVOxt3hio8JTVmrRmnz4lFa6HL2xUqxvHauW3Obad8P9pd7WGXnl4kSUJCosfbc8rzBaem\nr5DESuFWVY1txDeUtKnDERLHMz2ijjeEGApGhCRJLMxdGJGGHA+6vF2xi2u0ZpocAzg4/53ZmbN5\nv+L9iL1FRVFwB9zh4p08a17M9oQ2V1vMdgmdWhdVuFNpr+Tto2+H07H7W/Zj0Buo6KxgXuY8jrQf\nocvbhdPnpKarhuumXseS/CWnfPYyWxkHWw5GVJ7KioyCMuSJGIKhEw8RVqwUrMMhUrBjgRBDwRlF\npiUzplh1ejoHjErdfjc7GnZwqPUQRo2RQ62HwkUlPb4eLsi9gHJbORCygbu05FLWHluLzWTDoDHQ\n5mpDo9bE3A+Mxa6GXRHp2DRzGq3OVtSSmi5vFyuKV9DiaKHB0cBjKx+jzFY2pOteNfkq9jXto8XZ\ngs1kwxPw0NjTyMXFF8d1kcxocS4W2wwUqTocJ5vyB2rIPxffr9NBiKHgjCLFmMLywuV8+OWHZCdk\nY9AY6PR04vA5uLY8un2g093JTz7+CY2ORtJMaQTkAH7Zj1VvJc+ax6LcRczKmBUhrDdMu4G8xDw+\n/PJDurxdnJ93PqtLV5NpycTld+H2u0kyJEWc05egHIyIXKekTqHF0YIn4MEv+3H4HDj9Tr4181tD\nFkKAgqSCUAHP4dc52HIQq8HKzTNv5uLii4fxDsYXwyk+ibdim5GMkzodep9/797I/sf+kzf6v74/\nIpUaGyGGgjOOm2bcRKoplbXH1nK47TAmrYlLiy8l3Zwe8bomRxN3vXMXB1sPYtFZqOmqodxWzqTk\nSXR7u7l97u0xG9FVkorF+YtZnL84fMzld/H8nufZXLsZWZFJMiRx4/QbWZCzIOr82Vmzea/ivbDZ\nttVgZUn+ErbUbcGkNWHUGLlj3h0R1x8qRclF/OCCH0S1kZypxFWEEgyCSjVkf9WRjJMajFOJq2Bs\nEWIoOOPQqDQsL1zO3sa9dPu60av1/G/t/7K1fivfX/h9pqZPJSAHeHLLk1R0VpBpyUStCplmH2g5\nQII+AV/QR2Vn5ZAiM0VReG7Xc+xt2kteYh5qlRqHz8Ez25/hh4t/GDUeaXLqZJYVLmND1YZQYQ0S\nTp+T2+fezm1zbxuVobxngxDGHf/935CeDldcMSG3H6q49vqq9tLXX7Wvt+rGjaEosu95wt90YIQY\nCs5IPvzyQ462H6U4qTgsDD3eHn6/8/c8eemT4RYJk8aE8vcBgWqVGr1Gz5cdX5JnzRuyoDT0NLCv\naV/Yeg5Cw4C9AS9vH3s7SgxVkopbZt/Cednnsa1+G4qisDB3IdPTp4/LdHrB4MSKwKyuRq7b/b/o\nLHoWLlsW1xYw/QWtr79q3+rToaZTBSHiXgzff/997r//foLBILfffjs//OEPJ3pJgjhgQ9UGMi2Z\nEYKWoE+gs6uTLzu+xOFzgAT5SflUdFSEnWy0Ki2dnk7K08pDswOHQJurLWYFa6I+kbquupjnqCQV\nMzJmMCNjYo2tR5MOdwc763eGi5VmZMyIS7/TUxWOxIrA5u5eiylRi7PbB59+CldeOe7rG8lA3/49\nh32jwYaGaG9VwcDEtRgGg0Huvfde1q9fT05ODueddx5XXXUV5eXlE700wQQTVIIoikJADkQ53siK\nTHZCNoqiUJpSSquzFbvbjlqlpsfXQ1ZCFnfNu2vIY5VsJluohaHfPl2rqzVU3XqW7N8NxqGWQzy9\n7WkCwQAatYZ1FesoSgrtXw5nsPJ4MNzCEUtPI3k1m+hOzKXHH4B334Xly8csOly7FtQxaq9qa4d/\nrf49h32jwYaG2OlUsf8Ym7gWw+3btzNp0iQK//5f+sYbb2TNmjVCDM9x7B47Lr+L9yvex6Q1kWZK\nC0cpWpWW4uRiDBoDF+RdwOfVnzM/ez6d7k6qu0LDfJ9Y+QRT06cO+X7ZCdnMypzF3qa95Cbm4gl4\n2Fa3jcaeRmZkzuDhzx7m0pJL2dW4iy21W7B77GQnZHNJySUsL1o+ojmP8YQ/6Offd/07CbqEiHmI\nlfZK3jv+HtdPu35c1tG/8nTXLnC7T4416mXjRqioGPr+2OTja5FVGhSVmoBaDb6xjQ7dbsjNjT4e\nDA5+3nB7DnsnX/Qihg0PTlyLYX19PXl5eeG/5+bmsm3btglckWCi8Qf9PLH5CbwBLzaTDafPSaOj\nkfqeemZlzuJ7C74XnvL+ndnfId+azwcVH6BWqbm2/FqunXItOYk54esF5ACegAeT1jTgfp4kSdw5\n707+duBvrD2+lo01G/EH/eQm5mLVWanqrOK2t29jcupkquxVBJUgX3Z+yeHWw3xS+Qk/XvJj8q35\nY/q+tLna2F6/nRZnC5NTJzM3ay4GjWFUrl1pr8Thc0Q9Q5Yli8+qPxs3MRyqqfXevdFWagPRGxXu\nbc/F2xDSwXeDmZg3vcvf/rac5DzLgBWvozVbsRe1evDrxVqHMPYePeJaDM/21JNg+BxoOUBddx0l\nKSXkWfOo766n1dWKy+fiosKLIlxitGpteNpEL0E5yCeVn/De8ff4ouULXD4XWZYsCpIKuH7a9RGt\nEgE5QEVHBb6gj8KkQpYXLeeVg69g0VrISskiIAfY3bQbnVpHQA5wtO0oVoMVg8aAoih0ebtw+V38\nZf9f+MmSn4zZe3Ko5RBPbXuKYDCITqNjQ+UGshOz+eHiH2I1nP4EelmRYx7vnegRz/Qd0OtwhMSj\nb+SYV7cZTdCL1dWITgc+CbK1oMHNIu0uPmv6yoDXHk5bSN99wubmSLHW6aC4GGy2yMit7zl99wUH\n62HsW2nat8q09zzBwMS1GObk5FDbJ5FeW1tLboz8wkMPPRT+87Jly1i2bNk4rE4wEdR116GWQhsu\nOrWOouQiipKL6HR30uM7tT/ni/tf5KMTH9HmaqOhuwG1So2r00WSMYlntj/DA4seYHbWbKrsVfxm\n62+we+wh/09JQiNpCMpBEg2JqFVq1Co1WrWWI21HsBltdPu6w3MWez1DtWotx9uP4/Q5h723drTt\nKG8dfYvKzkqyLFlcOflK5mTNifiSGJAD/Meu/yBRlxiRwqy2V7Pm6Bq+Pevbw7pnLIqSijBoDLj8\nrgjj86aeprhv+O8/oLewMCSETU0hoWjQrGJL+fls7wGzGUwmWLo09Fq3MQVi10cNm777mFotGPoE\n7R7Pqc/py2A9jH1Tw+daWnTDhg1s2LBhxOfHtRjOnz+f48ePU1VVRXZ2Ni+//DIvvfRS1Ov6iqHg\n7CbNlEZQid5ccfqdEenPWLQ4W/i06lMyLZl80fIFycZkVJKKbm83jY5GSpJLeOPIG0xJm8KTW55E\nQgpPr/AH/bxy6BXKU8sjoiGVpAoJqt+FTq2LKqbRqrTIijygW81AfNH8Bf+25d+w6CzYTDY6PZ08\ntfUpbp1zK8uLlodfV22vpsfXE5XCzE7IZmPNRr4181unnWHRa/TcNuc2nt3xLCpU6DV6nH4nmZZM\nLp98+WldeyywWE6KXd8IrLceZsWKvkJhBswR6cbRtDzvje76Vnm6XOD1QsLfv7v4fKFozmgc/vVH\nO1V7JtM/EHr44YeHdX5ci6FGo+GZZ57h0ksvJRgMctttt4nimXOcWZmzSDYk0+JsIc2UhiRJdHu7\nAViav3TQc+u665AkCU/Ag4QU3iM0aU20OluZmzmX6q5qDrQcoNvbHR7HBKGUq0Vnwe6xY9QY6fH2\nYNFZUBQFvUqPJElkWbJw+p1YdBYcPgcmrQlvwMt5OecNa/9OURReOvASyYbkcJozyZCEhMRvt/0W\nh89Bma1sVCeEnIp52fP4xUW/YHPNZtrd7ZTZyliQsyAiUowX+ordaOypnY7HZywLtfT0yMIXhwNm\nzx6eeI23Fdy5QFyLIcBll13GZZddNtHLEMQJRq2RBxc/yH/t/i+q7FVAyK/0gUUPnHKYrUVnQUHB\nqDWioISjuIAcwKgx4vA5yDBn4Pa7Y55fmlzKkfYjXFx0MQdbD9LsaMYT8FCUXMS3Zn2L9SfWs795\nP3aPHbPOTElyCZkJmdw4/cZhPaM74Kahp4EC68mZiq3OVrbVb6PL08Wf9/0Zo9bI3Ky53D73diw6\nCz3enog0aWNPI8sKl43qvnt2QjbXTbtu1K53uoxXVDTaHp/FxaFIsLfScyTpzNG2ghOcAWIoEEAo\nWqroqKCiowKT1sR9C+7DL/sJyAEyLZlDcnYpSS4h05yJ3WMnJyGH+p56LDoLLr+LspQyWpwt3DX/\nLnITc8P37CsmZp2ZFcUr6HR3kpeYR7o5nbzEPP75/H/GZrZx/dTr+bLzS6o6q1Cr1OQm5jI9ffqQ\n+xl70al1GDQG/LI/XJyzvX47GkmDRWehOKUYvVrPzsadTK2dyp3z7uTprU/T6elEr9bjDrjJSsji\nqilXDe9NhlD+7tNP4ZJLQj6dccxYDtXte3ygCExwdiHEUBD3+IN+ntv1HNsbtqNChYKCVqXlvgX3\nMTNz5pCvo1apuX/R/Tyz/RkcPgdd3i5anC3kJ+Zj1Bq5tvxaLsi7AICFOQvZXLuZDEsGWpWWVlcr\nVoOVny79KRJSWEhVqMKWa9MzpjMrYxazM2cjKzKbajbx889+jt1jZ2bGTK6YfMUpo1cIea+uKFrB\n28fepjCpkA53B76gD5WkIishK5xyzTBn8EnlJzy64lEeufgRttVto9XVSmlqKfOy5oVbTIbF1q3w\nxz9CTg7MOPPdc4Y6FWMgYf3Rj0L7fe+9B4HAyeMeT6gVYtcumDcv+tr9rzeYn+hAUawQ6PFFiKFg\nQNx+N4daD+EJeChIKiAnIWdC2l021W5ia91WipNP+pA6fU6e3fEsT616alj7VhmWDB5e/jDV9mpc\nfheJ+lBlaKoxFb1GH37d7XNvZ1LKJD6u/Bin38n5ueczxTaFhp4GipOLmZY2jXePvcvrh18PRaUK\nvHb4NVaXrub6qdfzysFXWHNkDRqVBrVKzcaajexu3M3PvvKzIQniVVOuosPTwZbaLXR6OnH5XRQl\nFzE7c3b4NWpJjS/oA0IzE68oO02Daa8XXn8drFZ49VWYNi3uosPh7t+dbvTY1BQSMocDEhNPHne7\nQ9WnanV0ujKWgK1YEdnmMRQGW3tfkwHB6CDEUBCT4+3HeXrr0zj9TlAACZYVLONbs7417MrI02VD\n1QZsJltUyrLN1caRtiPMzZo7rOupJBVFyYP7kmrVWlaWrGRlyUoONB/gDzv/wMaajaEWC5WGy0ou\n462jb5FnzQvbwQXlIGuPrSU/MZ9XDr5Ctb06XPkqIZFuTufdY+/y3XnfPeUadWodd8y7g6vLrqbS\nXsnTW5+mKKkowgu01dXKZZNGcT9961bo7oaCgtAn+sGDI4oOR2OorDfgxRPwkKBPiEiBn2kz+vpG\nd73C2nu89znide3nGkIMBVF4A15+s+036DX68AR1WZH5uPJjSlNLRzSH73TwBX0DCnBADsQ8Plp0\nuDv47fbfkqhPDL8Xbr+b3+34HTaTLcIXtXcqxtrjaznUeohkQ3I42pQVmfruejZUbRiSGPaSYckg\nw5LB7XNv58/7/4xBbcCgMdDl7SLdnM4lJZeMzoP2RoVpaaF5fqcRHZ6OYHkDXt44/AafVH1CUA6S\nYkzhxuk3Mj97/rDWMFwGM8+2WkPtD30JBkPN8qeir/gPVtna//69VnMQarnom4rNzBQtFWOBEENB\nFEfajuD0ObElnfTUVEkqUk2pfFL5ybiL4aLcRbx++HUsupPGyf6gH0mSxry9YHfjbvxBP3q1nsae\nRhQUUowpSEi0OlshLfL1KklFm6uNgByISLv29iO2u9pHtI4VxSsosBawoXoDdredyzMu54L8CyLe\nk9OiNyrs/bROTj6t6HCk/Gnvn9hSu4XcxFy0ai093h5+u+23MedGjiYDCfjGjfC1r0U37+/ff7Iq\ndCzuv3fvSf9Suz3yZ+daM/14IcRQEIU36I15XKvShtKm48xFRRexvX47lZ2VWA1WfEEfbr+br0//\nOinGlDG9t91tx+6xs795f0TKM9mYjMvvCk+zh1D1qcvvYmn+Uj6v+TzCdUZWZHxBX7hSdSSUppZS\nmlp6+g/VH58PXnsNZDkyPPH5QtHh9OlDnv5+OjQ7mtlat5XCpMJwSjxBn4Bf9vPmkTfHVAxHi/4j\nlfoykhFNgvFDiKEgiuLkYpCIGo/U7m5n9aTV474ei87CT5b8hK11W9nbtJcEfQJL85cyOXXymN87\n3ZLOgZYD2Ey2cKQXlINU26tZUbyCKnsVZq0ZSZLo8fVwfu75LC9azocnPqSuu44uT9fJa5nTR9bu\nMNYEg7BkCfj90T8zGkFRRiSG69fDsWMnqzD9/lCk1Zv267+H2OZqQy2po4q0rHorNV01w77/aGA0\nhiKxYBDq+lizqdWhv/f+vJempsj9wL5s3DjGixWcFkIMBVHYTDauKL2Ct468RZIhCZ1aR4e7gxRT\nCitKhjgXZ5QxaU1cVHQRFxVdNK739fg9JOoTcQVc4QG/Dp+DBH0CszNnszh/MVvrtiLLMgtzFzIz\nYyYqScWK4hV8VvUZWpUWRVLwBXzkWnNZVrhsXNc/JIxGuOGGUb+swxHabuytwvR4Qqm/3rRf/z2v\nFGNKeE5lX0Hs9naTkzC41d5YMW/e8FKSg+0L9hfOXkSrRHwgxFAQk6+Wf5Xi5GI+rvyYHl8PF+Zf\nyEVFF43KFIQzCXfAzfT06fiCPqq6qpBlmdKUUlKMKfhlPzMzZjIzYya+oI9qezVV9ioKkgq4dc6t\nlKWW8WnVp7j8LhbmLOTi4otJ1Cee+qZnOL3FHQ5HZOHJqQpOshKymJM5Jzw3Uq1S4/a76XB3cMvs\nWyKuHeuegzEaFa6ny2DCKlolJh4hhoKYSJLEnKw5zMmaM9FLmVB6U7GTUydTZisLH6+0VzIzI9Tw\nv7txN3/c/UfcgVD5X5Ihibvn381XCr/C0oKlHG0/yp7GPXxQ8QFzs+YyKWXSmPRryorM0bajNDub\nSTIkMTVtakQrxnjRKy633BLpyTkUvjvvu/z1i7+ypXYLEMoI3DH/jnB/5UiF61QVriMV2dGi//37\npmX7R5SiWnRsEGIoEAxCma2MOVlz2NWwizRzGmpJTYurhXxrPgtzFlLfXc8z258h1Zgabr3o8nTx\n5JYneeTiR3jn2DusP7EevVqPgsJ7x9/jstLL+Pq0r4+qIDp9Tp7e+jTHO46jKAoqSYXNZOMHF/wg\nPFbqTMCkNXH73Nu5cfqNOH1OUowpw7azGwkTbWw90fcXCDEUCAZFJam457x72FizkU+rPiUQDHBd\n+XUsL1qOUWtk07FNqCRVxKxCq8GK3W7nrSNvsaFqA4VJheGK06AcZF3FOs7LPo+SlJJRW+frh1+n\noqOCAmtBWGSbHE08t+u5kIXcGTYo26KzjF7byATR33Gmd7gwiMkS8YgQQ4HgFOjUugGLd1qdrTHH\nM2lUGnY37MagMUQ4qKhVarSSlj2Ne0ZNDANygM+rPycnMdIuL8OcwQn7CVqcLRMSHWZmRldhwsm0\n31im+/rvEfbOE7RYIgfgjjYDOc70/ky4zsQvQgwFgtNgim0KOxp2YDPZIo77g37yrHnUd9dHnySB\ngjJqawjKQQJyALUU6dIjSRISUti/dLz51a8mLvqJ1cSelDR6TfIDMVTHmfEmHgqI4p34cuEVCM4w\nFuYuxGayUdtVS0AOhKpO7VUUJRdxddnVuANuZEUOvz4oB/EH/aNamKTX6JmSNoVWV2vEcafPSYIu\nYUjG4Gc7vVMjeqdF9P5zrhSj9H456P+PaOk4iYgMBYLToNcQYM2RNWyp24JaUrNq0iqumHxFqDey\n8CI+qfoEg8aAoij4gj5Wla6iJHn09gsBbpx2I49sfITarlqSDEk4fA58QR/3Lrg3wjjhXKU3NSqs\nzAQDIX5LBILTJMWYwnfmfId/mPUPVHRWsLVuK3/94q/MzZzLN2Z+g4W5C9nVuAuVpGJ+9nxKU0pH\nvaClIKmAny/7OZ9UfsLxjuOUp5VzcdHFp5zOIRAIQggxFAhGibeOvsWaI2vQa/SopdAMw9mZs7lv\nwX2Up5VHvLbd1c6RtiNIksQU25RR8VjNsGRw04ybTvs6glMzlD24sZosMR77f+fiHqMQQ0Hc4g14\n2dmwk/3N+7EarJyfe35cRjqyIlPZWcmaI2si5hsqisLepr3sbNjJ+Xnnh1//0Zcf8dKBl5BlGaRQ\n+8a3Z36bZUXLJugJBMNlKGOqxko0xmOm45k2N3I0EGIoiEtcfhePb3qcE50nsOgs+II+PvjyA26Z\ndQvLi5ZP9PKAkAh+UvkJ7xx9hyNtR6jrqUOj0pCbmBuq5JQkrHorW+q2hMWwyl7Fi1+8SHZCdtgd\nxhvw8t/7/ptJqZNOa6qF4CQT7SgTb4j349QIMRTEJRuqNnCi80REJOgL+vjL/r8wN2tuXHikvnf8\nPV4+8DJZCVlkWjKp665jR8MOFBTyrflAqIWib8vDtvptaCRNhE2aXqNHJanY1bBLiOEocbam8kaK\neD9OjRBDQVyyqXZT2N6sF51ah6zIHGs/xnk5503QykJ4Ah7eOfoOedY8dGod6eZ0dGoderWew62H\nyUvMQ0Ghy9PF4ryTw5BdPhcadfSvnVqlnpBZkWcz5+K+l2DkCDEUjAtBOcinlZ+yrmIdXd4upqVN\n49ryaylMKoz5erWkjujP60tfRxcIucD0+HrIMGdE2KKNFU6fkxf3v8jGmo2YdWbyrfmUppQyI2MG\n+5v34/Q5qbRXIiGxpGBJRE/hrMxZfFr1acSYIkVR8Aa8zEgfv4ny5wLn4r6XYOQIMRSMCy9+8SIf\nffkRmZZMsixZHO84zi//95f8n6/8n3BKsS9fKfgKL+x7gQRdQlg03H43WrU2PD2ix9tNNDQOAAAe\nt0lEQVTD83ueZ2/TXlSSCpWk4sqyK7ly8pXDal1QFIXDbYfZULUBu8fO7MzZLMlfQoI+Ieq1vqCP\nJzY/wbH2Y6hVajQqDRUdFTQ7mllasJQEXQJV9iquKL2CWZmzKE0tjRDvGekzmJkxk31N+0g1paIo\nCp3uTuZmz2Vq2tThvq3jhoiyIjnb9+DO9ueLhRBDwZjT6mzl08pPKUouCgtDujmdJkcT7xx9h39c\n8I9R5ywpWMK+5n3sa9qHVq0lKAcBuKTkEjZUbiDRkMjn1Z/zZeeX5FvzkSQJf9DPqwdfJdmQzJKC\nJUNe37qKdbx84GVMWhN6jZ5XDr7ChqoN/GTJT0gyRM4f2t+0n8rOSkpTS3H5XZywn8Cqt9Lt7aa2\nuxZFUbjnvHu4fPLlMe+lVWv53sLvsbl2M5tqQibf1029jkW5i1Cr1DHPiQdElBXJRH4BGA+hOhe/\n4AgxFIw5DT0NSJIUld5MMaZwuO1wzHN0ah3fX/h9Drcd5kjrETQqDdsbtvN+xftoVBocPgf7mvex\nsnhlOArUqrWkm9N599i7QxZDu8fOa4deIzcxNzwqKMmQRLW9mo++/Ijrp10PhCpHq+xVfHzi47Cv\n6PT06SgoVHdV4w16OdF5gvsX3s+qSasGvadOrWNZ4bL4nHoviHvORaEaD4QYCsacBH1CTGNqt99N\nqjF1wPPUKjXT06czPX06rx18jYbuBgqTCpEkiTZXGypJxc6GnawsWRkWWrPOTF13XcSe3GCc6DyB\noihRM/PSzGlsq9/G9dOup8XZwu+2/Y667jrquuuotFfi9DuZljaN2ZmzKbeVc6LzBFdPuZrrpl03\nzHdHIBgfRKp7cIQYCsacwqRCbEYb2+u2o9foSTGmkGZOo83Vxg3TbhjSNT6t/pSshKywwFl0FvRq\nPe6AG7vHHnZw6XR3UpJcMuQ9Q61KG/O1ATmASWtCVmR+u+23tLvaKUgqCK/7YMtBEnQJFCQVEFSC\nmHVmlheOTf+jN+CluqsalaSiMKlQeI0Og/4zBSH09x/96NwTAJHqHhzxWyUYcyo6KmhxtdDoaMTl\ndyErMiatiR8u/iGLchcN6Rr+oD9iT82gMVCcXMze5r24/W4Ug4LdY6fH18M95fcMeW2TUydj0pro\n9naTqE8EQgU1bc42bplzC5WdldR311OQVACEJrEvyl3Eltot7G7cjYSEXqPnH8/7xzGZDrGzYSfP\n73keT8ADgFVv5Z7z7qE0tXTU73W2kZkZmmNosUQfF9MaBP0RYigYU4JykH/f+e+kGFK4quwqur3d\n+GU/XZ4uvEHvkCO4RbmL2Fy7OaIpvTi5GE/Ag06to7qrmsKkQu6Yd0eUD+hg6DV67ltwH09vfZoO\ndwcogASL8haxtGAph1oPRa0xw5LBqkmrqOmq4cHFD1KcXIxeox/yPYdKXXcdv9/xe2wmG+nmdAC6\nPF08ueVJfr3y12HxFsTmV78S0ZBg6AgxFIwptd212D128q35eANearpqqO6qJigHqe6q5uqyq0kx\nndqk+uqyqznQcoDqrmoSdAm4/W4CcoCffeVnLMhZQFAJopbUI5oGUWYr4/FLHudAywFcPhcFSQUU\nJxcjSVJYfINyMByZuv1u9jTuQafRsaFqAypJFW73GE02Vm9ELakxaU3hY1aDFbvdzu7G3eNagHO2\nldrv2hUavtsfsX927iLEUDCmKEqocCYoB9lct5kuTxcJugRkRabJ0cSjGx/loWUPDdos7/a7+bzm\nc9x+N23ONvxBP0sKlrCqZFU4famRTu9/ZYvOEjNlm2JM4ZKSS1h7bC1p5jRkWWZ95Xr8QT9LC5ay\nv3k/W+u3csvMW5ieMR21Sk2yIXlURjS1uFowaAxRx9UqdSiKHUfONoFwu8+OiFEUxYweQgwFY0qe\nNY9EfSInOk7Q5e4iyRjq23N4HEyxhaazb6/fPqD5dkAO8OSWJznWfoxMSybT06fT5GiisrMSm8k2\nLs9ww7QbyE7I5oOKD9hUu4lEfSKLcheF05RNPU088OEDTM+YjkbSUJpayq1zbiXTMrKwqcnRRKe7\nkxxLDnsa95Bqiqy49cv+UR8OLBg9BhIoGH2REmng0SOuxfDBBx/k3XffRafTUVJSwp/+9Ces1ok3\naD6XURSFSnslHe4O0kxp4Yb3gdCoNNwx9w7uW3cf7oAbrU+LX/Zj1popt5Xj8Dk40naEqWlTaXI0\nYTVYKbAWhK95sOUgx9qPhVsqIDTItqqzalARHU1UkoqlBUtZWrCUO9+5E5vJFm7FcPqc7GjYgTfg\nJUGbQJo5jdquWh7b9Bi/vOiXGLXGId/H6XPyn7v/k31N+1BJKrwBL23uNgCyE7KRFZlGRyMlySVM\nS582Js96tpGZCa+/HooE+9LWFqo0XbFi9O85kEDBxIrU2ZbqHm3iWgwvueQSfv3rX6NSqfjRj37E\no48+yq9E7D9h9Hh7+N3233G8/TiSJCErMjPSZ3D3eXdH7Gv1Z2r6VO4+727+sOMPmHVmUowp5CTk\noFVraXG2sK95H9vrt4evOSl5EvcuvJckQxJfdn6JVh3d/mDRWzjYevC0xdAT8HCg5QDtrnayE7Ip\nTysftHXBqDUSkANhMazpqkFWZHQaHRq1BkmSyLBkUGWvYm/T3og5hqfiv/f9N/ub94e/YMiKjL/N\nj0VvodXVikalYXXpai4vvVy0VwxArKjM7Q594PcVvrfeim65ONsRH52DE9e/UStXrgz/eeHChbz+\n+usTuBrBn/f/mS87TtqfKYrCgZYDvHrwVf5h9j8Meu6K4hWsP7Eek9YUTi86fU7quutI1CcyLX0a\nKkmFooQcXZ7b9RwPXvAgVr01bMXWF4/fg814emnSJkcTj296nHZ3OxISCgoFSQX88/n/HF6jrMhU\ndFTQ5ekiKyGLiwov4rXDr1GUVIQkSXR7u5EVGbPOHGHdplFpaHQ0Dnktdo+dnQ07w7MQIRSRFicX\nY/fY+cPlf4hru7b+TNReVqyobO/e+BM+sdcXf8S1GPbl+eef56abbproZZyzdHu7oz6sJUkiJzGH\nz2s+5+vTvx6z2KOXJEMSD5z/AL/f8XtqumoAMGqMpBhTIjxLJUkiOyGbw62HaXG2MDdrLq8cfIUe\nb0/YONvtdxNUgizOXzzg/U6Foij8567/xOV3RUzOqOmq4bVDr3HrnFtpd7Xz9LanqeuqC0dqczLn\nMCN9BgdbD6IoCr6gD7/sZ0HOggi7uYAcICchJ/z3dlc77oCbDHNGlNsNgMPnQCLask6n1uEJePAG\nvZhUA0ff8Ua872VZLKE19l/PeKUM4/39OReZcDFcuXIlTTG+Ij3yyCNceeWVAPzyl79Ep9PxjW98\nY7yXJ/g7bn9o06X/h7VaUhNUgviCvkHFEEIN7k9c8gTV9mpkRSYnMYd71t6DXh3Zo9frY+r0O8mw\nZPD9hd/n9zt/T0dXB5IioVVruXP+neRZ80b8PK2uVk7YT5CfGDkxIzshm821m7l5xs08t+s5Whwt\n4YpVRVHY3bibq8uu5trya6nvricoB/nbwb/hC/pQFAUFhSZHE+nmdGZlzqLT3ckf9/yRg60HkZAw\naU3cNOOmiBmHQHgf0hvwRvQsdnu7yUrIwqgZ+t6j4NSsWBESnhdemOiVCOKFCRfDjz76aNCfv/DC\nC7z33nt8/PHHA77moYceCv952bJlLFu2bJRWJ+jFZrKRqE/E6XNGtEF0e7vJNGeSoIsedxQLjUpD\nScrJSsjSlFKaHE0RFZO+oA+1Sk2WJeToMjV9Kk9e+iQnOk8gKzJFSUXDKkyJhT/oR0KK2ovsFfcG\nRwPH2o9FjJfqjVrXV67n2vJrmZQyCYBJqZP4y/6/hPdSZ2fO5hszvoFOrePRjY/S0N1AfmIotez2\nu3lu13OkGFIizAEMGgPXTrmWv+z/C2nmNCw6C3aPnS5PF/80+59GpVVDcPYhimJOsmHDBjZs2DDi\n8ydcDAfj/fff5/HHH+ezzz7DYBg46ugrhoKxQa1S840Z3+DZ7c9i8VtI0CfQ5enCE/DwwPkPjPjD\n+oZpN/DoxkcJOAKkGFNw+p20u9r55sxvRgieTq1jim3KaD0OmZZMrHprRPoVQhFjua0cRVFQSaqo\n59KpdeE0bW9vY741nx9f+GMcPgcqSRX+snCs/Rg19ppwZAmhAhyL1sK6inVRTjmXlFyC1WDlnaPv\nUN9dT1FyEXfNvyuu5xyeCYx3SnQggRqLe8baX+zdj+xvKnC270f2D4QefvjhYZ0f12J433334fP5\nwoU0559/Pr///e8neFXnLgtyFpC4JJH3jr9HbXct5WnlXF56eUSkN1xKU0v56dKf8vbRtznefpx0\nczo3z7iZednzRnHl0ahVam6dcytPbX2Kbm83Zp2ZHm8POrWOm6bfRJo5DY1KE5W2bHO1UWYri6rm\nlCQpahiw3WOPeW+LzkJjT3RxjSRJLMpdNGS/VkE0sYRo0iS48MLxE4Kh3GfXrlBhT3+C0bViQ6Jv\nQU5fP1aL5WQVrdiPHJy4FsPjx49P9BIE/ZhimzKqERqEPEbvX3T/qF5zKMzImMHPl/+cTys/paGn\ngQvzLmRZ0bJwM/+N02/k+T3Pk2RIwqwz0+nuJKgEhzxpI8OcgYISNU7K7rEzJ2vOmDxTvDBR6bsz\nJfJxuyE3N/p4Xd3Irte3IGfvXkj6e2GzPfb3MUEM4loMBfGN2+9mf/N+mp3NZFuymZExY0wMq8eS\n3MRcvjXrWzF/tqwwJIzrjq+j2dnMvOx5rJq0KmIfcTDyrfnMypjF3ua95CbkolFp6PR0EpADXDbp\nstF8jLjjTBGlicJojC1UxiFuhfdvzdi4MSSC/Sd0CIaOEEPBiGhyNPHYpsfocHeEi04yLZk8eMGD\nUfZhZyqSJDEjYwYzMmaM+Py7z7ubNw+/yadVn+IP+ilMLuTeBfdG7CMKxod46u2bN+/0Wiv6t2b0\nRoMiEhw5QgwFw0ZRFJ7f83xUj159dz0vHXiJexfcO3GLizMMGgM3zbiJ66ddjz/ox6AxjKjYKCAH\nAITzzGkw3r19g4lvLNavj1340nuOiLbHFvGbJRg2nZ5Ojrcfj0oXZiVksathFy6/a1B7tnMRjUoT\nFrLeAccW3alzWp3uTl479Bpb67aioDA/ez7XTb0uPN9QEL8MV3wdjlCa83QF22I5GSE6HCfPPRfb\nLYaDEEPBsAnIAYgR3Eh/PxjLPk0QqkT96xd/ZU/jHpBgcspkbp5584DmAZ6Ah8c2P0aLo4XshGwA\n9jTuoaKjgoeXPRxVvdr/3E01m9hcuxmNSsPSgqUszF0oIsuzlF4BdDhg9uyTx0VEOXTEb4Zg2KSZ\n0sg0Z2L32Ek2JoePt7naKE0tHVLEc67hCXh4bNNj2D128qx5SEjUdtfyq02/4hfLfxHxPvayr2kf\njT2NEanonMQcqu3VbK/fzsXFF8e8lzfg5YnNT3C8/TgpxhRkRebfd/47+5r3cdf8u6JchATjT6xq\nW4dj5NFb3/YJ4aozMoQYCoaNJEncOudWHt/8OI4uB2adGafPiU6t45szvincUmKwr2kfLc6WCGFL\nN6dT01XDxpqNXFl2ZdQ5lfZKdGpd1HGT1kRFR8WAYrircRfH249TlFwUPpZkSGJb3TYuLrqYMlvZ\n6T+QYMisXx9pFO5whPoe+0dtt9wy8OgnwdgjxFAwIkpTS/l/y/8fn1d/Tm13LUXJRSzJX3LWVJKO\nNvU99WhV0QbdZq2ZSntlzHPSzen4g/6o456AhwxLxoD32tO4JyqFKkkSGpWGI21HhBiOMw7Hyb6/\nXgoLT69wZ7h9nPFUSRuvCDEUjJgMSwbXTbtuopdxRpBhzsAvRwuby+8iLzH2nuH87Pm8dug1Otwd\npBhTgJAXrFqljjL67otZZ8YX9EUdlxX5tD1dB2M8J7yPhPE2Aui9X//xUaPRCzjc91JMyTg1QgwF\ngnFgTtYckg3JNDuaw5Wgdo8djUrDhfkXxjwnUZ/Igxc8yH/s+g9q7DUgQbIhmQfOf4A0c9qA97og\n7wI+rQz1NfaOi/IEPKgkFXMyx875Jl4nvPcy3mLce7+hpj/H09NUEI0QQ4FgHDBpTfzL4n/h+T3P\nU9FZAUC2JZv7Ft43qLAVJRfxyMWP0NjTiKzIZCdkn3LIb2lKKTdMu4HXDr+GIisghVo7bp97+6D3\nEkwsEx05n+sIMRQIxomshCx+suQndLg7kBUZm8k2pGIjlaQiJzHnlK/rRZIkLp98OQtyFnCs/Rhq\nlZpyWzlWg/V0li8QnNUIMRQIxhFJksatyCjNnCYiwThAzBw8MxBiKBAIBGNIPKQ/hSCfGiGGAoFg\nVBAFIPFLPAhyvCMpiqJM9CJOB0mSOMMfQSAQCASjzHC1QfgyCQQCgeCcR4ihQCAQCM55xJ6hQCAQ\nCIZEvLsMnQ5CDAUCgUAwJOLdZeh0EGlSgUAgEJzzCDEUCAQCwTmPSJMKBALBBCLGK8UHQgwFAoFg\nAhHjleIDIYYCQRwRlIMcaj3EgZYDmHVm5mfPJzshe6KXJRCc9QgxFAjiBH/Qz7M7nmVP4x7+f3v3\nGxNHnfhx/LMUFqStUvoHOLa6lEJpEAja9NALFQ/X8EBpmxjTJmf6zycSn0j9U59oiYetrZjc1cY0\nWj3iRW1MWsGkErhQYs+Lh21pK8Gz1AXLn4JpC7WtCAXmHlx++5NCa0HlO7PzfiWTdGYX+sk3w3yy\nM9+diY6M1vDosA58dUAbcjdoxR0rTMcDwvqWe5QhYBP/6viXjnUfU8qclNCjnQaHB1V5vFJZC7I0\n55Y5hhPC7cL5GiazSQGb+OeZfyo+Nn7MMw6jI6M1Yo3oP+f+YzAZEP74ZIiwMDg8qLpgnerb6jU4\nMqjlv1uuh9IfmrZnB/4aLFnyaOKH/VriZvThiscr2QNPrYDjjVqj+svnf1FTT5MSZyUqMiJSvZd7\ndWv0rdpasNUxT3ivb6vX347/TSlx/3+adGhkSD2Xe7QzsNNRxQ6YxlMr4DrfXPhGJ3pPKCUuRbFR\nsfLO8GrhbQt1cfCiDn972HS8m/aHhX9Q5vxMtfW3qfdyrzq/71T3pW6tvXMtRQj8xjhNCsf79uK3\nkjTmWpsk3RZ9m05+d1IPLXnIRKxJi46MVuk9pTrRc0InvjuhWd5Z+n3y7+WP85uOBoQ9yhCON9s7\ne8LtA8MDmhc7b5rTTN7Vkas61HZI/2j7hwauDmjZ75Zp5ZKVjsgOhAtOk8LxshKyNMs7S/0/9oe2\nDQ4PamB4QAX+AnPBboJlWdpzdI/+/uXfZVmWZnln6fCZw/rzp39W30Cf6XiAa9i+DCsqKhQREaEL\nFy6YjgKbio2KVek9pfLIozMXz+jMxTM698M5rc9Zr/S56abj3VBbf5uOdB9RSlyKZnpnKjoyWr5b\nffr+x+/V0N5gOh7gGrY+TdrR0aG6ujrdcccdpqPA5hbNWaSdD+5UsC+oqyNX5Y/za6Z3pulYP6vj\nYocsyxp3vTPuljh9+d2XWr10taFkgLvY+pNhaWmpduzYYToGHCIyIlLpc9OVuSDTEUUoSTO9M8cV\noST9OPyj4mPiDSQC3Mm2ZVhVVSWfz6fs7GzTUYDfTOb8TM32zh5zfXBoZEiXhy7rj4v+aDAZ4C5G\nT5MGAgH1TPAgr/Lycm3btk21tbWhbXyxHuHolqhbVHpPqf7677/qzMUzkiSPPPpT9p+0dN5Sw+kA\n97DlHWiam5tVWFio2NhYSVJnZ6eSk5PV2NioBQsWjHmvx+PRiy++GFovKChQQUHBdMYFfrHh0WF9\nc+EbDY0MyR/n1+zoib8uAmBiDQ0NamhoCK2XlZVN6kOULcvwWikpKTp69Kji48dfQ+F2bADCyZYt\n/3vg77USE8P7qRG/tsl2g61nk/6fiSYYAEA46umR/P7x26/3HEH8OhxRhsFg0HQEAEAYs+1sUgAA\npgtlCABwPcoQAOB6lCEAwPUcMYEGANwiMXHimaOJidMexVUc8T3DG+F7hgCAa022GzhNCgBwPcoQ\nAOB6lCEAwPUoQwCA61GGAADXowwBAK5HGQIAXI8yBAC4HmUIAHA9yhAA4HqUIQDA9ShDAIDrUYYA\nANejDAEArkcZAgBcjzIEALgeZQgAcD3KEADgepQhAMD1KEMAgOtRhgAA16MMAQCuRxkCAFyPMgQA\nuB5lCABwPcoQAOB6lCEAwPUoQwCA61GGAADXs3UZ7tq1S0uXLtWdd96p5557znQcAECYsm0ZHjp0\nSNXV1Tp58qSam5v19NNPm44UVhoaGkxHcCTGbeoYu6lh3KaHbcvwjTfe0PPPP6+oqChJ0vz58w0n\nCi/8gU0N4zZ1jN3UMG7Tw7Zl2Nraqk8//VR5eXkqKCjQkSNHTEcCAISpSJP/eSAQUE9Pz7jt5eXl\nGh4eVl9fnz7//HN98cUXevTRRxUMBg2kBACEPcumioqKrIaGhtB6amqqde7cuXHvS01NtSSxsLCw\nsLCEltTU1El1jtFPhjeyatUq1dfX67777tOpU6c0NDSkuXPnjnvf6dOnDaQDAIQTj2VZlukQE7l6\n9ao2btyo48ePy+v1qqKiQgUFBaZjAQDCkG3LEACA6WLb2aQ/58MPP1RmZqZmzJihY8eOjXlt27Zt\nSktLU0ZGhmpraw0ltL+tW7fK5/MpNzdXubm5qqmpMR3J1mpqapSRkaG0tDS98sorpuM4ht/vV3Z2\ntnJzc7V8+XLTcWxr48aNSkhIUFZWVmjbhQsXFAgElJ6ergcffFD9/f0GE9rTROM2lWObY8swKytL\nBw4c0IoVK8Zsb2lp0b59+9TS0qKamhqVlJRodHTUUEp783g8Ki0tVVNTk5qamlRUVGQ6km2NjIzo\nySefVE1NjVpaWvT+++/rq6++Mh3LETwejxoaGtTU1KTGxkbTcWxrw4YN4w7a27dvVyAQ0KlTp1RY\nWKjt27cbSmdfE43bVI5tji3DjIwMpaenj9teVVWltWvXKioqSn6/X4sXL+YP8AY4S35zGhsbtXjx\nYvn9fkVFRWnNmjWqqqoyHcsx2M9+Xn5+vubMmTNmW3V1tdatWydJWrdunT766CMT0WxtonGTJr/P\nObYMr6e7u1s+ny+07vP51NXVZTCRve3atUs5OTnatGkTp2BuoKurSwsXLgyts1/dPI/HowceeEDL\nli3Tm2++aTqOo/T29iohIUGSlJCQoN7eXsOJnGOyxzZbl2EgEFBWVta45eOPP57U7/F4PL9RQvu7\n3hhWV1friSeeUFtbm44fP66kpCRt3rzZdFzbcvM+9Et99tlnampq0ieffKLdu3fr8OHDpiM5ksfj\nYT+8SVM5ttn2e4aSVFdXN+mfSU5OVkdHR2i9s7NTycnJv2YsR7nZMXz88cf18MMP/8ZpnOva/aqj\no2PMGQhcX1JSkqT/3V949erVamxsVH5+vuFUzpCQkKCenh4lJibq7NmzWrBggelIjvDTcbrZY5ut\nPxnerJ+eGy4uLtYHH3ygoaEhtbW1qbW1lRls13H27NnQvw8cODBmNhbGWrZsmVpbW9Xe3q6hoSHt\n27dPxcXFpmPZ3g8//KBLly5Jkq5cuaLa2lr2s0koLi5WZWWlJKmyslKrVq0ynMgZpnRsm/L90gzb\nv3+/5fP5rJiYGCshIcEqKioKvVZeXm6lpqZaS5YssWpqagymtLfHHnvMysrKsrKzs62VK1daPT09\npiPZ2sGDB6309HQrNTXVevnll03HcYRgMGjl5ORYOTk5VmZmJuN2A2vWrLGSkpKsqKgoy+fzWW+/\n/bZ1/vx5q7Cw0EpLS7MCgYDV19dnOqbtXDtue/fundKxjS/dAwBcLyxOkwIA8EtQhgAA16MMAQCu\nRxkCAFyPMgQAuB5lCABwPcoQAOB6lCEAwPVsfW9SAOMdPXpU7777rmbMmKH29na99dZb2rNnj/r7\n+9XV1aWysjItWrTIdEzAUShDwEGCwaDeeecdvf7665Kk9evXKy8vT5WVlRodHVV+fr7uuusuPfXU\nU4aTAs5CGQIOUlFRoR07doTWr1y5ovj4eOXl5amzs1ObN2/W+vXrzQUEHIp7kwIO0t7eLr/fH1r3\n+XzasGGDXnrpJXOhgDDABBrAQX5ahF9//bW6u7t1//33mwsEhAnKEHCo+vp6eb1e3XvvvaFtwWBw\nzHsuXbqkRx55ZMyDiQGMRxkCDjEwMKBnn31Wzc3NkqS6ujrl5OQoJiZGkjQ6OqqdO3eG3r937169\n9tpr2r9/v7gaAtwYE2gAhzh48KBeffVV3X333YqMjNTp06cVFxcXer28vHzM5JlNmzZJksrKyqY7\nKuA4TKABHOL8+fN65plnNG/ePEVEROiFF15QSUmJYmJi5PV6tXLlShUWFo77uYiICLW3t+v22283\nkBpwBsoQCHOUIfDzuGYIAHA9yhAA4HqUIeACXA0BbowyBMLUe++9p5KSEnk8Hm3ZskW7d+82HQmw\nLSbQAABcj0+GAADXowwBAK5HGQIAXI8yBAC4HmUIAHA9yhAA4HqUIQDA9ShDAIDrUYYAANf7L6s6\n0nX+T+nzAAAAAElFTkSuQmCC\n", - "text": [ - "" - ] - } - ], - "prompt_number": 36 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "\n", - "## Defining the objective function and decision rule\n", - "\n", - "Here, our **objective function** is to maximize the discriminant function $g_i(\\pmb x)$, which we define as the posterior probability to perform a **minimum-error classification** (Bayes classifier). \n", - "\n", - "$ g_1(\\pmb x) = P(\\omega_1 | \\; \\pmb{x}), \\quad g_2(\\pmb{x}) = P(\\omega_2 | \\; \\pmb{x}), \\quad g_3(\\pmb{x}) = P(\\omega_2 | \\; \\pmb{x})$\n", - "\n", - "So that our decision rule is to choose the class $\\omega_i$ for which $g_i(\\pmb x)$ is max., where \n", - " $ \\quad g_i(\\pmb{x}) = \\pmb{x}^{\\,t} \\bigg( - \\frac{1}{2} \\Sigma_i^{-1} \\bigg) \\pmb{x} + \\bigg( \\Sigma_i^{-1} \\pmb{\\mu}_{\\,i}\\bigg)^t \\pmb x + \\bigg( -\\frac{1}{2} \\pmb{\\mu}_{\\,i}^{\\,t} \\Sigma_{i}^{-1} \\pmb{\\mu}_{\\,i} -\\frac{1}{2} ln(|\\Sigma_i|)\\bigg) $" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "## Implementing the discriminant function\n", - "Now, let us implement the discriminant function for $g_i(\\pmb x)$ in Python code:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def discriminant_function(x_vec, cov_mat, mu_vec):\n", - " \"\"\"\n", - " Calculates the value of the discriminant function for a dx1 dimensional\n", - " sample given the covariance matrix and mean vector.\n", - " \n", - " Keyword arguments:\n", - " x_vec: A dx1 dimensional numpy array representing the sample.\n", - " cov_mat: numpy array of the covariance matrix.\n", - " mu_vec: dx1 dimensional numpy array of the sample mean.\n", - " \n", - " Returns a float value as result of the discriminant function.\n", - " \n", - " \"\"\"\n", - " W_i = (-1/2) * np.linalg.inv(cov_mat)\n", - " assert(W_i.shape[0] > 1 and W_i.shape[1] > 1), 'W_i must be a matrix'\n", - " \n", - " w_i = np.linalg.inv(cov_mat).dot(mu_vec)\n", - " assert(w_i.shape[0] > 1 and w_i.shape[1] == 1), 'w_i must be a column vector'\n", - " \n", - " omega_i_p1 = (((-1/2) * (mu_vec).T).dot(np.linalg.inv(cov_mat))).dot(mu_vec)\n", - " omega_i_p2 = (-1/2) * np.log(np.linalg.det(cov_mat))\n", - " omega_i = omega_i_p1 - omega_i_p2\n", - " assert(omega_i.shape == (1, 1)), 'omega_i must be a scalar'\n", - " \n", - " g = ((x_vec.T).dot(W_i)).dot(x_vec) + (w_i.T).dot(x_vec) + omega_i\n", - " return float(g)" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 39 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "## Implementing the decision rule (classifier)\n", - "Next, we need to implement the code that returns the max. $g_i(\\pmb x)$ with the corresponding class label:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import operator\n", - "\n", - "def classify_data(x_vec, g, mu_vecs, cov_mats):\n", - " \"\"\"\n", - " Classifies an input sample into 1 out of 3 classes determined by\n", - " maximizing the discriminant function g_i().\n", - " \n", - " Keyword arguments:\n", - " x_vec: A dx1 dimensional numpy array representing the sample.\n", - " g: The discriminant function.\n", - " mu_vecs: A list of mean vectors as input for g.\n", - " cov_mats: A list of covariance matrices as input for g.\n", - " \n", - " Returns a tuple (g_i()_value, class label).\n", - " \n", - " \"\"\"\n", - " assert(len(mu_vecs) == len(cov_mats)), 'Number of mu_vecs and cov_mats must be equal.'\n", - " \n", - " g_vals = []\n", - " for m,c in zip(mu_vecs, cov_mats): \n", - " g_vals.append(g(x_vec, mu_vec=m, cov_mat=c))\n", - " \n", - " max_index, max_value = max(enumerate(g_vals), key=operator.itemgetter(1))\n", - " return (max_value, max_index + 1)" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 40 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "## Classifying the sample data\n", - "Using the discriminant function and classifier that we just implemented above, let us classify our sample data. (I have to apologize for the long code below, but I thought it makes it a little more clear of what exactly is going on)" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "class1_as_1 = 0\n", - "class1_as_2 = 0\n", - "class1_as_3 = 0\n", - "for row in x1_samples:\n", - " g = classify_data(\n", - " row, \n", - " discriminant_function,\n", - " [mu_vec1, mu_vec2, mu_vec3],\n", - " [cov_mat1, cov_mat2, cov_mat3]\n", - " )\n", - " if g[1] == 2:\n", - " class1_as_2 += 1\n", - " elif g[1] == 3:\n", - " class1_as_3 += 1\n", - " else:\n", - " class1_as_1 += 1\n", - "\n", - "class2_as_1 = 0\n", - "class2_as_2 = 0\n", - "class2_as_3 = 0\n", - "for row in x2_samples:\n", - " g = classify_data(\n", - " row, \n", - " discriminant_function,\n", - " [mu_vec1, mu_vec2, mu_vec3],\n", - " [cov_mat1, cov_mat2, cov_mat3]\n", - " )\n", - " if g[1] == 2:\n", - " class2_as_2 += 1\n", - " elif g[1] == 3:\n", - " class2_as_3 += 1\n", - " else:\n", - " class2_as_1 += 1\n", - "\n", - "class3_as_1 = 0\n", - "class3_as_2 = 0\n", - "class3_as_3 = 0\n", - "for row in x3_samples:\n", - " g = classify_data(\n", - " row, \n", - " discriminant_function,\n", - " [mu_vec1, mu_vec2, mu_vec3],\n", - " [cov_mat1, cov_mat2, cov_mat3]\n", - " )\n", - " if g[1] == 2:\n", - " class3_as_2 += 1\n", - " elif g[1] == 3:\n", - " class3_as_3 += 1\n", - " else:\n", - " class3_as_1 += 1" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 81 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "## Drawing the confusion matrix and calculating the empirical error\n", - "Now, that we classified our data, let us plot the confusion matrix to see what the empirical error looks like." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import prettytable\n", - "\n", - "confusion_mat = prettytable.PrettyTable([\"sample dataset\", \"w1 (predicted)\", \"w2 (predicted)\", \"w3 (predicted)\"])\n", - "confusion_mat.add_row([\"w1 (actual)\",class1_as_1, class1_as_2, class1_as_3])\n", - "confusion_mat.add_row([\"w2 (actual)\",class2_as_1, class2_as_2, class2_as_3])\n", - "confusion_mat.add_row([\"w3 (actual)\",class3_as_1, class3_as_2, class3_as_3])\n", - "print(confusion_mat)\n", - "misclass = x1_samples.shape[0]*3 - class1_as_1 - class2_as_2 - class3_as_3\n", - "bayes_err = misclass / (len(x1_samples)*3)\n", - "print('Empirical Error: {:.2f} ({:.2f}%)'.format(bayes_err, bayes_err * 100))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "+----------------+----------------+----------------+----------------+\n", - "| sample dataset | w1 (predicted) | w2 (predicted) | w3 (predicted) |\n", - "+----------------+----------------+----------------+----------------+\n", - "| w1 (actual) | 98 | 1 | 1 |\n", - "| w2 (actual) | 2 | 93 | 5 |\n", - "| w3 (actual) | 1 | 2 | 97 |\n", - "+----------------+----------------+----------------+----------------+\n", - "Empirical Error: 0.04 (4.00%)\n" - ] - } - ], - "prompt_number": 85 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "# 2) Assuming that the parameters are unknown - using MLE" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "### About the Maximum Likelihood Estimate (MLE)\n", - "\n", - "In contrast to the first section, let us assume that we only know the number of parameters for the class conditional densities $p (\\; \\pmb x \\; | \\; \\omega_i)$, and we want to use a Maximum Likelihood Estimation (MLE) to estimate the quantities of these parameters from the training data (*here:* our random sample data).\n", - "\n", - "\n", - "Given the information about the form of the model - the data is normal distributed - the 2 parameters to be estimated are $\\pmb \\mu_i$ and $\\pmb \\Sigma_i$, which are summarized by the \n", - "parameter vector $\\pmb \\theta_i = \\bigg[ \\begin{array}{c}\n", - "\\ \\theta_{i1} \\\\\n", - "\\ \\theta_{i2} \\\\\n", - "\\end{array} \\bigg]=\n", - "\\bigg[ \\begin{array}{c}\n", - "\\pmb \\mu_i \\\\\n", - "\\pmb \\Sigma_i \\\\\n", - "\\end{array} \\bigg]$ " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For the Maximum Likelihood Estimate (MLE), we assume that we have a set of samples $D = \\left\\{ \\pmb x_1, \\pmb x_2,..., \\pmb x_n \\right\\} $ that are *i.i.d.* (independent and identically distributed, drawn with probability $p(\\pmb x \\; | \\; \\omega_i, \\; \\pmb \\theta_i) $). \n", - "Thus, we can **work with each class separately** and omit the class labels, so that we write the probability density as $p(\\pmb x \\; | \\; \\pmb \\theta)$ " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "### Likelihood of $ \\pmb \\theta $" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Thus, the probability of observing $D = \\left\\{ \\pmb x_1, \\pmb x_2,..., \\pmb x_n \\right\\} $ is: \n", - "
\n", - "
\n", - "$p(D\\; | \\; \\pmb \\theta\\;) = p(\\pmb x_1 \\; | \\; \\pmb \\theta\\;)\\; \\cdot \\; p(\\pmb x_2 \\; | \\;\\pmb \\theta\\;) \\; \\cdot \\;... \\; p(\\pmb x_n \\; | \\; \\pmb \\theta\\;) = \\prod_{k=1}^{n} \\; p(\\pmb x_k \\pmb \\; | \\; \\pmb \\theta \\;)$ \n", - "
\n", - "Where $p(D\\; | \\; \\pmb \\theta\\;)$ is also called the ***likelihood of $\\pmb\\ \\theta$***." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We are given the information that $p([x_1,x_2]^t) \\;\u223c \\; N(\\pmb \\mu,\\pmb \\Sigma) $ (remember that we dropped the class labels, since we are working with every class separately)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And the mutlivariate normal density is given as:\n", - "$\\quad \\quad p(\\pmb x) = \\frac{1}{(2\\pi)^{d/2} \\; |\\Sigma|^{1/2}} exp \\bigg[ -\\frac{1}{2}(\\pmb x - \\pmb \\mu)^t \\Sigma^{-1}(\\pmb x - \\pmb \\mu) \\bigg]$\n", - "\n", - "So that \n", - "$p(D\\; | \\; \\pmb \\theta\\;) = \\prod_{k=1}^{n} \\; p(\\pmb x_k \\pmb \\; | \\; \\pmb \\theta \\;) = \\prod_{k=1}^{n} \\; \\frac{1}{(2\\pi)^{d/2} \\; |\\Sigma|^{1/2}} exp \\bigg[ -\\frac{1}{2}(\\pmb x - \\pmb \\mu)^t \\Sigma^{-1}(\\pmb x - \\pmb \\mu) \\bigg]$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "and the log of the multivariate density" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$ l(\\pmb\\theta) = \\sum\\limits_{k=1}^{n} - \\frac{1}{2}(\\pmb x - \\pmb \\mu)^t \\pmb \\Sigma^{-1} \\; (\\pmb x - \\pmb \\mu) - \\frac{d}{2} \\; ln \\; 2\\pi - \\frac{1}{2} \\;ln \\; |\\pmb\\Sigma|$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "#### Maximum Likelihood Estimate (MLE)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In order to obtain the MLE $\\boldsymbol{\\hat{\\theta}}$, we maximize $l (\\pmb \\theta)$, which can be done via differentiation:\n", - "\n", - "with \n", - "$\\nabla_{\\pmb \\theta} \\equiv \\begin{bmatrix} \n", - "\\frac{\\partial \\; }{\\partial \\; \\theta_1} \\\\ \n", - "\\frac{\\partial \\; }{\\partial \\; \\theta_2}\n", - "\\end{bmatrix} = \\begin{bmatrix} \n", - "\\frac{\\partial \\; }{\\partial \\; \\pmb \\mu} \\\\ \n", - "\\frac{\\partial \\; }{\\partial \\; \\pmb \\sigma}\n", - "\\end{bmatrix}$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$\\nabla_{\\pmb \\theta} l = \\sum\\limits_{k=1}^n \\nabla_{\\pmb \\theta} \\;ln\\; p(\\pmb x| \\pmb \\theta) = 0 $" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "## MLE of the mean vector $\\pmb \\mu$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "After doing the differentiation, we find that the MLE of the parameter $\\pmb\\mu$ is given by the equation: \n", - "${\\hat{\\pmb\\mu}} = \\frac{1}{n} \\sum\\limits_{k=1}^{n} \\pmb x_k$\n", - "\n", - "As you can see, this is simply the mean of our dataset, so we can implement the code very easily and compare the estimate to the actual values for $\\pmb \\mu$." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import prettytable\n", - "\n", - "mu_est1 = np.array([[sum(x1_samples[:,0])/len(x1_samples[:,0])],[sum(x1_samples[:,1])/len(x1_samples[:,1])]])\n", - "mu_est2 = np.array([[sum(x2_samples[:,0])/len(x2_samples[:,0])],[sum(x2_samples[:,1])/len(x2_samples[:,1])]])\n", - "mu_est3 = np.array([[sum(x3_samples[:,0])/len(x3_samples[:,0])],[sum(x3_samples[:,1])/len(x3_samples[:,1])]])\n", - "\n", - "mu_mle = prettytable.PrettyTable([\"\", \"mu_1\", \"mu_2\", \"mu_3\"])\n", - "mu_mle.add_row([\"MLE\",mu_est1, mu_est2, mu_est3])\n", - "mu_mle.add_row([\"actual\",mu_vec1, mu_vec2, mu_vec3])\n", - "\n", - "print(mu_mle)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "+--------+-----------------+-----------------+-----------------+\n", - "| | mu_1 | mu_2 | mu_3 |\n", - "+--------+-----------------+-----------------+-----------------+\n", - "| MLE | [[-0.17370434] | [[ 8.65908903] | [[ 5.77749337] |\n", - "| | [ 0.01919151]] | [ 0.02617762]] | [ 5.67218058]] |\n", - "| actual | [[0] | [[9] | [[6] |\n", - "| | [0]] | [0]] | [6]] |\n", - "+--------+-----------------+-----------------+-----------------+\n" - ] - } - ], - "prompt_number": 77 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "## MLE of the covariance matrix $\\pmb \\Sigma$\n", - "\n", - "Analog to $\\pmb \\mu$ we can find the equation for the $\\pmb\\Sigma$ via differentiation - okay the equations are a little bit more involved, but the approach is the same - so that we come to this equation: " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "${\\hat{\\pmb\\Sigma}} = \\frac{1}{n} \\sum\\limits_{k=1}^{n} (\\pmb x_k - \\hat{\\mu})(\\pmb x_k - \\hat{\\mu})^t$\n", - "\n", - "which we will also implement in Python code, and then compare to the acutal values of ${\\pmb\\Sigma}$." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import prettytable\n", - "\n", - "def mle_est_cov(x_samples, mu_est):\n", - " \"\"\"\n", - " Calculates the Maximum Likelihood Estimate for the covariance matrix.\n", - " \n", - " Keyword Arguments:\n", - " x_samples: np.array of the samples for 1 class, n x d dimensional \n", - " mu_est: np.array of the mean MLE, d x 1 dimensional\n", - " \n", - " Returns the MLE for the covariance matrix as d x d numpy array.\n", - " \n", - " \"\"\"\n", - " cov_est = np.zeros((2,2))\n", - " for x_vec in x_samples:\n", - " x_vec = x_vec.reshape(2,1)\n", - " assert(x_vec.shape == mu_est.shape), 'mean and x vector hmust be of equal shape'\n", - " cov_est += (x_vec - mu_est).dot((x_vec - mu_est).T)\n", - " return cov_est / len(x_samples)\n", - "\n", - "cov_est1 = mle_est_cov(x1_samples, mu_est1)\n", - "cov_est2 = mle_est_cov(x2_samples, mu_est2)\n", - "cov_est3 = mle_est_cov(x3_samples, mu_est3)\n", - "\n", - "cov_mle = prettytable.PrettyTable([\"\", \"covariance_matrix_1\", \"covariance_matrix_2\", \"covariance_matrix_3\"])\n", - "cov_mle.add_row([\"MLE\", cov_est1, cov_est2, cov_est3])\n", - "cov_mle.add_row(['','','',''])\n", - "cov_mle.add_row([\"actual\", cov_mat1, cov_mat2, cov_mat3])\n", - "\n", - "print(cov_mle)\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "+--------+-----------------------------+-----------------------------+-----------------------------+\n", - "| | covariance_matrix_1 | covariance_matrix_2 | covariance_matrix_3 |\n", - "+--------+-----------------------------+-----------------------------+-----------------------------+\n", - "| MLE | [[ 3.988021 -0.19957158] | [[ 3.79760541 -0.04062998] | [[ 4.35960544 0.51274876] |\n", - "| | [-0.19957158 2.69991303]] | [-0.04062998 3.05143476]] | [ 0.51274876 4.44341942]] |\n", - "| | | | |\n", - "| actual | [[3 0] | [[3 0] | [[4 0] |\n", - "| | [0 3]] | [0 3]] | [0 4]] |\n", - "+--------+-----------------------------+-----------------------------+-----------------------------+\n" - ] - } - ], - "prompt_number": 76 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "##Classification using our estimated parameters\n", - "\n", - "Using the estimated parameters $\\pmb \\mu_i$ and $\\pmb \\Sigma_i$, which we obtained via MLE, we calculate the error on the sample dataset again. " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "class1_as_1 = 0\n", - "class1_as_2 = 0\n", - "class1_as_3 = 0\n", - "for row in x1_samples:\n", - " g = classify_data(\n", - " row, \n", - " discriminant_function,\n", - " [mu_est1, mu_est2, mu_est3],\n", - " [cov_est1, cov_est2, cov_est3]\n", - " )\n", - " if g[1] == 2:\n", - " class1_as_2 += 1\n", - " elif g[1] == 3:\n", - " class1_as_3 += 1\n", - " else:\n", - " class1_as_1 += 1\n", - "\n", - "class2_as_1 = 0\n", - "class2_as_2 = 0\n", - "class2_as_3 = 0\n", - "for row in x2_samples:\n", - " g = classify_data(\n", - " row, \n", - " discriminant_function,\n", - " [mu_est1, mu_est2, mu_est3],\n", - " [cov_est1, cov_est2, cov_est3]\n", - " )\n", - " if g[1] == 2:\n", - " class2_as_2 += 1\n", - " elif g[1] == 3:\n", - " class2_as_3 += 1\n", - " else:\n", - " class2_as_1 += 1\n", - "\n", - "class3_as_1 = 0\n", - "class3_as_2 = 0\n", - "class3_as_3 = 0\n", - "for row in x3_samples:\n", - " g = classify_data(\n", - " row, \n", - " discriminant_function,\n", - " [mu_est1, mu_est2, mu_est3],\n", - " [cov_est1, cov_est2, cov_est3]\n", - " )\n", - " if g[1] == 2:\n", - " class3_as_2 += 1\n", - " elif g[1] == 3:\n", - " class3_as_3 += 1\n", - " else:\n", - " class3_as_1 += 1" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 87 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import prettytable\n", - "\n", - "confusion_mat = prettytable.PrettyTable([\"sample dataset\", \"w1 (predicted)\", \"w2 (predicted)\", \"w3 (predicted)\"])\n", - "confusion_mat.add_row([\"w1 (actual)\",class1_as_1, class1_as_2, class1_as_3])\n", - "confusion_mat.add_row([\"w2 (actual)\",class2_as_1, class2_as_2, class2_as_3])\n", - "confusion_mat.add_row([\"w3 (actual)\",class3_as_1, class3_as_2, class3_as_3])\n", - "print(confusion_mat)\n", - "misclass = x1_samples.shape[0]*3 - class1_as_1 - class2_as_2 - class3_as_3\n", - "bayes_err = misclass / (len(x1_samples)*3)\n", - "print('Empirical Error: {:.2f} ({:.2f}%)'.format(bayes_err, bayes_err * 100))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "+----------------+----------------+----------------+----------------+\n", - "| sample dataset | w1 (predicted) | w2 (predicted) | w3 (predicted) |\n", - "+----------------+----------------+----------------+----------------+\n", - "| w1 (actual) | 96 | 1 | 3 |\n", - "| w2 (actual) | 2 | 94 | 4 |\n", - "| w3 (actual) | 1 | 3 | 96 |\n", - "+----------------+----------------+----------------+----------------+\n", - "Empirical Error: 0.05 (4.67%)\n" - ] - } - ], - "prompt_number": 89 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "## Conclusion" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "I would claim that the results look pretty good! The error rate on our random dataset increased by just 0.67% (from 4.00% to 4.67%) when we estimated $\\pmb \\mu$ and $\\pmb \\Sigma$ using MLE. \n", - "In a real application of course, we would have an separate training dataset to derive and estimate the parameters, and a test data set for calculating the error rate. However, I ommitted the usage of to separate datasets here for the sake of brevity." - ] - } - ], - "metadata": {} - } - ] -} \ No newline at end of file diff --git a/stat_pattern_class/.ipynb_checkpoints/1_stat_superv_parametric-checkpoint.ipynb b/stat_pattern_class/.ipynb_checkpoints/1_stat_superv_parametric-checkpoint.ipynb deleted file mode 100644 index 1dc63f2..0000000 --- a/stat_pattern_class/.ipynb_checkpoints/1_stat_superv_parametric-checkpoint.ipynb +++ /dev/null @@ -1,391 +0,0 @@ -{ - "metadata": { - "name": "" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "*Sebastian Raschka* \n", - "last modified: 03/31/2014" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem Category\n", - "- Statistical Pattern Recognition \n", - "- Supervised Learning \n", - "- Parametric Learning \n", - "- Bayes Decision Theory \n", - "- Univariate data \n", - "- 2-class problem\n", - "- equal variances\n", - "- equal priors\n", - "- Gaussian model (2 parameters)\n", - "- No Risk function\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

\n", - "

\n", - "\n", - "# Sections\n", - "\n", - "\n", - "

Given information
\n", - "• Deriving the decision boundary
\n", - "• Plotting the class conditional densities, posterior probabilities, and decision boundary
\n", - "• Classifying some random example data
\n", - "• Calculating the empirical error rate
\n", - "\n", - " \n", - "\n", - " \n", - " \n", - "\n", - "\n", - "\n", - "


" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

\n", - "

\n", - "\n", - "## Given information:\n", - "\n", - "[back to top]
\n", - "\n", - "\n", - "####model: continuous univariate normal (Gaussian) model for the class-conditional densities\n", - "\n", - "\n", - "$ p(x | \\omega_j) \\sim N(\\mu|\\sigma^2) $\n", - "\n", - "$ p(x | \\omega_j) \\sim \\frac{1}{\\sqrt{2\\pi\\sigma^2}} \\exp{ \\bigg[-\\frac{1}{2}\\bigg( \\frac{x-\\mu}{\\sigma}\\bigg)^2 \\bigg] } $\n", - "\n", - "\n", - "####Prior probabilities:\n", - "\n", - "$ P(\\omega_1) = P(\\omega_1) = 0.5 $\n", - "\n", - "#### Variances of the sample distributions\n", - "\n", - "$ \\sigma_1^2 = \\sigma_2^2 = 1 $\n", - "\n", - "#### Means of the sample distributions\n", - "\n", - "$ \\mu_1 = 4, \\quad \\mu_2 = 10 $\n", - "\n", - "\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

\n", - "

\n", - "\n", - "## Deriving the decision boundary\n", - "[back to top]
\n", - "### Bayes' Rule:\n", - "\n", - "\n", - "$ P(\\omega_j|x) = \\frac{p(x|\\omega_j) * P(\\omega_j)}{p(x)} $\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "###Bayes' Decision Rule:\n", - "\n", - "Decide $ \\omega_1 $ if $ P(\\omega_1|x) > P(\\omega_2|x) $ else decide $ \\omega_2 $.\n", - "
\n", - "\n", - "\n", - "\\begin{equation}\n", - "\\Rightarrow \\frac{p(x|\\omega_1) * P(\\omega_1)}{p(x)} > \\frac{p(x|\\omega_2) * P(\\omega_2)}{p(x)}\n", - "\\end{equation} \n", - "\n", - "We can drop $ p(x) $ since it is just a scale factor.\n", - "\n", - "\n", - "$ \\Rightarrow P(x|\\omega_1) * P(\\omega_1) > p(x|\\omega_2) * P(\\omega_2) $\n", - "\n", - "$ \\Rightarrow \\frac{p(x|\\omega_1)}{p(x|\\omega_2)} > \\frac{P(\\omega_2)}{P(\\omega_1)} $\n", - "\n", - "$ \\Rightarrow \\frac{p(x|\\omega_1)}{p(x|\\omega_2)} > \\frac{0.5}{0.5} $\n", - "\n", - "$ \\Rightarrow \\frac{p(x|\\omega_1)}{p(x|\\omega_2)} > 1 $\n", - "\n", - "$ \\Rightarrow \\frac{1}{\\sqrt{2\\pi\\sigma_1^2}} \\exp{ \\bigg[-\\frac{1}{2}\\bigg( \\frac{x-\\mu_1}{\\sigma_1}\\bigg)^2 \\bigg] } > \\frac{1}{\\sqrt{2\\pi\\sigma_2^2}} \\exp{ \\bigg[-\\frac{1}{2}\\bigg( \\frac{x-\\mu_2}{\\sigma_2}\\bigg)^2 \\bigg] } $\n", - "\n", - "\n", - "Since we have equal variances, we can drop the first term completely.\n", - "\n", - "\n", - "\n", - "\n", - "$ Rightarrow \\exp{ \\bigg[-\\frac{1}{2}\\bigg( \\frac{x-\\mu_1}{\\sigma_1}\\bigg)^2 \\bigg] } > \\exp{ \\bigg[-\\frac{1}{2}\\bigg( \\frac{x-\\mu_2}{\\sigma_2}\\bigg)^2 \\bigg] } \\quad\\quad \\bigg| \\;ln, \\quad \\mu_1 = 4, \\quad \\mu_2 = 10, \\quad \\sigma=1 $\n", - "\n", - "$ \\Rightarrow -\\frac{1}{2} (x-4)^2 > -\\frac{1}{2} (x-10)^2 \\quad \\bigg| \\; \\times(-2) $\n", - "\n", - "$ \\Rightarrow (x-4)^2 < (x-10)^2 $\n", - "\n", - "$ \\Rightarrow x^2 - 8x + 16 < x^2 - 20x + 100 $\n", - "\n", - "$ \\Rightarrow 12x < 84 $\n", - "\n", - "$ \\Rightarrow x < 7 $\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

\n", - "

\n", - "\n", - "## Plotting the class conditional densities, posterior probabilities, and decision boundary\n", - "\n", - "[back to top]
" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%pylab inline\n", - "\n", - "import numpy as np\n", - "from matplotlib import pyplot as plt\n", - "\n", - "def pdf(x, mu, sigma):\n", - " \"\"\"\n", - " Calculates the normal distribution's probability density \n", - " function (PDF). \n", - " \n", - " \"\"\"\n", - " term1 = 1.0 / ( math.sqrt(2*np.pi) * sigma )\n", - " term2 = np.exp( -0.5 * ( (x-mu)/sigma )**2 )\n", - " return term1 * term2\n", - "\n", - "# generating some sample data\n", - "x = np.arange(0, 100, 0.05)\n", - "\n", - "# probability density functions\n", - "pdf1 = pdf(x, mu=4, sigma=1)\n", - "pdf2 = pdf(x, mu=10, sigma=1)\n", - "\n", - "# Class conditional densities (likelihoods)\n", - "plt.plot(x, pdf1)\n", - "plt.plot(x, pdf2)\n", - "plt.title('Class conditional densities (likelihoods)')\n", - "plt.ylabel('p(x)')\n", - "plt.xlabel('random variable x')\n", - "plt.legend(['p(x|w_1) ~ N(4,1)', 'p(x|w_2) ~ N(10,1)'], loc='upper right')\n", - "plt.ylim([0,0.5])\n", - "plt.xlim([0,20])\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Populating the interactive namespace from numpy and matplotlib\n" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEZCAYAAACXRVJOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdcU2fbB/BfmIrsKUNARCGyBXGgFesq1lXtwNqqdVSt\ndtjxdFgV29pqhz6t6Ot4nFXRtrZuqBPrqOIAFyAiIIig7CE73O8fKSmRDTk5J8n17YdPCefkPlfO\nibly7ilijDEQQgjReFp8B0AIIUQYKCEQQggBQAmBEELIPyghEEIIAUAJgRBCyD8oIRBCCAFACUFQ\nwsLC8Prrr/MdhkJt27YNgwcPlj02MjJCWlpak/t7enrir7/+4jSmtLQ0aGlpoba2tlX7T58+HYsX\nL+Y0ppZe9+jRo/Hzzz8r/LgbNmzAwoULATQ8L/WP+fR1bK3mrr8yzisAREdHo1u3bi3uFx4ejk8+\n+YTzeIRMh+8ANM3u3buxatUq3LlzB0ZGRvD19cWiRYsQFBQEkUjEd3icKykpkf0+ffp0dOvWDV9+\n+aXsb7du3eIjrGaJRCLOr0391x0WFoZ79+7JJYCjR48q/JhVVVVYvnw5Ll261Oh2Lo5Z//or47y2\nxezZs+Hq6ooPPvgAVlZWfIfDC7pDUKJVq1Zh4cKF+Pzzz/H48WNkZGRg/vz5OHToEACAxggKlzpe\nmwMHDkAsFsPW1pbvUARBX18fISEh2LFjB9+h8IYSgpIUFRVh6dKlWLduHSZMmIDOnTtDW1sbzz//\nPFasWNHoc1566SXY2trC1NQUQ4YMQXx8vGzb0aNH4eHhAWNjYzg4OOCHH34AAOTm5mLMmDEwMzOD\nhYUFnnnmmSY/zG7fvo0RI0bAwsICXbt2xTfffAMAqKysxHvvvQd7e3vY29tj4cKFqKqqAiC9/XZw\ncMCqVatgY2MDOzs7bNu2TVZmXl4exo0bBxMTE/Tr1w/37t2TO6aWlhbu3buHjRs3Yvfu3fj2229h\nZGSE8ePHAwCcnZ1x8uTJDsdx5MgR+Pn5wcTEBI6Ojli2bFlrLxViY2PRp08fGBsbIzQ0FBUVFXLb\nDx8+DF9fX5iZmSEoKAg3b96UbXN2dsYPP/wAHx8fmJqaIjQ0FJWVlU1em/rPO3nyJKKiovDNN99g\n7969MDIygp+fHwAgODgYmzdvlu2/ZcsW9O7dG+bm5njuueeQnp4u27Zw4ULY2NjAxMQE3t7euH37\ndqOvMzIyEkOGDGnyPDx9zPo++ugjDB48GCUlJSgqKsLMmTNhZ2cHBwcHLF68uMnqOC0tLaSkpMge\n5+fnY8yYMTA2Nkb//v3ltl24cAF9+/aFqakpAgMD8ffff8u2PXz4EOPGjYOFhQV69uyJ//3vf7Jt\n5eXlmD59OszNzeHh4YHLly/LxbBy5Uo4ODjA2NgY7u7uOHXqlNxrPnLkSJPnRO0xohSRkZFMR0eH\nSSSSJvdZunQpe+2112SPt27dykpLS1lVVRV77733mK+vr2xb165d2blz5xhjjBUWFrJr164xxhj7\n5JNP2Ny5c1lNTQ2rqamR7fO04uJi1rVrV7Zq1SpWWVnJSkpK2KVLlxhjjC1evJgNGDCA5eTksJyc\nHDZw4EC2ePFixhhjp0+fZjo6Omzp0qWspqaGHT16lBkYGLDCwkLGGGOvvPIKe+WVV1hZWRm7desW\ns7e3Z4MHD5YdVyQSsXv37jHGGJs+fbqs3DrOzs7s5MmTHY4jOjqa3bp1izHG2I0bN5iNjQ3bv38/\nY4yx1NRUJhKJGr0WlZWVzNHRkf33v/9lNTU17LfffmO6urqy4167do1ZW1uzmJgYVltby7Zv386c\nnZ1ZVVWVLP5+/fqxrKwslp+fz8RiMVu/fn2L16b+6w4LC2Ovv/66XFzBwcFs8+bNjDHG9u/fz1xd\nXVliYiKTSCTsq6++YgMHDmSMMRYVFcX8/f1ZUVERY4yxxMRElpWV1eh7oG/fvuy3336TPX76vNQ/\n5tatW9mgQYNYbW0tmzVrFnvuuedYeXk5Y4yxCRMmsLlz57KysjL2+PFjFhgYyDZs2CD3vMau/7Rp\n05iFhQW7fPkyq6mpYVOmTGGhoaGMMcby8vKYqakp27lzJ5NIJCwiIoKZmZmx/Px8xhhjgwcPZvPn\nz2eVlZUsLi6OWVlZsVOnTjHGGPv444/ZM888wwoKClhGRgbz8PBg3bp1k52Pbt26yc7J/fv3ZfEw\nxtjVq1eZubl5o+dLE9AdgpLk5eXB0tISWlqtP+XTp09Hly5doKuri6VLl+L69euyOlg9PT3cvn0b\nxcXFMDExkX2T1NPTQ1ZWFtLS0qCtrY2goKBGyz58+DDs7OywcOFC6OnpwdDQEIGBgQCk7RxLliyB\npaUlLC0tsXTpUrn6bF1dXSxZsgTa2toICQmBoaEh7ty5A4lEgt9//x1ffPEFOnfuDA8PD0ybNq3Z\n6pbmtrU3DgAYMmQIPDw8AABeXl4IDQ3FmTNnWjznFy9eRE1NDd59911oa2tj0qRJ6Nu3r2z7xo0b\nMWfOHPTt2xcikQhTp06Fvr4+Ll68KNvnnXfeQdeuXWFmZoaxY8ciLi4OQOuvDWOs2fOyfv16fPrp\np3Bzc4OWlhY+/fRTxMXFIT09HXp6eigpKUFCQgJqa2vh5uaGrl27NlpOYWEhjIyMWjwndaqrqxEa\nGorCwkIcOnQInTp1wqNHjxAZGYnVq1ejc+fOsLKywnvvvYc9e/a0WJ5IJMLEiRMREBAAbW1tTJky\nRXaujhw5Ajc3N0yZMgVaWloIDQ2Fu7s7Dh48iIyMDFy4cAErV66Enp4efHx8MGvWLFlVz6+//opF\nixbB1NQUDg4OePfdd2XnU1tbG5WVlbh9+zaqq6vh6OgIFxcXWUxGRkYoKipq9TlRN5QQlMTCwgK5\nubmt7tkikUjwySefwNXVFSYmJujevTtEIhFyc3MBAPv27cPRo0fh7OyM4OBg2QfSRx99BFdXV4wc\nORI9evTAypUrGy0/IyND7h9CfQ8fPoSTk5PssaOjIx4+fCj3WuonNgMDA5SWliInJwc1NTVyPToc\nHR1b9XoVGQcAXLp0CUOHDoW1tTVMTU2xYcMG5OXlteqY9vb2cn+rH8P9+/fxww8/wMzMTPbz4MED\nubjqfwB37txZFlNrr01L7t+/j3fffVd2fAsLC1nsQ4cOxYIFCzB//nzY2Nhgzpw5cg259ZmZmaG4\nuLjVx01OTsahQ4ewZMkS6OjoyGKprq6Gra2tLJ65c+ciJyenVWXa2NjIfq9/rh4+fNjgvePk5ISH\nDx8iKysL5ubm6NKli2xb/ffGw4cPm3wPurq64r///S/CwsJgY2ODyZMnIysrS7a9pKQEJiYmrT0l\naocSgpIMGDAA+vr6+OOPP1q1/+7du3Hw4EGcPHkSRUVFSE1NlfvmGBAQgP379yMnJwcTJkzAyy+/\nDAAwNDTE999/j3v37uHgwYNYtWqVXB1pHUdHR7n62vrs7Ozkuoamp6fDzs6uxZitrKygo6MjV59d\n//entdTDpL1xAMCrr76KCRMm4MGDBygsLMTcuXNblYxtbW2RmZkp97f79+/Lfnd0dMSiRYtQUFAg\n+yktLcUrr7zSaHn1X2Nj1+b06dPNPqcxjo6O2Lhxo1wMT548Qf/+/QEAb7/9Nq5cuYL4+HgkJSXh\nu+++a7Qcb29vJCUlNXus+sRiMbZs2YKQkBDZ87p16wZ9fX3k5eXJYikqKpJrV2kPe3t7ufMOSK+D\nvb097OzskJ+fL0segPS9UZfIbW1tm30PTp48GWfPnsX9+/chEonw8ccfy7YlJCTA19e3Q7GrMkoI\nSmJiYoIvvvgC8+fPx4EDB1BWVobq6mpERkbKvSHrlJaWQl9fH+bm5njy5Ak+++wz2bbq6mrs2rUL\nRUVF0NbWhpGREbS1tQFIq4KSk5PBGIOxsTG0tbVl2+obM2YMsrKy8OOPP6KyshIlJSWIiYkBIP0H\n89VXXyE3Nxe5ubn44osvWjU+QltbGxMnTkRYWBjKy8sRHx+P7du3N7m/jY1Nk0mpI3EA0vNnZmYG\nPT09xMTEYPfu3a3q4jhw4EDo6Ojgp59+QnV1NX7//Xe5RsnZs2dj/fr1iImJAWMMT548wZEjR+Q+\nnOqrX/XT2LVprAqxa9euSEtLa7LaaO7cufj6669lnQyKiorw66+/AgCuXLmCS5cuobq6GgYGBujU\nqVOj1x+QjjNoTTVafaGhofj6668xfPhwpKSkwNbWFiNHjsT777+PkpIS1NbW4t69e60aS9JctVhd\n0omIiEBNTQ327t2LxMREjBkzBg4ODhg4cCA+/fRTVFZW4saNG9iyZQtee+01AMDLL7+Mb775BoWF\nhXjw4AHWrFkjKzcpKQmnTp1CZWUl9PX1G5yfM2fOICQkpE3nRJ1QQlCi999/H6tWrcJXX30Fa2tr\nODo6Yt26dXjhhRcAyPfLnjp1KpycnGBvbw9PT08MGDBA7gNt586d6N69O0xMTLBx40bs2rULgPS2\nfsSIETAyMsLAgQMxf/78RnuSGBoa4vjx4zh06BBsbW3Rq1cvREdHAwA+//xzBAQEwNvbG97e3ggI\nCMDnn38ue25zH6zh4eEoLS1F165dMWPGDMyYMUNu//q/z5w5E/Hx8TAzM8PEiRMblNWRONatW4cl\nS5bA2NgYX375ZYNv8E09V1dXF7///ju2bdsGCwsL/PLLL5g0aZJsu7+/PzZt2oQFCxbA3NwcPXv2\nxI4dO5osr/41be21eemllwBIq8QCAgIabJ8wYQI+/vhjhIaGwsTEBF5eXvjzzz8BAMXFxXjzzTdh\nbm4OZ2dnWFpa4qOPPmo0tjFjxiAxMVGuyqQ1r2Pq1KlYsmQJnn32WaSnp2PHjh2oqqqS9Xp66aWX\nkJ2d3eB5T5ff2DiEuscWFhY4fPgwfvjhB1haWuL777/H4cOHYW5uDgCIiIhAWloa7OzsMHHiRHzx\nxRd49tlnAQBLly6Fk5MTunfvjueeew5Tp06VlVtZWYlPP/0UVlZWsLW1RW5urqx3XUVFBSIjIzFt\n2rRGz4EmELHm0nQHRUVF4b333oNEIsGsWbMafBOOjo7G+PHjZXXZkyZNkvsHTwjh1qZNmxAfH4/V\nq1fzHQrvwsPD8eDBgya7gWsCzhKCRCKBm5sbTpw4AXt7e/Tt2xcREREQi8WyfaKjo7Fq1SocPHiQ\nixAIIYS0AWdVRjExMXB1dYWzszN0dXURGhqKAwcONNiPwxsUQgghbcBZQsjMzJTr+uXg4NCg94ZI\nJMKFCxfg4+OD0aNHy43EJYQQolycTW7Xmh4dffr0QUZGBgwMDBAZGYkJEya0qRscIYQQxeEsIdjb\n2yMjI0P2OCMjAw4ODnL71B8lGRISgrfeegv5+fmyngR1XF1dG8yJQwghpHk9evRAcnJy65/A1ZwY\n1dXVzMXFhaWmprLKykrm4+PD4uPj5fbJzs5mtbW1jDHGLl26xJycnBoti8MwNdLSpUv5DkFt0LlU\nLDqfitXWz07O7hB0dHQQHh6OUaNGQSKRYObMmRCLxdiwYQMAYM6cOfjtt9/wf//3f9DR0YGBgUGr\n5j8hhBDCDU4XyAkJCWkw6m/OnDmy3+fPn4/58+dzGQIhhJBWopHKGig4OJjvENQGnUvFovPJL05H\nKiuKSCSi8QqEENJGbf3spDWVCeGAubk5CgoK+A6DaAgzMzPk5+d3uBy6QyCEA/SeJcrU1Putre9D\nakMghBACgBICIYSQf1BCIIQQAoASAiHkKZWVlfDw8MCjR49a3DctLQ3du3dXQlTSuMRisWxdcT5s\n2LABCxcuVHi5jx49Qu/evVFVVaXwstuCEgIhRM7GjRsxZMgQ2NjYKP3Yp0+fxtChQ2Fqatog0ejr\n62PGjBmcLGAzffp0aGlpyS2XmpycLLfEaVVVFZYvX47//Oc/DZ6/Y8cOaGlpYfPmzU0e45dffsHA\ngQPRpUsXDB06VG6bjY0Nhg4dio0bNyrg1bQfJQRCiJwNGza0eu1qRTM0NMSsWbPw3XffNbp98uTJ\n2L59O6qrqxV+bHNz82ZXbDxw4ADEYjFsbW3l/l5QUICvv/4anp6ezc7ybGFhgffffx+ffPJJo9un\nTJkim9qHL5QQCNEwzs7OWLFiBTw8PGBubo4ZM2agsrISAJCeno6UlBT069cPgPRbsZ+fH8LDwwFI\nV0IMCgrCV1991aDciooKdO7cWdYffvny5dDV1UVpaSkAYPHixS1Wt/Tt2xdTpkxpshrKwcEBZmZm\n+Pvvv9v34psgEokwbdo03LhxA3/99Vej+0RGRja6Bvann36Kd999FxYWFs0eY9iwYXjxxRcbJJQ6\ngYGBSElJkZslWtkoIRCigXbv3o1jx47h3r17SEpKkn3A37x5Ey4uLrKqEj09PezcuRNLlixBYmIi\nVqxYAcYYFi1a1KDMTp06ITAwENHR0QCAM2fOwNnZGefOnZM9VsTUFGKxGNevX+9wOU8zMDDAZ599\n1uhrA4Bbt27Bzc1N7m8xMTG4du0a5s6d2+Hj6+jowNXVFXFxcR0uq70oIRDCA5FIMT/tO7YICxYs\ngL29PczMzLBo0SJEREQAAAoLC+XWKQEADw8PfP755xg/fjxWrVqFn3/+ucmqkSFDhuDMmTOQSCS4\nefMm3nnnHZw5cwYVFRW4cuUKnnnmmfYFXY+RkREKCwsb3VZYWIg5c+bA0dERYrEYX331FVJTU5Ge\nno7Zs2cjPT29yXJFIhHmzJmD9PR0REVFNVp2/XMjkUgwf/58hIeHt2pBsNYwMjJCUVGRQspqD0oI\nhPCAMcX8tFf95W0dHR3x8OFDANIpEEpKShrsP3XqVKSnp2P06NHo0aNHk+UOGTIE0dHRuHbtGry8\nvDB8+HCcOXMGly5dgqurK8zMzNof9D9KSkqaLOfPP/9EQEAAUlJSsH//fuTl5WHQoEEICQmBn58f\nHB0dmy1bT08PixcvxuLFixt8yJuZmaG4uFj2eN26dfD29kZgYKDsbx0dnV5SUgJTU9MOldERlBAI\n0UD1vymnp6fDzs4OAODt7Y3U1FTU1tbK7f/WW29hzJgxiIqKwvnz55ssd8CAAbhz5w7++OMPBAcH\nQywWIz09HUePHlXYTKYJCQnw8fFpdNvLL7+M2bNnQ0dHB25ubli9ejUyMzNx+/ZtvPXWW82WW/dh\nPn36dBQWFmLfvn1y2729veWW+D116hT++OMP2NrawtbWFhcuXMAHH3yAd955p9njNHU3UVNTg+Tk\n5CZfmzJQQiBEwzDGsG7dOmRmZiI/Px/Lly9HaGgoAGmjraurKy5duiTb/+eff0ZsbCy2b9+On376\nCdOmTcOTJ08aLdvAwAD+/v5Yu3atrAF24MCBWL9+faMNso3FVlFRgerqajDGUFlZKdc3vy7m/v37\nN/r89lbd1P9mr6Ojg2XLlmHlypVy+4wePRpnzpyRPd62bRsSExNx/fp1xMXFISAgAGFhYVi+fDkA\nIDo6Wq7bam1trey11dbWorKyUq63VExMDJydneXu3pSNEgIhGkYkEuHVV1/FyJEj0aNHD/Ts2VOu\nu+WcOXPw888/A5DePSxcuBA7duyAgYEBJk+ejICAALz//vtNlj9kyBDU1NTIqlKGDBmC0tLSVrUf\nnDlzBgYGBnj++eeRkZGBzp0747nnnpNt3717N6ZPnw5dXd32vvxGiUQiuWQyefJk2NnZyf1tzJgx\nSExMRFZWFgDAxMQE1tbWsLa2ho2NDfT09GBsbCxrZ8jIyEBQUJDs+XXn8K233sLZs2fRuXNnuQXD\ndu3ahXnz5in0dbWZYlbu5JaKhEmIjJDfs87OzuzkyZNNbq+srGS9e/dm2dnZLZaVmprKnJ2dFRle\nkyoqKpi7uzvLyclRyvEas3HjRvbee++1at9Zs2axY8eOtWrfR48eMbFYzCorK9sVV1Pvt7a+D2n6\na0I4IOT3bPfu3bF582Y8++yzHS4rLS0NQ4cORWpqqgIiI+1F018TQgShrfX2Hh4eMDIyavBT1/WV\n8IfuEAjhAL1niTLRHQIhhBCFooRACCEEACUEQggh/6CEQAghBAAlBEIIIf+ghEAIkUNLaDaNqyU0\nWxIeHt7kwjqKRAmBECKHzyU0v/vuO3h5ecHY2BguLi74/vvvZduEuITmm2++CXd3d2hra2P79u0N\nyl29ejVsbW1hYmKCmTNnNrtmcnNlzZ49G7t27UJOTk5HXmaLKCEQQuTwuYQmIJ1Mr7CwEFFRUQgP\nD8fevXtl24S2hKavry/WrVuHPn36NBig9+eff2LlypU4deoU7t+/j5SUFCxdurTJ8psrS19fHyEh\nIdixY0c7X13rUEIgRMMIeQnNjz76CL6+vtDS0kKvXr0wfvx4uem2hbaE5ltvvYVnn30WnTp1arD/\n9u3bMWvWLIjFYpiammLJkiXYtm1bkzE0VxYABAcH48iRI61/Ue1ACYEQDaQKS2gyxvDXX3/B09NT\n7u9CWkKzOfHx8XJrG3h7e+PRo0coKChoV3zu7u6cvO76dDgtnRDSKNEyxSy5yJa2fXqM+ktoAsCi\nRYvw9ttv48svv2xxCc3c3FzExMS0uITm+PHjcfPmTXz22WeyRNDWJTTDwsIAAG+88Ybc31taQvPj\njz9GZGQkunTpgilTpmDKlCnQ1tbGl19+icWLFze5alrdEprff/89oqKi4Orq2qDsp89Nc0pLS2Fi\nYiJ7bGxsDKD5Fd+ao4zlNSkhEMKD9nyQK1J7ltBctGgRXnzxxRaX0Hz//fflltCcOXNmm5fQDA8P\nx86dO3H27NkGax+0ZgnNtWvX4t69e1i/fj0GDRoEU1NTzJ8/v01LaO7Zs0du29NLaLbE0NBQbv+6\nD/O2JJX6SkpK5BIMF6jKiBANJOQlNLds2YJvv/0WJ0+elMVVn1CW0GyJh4cH4uLiZI+vX78OGxub\ndq8rnZCQAF9f33Y9t7UoIRCiYZiAl9DctWsXFi1ahGPHjsHZ2bnBdiEtoQkA1dXVqKioQG1tLaqq\nqlBRUSEra+rUqdi8eTMSEhJQUFCAL7/8Uq76a/r06XKPmysLkLbBhISEtOv1tVqbl+bhgYqESYiM\nkN+zzs7ObMWKFax3797M1NSUTZ8+nZWXl8u2r127ls2bN48xxtj9+/eZhYUFu3Dhgmz7K6+8wt58\n803GWOMrpn366afMwMCAVVVVMcYYCw8PZ1paWuzx48ctxta9e3emp6fHDA0NZT91sTDG2Lfffss+\n+OCD9r/4JkyfPp0tXrxY9ri2tpZ5enoyLS0t2d+qqqqYo6Mje/jwoexvQ4YMYSKRiGlpaTGRSMRE\nIhE7c+aMbPuqVauYjY0NMzY2ZjNmzJCdE8YYGzZsGPvf//7XqrLKy8uZg4NDk+ewqfdbW9+HnL5r\nIyMjmZubG3N1dWUrVqxocr+YmBimra3N9u3b1+h2If/jIqQxQn7P0hKa7deWJTSbU3eOa2pqWrX/\nmjVr2Mcff9zkdkUlBM4WyJFIJHBzc8OJEydgb2+Pvn37IiIiAmKxuMF+I0aMgIGBAd544w1MmjSp\nQVm02AhRNUJ+z9ISmupH8AvkxMTEwNXVFc7OztDV1UVoaCgOHDjQYL81a9bgxRdfhJWVFVehEEI4\nREtoqg/Oup1mZmbKdW1zcHCQa6iq2+fAgQM4deoULl++3O4GIUJI6yny27yzszNSUlLa9Jzbt28r\n7PhEsThLCK35cH/vvfewYsUK2W1Nc7c2dYNUAOkQ7raMeFQHJ04AP/0EGBsDixcDbRgwSThQWFGI\nsOgwxOfEY5J4Et70f5O+0BDeRUdHy0aKtwdnbQgXL15EWFgYoqKiAADffPMNtLS08PHHH8v2cXFx\nkSWB3NxcGBgYYNOmTRg3bpx8kAKuj1WGX38F3n0X+PZbICsL+O474PRpwMOD78g0U0llCQZsHoBB\njoMwuudoLDuzDEOdh+L7kf/OzKnp71miXIpqQ+AsIdTU1MDNzU02uCQwMLDRRuU6b7zxBsaOHYuJ\nEyc2DFKD/3FlZAB9+gB//in9PwBs3Qr88AMQGws8NYiTKMGMAzOgLdLGpnGbAAAF5QXos7EP1o5e\ni9E9RwPQ7PcsUT5FJQTOqox0dHQQHh6OUaNGQSKRYObMmRCLxdiwYQMAYM6cOVwdWq0sWQLMmfNv\nMgCA6dOB3buBzZuBuXN5C00jxWbFIjI5EkkL/h2xatbZDOEh4fjw2IcY2WMkdLR0YGZmRlVIRGna\nO/r5aZzdISiSpn7bSksDAgKAlBRp20F9V64AL7wApKYCOjQjldK8+MuLGOw4GO/2f1fu74wxDN46\nGG8Hvo1XPF/hKTpC5Amm2ynpuLVrgWnTGiYDQJoonJyA/fuVH5emSi9Kx+m005jhN6PBNpFIhIX9\nF2JNzBoeIiNEMSghCFR1NbB9OzBvXtP7vPUWsGmT8mLSdFtjt+JVz1dhpN/4bJXj3ccjtTAVCTkJ\nSo6MEMWghCBQx44Brq7Sn6ZMmABcugRkZysvLk3FGMOum7vwmvdrTe6jo6WDUI9Q7Lq5S4mREaI4\nlBAEau9e4NVXm9/HwAAYOxb47TflxKTJ4rLjIGESBNoHNrvfq16vYs+tPRrZ5kVUHyUEAaqtBSIj\npR/2LRk3Djh6lPuYNN2Ru0cwrte4FnsO9bHtg4qaCtzNv6ukyAhRHEoIAnTlCmBtLW00bsmIEcC5\nc0B5OfdxabLI5EiE9Gx5LnqRSITnXJ9D5N1IJURFiGJRQhCgyEigtetgmJoCPj7AU+t2EAXKL8/H\nzUc38YxT69YDDnENQWQyJQSieighCFBbEgIg3TeSPn84c+zeMTzj9Aw66XRq1f7DXYbjfMZ5lFWX\ncRwZIYpFCUFgcnOBhARg0KDWP4cSArcikyNlU1K0hkknE/jb+uN06mkOoyJE8SghCMypU8AzzwD6\n+q1/jq8vUFwsHdlMFIsxhuP3jmNUj1Ftet6oHqNw7N4xjqIihBuUEATm3DlpQmgLkUh6R3H+PDcx\nabLUQunaAS5mLm163mCnwTifQReEqBZKCAJz7hwQFNT25wUFSZ9LFOt8+nkMchzU5onqAuwCkJCb\ngNKqUo6T1jGeAAAgAElEQVQiI0TxKCEISEkJcOcO4O/f9ucGBdEdAhfOpZ9DULe2Z+hOOp3g29UX\nlx5canlnQgSCEoKAXLoknea6Le0Hdfz8pDOfFhYqPi5Ndj7jPIIc23HLBiCoWxBVGxGVQglBQM6f\nb191ESBdKCcgALh4UbExabKC8gLcL7oPHxufdj2fEgJRNZQQBKS97Qd1qB1Bsf5+8DcC7QOhq92+\nZekGdhuIiw8uQlIrUXBkhHCDEoJASCTSKqOBA9tfRlAQcOGC4mLSdBcyLmCgQ/sviFUXK9ga2uJ2\nzm0FRkUIdyghCERSknT+IguL9pfRty9w9ap0cjzScVceXmlxdtOW9LXviysPrygoIkK4RQlBIK5e\nlV83uT0sLaVzG927p5iYNBljDFezrsLfrh1dvurxt/XH1YdXFRQVIdyihCAQV6+2r7vp0/z9pWWR\njskozoCOlg7sjOw6VI6/rT+uZtEFIaqBEoJAUEIQlqsPr8LftuMXxLerL24+volqSbUCoiKEW5QQ\nBKC2FoiL63iVEUAJQVGuZl1FH9uOXxAjfSN0M+6G+Jx4BURFCLcoIQhAUpK0/t/cvONl+fsD164B\ntIJjx1zNUswdAgD421G1EVENlBAEQFHVRQBgZQUYG1PDckcwxqRVRh1sUK5DDctEVVBCEABFJgSA\nqo066kHxA4hEItgb2SukPGpYJqqCEoIAXL8uXdNAUXx9pWWS9rn+6Dr8uvq1eYbTpvh29cWtx7dQ\ny2iACBE2SggCcPMm4OWluPK8vKRlkva5+egmvKwVd0FMOpnAwsACKQUpCiuTEC5QQuDZo0dATQ1g\n17Hu7nIoIXTMzcc34WWjwAwNwMvaCzcf0UUhwkYJgWd1dwcKqp0AALi4ADk50mU1SdvdfKzYOwTg\nn4TwmBICETZKCDxTdHURAGhrA717A7duKbZcTVAlqUJyfjLEVmKFlutlQwmBCB8lBJ5xkRAAqjZq\nrzu5d+Bk4oROOp0UWq6ntSdVGRHBo4TAs1u3uEsIdIfQdly0HwCAu6U77hfdR0VNhcLLJkRRKCHw\nqLYWiI8HPD0VXzbdIbSPonsY1dHT1kMPsx5IyElQeNmEKAolBB6lpEinrDA2VnzZdQmBprBoGy4a\nlOtQOwIROkoIPOKq/QAAbGykjctZWdyUr664qjICqOspET5OE0JUVBTc3d3Rs2dPrFy5ssH2AwcO\nwMfHB35+fvD398epU6e4DEdwbt7kprqojqcnVRu1RVFFEfLK8uBi5sJJ+dT1lAgdZwlBIpFgwYIF\niIqKQnx8PCIiIpCQIF9/Onz4cFy/fh2xsbHYtm0b3nzzTa7CESQu7xAAakdoq1uPb6G3VW9oibj5\nZ0FVRkToOEsIMTExcHV1hbOzM3R1dREaGooDBw7I7dOlSxfZ76WlpbC0tOQqHEGihCAsNx/fhKc1\nd7dsjiaOKK4sRn55PmfHIKQjOEsImZmZ6Natm+yxg4MDMjMzG+y3f/9+iMVihISE4KeffuIqHMEp\nLwfu3wfc3Lg7BiWEtuGqh1EdLZEWjUcggsZZQmjtTJETJkxAQkICDh06hNdff52rcATnzh2gRw9A\nT4+7Y3h4AImJgETC3THUye2c25zeIQDSdoRbj2mACBEmHa4Ktre3R0ZGhuxxRkYGHBwcmtx/8ODB\nqKmpQV5eHiwsLBpsDwsLk/0eHByM4OBgRYardAkJ0ukluGRoKF0w5/596fxGpHkJuQnobcXtRRFb\nipGYm8jpMYjmio6ORnR0dLufz1lCCAgIwN27d5GWlgY7Ozvs3bsXERERcvvcu3cPLi4uEIlEuHbt\nGgA0mgwA+YSgDhITAXd37o8jFkuTDyWE5uWX56Osugx2RgqcdrYRYisxjtw9wukxiOZ6+svysmXL\n2vR8zhKCjo4OwsPDMWrUKEgkEsycORNisRgbNmwAAMyZMwf79u3Djh07oKurC0NDQ+zZs4ercAQn\nIQGYMIH747i7S4/1/PPcH0uVJeYmwt3SXWGL4jTF3dIdCbk0WpkIk4gx4Y9lFYlEUIEw28TbG9i+\nHfDz4/Y4GzYAMTHA5s3cHkfVbYndgui0aOx4YQenx6lltTD6xggP338Ik04mnB6LkLZ+dtJIZR5I\nJEByMtCrF/fHqqsyIs2ru0PgmpZIC24WbriTd4fzYxHSVpQQeJCWBlhbA/WGYXBGLJa2V6jZDZbC\nJeQmQGyp2DUQmiK2EtMkd0SQKCHwQFkNyoC0l5GWFvD4sXKOp6qUdYcASHsaUTsCESJKCDxISFBe\nQgD+bVgmjauoqUBGUQZczV2VcjxqWCZCRQmBB4mJ0qocZaF2hOYl5yfD2dQZutq6SjkejUUgQkUJ\ngQfKrDICKCG0JDE3UeFrKDenp0VP3C+8jypJldKOSUhrUEJQMsakH850hyAcCTkJcLdQXobW09aD\nk6kT7ubdVdoxCWkNSghKlpsrTQpWVso7pru79K6ENC4xT3kNynWoHYEIESUEJatrUOZ4QKwcJycg\nPx8oKVHeMVVJQk6CUquMgH96GlHXUyIwlBCUTNkNyoC022mvXnSX0JhaVos7eXfgZsHhPOSNEFuK\nkZhHF4QIS6sTQkVFBSorK7mMRSMou8tpHWpHaFxGUQZMO5kqfRoJGpxGhKjJhFBbW4vff/8dL730\nEuzt7dG9e3c4OTnB3t4eL774Iv744w+1m19IGfi4QwAoITRFmQPS6nO3dMedvDuoZbVKPzYhTWky\nIQQHB+Pq1av48MMPkZKSgqysLGRnZyMlJQUffvghLl++jCFDhigzVrWg7C6ndahhuXGJuYlKm7Ki\nPmN9Y5h2MkV6UbrSj01IU5qc/vr48ePQ19dv8Hd9fX30798f/fv3pyqkNiorA7KzAWdn5R+b7hAa\nl5CbwPkqaU2pG6DmbOrMy/EJeVqTdwh1yeDEiRMNtm3fvl1uH9I6SUmAqyugw9kqFE3r2VM6qV4V\njYWSw1eVEUA9jYjwtNiovGzZMsybNw9PnjxBdnY2xo4di4MHDyojNrXDV4MyAOjrA46O0mm3yb+U\nOcvp08RWNMkdEZYWE8KZM2fg4uICHx8fDB48GJMnT8a+ffuUEZva4atBuQ5VG8nLL89HeXU558tm\nNoVmPSVC02JCKCgowOXLl9GjRw/o6ekhPT2dehe1E593CAA1LD9NWctmNsXd0p0muSOC0mJCGDBg\nAEaNGoU///wTly9fRmZmJoKCgpQRm9rhq4dRHUoI8vhsPwCAroZdUSWpQm5ZLm8xEFJfi82bx48f\nh5OTEwDAwMAAa9aswZkzZzgPTN1IJMDdu4CbcgfEyhGLgXXr+Du+0PDV5bSOSCSC2FKMO7l3YOlo\nyVschNRp8g7h3r17ACBLBvXVjT+o24e0TJnLZjbFzY2W06wvITeB1zsEgCa5I8LS5B3CZ599hidP\nnmDcuHEICAiAra0tamtrkZ2djStXruDgwYMwMjLCnj17lBmvyuK7QRkAzMykCSkzE3Bw4DcWIeC7\nygigdgQiLE0mhL179yI5ORl79uzBokWLcP/+fQDSO4ZBgwZhzZo1cHFxUVqgqo7vBuU6YrE0OWl6\nQlD2splNEVuKsenaJl5jIKROs20Irq6u+OCDD9C5c2ecPXsWWlpaGDRoEObNm4fOnTsrK0a1kJgI\nBATwHcW/6ysPH853JPxS9rKZTaEqIyIkLfYymjp1KuLj4/Huu+9iwYIFiI+Px9SpU5URm1pR9ipp\nTaGeRlJ8rIHQGBczF2QWZ6KipoLvUAhpuZfR7du3ER8fL3v87LPPonfv3pwGpW7qls0UQpWRuztA\nA83/aT9Q4rKZTdHV1oWLmQuS8pLgbePNdzhEw7V4h9CnTx/8/fffsscXL16Ev78/p0Gpm9x/uplb\nW/MbB0Cjlesk5iUK4g4BoIZlIhwt3iFcuXIFQUFB6NatG0QiEdLT0+Hm5gYvLy+IRCLcuHFDGXGq\nND6WzWyKgwNQVCT9MVHumjCCkpCTgHf7vct3GAAoIRDhaDEhREVFKSMOtSaU9gNAupymmxtw5w4Q\nGMh3NPyoWzaT7y6ndcSWYhxNPsp3GIS0nBCc+Zi8X83wPWXF0+q6nmpqQqhbNtNY35jvUABI7xBW\nXVzFdxiEtH5NZdJ+QrpDAP7teqqp+JzyujFulm5Iykui5TQJ7yghKIEQE4Imdz3lew6jpxnrG8Os\nkxktp0l4RwmBY0+eAI8f87NsZlPqqow0VUIO/3MYPY0alokQUELg2J070uUrtbX5juRfrq5AaipQ\nXc13JPxIyBXGoLT6KCEQIaCEwDGhVRcBQKdO0u6nmjpZrRAmtXsara9MhIASAseE1sOojqZWG+WV\n5aFSUglbQ1u+Q5HjbumOxDwNvCBEUDhPCFFRUXB3d0fPnj2xcuXKBtt37doFHx8feHt7IygoSO0G\nugnxDgHQ3J5GdQ3KfC2b2RSqMiJCwGlCkEgkWLBgAaKiohAfH4+IiAgkPPUp5OLigr/++gs3btzA\n4sWL8eabb3IZktIJOSFo4h2CEBbFaYydkR3Kq8uRX57PdyhEg3GaEGJiYuDq6gpnZ2fo6uoiNDQU\nBw4ckNtnwIABMPlnDoV+/frhwYMHXIakVDU1QEoK0KsX35E0pLEJIUdYYxDqiEQiuksgvOM0IWRm\nZqJbt26yxw4ODsjMzGxy/82bN2P06NFchqRUKSmArS0gxKUj6qqMNG05TSFNavc0SgiEby1OXdER\nbamnPX36NLZs2YLz589zGJFyCWHZzKZYWEh7G2VlAXZ2fEejPEIcg1CHehoRvnGaEOzt7ZGRkSF7\nnJGRAYdG1m68ceMGZs+ejaioKJiZmTVaVlhYmOz34OBgBAcHKzpchRNq+0GdumojTUkI5dXlyCrN\ngouZMJd+dbd0x5a4LXyHQVRYdHQ0oqOj2/18ThNCQEAA7t69i7S0NNjZ2WHv3r2IiIiQ2yc9PR0T\nJ07Ezp074era9Pq29ROCqkhIAAYN4juKptWtjfDss3xHohxJeUnoYdYDOlqcvu3bjaqMSEc9/WV5\n2bJlbXo+p/8ydHR0EB4ejlGjRkEikWDmzJkQi8XYsGEDAGDOnDn44osvUFBQgHnz5gEAdHV1ERMT\nw2VYSpOYCMyezXcUTdO0hmWh9jCq42ruioyiDFTUVKCTTie+wyEaSMSY8JsVRSIRVCBMOYwBpqbS\nhmULC76jaVxkJLBqFXD8ON+RKEdYdBgktRJ8+eyXfIfSJPdwd/z28m/wtPbkOxSiBtr62UkjlTmS\nlQXo6ws3GQCaN1pZ6HcIAFUbEX5RQuCIkHsY1XF0BPLygJISviNRjsRc4XY5rUM9jQifKCFwROg9\njADpcpq9eklnZFV3kloJ7ubdhZuFG9+hNIvmNCJ8ooTAkfh44ScEQBpjfDzfUXAvtTAV1l2s0UWv\nC9+hNEtsJUZ8jgZcECJIlBA4cvs24KkC7YKentJY1d3tx7dVoqG2t1Vv3Mm9A0mthO9QiAaihMAB\nxoBbtwAPD74jaZmnpzRWdXfr8S14WAn/ghjqGcLG0Ab3CjR0sQrCK0oIHHj0SPp/Gxt+42gNDw8N\nSQg5t1TiDgEAPK09ceuxBlwUIjiUEDhw65b0m7fAptxvVPfuQG4uUFzMdyTcuvVYhRKClSduP9aA\nejwiOJQQOKAq7QeAdK1ndW9YrpZUIzk/WfBjEOp4WnviVg7dIRDlo4TAAVVpP6ij7u0Id/Pvoptx\nN3TWFeA85I3wsPagKiPCC0oIHKirMlIV6p4QVKm6CJCORUgpSEGVpIrvUIiGoYSgYIxJq4xU6Q5B\n3RuWVS0hdNLpBCcTJyTlJfEdCtEwlBAULCMDMDICzM35jqT11H0swu0c1RiDUB/1NCJ8oISgYKrW\nfgAADg5AWZm0t5E6UpUxCPV5WHlQTyOidJQQFEzV2g8AafdYdb1LKK8uR3pROnpa9OQ7lDahnkaE\nD5QQFEwVEwKgvg3LibmJcDV3hZ62Ht+htAlVGRE+UEJQMFUag1Cfh4d63iGoYvsBIF097UHxA5RV\nl/EdCtEglBAUSCKRroPQuzffkbSdpydw8ybfUSieKrYfAICuti56mvektRGIUlFCUKC7d6XzFxka\n8h1J23l7SxOCiq1U2qLrj67Dy9qL7zDaxdvGGzce3eA7DKJBKCEoUFwc4OfHdxTtY2kpTWRpaXxH\nolhx2XHws1XNi+LX1Q+x2bF8h0E0CCUEBYqNVd2EAEhjj1Wjz5/s0mxUSarQzbgb36G0i29XX8Rl\nx/EdBtEglBAUKC4O8PXlO4r28/WVvgZ1EZcdB9+uvhCpwrSzjfDt6ovrj66jltXyHQrREJQQFIQx\nukMQmtisWPh1Vd0LYmFgARN9E6QWpPIdCtEQlBAUJCtLmhTs7PiOpP3U7g7hkfQOQZX52VI7AlEe\nSggKUnd3oKK1EwCki+WUlKjPFBaqfocAAL421I5AlIcSgoKoevsBIE1mPj7qcZdQUlmCB8UP4Gbp\nxncoHUJ3CESZKCEoSGys6icEQPoa1KEd4cajG/Cw9oCOlg7foXQI9TQiykQJQUFUeQxCfX5+6nGH\nEJcdp/LVRQDgZOKEsuoyPH7ymO9QiAaghKAAxcVAdjbQqxffkXScujQs13U5VXUikYjuEojSUEJQ\ngOvXpXMBaWvzHUnH9e4NpKZK10dQZbHZqt+gXMevqx9is9SgHo8IHiUEBVCHBuU6enqAm5tqT4Vd\nLalGfE48vGxUcw6jp/l29UXcI7pDINyjhKAAV6+qR/tBnT59gCtX+I6i/eJz4uFo4ghDPRWcZbAR\nfWz74MpDFb4gRGVQQlCAmBigXz++o1CcwEDg8mW+o2i/mMwY9HNQnwsithQjuzQb+eX5fIdC1Bwl\nhA4qKgLS01VvHeXmBAZKk5yqismMQaBdIN9hKIy2ljb8bf3pLoFwjhJCB129Km0/0NXlOxLF8fSU\nToNdXMx3JO0T8zAGgfbqkxAAINA+EDGZKpyliUqghNBBMTHSb9TqRFdXmuSuXuU7krZ7UvUEd/Pu\nwtvGm+9QFIoSAlEGThNCVFQU3N3d0bNnT6xcubLB9sTERAwYMACdOnXCDz/8wGUonFHHhACobrXR\ntaxr8LLxgr6OPt+hKFRdQmDqtqQdERTOEoJEIsGCBQsQFRWF+Ph4REREICFBfn1YCwsLrFmzBh9+\n+CFXYXCOEoKwqFv7QZ26RX4yijN4joSoM84SQkxMDFxdXeHs7AxdXV2EhobiwIEDcvtYWVkhICAA\nuipaAZ+ZCVRWSmcJVTcqmxDUsP0AkI5YpmojwjXOEkJmZia6dft36UIHBwdkZmZydTheXLwo7W6q\nylNeN8XFBaioADJU7Avp3xl/o79Df77D4ER/h/64kHGB7zCIGuNsKkhFL1sYFhYm+z04OBjBwcEK\nLb89zp0DBg3iOwpuiETS13b+PBAaync0rZNelI5KSSVczV35DoUTgxwH4aPjH/EdBhGw6OhoREdH\nt/v5nCUEe3t7ZNT7epmRkQEHB4d2l1c/IQjFuXPA6tV8R8GdQYOkr1FVEsK59HMY5DhIZddQbklf\nu7649fgWnlQ9QRe9LnyHQwTo6S/Ly5Yta9PzOasyCggIwN27d5GWloaqqirs3bsX48aNa3RfVew5\nUVoKxMcDAQF8R8KduoSgKs6ln8Ogbmp6ywags25n+Nj4UDsC4Qxndwg6OjoIDw/HqFGjIJFIMHPm\nTIjFYmzYsAEAMGfOHGRnZ6Nv374oLi6GlpYWfvzxR8THx8PQUPhz0Fy8KJ2/qFMnviPhjp8fkJwM\nFBYCpqZ8R9Oys+lnMcNvBt9hcGqQ4yCcSz+Hod2H8h0KUUMipgJfz0UikeDuIsLCpI2uK1bwHQm3\nhg4F/vMfICSE70iaV1BeAMf/OqLg4wKVXyWtOQfvHMTay2vx52t/8h0KUQFt/eykkcrtpM4NyvWp\nSrXRhYwL6GffT62TAQAM7DYQFx9cRE1tDd+hEDVECaEdqqqkffQHDuQ7Eu4NHgycOcN3FC07c/8M\nBjsO5jsMzlkaWMLB2IFWUCOcoITQDhcvSpfLNDfnOxLuDRokXQCotJTvSJp3MvUkhrkM4zsMpRjW\nfRhOppzkOwyihightMPJk8Dw4XxHoRwGBkDfvsBff/EdSdPyyvJwN++uWo5Qbsyw7sNwIvUE32EQ\nNUQJoR1OnACGacaXUQDS13pCwJ8/p9NOY7DTYOhp6/EdilIEOwfj4oOLqKip4DsUomYoIbRRcTFw\n/bpmNCjXGT5celckVCdSTmBYd83J0CadTOBh5UHTWBCFo4TQRn/9JZ2/qHNnviNRnoAA4P594PFj\nviNp3MnUkxjuoiF1eP8Y7jKc2hGIwlFCaCNNqy4CAB0dIDhYmNVGaYVpKKoogqe1J9+hKNVwl+E4\nlnKM7zCImqGE0AaMAYcPA88/z3ckyjd6NHDkCN9RNHQ46TBG9xwNLZFmvZUHdhuI5PxkZJdm8x0K\nUSOa9a+ogxITpWMQvNVrdcZWGTMGiIoCagQ2HupQ0iGM7TWW7zCUTk9bDyN7jMSRJAFmaaKyKCG0\nwaFD0g9GNZ1Ms1l2dtKFgM6f5zuSf5VUluBCxgWM6DGC71B4MbbXWBxKOsR3GESNUEJog0OHgLGa\n92VUZswY6TkQimP3jmGAwwAY6xvzHQovQlxDcCr1FHU/JQpDCaGV8vKAGzekk71pqrFjhZUQNLW6\nqI6FgQV8uvrgVOopvkMhaoISQivt3w+MGKHe0123pE8foLwcuHWL70iAKkkVDicdxji3xtfY0BQT\n3CZgX/w+vsMgaoISQitFRKjOymFcEYmAV16Rngu+Hb93HG6WbnAydeI7FF697PEy/kj8A5U1lXyH\nQtQAJYRWyM4Grl7VzO6mT5s8GdizR9oFl08RtyIw2XMyv0EIQDeTbvC09kRUchTfoRA1QAmhFX79\nVVp/rkmjk5vi5ycdqHb5Mn8xlFWX4XDSYbzU+yX+ghCQyZ6Tsef2Hr7DIGqAEkIrUHXRv0Qi6bnY\nvZu/GA4nHUagfSBsDG34C0JAXuz9Io7ePYrSKoHPUU4EjxJCC+LjgdRUaYMykXr9dWlCqOSp2npL\n7BZM9ZnKz8EFyKqLFYY4DcHeW3v5DoWoOEoILdiwAZg5E9DV5TsS4XB1BXx8gH08dG5JKUjB1ayr\neLH3i8o/uIDNDZiLDVc38B0GUXGUEJpRVgbs3AnMns13JMIzdy6wfr3yj7vx6kZM85mGTjoa3P+3\nEaN6jMLjJ49x9eFVvkMhKowSQjP27gUGDACcNLtnY6PGjQOSk4Hbt5V3zMqaSmyN24o3/d9U3kFV\nhLaWNmb3mY31V3jI0kRtUEJoQm0tsGoVsGAB35EIk64uMGeO9Bwpy84bO+Hb1Re9LHop76AqZFaf\nWdiXsA+PSh/xHQpRUZQQmnDoEKCnB4waxXckwvX229IR3Onp3B+rprYGK86vwGeDPuP+YCrKxtAG\nkz0nY/XF1XyHQlQUJYRGMAYsXw589plmzmzaWubm0gb3777j/li/3v4VNl1s8IzTM9wfTIX9J+g/\n2HRtEwrKC/gOhaggSgiNiIoCSkqAF17gOxLhe/99YNcu4MED7o5RU1uD5WeX47PBn0FEGbpZTqZO\nGO82nu4SSLtQQnhKdTXwwQfAypWAFp2dFnXtCsybB3z6KXfH2HR1E6y6WCHENYS7g6iRsOAwrL28\nFulFSqjLI2pFxBjfs9K0TCQSQVlhrlkDHDwIHDtG1UWtVVoKuLlJxyX076/YsgvKC+C+1h3HXjsG\nn64+ii1cjS05vQR38+8iYpIAZiIkvGnrZyclhHoePgR8fYFTpwBPzVqzvcN27AB+/BG4eFGxg/jm\nHZ6HWlaLDWNp0FVbPKl6Ave17tg6fiuGuwznOxzCk7Z+dlKlyD9qa4E33gDmz6dk0B6vvw7Y2ABf\nfKG4Mo/ePYrI5Eh8O+JbxRWqIbrodcH/xv4PMw7MoAZm0mp0h/CPH3+Uzs9z7hxNU9FeWVnS2VB/\n+w0YNKhjZT0qfYQ+G/tg98TdGOI8RDEBaqC3j76NnLIcREyKoAZ5DUR3CO1w7BjwzTfShEDJoP1s\nbYGtW4GXXpJOCNhe5dXlGL9nPGb3mU3JoINWjliJ5PxkfHPuG75DISpA4+8Q4uKAkSOB33/v+Lda\nIhUeDqxbB5w5A1hZte251ZJqTN43Gfo6+tj5wk76VqsAD0seYsDmAVj+7HK85v0a3+EQJWrrZ6cO\nh7EI3oUL0rEG69dTMlCkBQuAx4+BZ54BTpwA7O1b97yKmgqE/haKKkkVdk6kZKAodkZ2OPrqUYzc\nORJl1WU0FxRpksZWGW3fDowfL/3/xIl8R6N+vvgCmDFDOjng+fMt759elI5ntz8LfR197A/dT7OZ\nKpiHtQeip0Xjm3Pf4KNjH6FaUs13SESAOE0IUVFRcHd3R8+ePbFy5cpG93nnnXfQs2dP+Pj4IDY2\nlstwAEgbPqdMAVasAE6fBp57jvNDaqyPPgLWrpUm3CVLpNOJP62W1WJ73Hb03dQXE9wnIGJSBPS0\n9ZQfrAboadETl2dfRnxuPAZvHYy47Di+QyJCwzhSU1PDevTowVJTU1lVVRXz8fFh8fHxcvscOXKE\nhYSEMMYYu3jxIuvXr1+jZSkizMePGVuyhDELC8b+8x/GSko6XKTKOn36tFKPl5HB2MsvM+bkxNj/\n/R9jZWWMSWol7EDiAdZvUz/Wd2NfFvMgRqkxKYqyz6UiSGolbP3l9cz6O2v2xv43WEJOAt8hyaji\n+RSytn52cnaHEBMTA1dXVzg7O0NXVxehoaE4cOCA3D4HDx7EtGnTAAD9+vVDYWEhHj1S3NS9jx9L\n1zR48UWgZ08gO1s6cGrlSsDQUGGHUTnR0dFKPZ6Dg/Q6bP+5GjvP/A3zFz+HyWJXfHBwGeb3WYiL\nsy6ir31fpcakKMo+l4qgJdLCnIA5SJifAGdTZwzZNgSDtgzCT5d+wv3C+7zGpornU51w1qicmZmJ\nbvUo6rsAAAt7SURBVN26yR47ODjg0qVLLe7z4MED2Ni0bvF0xoDiYuDRo39/7t6VroMcGyudcG3Q\nIGlbwaZNgJmZYl4baVpNbQ3yyvKQVZqFrJIspBelIz4nHrdzbiMmMwYuQ1wwzWoEuqT+hov7/TA3\nTIQfxUBAgHRpThcXoHt3ae8kU1OgSxeaQoQr5p3NsWTIEnwc9DFOpJzAr/G/4qu/voKeth76O/SH\n2FIMFzMXuJi5wN7YHmadzGDSyQQ6WhrdF0WtcXZlW9tDhD3VJaqp5xnPG4NaCVBbyyCpBWolgKQW\n0NJi0NeXrl2grw8YGDB08QSMBwD9jBhqRMA+APuOAAzyx6p/7Oa2Pb29uW2qUO6Dqw9wZNMRhZRb\nKanEk6oneFL9BKVVpaiWVMPCwAK2hrawNbKFg5EDelv1xijXUehn3w8WBhb/FvYhUF4OXLsmTeAp\nKdKBgampQG4uUFgIVFVJE4OBgfQa1//R1ZX+1E1CKBL9mzzq/7+1f2uPO3eAqyq/aqU+gOcBPI9A\nMJTppSLF8BJu6iehTD8aZfpbUKGXiWrtQtRoF0O71gA6EmNoMT2IavWgxf79ETE9iJg2AECEupMq\nApio4d9k//9nGxOh9O8k/F/RlXrbiTJxlhDs7e2RkZEhe5yRkQEHB4dm93nw4AHsG+mj2KNHD9xb\nf6TB3wFAAqDsnx/SelmHszgrO/ef/27ipmLKy1VIMZy5e3cZ3yEoVQ1KUIMSzsovu5TMWdmapkeP\nHm3an7OEEBAQgLt37yItLQ12dnbYu3cvIiLkZ14cN24cwsPDERoaiosXL8LU1LTR6qLkZHqDEEII\n1zhLCDo6OggPD8eoUaMgkUgwc+ZMiMVibNggnbVyzpw5GD16NI4ePQpXV1d06dIFW7du5SocQggh\nLVCJqSsIIYRwT9AjlVszsI20nrOzM7y9veHn54fAwEC+w1E5M2bMgI2NDby8vGR/y8/Px4gRI9Cr\nVy+MHDkShYWFPEaoWho7n2FhYXBwcICfnx/8/PwQFRXFY4SqIyMjA0OHDoWHhwc8PT3x008/AWj7\n+1OwCUEikWDBggWIiopCfHw8IiIikJCQwHdYKk0kEiE6OhqxsbGIiYnhOxyV88YbbzT4gFqxYgVG\njBiBpKQkDBs2DCtWrOApOtXT2PkUiUR4//33ERsbi9jYWDxHUwm0iq6uLlavXo3bt2/j4sWLWLt2\nLRISEtr8/hRsQmjNwDbSdlRD2H6DBw+G2VODWeoPrpw2bRr279/PR2gqqbHzCdB7tD26du0KX19f\nAIChoSHEYjEyMzPb/P4UbEJobNBaZmYmjxGpPpFIhOHDhyMgIACbNm3iOxy18OjRI1nPOBsbG4WO\ntNdUa9asgY+PD2bOnElVcO2QlpaG2NhY9OvXr83vT8EmBJr6WPHOnz+P2NhYREZGYu3atTh79izf\nIakVkUhE79sOmjdvHlJTUxEXFwdbW1t88MEHfIekUkpLSzFp0iT8+OOPMDIyktvWmvenYBNCawa2\nkbaxtbUFAFhZWeGFF16gdgQFsLGxQXZ2NgAgKysL1tbWPEek2qytrWUfXLNmzaL3aBtUV1dj0qRJ\neP311zFhwgQAbX9/CjYh1B/YVlVVhb1792LcuHF8h6WyysrKUFIiHV365MkTHDt2TK53B2mfcePG\nYfv27QCA7du3y/4hkvbJyvp3BP0ff/xB79FWYoxh5syZ6N27N9577z3Z39v8/lTIHKscOXr0KOvV\nqxfr0aMH+/rrr/kOR6WlpKQwHx8f5uPjwzw8POh8tkNoaCiztbVlurq6zMHBgW3ZsoXl5eWxYcOG\nsZ49e7IRI0awgoICvsNUGU+fz82bN7PXX3+deXl5MW9vbzZ+/HiWnZ3Nd5gq4ezZs0wkEjEfHx/m\n6+vLfH19WWRkZJvfnzQwjRBCCAABVxkRQghRLkoIhBBCAFBCIIQQ8g9KCIQQQgBQQiCEEPIPSgiE\nEEIAUEIgas7Z2Rn5+fl8hyHn4cOHeOmll5rdJzo6GmPHjm10mxBfE1EPlBCIIDHGFDLrpdDmFqqp\nqYGdnR1+/fXXdpchtNdE1AclBCIYaWlpcHNzw7Rp0+Dl5YWMjAy89dZb6Nu3Lzw9PREWFibb19nZ\nGWFhYfD394e3tzfu3LkDAMjLy8PIkSPh6emJ2bNnyyWVVatWwcvLC15eXvjxxx9lx3R3d8cbb7wB\nNzc3TJkyBceOHUNQUBB69eqFy5cvN4hzwIABiI+Plz0ODg7GtWvXcPnyZQwcOBB9+vRBUFAQkpKS\nAADbtm3DuHHjMGzYMIwYMQL379+Hp6en7PjPPPMM/P394e/vj7///ltWbnFxMcaMGQN3d3fMmzev\n0QS5c+dO9OvXD35+fpg7dy5qa2vlthcVFcHd3V0Wy+TJk7F58+Y2XReiQTgfU01IK6WmpjItLS12\n6dIl2d/y8/MZY4zV1NSw4OBgdvPmTcYYY87Oziw8PJwxxti6devYrFmzGGOMvf322+zLL79kjDF2\n5MgRJhKJWF5eHrty5Qrz8vJiZWVlrLS0lHl4eLDY2FiWmprKdHR02K1bt1htbS3z9/dnM2bMYIwx\nduDAATZhwoQGca5evZotXbqUMcbYw4cPmZubG2OMseLiYlZTU8MYY+z48eNs0qRJjDHGtm7dyhwc\nHGTTBqSmpjJPT0/GGGNlZWWsoqKCMcZYUlISCwgIYIwxdvr0adapUyeWmprKJBIJGzFiBPvtt99k\nrz0vL4/Fx8ezsWPHyo45b948tmPHjgbxHj9+nA0YMIBFRESwkJCQtlwSomF0+E5IhNTn5OQkt7zn\n3r17sWnTJtTU1CArKwvx8fGyb9cTJ04EAPTp0we///47AODs2bP4448/AACjR4+GmZkZGGM4d+4c\nJk6ciM6dO8uee/bsWYwbNw7du3eHh4cHAMDDwwPDhw8HAHh6eiItLa1BjC+//DJGjhyJsLAw/PLL\nL7L2gMLCQkydOhXJyckQiUSoqamRPWfkyJEwNTVtUFZVVRUWLFiA69evQ1tbG3fv3pVtCwwM/P/2\n7h6keSCO4/g3FVSM6OCiXRRcfINYUXFoi1DpLooODtrBRToLDuJSBIfS2UFERaFFaLdOLuIkuugg\nnXzZRFAISF3SOtgEa/v4PDyT4O8zJbn+73Id7n+5lB49PT3Ax8z+7OyMmZkZ4GNJ7eTkhMvLS0ZH\nRwEoFot0dnbWtDE1NUUmkyEej3N1dfXt9y+/mxKC/CimaXrHt7e3JJNJLi4uaG9vJxaL8fb25pU3\nNTUB0NDQUDX4lussrRiGUXW9XC57a/FuPQA+n4/Gxkbv+HO9Lr/fT0dHB9fX12QyGba3twFYX18n\nEomQzWa5v79ncnLSi2lpaanb31QqRVdXFwcHBziOQ3Nzc9U9f75fn692hXdxcZHNzc26dbtKpRI3\nNzeYpsnz8zN+v//bz8vvpXcI8mPZto1pmrS1tfH4+Eg+n/9rTDgc5ujoCIB8Ps/LywuGYRAKhcjl\nchSLRV5fX8nlcoRCof9+cT0/P8/W1ha2bXtPLLZte4Pt7u7uP/fRndXv7+/jOI5Xdn5+zt3dHaVS\niXQ6TTAY9MoMwyASiXB8fMzT0xPwsaH6w8NDTRupVIrBwUEODw+JxWJ1k5wIKCHID/N5VmxZFoFA\ngL6+PhYWFqoGxK8xbtzGxganp6cMDQ2RzWbp7u4GIBAIsLS0xPj4OBMTEywvL2NZVk2bX8//9Iue\n2dlZ0uk0c3Nz3rXV1VXW1tYYGRnBcRwvtt5OVe75ysoKe3t7DA8PUygUaG1t9crHxsaIx+MMDAzQ\n29vL9PR0VWx/fz+JRIJoNIplWUSjUW8zFFehUGBnZ4dkMkkwGCQcDpNIJOr2SUR/fy0iIoCeEERE\npEIJQUREACUEERGpUEIQERFACUFERCqUEEREBFBCEBGRCiUEEREB4B2Supf++228egAAAABJRU5E\nrkJggg==\n", - "text": [ - "" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def posterior(likelihood, prior):\n", - " \"\"\"\n", - " Calculates the posterior probability (after Bayes Rule) without\n", - " the scale factor p(x) (=evidence). \n", - " \n", - " \"\"\"\n", - " return likelihood * prior\n", - "\n", - "# probability density functions\n", - "posterior1 = posterior(pdf(x, mu=4, sigma=1), 0.5)\n", - "posterior2 = posterior(pdf(x, mu=10, sigma=1), 0.5)\n", - "\n", - "# Class conditional densities (likelihoods)\n", - "plt.plot(x, posterior1)\n", - "plt.plot(x, posterior2)\n", - "plt.title('Posterior Probabilities w. Decision Boundary')\n", - "plt.ylabel('P(w)')\n", - "plt.xlabel('random variable x')\n", - "plt.legend(['P(w_1|x)', 'p(w_2|X)'], loc='upper right')\n", - "plt.ylim([0,0.5])\n", - "plt.xlim([0,20])\n", - "plt.axvline(7, color='r', alpha=0.8, linestyle=':', linewidth=2)\n", - "plt.annotate('R1', xy=(4, 0.3), xytext=(4, 0.3))\n", - "plt.annotate('R2', xy=(10, 0.3), xytext=(10, 0.3))\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEZCAYAAACXRVJOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdcFNfaB/DfUpQuIIg0QQEBQQFrLBQblihiR41ijSaS\nxDRzjSaSxGv03pioQXOJsRfEFMSKxoISIxIjxgKIBQQRjQqCSF+e948N+7pSF3Z3Fni++fjJLnNm\nzrOzu/PsnDNzjoiICIwxxlo8DaEDYIwxph44ITDGGAPACYExxtg/OCEwxhgDwAmBMcbYPzghMMYY\nA8AJoVnZvXs3hg0bJnQY1dLQ0MCdO3catK69vT1OnjxZ7bK4uDi4uLjIlD116hQAYOXKlZg3b16N\n21Xn/aUs7u7uOHv2bK1lMjIyYGhoiOZ+RXpjPpPNFrEGsbOzI11dXTIwMCALCwuaOXMmFRQUNHh7\ny5cvp9dee02BETaeIl+jSCSi27dvN2hde3t7OnnyZKPKpqWlkUgkIrFY3KAYVEkkEpG+vj4ZGBhQ\n27ZtafDgwRQZGSl0WArx4mszMzOjKVOm0NOnTwWLpaGfyeaKzxAaSCQS4dChQ3j27BkuXbqEixcv\nYsWKFYLFIxaLG7wuEVX7a7C+r7G8vLzBdatada9THV25cgXPnj1DamoqZs6ciZCQEHz++edCh6UQ\nla/tzp07yM3NRWhoqNAhyaUpfd7lxQlBAaysrDB8+HBcu3YNAHDgwAG4ubnBxMQEAwcOREpKirTs\n6tWrYWNjAyMjI7i4uODUqVOIiYnBl19+icjISBgaGsLLywsAkJeXhzlz5sDKygo2Njb45JNPUFFR\nAQDYtm0b+vfvj/feew9mZmYIDQ3Ftm3b4O3tLa3r999/R69evWBsbIzevXvj/Pnz0mV+fn5YtmwZ\n+vfvD319faSlpdXrNV6/fh2A5HR748aNcHJygrOzMwBg06ZNcHJyQtu2bTFmzBhkZ2fLbOPw4cNw\ncHCAubk5Fi9eLD043759G4MGDYKZmRnMzc3x2muvIS8vT2bdhIQEuLm5wdTUFLNnz0ZJSQkAIDY2\nFra2ttXGHBoaiunTpwMAfHx8AADGxsYwMjJCfHx8lf2VkpKCoUOHom3btnBxccGPP/4oXXbkyBG4\nubnByMgINjY2WLNmTbV12tnZ4dKlSwAkTVIaGhpITk4GAGzevBljx46tdT+/zNTUFK+99hq+++47\nfPnll8jJyQFQ+2cDkLwXXbp0gZGREdzc3HD58mUAsk1qCQkJ6NmzJ9q0aYP27dvj/fffBwCkp6dD\nQ0NDur379+8jICAAbdu2hZOTE3744QeZfTxp0iQEBwfDyMgI7u7u+PPPP+v12gwNDTF69GgkJSVJ\n/1ZbXTNnzsQnn3wiff7ye29vb481a9bAw8MDxsbGCAoKkn5OAOC///2vdH9t2bJFJpbDhw/Dy8sL\nbdq0QYcOHfDZZ59Jl1Xujy1btsDOzg6DBw/GqFGjEBYWJrONbt26ITo6ul6vXW0Je4LSdNnb29OJ\nEyeIiCgjI4Pc3Nzo008/pRs3bpC+vj6dOHGCysvL6T//+Q85OjpSaWkppaSkkK2tLWVnZxMR0d27\nd6WnrKGhoTR9+nSZOgIDA2nBggVUWFhIf//9N/Xu3ZvCw8OJiGjr1q2kpaVFYWFhJBaLqaioiLZu\n3UoDBgwgIqInT56QsbEx7dq1i8RiMUVERJCJiQnl5OQQEZGvry/Z2dlRUlISicViKisrq/drJJKc\nbvv7+1Nubi4VFxfTyZMnyczMjBITE6mkpITeeust8vHxkW5LJBLRoEGDKDc3lzIyMqhz5870ww8/\nEBHRrVu36MSJE1RaWkqPHj0iHx8fWrRokXRdOzs76tq1K927d49ycnKof//+tGzZMiIiOn36NNnY\n2MjEXNlkFBoaKm2GS09Pr9Jk9OL+KigoIBsbG9q2bRuJxWJKTEwkMzMzSk5OJiKi9u3b02+//UZE\nRE+fPqVLly5V+7mYMWMGrVmzhoiI5s2bR46OjvTdd98REdH06dNp7dq11a73ouqaMkpLS0lLS4ti\nYmKIqPbPxr59+8ja2pouXrwo3b93796tsn9eeeUV2rVrFxERPX/+nOLj44moavOat7c3LVy4kEpK\nSujy5ctkbm5Op06dIiJJU6eOjg4dPXqUKioqaMmSJfTKK6/U+tpu3bpFREQ5OTk0dOhQWr58uXR5\nbXXNnDmTPvnkE2nZ6t77Pn36UHZ2NuXk5JCrqyv973//IyKio0ePkoWFBV2/fp2eP39OU6ZMkdnP\nsbGxdO3aNSIiunLlCllYWND+/ftl9kdwcDAVFhZSUVER7du3j/r06SOt+/Lly9S2bdtqv0dNCSeE\nBrKzsyMDAwMyNjYmOzs7WrhwIRUVFdHnn39OkydPlparqKgga2trOnPmDN28eZPatWsnPfi96OU+\nhAcPHlDr1q2pqKhI+rc9e/bQwIEDiUhyMOvQoYPMNl48wO3YsUPmA0tE1LdvX9q2bRsREfn5+cl8\nEev7GouLi4lI8sU+ffq0tOzs2bPpo48+kj4vKCggbW1t6YFIJBLRsWPHpMs3btxIgwcPrrbeqKgo\n8vLykj63t7eXHuyIiI4cOUIODg5EVHtCeHGfVteH8OL+2rt3L3l7e8vE8frrr9Nnn31GREQdOnSg\n8PBwysvLq3Wfbd68mQICAoiIyNXVlTZv3kxBQUFEJNmfiYmJta5PVHPbdvv27WnPnj11fjb8/f1p\n/fr11W77xf3j4+NDy5cvp0ePHsmUeXFfZWRkkKampkzf0ZIlS2jmzJlEJNnHQ4cOlS67fv066erq\n1vrajIyMyNjYmDQ1NcnV1ZWysrKIiOqsa+bMmdIfAkTVv/e7d++WPl+8eDEtWLCAiIhmzZpFS5Ys\nkS5LTU2ttQ/hnXfeoXfffVdmf6SlpUmXFxUVkYmJiTS5vf/++7Rw4cIaX3dTwU1GDSQSiRAdHY3c\n3Fykp6cjLCwMOjo6yM7ORocOHWTK2draIisrC46Ojli7di1CQ0NhYWGBKVOmVGlWqXT37l2UlZXB\n0tISJiYmMDExwYIFC/Do0SNpmZqaSgDJqfeLcQCS5oz79+/Xa/2aXmPr1q2rXT87Oxt2dnbS5/r6\n+mjbti2ysrKqLd+hQwdpLA8fPkRQUBBsbGzQpk0bTJ8+HU+ePJGJpaZ1FeXu3bu4cOGCdF+bmJhg\nz549ePjwIQDg559/xpEjR2Bvbw8/Pz/Ex8dXux0fHx/ExcXhwYMHEIvFmDhxIs6dO4e7d+8iLy8P\nnp6eDYqvrKwMjx49gqmpaZ2fjXv37sHBwaHObW7evBmpqalwdXVF7969cfjw4Spl7t+/D1NTU+jr\n60v/1qFDB5n31cLCQvpYT08PxcXFMs1XL0tMTERubi6Ki4uxYMECeHt7o6SkpF511aV9+/bSx7q6\nunj+/DkAyefz5c/Qiy5cuICBAweiXbt2MDY2Rnh4eK2fQR0dHUyaNAk7d+4EEWHv3r3S5smmjBOC\ngllZWeHu3bvS50SEzMxMWFtbAwCmTJmCuLg43L17FyKRCB999BEAycH3Rba2tmjdujWePHmC3Nxc\n5ObmIi8vD1evXpWWeXmdF1lbW8vEAUgOepVx1LV+fby4vpWVFdLT06XPnz9/jidPnsjUl5GRIfO4\nctnHH38MTU1NXLt2DXl5edi5c2eVA8rL61pZWTU41up06NABvr6+0n2dm5uLZ8+eYcOGDQCAnj17\nYv/+/Xj06BECAwMxadKkarfj6OgIPT09fPvtt/D19YWhoSHat2+P77//Xqa/Ql7R0dHQ0tJC7969\n6/xs2Nra4tatW3Vu09HREXv27MGjR4/w0UcfYcKECSgqKpIpY2VlhZycHBQUFEj/lpGRARsbmwa/\nlkpaWlqYM2cO0tLScP369Trr0tfXR2FhoXTZgwcP6l2XpaVllc/Qi6ZOnYrAwEDcu3cPT58+xYIF\nC6p8Bl/+DAUHB2P37t04ceIE9PT00KdPn3rHo644ISjYpEmTcPjwYZw6dQplZWVYs2YNdHR00K9f\nP6SmpuLUqVMoKSlB69atoaOjA01NTQCSXzbp6enSjlZLS0v4+/vjvffew7Nnz1BRUYHbt2/XeQ15\npREjRiA1NRUREREoLy9HZGQkUlJSMGrUKGkZUuAVN1OmTMHWrVvx119/oaSkBB9//DFeeeUVmV9i\nX331FZ4+fYrMzEysX78ekydPBgAUFBRAX18fRkZGyMrKwn//+1+ZbRMRNmzYgKysLOTk5ODf//43\ngoKC5IrP3NwcGhoauH37drXLX331VaSmpmLXrl0oKytDWVkZ/vjjD6SkpKCsrAy7d+9GXl4eNDU1\nYWhoKH3fquPr64uwsDD4+voCkHTgv/i8Pirfm5ycHOzevRshISH417/+BRMTkzo/G3PnzsVXX32F\nS5cugYhw69atKgdAANi1a5f0rKJNmzYQiUTQ0JA9JNja2qJfv35YsmQJSkpKcOXKFWzZsgWvvfZa\nvV9LTa9NLBZj69at0NPTQ6dOneqsy9PTE0eOHEFubi4ePHiAtWvX1ruuSZMmYdu2bUhOTkZhYaFM\npzEg+QyamJigVatWSEhIwJ49e+r8EdG3b1+IRCJ88MEHmDFjRkN2hdrhhKBgnTt3xq5du/DWW2/B\n3Nwchw8fxsGDB6GlpYWSkhIsWbIE5ubmsLS0xOPHj/Hll18CACZOnAgAaNu2LXr27AkA2LFjB0pL\nS9GlSxeYmppi4sSJ0l9FIpGoygf2xb+1bdsWhw4dwpo1a2BmZoavvvoKhw4dgqmpqUz5hnp53cGD\nB+OLL77A+PHjYWVlhbS0NOzdu1emzJgxY9CjRw94eXlh1KhRmD17NgBg+fLluHTpEtq0aYPRo0dj\n/PjxMtsXiUSYNm0a/P394eDgACcnJyxbtqzO1/Hi/tDT08PSpUvRv39/mJqa4sKFCzLLDQ0Ncfz4\ncezduxfW1tawtLTEkiVLUFpaCkBy8OzYsSPatGmD77//Hrt3765x3/j6+qKgoEB6ZdPLz1euXImR\nI0fWun89PDxgaGgIJycnbNmyRdrUWKm2z8aECROwdOlSTJ06FUZGRhg3bhxyc3Or1HHs2DG4u7vD\n0NAQ7777Lvbu3SttEnxxn0ZERCA9PR1WVlYYN24cPv/8cwwaNKjKPn5xv9fntZmammLnzp2IioqC\nsbFxnXVNnz4dHh4esLe3x/DhwxEUFFRrXS/GNnz4cCxatAiDBg1C586dMXjwYJl1N27ciE8//RRG\nRkb44osvpD9W6npNM2bMwNWrVxuVINWJiBT5M/ElMTExWLRoEcRiMebOnSttHqkUGxuLMWPGoFOn\nTgCA8ePHy3zRGWNMne3cuRObNm2q95m7utNS1obFYjFCQkJw4sQJWFtbo1evXggICICrq6tMOV9f\nXxw4cEBZYTDGmFIUFhZiw4YNCAkJEToUhVFak1FCQgIcHR1hb28PbW1tBAUFVXvThhJPUBhjTCmO\nHTuGdu3awdLSElOnThU6HIVRWkLIysqSuUzLxsamyuVjIpEIv//+Ozw8PDBy5EiZOxYZY0xdDRs2\nDAUFBYiKiqrSEd+UKa3JqD4dlt27d0dmZib09PRw9OhRBAYGIjU1VVkhMcYYq4XSEoK1tTUyMzOl\nzzMzM6tcu2xoaCh9PGLECLz55pvIycmRuRIGkFwvXdPlgowxxqrn4OBQr3tSpJR1C3RZWRl16tSJ\n0tLSqKSkhDw8PCgpKUmmzIMHD6iiooKIiC5cuEB2dnbVbkuJYbZIdQ1ZweqP96Vi8f5ULHmPnUo7\nQ9DS0kJYWBiGDRsGsViMOXPmwNXVFeHh4QCA+fPn46effsJ3330HLS0t6OnpVblunTVT/9xngYsX\nhY2DMSZDaQkBkDQDjRgxQuZv8+fPlz5euHAhFi5cqMwQmDriRMCYWmo+3eOs3vz8/IQOodngfalY\nvD+FpdQ7lRVFJBLx/QqMMSYneY+dSm0yYqxa3IfQbJmamlY7bhJTLhMTE+lseo3BZwiMMYXh76ow\natrv8r4f3IfAGGMMACcExhhj/+CEwFSvZ8//70dgjKkNTghM9S5e5A5lpjbCw8Px7rvvqqSu2NhY\nDBw4sF5lw8LC8K9//UvJEcnihMAYa/bs7e2hp6cnneN61qxZeP78OUpLS/Hvf/8bixcvVkg9ZWVl\nmDBhAjp27AgNDQ2cOXOmwduaN28edu/eLZ3mVBU4ITDGmj2RSIRDhw7h2bNnuHTpEi5evIgVK1Yg\nOjoaLi4usLS0VFhdPj4+2LVrF9q3b9+oaWpbt26NESNGYMeOHQqLrS6cEJjqcR8CE5CVlRVGjBiB\na9euISYmRubu6ODgYHz99dcAJHO6aGhoYOPGjQCA27dvo23btrVuW1tbG2+//Tb69+8PTU3NWsuW\nlpbCy8sLYWFhACSzTPbv3x8rVqyQlvHz88Phw4cb8jIbhBMCUz3uQ2ACqLwePzMzE0eOHIGXlxeu\nXr0KZ2dnaRk/Pz/ExsYCAM6cOYNOnTpJ50s+c+YMfHx8FBZPq1atsGvXLnz66adISUnBqlWrQERY\nunSptIyLiwv++usvhdVZF04IjDGVEYkU809eRITAwECYmJjA29sbfn5++Pjjj/H06VOZeVl8fHzw\n22+/gYgQFxeHxYsX49y5cwAkCcHX11dRuwIA4ObmhmXLlmHMmDH4+uuvsXPnTplmJkNDQ+Tl5Sm0\nztpwQmCMqQyRYv7JSyQSITo6Grm5uUhPT0dYWBh0dHRgYmKC/Px8aTkHBwfo6+vj8uXLiIuLw6hR\no2BlZYXU1FScPXtW4QkBAGbMmIGMjAyMHDkSDg4OMsuePXuGNm3aKLzOmnBCYKrHfQhMTXTr1q3K\ntL2+vr748ccfUVZWBisrK/j6+mLbtm3Izc2Fp6enwmN48803MWrUKMTExEjPRiolJycrpc6acEJg\nqsd9CExNjBw5ssqlob6+vggLC5P2F/j5+SEsLAze3t71umqopKQExcXFVR5XZ+fOnUhMTMT27dux\nfv16BAcH4/nz59LlZ86cqTKnjDJxQmCMtVijRo1CSkoKsrOzpX/z8fFBQUGBNCH0798fRUVF9e5Q\ndnZ2hp6eHu7fv49hw4ZBX18fGRkZVcplZGTg3XffxY4dO6Cnp4cpU6agZ8+eeO+99wAAxcXFOHr0\nKIKDgxXwSuuHRztljClMU/yubtq0CUlJSfjmm2+UXldsbCw+++wznD59us6yYWFhuHfvHlatWlVn\nWUWNdsrzITDV4/kQmBqZN2+e0CFUKyQkROV1cpMRUz3uQ2BN2MqVK2FoaFjl36uvvlrnuiKRqFF3\nLysbNxkxxhSGv6vC4AlyGGOMKRQnBKZ6fB8CY2qJm4wYYwrD31VhcJMRY4wxheKEwBhjDAAnBCYE\n7kNgaqSkpARubm54+PChSurz8/OTaya1Pn36ICkpSYkR/T9OCEz1+D4Epka+//57+Pr6wsLCQiHb\n++CDD9C5c2cYGRnB1dUVO3fulFn+4r0IiYmJaNOmDW7fvi1d/ueff8LExEQ63MUHH3yATz/9VCGx\n1YUTAmOsRQsPD8f06dMVtj0DAwMcOnQI+fn52L59O9555x2cP3++2rJeXl4ICQmR3i1dVlaG2bNn\n44svvkCHDh0AAKNHj8bp06dVcgbDCYEx1uzZ29tj1apVcHNzg6mpKWbPno2SkhJkZGTgzp076NOn\nDwAgLS0NJiYm0vXmzZsnc+Ywffp0rFu3rta6QkND0blzZwBA79694e3tXWNCAIDly5cjOzsb33//\nPVauXAkjIyOZYSt0dHTQo0cPHDt2rEGvXR6cEJjqcR8CE8CePXtw/Phx3L59G6mpqVixYgWuXr2K\nTp06QUNDcijs2LEjjIyMkJiYCAA4e/YsDA0NkZKSIn3+4hzMdSkqKsIff/wBd3f3Gsu0atUKmzdv\nxuLFi/H1119j8+bNVcq4urqqZCpNHtyOqR73H7RYos8UM44PLZfvXgeRSISQkBBYW1sDAJYuXYq3\n3noLrq6uMlNoApL5EGJjY2FpaQmRSIQJEybgzJkzaN26NfLz8+Hh4VHvehcsWABPT0/4+/vXWs7N\nzQ3a2tpwcXGRnl28yNDQUGaIbmXhhMAYUxl5D+SKZGtrK33coUMH3L9/HyYmJnj27JlMOV9fXxw4\ncAA2Njbw8fGBr68vdu7cCR0dHXh7e9e7vg8//BBJSUn1Gur6/fffh6+vLy5evIjIyEhMnjxZZnl+\nfr5MU5aycEJgjLUIL05Sk5GRAWtra3Tr1g1paWmoqKiQNhv5+vriww8/hI2NDfz8/DBgwAAsWLAA\nOjo69W4uWr58OY4dO4YzZ87AwMCg1rInTpzAwYMHkZycjAsXLmDWrFnw9/eXSQDJycmYMWOG/C9a\nXtQENJEwWX316CH5x5oddf2u2tnZUbdu3ejevXv05MkT6t+/Py1dupSIiLp160a///67THlLS0sy\nMjKie/fuERFRz549ycjIiC5evFhnXStXriQnJyd68OBBtcv9/PzozJkzRERUUFBAHTt2pD179kiX\nv/baaxQcHCx9XlRURKamppSdnV1jnTXtd3nfD+5UZqrH9yEwFROJRJg6dSr8/f3h4OAAJycnLFu2\nDAAwf/78KvcK+Pn5wczMTNrnUHlm0L179zrrWrp0KTIzM+Ho6CidK6GmWc8+/vhjdOnSBVOmTJH+\nbe3atTh69ChOnjwJADh48CAGDhyI9u3by/265SZX+pDT0aNHydnZmRwdHWnVqlU1lktISCBNTU36\n+eefq12u5DAZYwqirt9Ve3t7OnnyZLXLSkpKqEuXLjX+ole0F88Q6qNPnz50/fr1WsvUtN/lfT+U\n1ocgFosREhKCEydOwNraGr169UJAQABcXV2rlPvoo48wfPhwHiWRMaZyrVq1wvXr14UOo0bx8fEq\nq0tpTUYJCQlwdHSEvb09tLW1ERQUhOjo6Crlvv32W0yYMAHm5ubKCoWpG74PgTVxBgYG1U6jee7c\nOaFDaxSlnSFkZWXJXOZlY2ODCxcuVCkTHR2NU6dO4Y8//lDruUaZAnH/AVOxtLQ0hW6voKCgwevW\n5zJUoSgtIdTn4L5o0SKsWrVKOolDbU1GoaGh0sd+fn5y3S3IGGMtQWxsLGJjYxu8vtJmTIuPj0do\naChiYmIAAF9++SU0NDTw0UcfSct06tRJmgQeP34MPT09bNq0CQEBAbJB8ixMjDUJ/F0VhqJmTFNa\nQigvL4ezszNOnjwJKysr9O7dGxEREVU6lSvNmjULo0ePxrhx46oGyR+y5qWy/4Cbjpod/q4KQ1EJ\nQWlNRlpaWggLC8OwYcMgFosxZ84cuLq6Ijw8HIDk2l/WQnEiaLZMTEy4L1AAihrWQmlnCIrEvzoY\nY0x+8h47+U5lxhhjADghMCHwfQiMqSVuMmKMsWaKm4wYY4w1CCcExhhjADghMCFwHwJjaon7EBhj\nrJniPgTGGGMNwgmBMcYYAE4ITAjch8CYWuI+BMYYa6a4D4ExxliDcEJgjDEGgBMCEwL3ITCmlrgP\ngTHGminuQ2CMMdYgnBAYY4wB4ITAhMB9CIypJe5DYIyxZor7EBhjjDUIJwTGGGMAOCEwIXAfAmNq\nifsQGGOsmeI+BMYYYw3CCYExxhgATghMCNyHwJha4j4ExhhrprgPgTHGWINwQmCMMQaAEwITAvch\nMKaWuA+BMcaaKe5DYIwx1iCcEJoYTU1NeHl5oVu3bhg3bhwKCgqky4YPHw4TExOMHj1awAhblpre\nj8uXL6Nfv35wd3eHh4cH9u3bJ3CkjNWNE0ITo6enh8TERFy5cgVGRkYIDw+XLlu8eDF27twpYHT1\n1Iz6EGp6P/T19bFz505cu3YNMTExWLRoEfLz8wWOlrHacUJowvr27Yvbt29Lnw8aNAgGBgYCRlRP\nFy9K/jUzL74fTk5OcHBwAABYWlqiXbt2ePTokZDhMVYnpSaEmJgYuLi4wMnJCatXr66yPDo6Gh4e\nHvDy8kKPHj1w6tQpZYbTrIjFYhw/fhzu7u5Ch8JQ+/uRkJCAsrIyaYJgTG2RkpSXl5ODgwOlpaVR\naWkpeXh4UFJSkkyZgoIC6eMrV66Qg4NDtdtSYphNjqamJnl6epK5uTn16tWLxGKxzPLTp0/TqFGj\nBIqu5anr/bh//z45OzvThQsXBIqQtWTyHjuVdoaQkJAAR0dH2NvbQ1tbG0FBQYiOjpYpo6+vL31c\nUFAAMzMzZYXTbOjq6iIxMRF3796Fjo5OlX0qEokEikwOzagPobb3Iz8/H6NGjcLKlSvRu3dvAaNk\nrH6UlhCysrJga2srfW5jY4OsrKwq5fbv3w9XV1eMGDEC69evV1Y4zY6uri7Wr1+PpUuXylxnTE3h\nfo1m2Ifw8vtRWlqKsWPHYsaMGRg3bpzQ4TFWL0pLCPX9pRoYGIjk5GQcPHgQ06dPV1Y4zcaL+9XT\n0xOOjo7SSxq9vb0xadIknDx5Era2tvj111+FCrPFqO79iIyMxI8//oi4uDhs27YNXl5e8PLywpUr\nVwSMlLG6aSlrw9bW1sjMzJQ+z8zMhI2NTY3lvb29UV5ejidPnqBt27ZVloeGhkof+/n5wc/PT5Hh\nNhkvX7p44MAB6eO4uDhVh9Pi1fZ+TJs2TdXhsBYuNjYWsbGxDV5faUNXlJeXw9nZGSdPnoSVlRV6\n9+6NiIgIuLq6Ssvcvn0bnTp1gkgkwqVLlzBx4kSZyyilQfLQFc1LZf9BM2s2YkzdyHvsVNoZgpaW\nFsLCwjBs2DCIxWLMmTMHrq6u0ht35s+fj59//hk7duyAtrY2DAwMsHfvXmWFw9QJJwLG1BIPbscY\nY80UD27HGGOsQTghMNVrRvchMNaccJMRY4w1U9xkxBhjrEE4ITDGGAPACYEJgfsQGFNL3IfAGGPN\nFPchMMYYaxBOCIwxxgDIkRCKi4tRUlKizFhYS8F9CIyppRr7ECoqKrB//35ERETg999/R0VFBYgI\nmpqa6Nu3L6ZNm4bAwECVTMjCfQiMMSY/eY+dNSYEHx8feHt7IyAgAJ6enmjdujUAoKSkBImJiThw\n4AB+++2roCDFAAAgAElEQVQ3nD17VjGR1xYkJwTGGJObwhJCSUmJNAnUpD5lFIETAmOMyU9hVxlV\nHuiXLVuGX3/9Fc+fP6+xDGNy4T4ExtRSnfchbNmyBXFxcYiPj4eBgYG0KSkwMFBVMfIZAmOMNYDC\nmoxe9uDBA0RGRuKrr75Cbm4uCgoKGhykvDghMMaY/BSeEObMmYPk5GRYWFhgwIAB8Pb2hpeXF7S1\ntRsdbH1xQmCMMfkp/E7lnJwclJeXw9jYGKampjAzM1NpMmDNEPchMKaW6t1klJycjJiYGKxduxZi\nsRj37t1TdmxSfIbAGGPyk/fYqVVXgYMHDyIuLg5xcXF4+vQpBg0aBG9v70YFyRhjTP3UeYawcOFC\n6ZVFVlZWqopLBp8hMMaY/BTWqUxEdQ5LUZ8yisAJoZmp7D+4eFHYOBhr5hTWqezn54f//ve/SE1N\nrbLsxo0bWL16NXx9fRsWJWvZLl7kZMCYGqp16Irdu3cjIiIC165dg6GhIYgIBQUFcHd3x7Rp0zB1\n6lS0atVK+UHyGQJjjMlNKTemicViPH78GABgZmYGTU3NhkfYAJwQGGNMfgq7yqioqAj/+9//cOvW\nLXTr1g1z5syBlladFyUxVjfuQ2BMLdV4hjBp0iS0atUKAwYMwNGjR2Fvb49169apOj4AfIbAGGMN\nobAmo65du+Lq1asAgPLycvTq1QuJiYmKiVJOnBAYY0x+CrvK6MXmIW4qYoyx5q/GMwRNTU3o6elJ\nnxcVFUFXV1eykkiE/Px81UQIPkNodrgPgTGVUNrw10LihMAYY/JT+GinjDHGWgZOCIwxxgBwQmBC\n4PkQGFNL3IfAGGPNFPchMMYYaxClJ4SYmBi4uLjAyckJq1evrrJ89+7d8PDwQLdu3dC/f39cuXJF\n2SExxhirhlKbjMRiMZydnXHixAlYW1ujV69eiIiIgKurq7TM+fPn0aVLF7Rp0wYxMTEIDQ1FfHy8\nbJDcZNS88H0IjKmEwqfQbIyEhAQ4OjrC3t4eABAUFITo6GiZhNC3b1/p4z59+qh0rmYmEE4EjKkl\npTYZZWVlwdbWVvrcxsYGWVlZNZbfvHkzRo4cqcyQGGOM1UCpZwjyTK95+vRpbNmyBefOnVNiRE3T\ns2fA998DZ84ArVsDAQHA1KmAiqelYC84nXYaO67swMOCh+hm0Q1v9noTHdp0EDosxhpFqQnB2toa\nmZmZ0ueZmZmwsbGpUu7KlSuYN28eYmJiYGJiUu22QkNDpY/9/Pzg5+en6HDV0l9/AWPGAH37AjNn\nAs+fA+Hhkn9RUYC5udARNkAT7kMoE5dh4ZGFOHHnBN595V3YG9vj7N2z6B7eHd+9+h0muk0UOkTW\ngsXGxiI2NrbhGyAlKisro06dOlFaWhqVlJSQh4cHJSUlyZS5e/cuOTg40Pnz52vcjpLDVFvXrxO1\na0e0d6/s38VioiVLiNzdiZ4+FSa2lkhcIaagn4JoxK4R9KzkmcyyxOxEslpjRfuu7RMoOsaqkvfY\nqfQb044ePYpFixZBLBZjzpw5WLJkCcLDwwEA8+fPx9y5cxEVFYUOHSSn29ra2khISJDZRku8yujZ\nM8DLC/jkEyA4uOpyIiAkBMjMBKKjATla51gDrf5tNfbf2I/Twaeho6VTZfnlB5cxdOdQnA4+Dfd2\n7gJEyJgsHu20mZg/HygvBzZvrrlMaamkKWnhQmD2bNXF1hJdeXgFQ3YMwcXXL9baV7D50mZ8m/At\nLr5+EVoaPI8IExYnhGYgMREYMQJISQGMjWsv++efwKhRkrJt2qgmvkZrYn0IRITBOwZjQpcJeLPX\nm3WWHbh9IKa4T8H8nvNVFCFj1eOE0MQRAQMHAlOmSM4S6mP2bEnncjU3gjMFiE6JxtJTS3F5weV6\n/epPzE7EiN0jkBKSAmOdOjI6Y0rECaGJO3gQ+PhjyVlCfWcuzc4G3N0l63TgKx8VSlwhRpeNXfDt\niG/h7+Bf7/XmHpgLMz0zrBqySonRMVY7HtyuiVu1StKRLM801paWkktS165VWlgt1i/Jv6CtblsM\n7TRUrvWW+SzDpkubkFecp6TIGFM8Tghq5LffgAcPgPHj5V/33XeBbduAnByFh6V4TWQ+BCLC6nOr\n8VH/j+S6yRIA7I3tMdxxOML/DFdSdIwpHicENfKf/wAffNCwO5BtbCR3MH/3neLjUriLF5tEh/Lp\n9NMoKC3AaOfRDVr/w34fYt2FdSgpL1FwZIwpBycENXHnDnD+vKTpp6E++ADYsEFyuSprvHUX1uG9\nvu9BQ9Swr4lne090Me+Cn5J+UnBkjCkHJwQ18cMPwIwZgK5uw7fh7g506gQcPqy4uFqqrPwsnL17\nFlO7Tm3Udhb0WIBNlzYpKCrGlIsTghooKwO2bgXmzWv8tl5/XTIQnlprAn0IWy9vxWS3yTBoZdCo\n7QQ4ByDlcQpuPL6hoMgYUx5OCGrg4EGgc2fAxaXx25o4EYiPBzIyGr8tpVHzPgRxhRg/XPoBr/d4\nvdHb0tbUxizPWXyWwJoETghqYPNmYO5cxWxLV1cyNPa2bYrZXkt0Ku0U2uq1RXfL7grZ3tzuc7Hj\nrx0oE5cpZHuMKQsnBIE9egScOweMHau4bU6bBuzZI7nrmclvz7U9eK3rawrbnoOpAxxMHXDizgmF\nbZMxZeCEILCffpKMW2TQuKZqGX36SAa+S0xU3DYVSo37EIrLixGdEo3J7pMVut2p7lOx59oehW6T\nMUXjhCCwPXskTTyKJBJJthkRodjtKowa9yEcuXkEXpZesDK0Uuh2J7lNwqHUQygsK1TodhlTJE4I\nAsrIAJKTgWHDFL/tyoRQUaH4bTdne67uwRT3KQrfroWBBXpZ9cKh1EMK3zZjisIJQUB790qGqWjV\nSvHb7tIFMDMD4uIUv+3mKq84D7/e+RXjXRswdkg9TO06FXuucrMRU1+cEASkjOaiF02ZIqlD7ahp\nH8L+lP0YaD8QJrrVz+vdWGNdxuJ0+mnkFuUqZfuMNRYnBIEkJwOPHwPe3sqrIygI+PlnyY1vakVN\n+xAirkUopbmoUhudNhjSaQiiUqKUVgdjjcEJQSBRUZJLTTWU+A7Y2QEODsDZs8qro7l4WvwUv2f+\njlc7v6rUeia4TsAvyb8otQ7GGooTgkAqE4KyjR0L/MLHnzoduXkEvva+jR6qoi4jnUbi7N2zyC/J\nV2o9jDUEJwQBZGZKRjf18VF+XePGSZKPWl1tpIZ9CFEpURjrovwM3UanDQZ0GIAjN48ovS7G5MUJ\nQQDR0cCoUfLNitZQnTsDJiZAQoLy66o3NetDKCorwvHbxzG6c8PmPZDXONdx3I/A1BInBAGoqrmo\n0rhx3GxUmxN3TsCzvSfM9c1VUl+AcwCO3TqG4vJildTHWH1xQlCxJ08kP4796z9fe6ONHStJQjy2\nUfVU1VxUqZ1+O3i09+CxjZja4YSgYocPA4MGAXp6qqvTy0ty6em1a6qrs1Zq1IdQXlGOg6kHEegS\nqNJ6x7mM46uNmNrhhKBiqm4uAiRjG6nV1UZq1IdwLuMcbI1sYW9sr9J6A10CceDGAZRX8HynTH1w\nQlChwkLg5ElJh7KqVV5txGSpurmokp2xHeyN7RF3l8cWYeqDE4IKHT8O9OoFmJqqvu5+/YDsbOD2\nbdXXra6ISJIQXFWfEADJUBbcbMTUCScEFRKiuaiSpiYwZgywf78w9ctQkz6ExAeJ0NbQhpu5myD1\nj3Mdh/039oO4t5+pCU4IKlJWBhw6JDkoCyUwUE2ajdSkDyEqWdJcJBKJBKnfxcwFetp6uHhf+H3B\nGMAJQWXi4oBOnQBbW+FiGDxYcqXRw4fCxaBO9t/YL1hzEQCIRCKMdRmL/SnqcNrGGCcElRGyuahS\n69bA8OHAgQPCxqEObuXcwuPCx3jF5hVB4xjrMpbvWmZqgxOCChBJ2u4DVXupe7UCA9WgH0EN+hCi\nkqMwxnkMNETCfgV6WffC0+KnuPH4hqBxMAZwQlCJP/+U3Ijm6ip0JMDIkZLmq3whB9tUgz4EoS43\nfZmGSAOBLoHcbMTUAicEFahsLhKo71KGkREwYABw9KjQkQgn+1k2Uh6nYGDHgUKHAoCbjZj64ISg\nAlFR6tFcVEktmo0EtD9lP0Y4jUArTSVMZt0Avva+SH2SivvP7gsdCmvhlJoQYmJi4OLiAicnJ6xe\nvbrK8pSUFPTt2xc6OjpYs2aNMkMRzI0bQF4e0Lu30JH8vzFjgJgYoKREoAAE7kOISonCOJdxgtX/\nslaarTDSaSSiU6KFDoW1cEpLCGKxGCEhIYiJiUFSUhIiIiKQnJwsU6Zt27b49ttv8cEHHygrDMH9\n/LPyp8qUl4UF4OYGnDolUAAC9iHkFuUi/l48hjsOF6T+mnCzEVMHSjtMJSQkwNHREfb29tDW1kZQ\nUBCio2V/AZmbm6Nnz57Q1tZWVhiC++UXYPx4oaOoqqU2Gx1KPYSBHQdCv5W+0KHIGOY4DPH34vG0\n+KnQobAWTGkJISsrC7Yv3IVlY2ODrKwsZVWnltLTgbt3AW9voSOpauxYycxtYrHQkaiWujUXVTJo\nZQA/ez8cTj0sdCisBVPaJI6KHg4gNDRU+tjPzw9+fn4K3b4yREVJ2utVMVWmvBwcgHbtgPh4oH9/\nFVde2X+g4majwrJCnEw7iR8CflBpvfVV2Ww0rds0oUNhTVRsbCxiY2MbvL7SDlXW1tbIzMyUPs/M\nzISNjU2Dt/diQmgqfv4ZWLpU6ChqVtlspPKEIFD/wbFbx9DLqhdMdQUYbrYeRnUehUXHFqGorAi6\n2rpCh8OaoJd/LH/22Wdyra+0JqOePXvi5s2bSE9PR2lpKSIjIxEQEFBt2eY42mN2NnD9umR2NHXV\n0qbWVJeb0Wpirm8Or/ZePLUmE4zSEoKWlhbCwsIwbNgwdOnSBZMnT4arqyvCw8MRHh4OAHjw4AFs\nbW3xzTffYMWKFejQoQMKCgqUFZJK7d8PvPqqZPwgdeXpCZSXq9HUmkpUJi7D4ZuHVT5Vprz4aiMm\nJBE1gZ/nIpGoyZ1FDBkCvPmmZKYydfb++4CBASDnmWXjCNCHEHMrBp+d+Qzn55xXWZ0NkZGXge7h\n3XH//ftqc+Mca7rkPXaq0dXxzceTJ8Aff0hGFlV3kycDe/equNlIgPsQ9l7biyC3IJXW2RAd2nSA\ns5kzNxsxQXBCUILoaGDoUMmAduquVy/J5D1//SV0JMpTUl6CAzcOYKLbRKFDqZfJbpMReT1S6DBY\nC8QJQQn27AGmTBE6ivoRif7/LKG5irkVg24W3WBlaCV0KPUysctEHLhxAMXlxUKHwloYTggKlp0t\nGe565EihI6m/yZOByEgVNhupeCyjyOuRmOw2WWX1NZaloSU823si5laM0KGwFoYTgoJFRkqu79dt\nQpeRe3hIroZKSFBRhSrsQygsK8SRm0cwvosajh9SiyC3IOy91oxP25ha4oSgYLt3A1OnCh2FfJpz\ns9Hh1MPobd0b7fTbCR2KXMZ3GY+jt47ieelzoUNhLQgnBAVKTQUyM4GB6jHvilyCgiRnN+XlQkei\nWHuu7UGQu/pfXfQyMz0z9LPth+gbPCQ2Ux1OCAoUESH5pa2OYxfVxdUVsLUFjh9XQWUq6kP4+/nf\niE2PxcQuTePqopcFewRj6+WtQofBWhBOCApC1DSbi140axawVRXHHxX1Iey+shsBzgEwbG2o9LqU\nIdAlEJeyLyEjL0PoUFgLwQlBQc6elZwZqNPMaPIKCgJ+/VVyY11TR0TYenkrZnnOEjqUBtPR0sFk\nt8nYfnm70KGwFoITgoJs2gTMmyfpoG2qjI0ll8vu2SN0JI13KfsSCkoL4GPnI3QojTLTcya2/bUN\nFVQhdCisBeCEoAA5OcChQ8D06UJH0ngqaTZSQR/C1stbEewRDA1R0/6I97LqBR0tHcTdjRM6FNYC\nNO1vi5rYtUvyy9rMTOhIGm/QIODxYyUPZaHkPoTi8mLsvbYXwZ7BSqtDVUQiEWZ5zuLOZaYSnBAa\niej/m4uaA01NYO5cYONGoSNpuB+v/4jult1hb2wvdCgKMcNjBqJvRONx4WOhQ2HNHCeERrpwASgu\nBprAjJ71Nn8+sG+fpCmsKQr7Iwxv9X5L6DAUpp1+O4xxHoNNf24SOhTWzHFCaKRvv5UcQJtyZ/LL\nLCyAgADJmY9SKLEPISErAX8//xsjnZrQYFL18E6fd7Dhjw0oE5cJHQprxniCnEa4dw/o1g24c0dy\nhU5zcumSZEymO3ea1o12M6JmoGu7rviw/4dCh6JwPlt9ENI7BJPcJgkdCmsieIIcFQoLA2bMaH7J\nAAC6dwfs7CRTgTYVmXmZOJR6CHO6zxE6FKV4p887WHdhndBhsGaME0IDPXsG/PAD8PbbQkeiPG+/\nDXzzjYpnU2uEr89/jVmes2Cqayp0KEoxxmUM7uXfQ0KWqoalZS0NJ4QG2rBBMitap05CR6I8Y8cC\njx4BsbEK3rAS+hCeFD7B9r+2492+7yp0u+pES0MLH/T9ACvOrhA6FNZMcR9CAxQUAA4OwOnTQJcu\nQkejXDt2AFu2KCEpKNgnpz7B/Wf3sXnMZqFDUari8mI4rHfAwSkH0d2yu9DhMDXHfQgqsHGjZIjr\n5p4MAMlgfVlZ6p0Q/n7+NzZe3IhPfD8ROhSl09HSweJ+i/H5mc+FDoU1Q3yGIKecHMDFRXKAbAkJ\nAQB27pQkwd9/V8/LaxfFLEIFVWD9iPVCh6ISRWVF6BzWGfsm7ENf275Ch8PUGJ8hKNkXXwDjx7ec\nZAAA06YBpaWSCXQUQoF9CGm5adh5ZSeWei9VyPaaAl1tXfx70L/x7rF3edA7plB8hiCHmzeBvn2B\npCSgXdOakbHRzpwBgoOB5GT1mi96zN4x6GPdBx97fyx0KCpVQRXotakX3u/7PqZ2bcKTcDCl4jME\nJSEC3nwT+Ne/Wl4yAABfX6BXL2CFGl3gcij1EJIfJeP9vu8LHYrKaYg0sG74Onz464d4WvxU6HBY\nM8FnCPW0davkRrQLF5rWnbuKlJ0NeHhIJtHx8BA2lvySfHj8zwP/e/V/GOY4TNhgBLTg0AKIK8TY\nFMDjHLGq5D12ckKoh3v3JHfuHj8OeHoKFoZa2LJFcg/G+fNAq1YN3Ehl/0EjhsCeHT0bmiLNFn8g\nzCvOg/t37tgSsAVDHYYKHQ5TM5wQFKy8XHKJ6YgRwMctq5m6WkSSG9Y6dpTcxSyEX5J/wYe/fojL\n8y832fmSFenknZOYHjUdl+ZfQnuD9kKHw9QI9yEo2LJlgL6+pO+ASS473bpVMsbRzz+rvv6kR0mY\nf2g+IsZHcDL4x+BOg/F6j9cx9eepPBoqaxROCLXYvBn48UfJdfgavKekTEwk++WNN4AEFQ6r87jw\nMcbsHYOvhn6F3ta9VVdxE/CJzyfQ1dbFG4ffELy/jTVdfJirwcGDwNKlwNGjgLm50NGon549Jf0J\nY8YAKSkNWFnO+xCeFj/FsF3DMMF1QrOYGlPRNDU0ETkhEpcfXManpz/lpMAahPsQqrFvH/DWW8Ch\nQ5JLLVnNdu4EFi+WJE5ldbg/ev4IoyJGoY91H6wbvg4idbxdWk08LHiIITuHYKTjSKwasor3VQvH\nfQiNQAT85z/AokWSK4o4GdRt+nRg/XrA31+SQBXtxuMb6LelHwbZD8La4Wv5AFcHCwMLxAbH4lT6\nKUyPmo7CskKhQ2JNCCeEf/z9t2RIih9/BOLjhb/OvimZOFHSybxgAbBkiWSO6cYiImy7vA0Dtg7A\nR/0/wpdDvoSGiD+u9dFWry3OzDwDAqHf5n64+vCq0CGxJkKp37CYmBi4uLjAyckJq1evrrbM22+/\nDScnJ3h4eCAxMVGZ4VSrrEwyd3DXrpIhrePigA4dVB5Gk9evn+S2ghs3AC8vICamlol16uhDSHqU\nBP9d/vj6/Nc4NeMU5nafq5ygmzE9bT3sGrsLIb1DMGjHIHx88mPkFecJHRZTd6Qk5eXl5ODgQGlp\naVRaWkoeHh6UlJQkU+bw4cM0YsQIIiKKj4+nPn36VLstZYSZk0O0fj2RoyPRoEFEFy8qvAq1dfr0\naaVuPyqKyMWFqH9/or17iYqL616noqKCzmWco4n7JpLZf8xoXfw6Ki0vVWqciqDsfakI9/Lu0cz9\nM8n8P+a09ORSSstNEzqkGjWF/dmUyHvsVNoZQkJCAhwdHWFvbw9tbW0EBQUhOjpapsyBAwcQHCy5\nYqRPnz54+vQpHj58qKyQkJ0NbN8OBAVJbqz6/XfJNJgnTwI9eiitWrUTq+TJDQIDgatXJR3z338P\n2NpKmpP27wfy8/+/XHF5Mc6kn8GyU8vg+K0j5hyYg1dsXkHaO2l4u8/b0NbUVmqciqDsfakI1kbW\n2DpmK+JmxaGgtAA9v++JoTuHYm38WqQ8TlGrK5Kawv5szpQ2Kk9WVhZsbW2lz21sbHDhwoU6y9y7\ndw8WFhZy10ckabt++lQyZ8G9e8Ddu5J/168DiYmSeZCHDAGGDQO+/ZYvJ1UmLS1g0iTCiMBniL+e\njegTD/DpvmxMWnsPenbJ0LK8jme612DTyg29LQbiq94/on8nLxgbixo+JAarlbOZM9YOX4svB3+J\nIzeP4NjtY/j6/NcoLCuEl6UXurXrho4mHdGhTQfYGtnCXN8cxjrG0NfW5878FkJpCaG+H6CXf53U\ntJ5pyChUEEAVQAXRP/+XJIKKCkLZPzdoamtL/unoEnR1AB1dwGAAYDeSoKsH5AP4EcC+Y1V/Fb0c\nC0H+MtX92lJEmYbEUlOZzEuZOLb5mEJjEVeIUVRehMKyQum/orIi6GnrwdLQEpbmlnAZ2x4D9a2x\n+O0TQJku1k7PxoNbhsiIAT7MAvLyJAm9VSvAyAho3VryWFtb8v/Kx1pakjumK/8BDXuuCDduAH/+\nqZhtqY4ugPEAxsMDQLF2NvL0EnFE9yqKWiWjqFUMilploEwrB2WaT1GhUQwtcRtoivWhQdrQoFYQ\nUasXHmtDRBoAKneqCCKI/v85vfT8n8cikn0OAAXnb+C7vCa3Q5sNpSUEa2trZGZmSp9nZmbCxsam\n1jL37t2DtbV1lW05ODjg9obD9aq39J9/zxsUdcuRdTBLJfU8x3Pc+ue/StJ5zf5tVO065eVAYRO6\nWvLmzc+EDkHpypCDMuSopK7CCzdVUk9L4ODgIFd5pSWEnj174ubNm0hPT4eVlRUiIyMREREhUyYg\nIABhYWEICgpCfHw8jI2Nq20uunXrVpW/McYYUyylJQQtLS2EhYVh2LBhEIvFmDNnDlxdXREeHg4A\nmD9/PkaOHIkjR47A0dER+vr62Lp1q7LCYYwxVocmMXQFY4wx5VPrWz/rc2Mbqz97e3t069YNXl5e\n6N2bRwuV1+zZs2FhYYGuXbtK/5aTk4OhQ4eic+fO8Pf3x9OnPJ1lfVW3P0NDQ2FjYwMvLy94eXkh\nJiZGwAibjszMTAwcOBBubm5wd3fH+vWSnjp5P59qmxDEYjFCQkIQExODpKQkREREIDk5WeiwmjSR\nSITY2FgkJiYiQZXjVjcTs2bNqnKAWrVqFYYOHYrU1FQMHjwYq1atEii6pqe6/SkSifDee+8hMTER\niYmJGD58uEDRNS3a2tr45ptvcP36dcTHx2PDhg1ITk6W+/OptgmhPje2MflxC2HDeXt7w8TEROZv\nL95cGRwcjP379wsRWpNU3f4E+DPaEO3bt4fnP8MNGxgYwNXVFVlZWXJ/PtU2IVR301pWlmoulWyu\nRCIRhgwZgp49e2LTppY9F7GiPHz4UHplnIWFhVLvtG8pvv32W3h4eGDOnDncBNcA6enpSExMRJ8+\nfeT+fKptQuA7IxXv3LlzSExMxNGjR7FhwwbExcUJHVKzIhKJ+HPbSG+88QbS0tJw+fJlWFpa4v33\n3xc6pCaloKAA48ePx7p162BoKDvFbH0+n2qbEOpzYxuTj6WlJQDA3NwcY8eO5X4EBbCwsMCDBw8A\nANnZ2WjXrp3AETVt7dq1kx645s6dy59ROZSVlWH8+PGYPn06AgMDAcj/+VTbhPDijW2lpaWIjIxE\nQECA0GE1WYWFhXj27BkA4Pnz5zh+/LjM1R2sYQICArB9+3YAwPbt26VfRNYw2dnZ0sdRUVH8Ga0n\nIsKcOXPQpUsXLFq0SPp3uT+fChplVSmOHDlCnTt3JgcHB1q5cqXQ4TRpd+7cIQ8PD/Lw8CA3Nzfe\nnw0QFBRElpaWpK2tTTY2NrRlyxZ68uQJDR48mJycnGjo0KGUm5srdJhNxsv7c/PmzTR9+nTq2rUr\ndevWjcaMGUMPHjwQOswmIS4ujkQiEXl4eJCnpyd5enrS0aNH5f588o1pjDHGAKhxkxFjjDHV4oTA\nGGMMACcExhhj/+CEwBhjDAAnBMYYY//ghMAYYwwAJwTWzNnb2yMnRzVTP9bX/fv3MXHixFrLxMbG\nYvTo0dUuU8fXxJoHTghMLRGRQka9VLexhcrLy2FlZYUff/yxwdtQt9fEmg9OCExtpKenw9nZGcHB\nwejatSsyMzPx5ptvolevXnB3d0doaKi0rL29PUJDQ9GjRw9069YNN27cAAA8efIE/v7+cHd3x7x5\n82SSytdff42uXbuia9euWLdunbROFxcXzJo1C87Ozpg2bRqOHz+O/v37o3Pnzvjjjz+qxNm3b18k\nJSVJn/v5+eHSpUv4448/0K9fP3Tv3h39+/dHamoqAGDbtm0ICAjA4MGDMXToUNy9exfu7u7S+n18\nfNCjRw/06NED58+fl243Pz8fo0aNgouLC954441qE+SuXbvQp08feHl5YcGCBaioqJBZnpeXBxcX\nF2ksU6ZMwebNm+V6X1gLovR7qhmrp7S0NNLQ0KALFy5I/5aTk0NEROXl5eTn50dXr14lIiJ7e3sK\nCwsjIqKNGzfS3LlziYjorbfeoi+++IKIiA4fPkwikYiePHlCFy9epK5du1JhYSEVFBSQm5sbJSYm\nUqoupbQAAAQBSURBVFpaGmlpadG1a9eooqKCevToQbNnzyYioujoaAoMDKwS5zfffEPLly8nIqL7\n9++Ts7MzERHl5+dTeXk5ERH9+uuvNH78eCIi2rp1K9nY2EiHDUhLSyN3d3ciIiosLKTi4mIiIkpN\nTaWePXsSEdHp06dJR0eH0tLSSCwW09ChQ+mnn36SvvYnT55QUlISjR49WlrnG2+8QTt27KgS76+/\n/kp9+/aliIgIGjFihDxvCWthtIROSIy9yM7OTmZ6z8jISGzatAnl5eXIzs5GUlKS9Nf1uHHjAADd\nu3fHL7/8AgCIi4tDVFQUAGDkyJEwMTEBEeG3337DuHHjoKurK103Li4OAQEB6NixI9zc3AAAbm5u\nGDJkCADA3d0d6enpVWKcNGkS/P39ERoain379kn7A54+fYoZM2bg1q1bEIlEKC8vl67j7+8PY2Pj\nKtsqLS1FSEgI/vrrL2hqauLmzZvSZb1794a9vT0AyS/73377DePHjwcgaVI7efIk/vzzT/Ts2RMA\nUFRUhPbt21epY8iQIdi3bx9CQkJw5cqVWvc/a9k4ITC1oq+vL32clpaGNWvW4OLFi2jTpg1mzZqF\n4uJi6fLWrVsDADQ1NWUOvlRN04pIJJL5OxFJ2+IrtwMAGhoaaNWqlfTxi9utZGVlhbZt2+Lq1avY\nt28fwsPDAQCffPIJBg8ejKioKNy9exd+fn7SdfT09Kp9vd988w0sLS2xc+dOiMVi6OjoyMT8Yrwa\nGlVbeIODg7Fy5cpqt12poqICycnJ0NfXR05ODqysrGotz1ou7kNgais/Px/6+vowMjLCw4cPcfTo\n0TrX8fHxwZ49ewAAR48eRW5uLkQiEby9vbF//34UFRXh+fPn2L9/P7y9vRvccT158mSsXr0a+fn5\n0jOW/Px86cF269at9X6Nlb/qd+zYAbFYLF2WkJCA9PR0VFRUIDIyEgMGDJAuE4lEGDx4MH766Sc8\nevQIgGRC9YyMjCp1fPPNN3Bzc8Pu3bsxa9asapMcYwAnBKZmXvxV7OHhAS8vL7i4uGDatGkyB8SX\n16lcb/ny5Th79izc3d0RFRUFOzs7AICXlxdmzpyJ3r1745VXXsG8efPg4eFRpc6Xn9d0Rc+ECRMQ\nGRmJSZMmSf+2ePFiLFmyBN27d4dYLJauW91MVZXP33zzTWzfvh2enp64ceMGDAwMpMt79eqFkJAQ\ndOnSBQ4ODhg7dqzMuq6urlixYgX8/f3h4eEBf39/6WQolW7cuIHNmzdjzZo1GDBgAHx8fLBixYpq\nXxNjPPw1Y4wxAHyGwBhj7B+cEBhjjAHghMAYY+wfnBAYY4wB4ITAGGPsH5wQGGOMAeCEwBhj7B+c\nEBhjjAEA/g+XL5v2vscQnQAAAABJRU5ErkJggg==\n", - "text": [ - "" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

\n", - "

\n", - "\n", - "## Classifying some random example data\n", - "\n", - "[back to top]
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Note on generating univariate random data from a Normal Distribution\n", - "\n", - "We can generate random samples drawn from a Normal distribution via the `np.random.randn()` function. Its default is a standard Normal distribution with $ \\mu = 0 $ and $ \\sigma^2 = 1 $. In order to draw random data from $ N(\\mu, \\sigma^2) $, we use \n", - "`sigma * np.random.randn(...) + mu`" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Parameters\n", - "mu_1 = 4\n", - "mu_2 = 10\n", - "sigma_1_sqr = 1\n", - "sigma_2_sqr = 1\n", - "\n", - "# Generating 10 random samples drawn from a Normal Distribution for class 1 & 2\n", - "x1_samples = sigma_1_sqr**0.5 * np.random.randn(10) + mu_1\n", - "x2_samples = sigma_1_sqr**0.5 * np.random.randn(10) + mu_2\n", - "y = [0 for i in range(10)]\n", - "\n", - "# Plotting sample data with a decision boundary\n", - "\n", - "plt.scatter(x1_samples, y, marker='o', color='green', s=40, alpha=0.5)\n", - "plt.scatter(x2_samples, y, marker='^', color='blue', s=40, alpha=0.5)\n", - "plt.title('Classifying random example data from 2 classes')\n", - "plt.ylabel('P(x)')\n", - "plt.xlabel('random variable x')\n", - "plt.legend(['w_1', 'w_2'], loc='upper right')\n", - "plt.ylim([-0.1,0.1])\n", - "plt.xlim([0,20])\n", - "plt.axvline(7, color='r', alpha=0.8, linestyle=':', linewidth=2)\n", - "plt.annotate('R1', xy=(4, 0.05), xytext=(4, 0.05))\n", - "plt.annotate('R2', xy=(10, 0.05), xytext=(10, 0.05))\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEZCAYAAAC99aPhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVWX+B/DPYVd2VHbkmriDSuKuiBFoNqJmLmVqaU5W\n1jg6M9aUSc5MZYtW2mJlqGOWWrkUSqa/cBlTcsRccBQUFNlE2WTn3vv9/XHj5pVF4AIX8PN+ve5L\nzj3P85znLJ7vfc73nHsVEREQERE1kJmpO0BERK0bAwkRERmFgYSIiIzCQEJEREZhICEiIqMwkBAR\nkVEYSJpAZGQkZs6c2WTt+/v74+DBgwAAEcETTzwBFxcXDBkypNZ6X3zxBcaMGdNk/WpKTb1NW5OU\nlBSYmZlBq9Ua3VZsbCx8fHwaoVd189FHH8HNzQ0ODg7Izc1ttuU2pvXr12PkyJGm7kaLwkDSQJs3\nb0ZQUBDs7e3h6emJcePG4T//+Q8AQFGUJl32mTNnEBwcDAA4fPgw9u3bh/T0dBw9erTWejNmzMAP\nP/zQpH1rKk29TenOjD2BVlRUYPHixdi/fz8KCgrg7OzciL27s+joaIwYMQLOzs7w8PDAvHnzUFhY\n2Kx9aKsYSBpg5cqV+POf/4yXX34Z165dQ2pqKp599ll89913AHSjhOZy+fJlqFQq2NjYNNsy70St\nVpu6C9QCZWZmorS0FL169ap2flMfNwUFBXjllVeQkZGBc+fOIS0tDX/961+bdJl3DaF6ycvLEzs7\nO/n6669rLLNs2TJ57LHH9NMPP/ywuLu7i6OjowQHB8vZs2f186Kjo6V3795ib28vXl5e8vbbb4uI\nSHZ2tjz44IPi5OQkLi4uMnLkSH0dX19f2bdvn3z22WdiY2Mj5ubmYmdnJ0899ZS0b99ebty4oS/7\n3//+Vzp16iRqtVqioqJkxIgR+nmKosjHH38s3bp1EycnJ3n22Wf18zQajSxatEg6duwoXbp0kdWr\nV4uiKKLRaKpdZ19fX1mxYoUEBASIjY2NqNVqef3116Vr165ib28vvXv3lu3bt+vLR0VFyfDhw+Uv\nf/mLODs7S5cuXWTPnj36+ZcuXZLg4GCxt7eXsLAwWbBggcE23blzp/Tu3VucnJwkJCREzp07Z9CX\nt956SwICAsTOzk7mzJkjmZmZMnbsWHFwcJD7779fcnNza9x/3333nfTr10+cnJxk2LBhcurUKRER\n+eqrr6RLly5SUFAgIiK7d+8Wd3d3uX79uoiIPP/88+Lj4yMODg4yYMAAOXTokL7NZcuWycMPPyyP\nPfaY2NvbS0BAgFy4cEFee+01cXV1lc6dO8vevXv15UeNGiUvvPCCDBo0SBwcHGTChAmSk5MjIiLJ\nyckG+yIvL0/mzJkjHh4e4uXlJS+//HKN+6m4uFhmz54tzs7O0rt3b3nzzTfF29tbP7+mfZaQkGBw\nrDk7O4uIyPfffy/9+/cXBwcH8fHxkcjIyGqXe/78ebG1tRVFUcTOzk5CQ0NFRHcMfvDBB+Ln5yf3\n3HOPiIh88skn4ufnJy4uLhIRESHp6en6dhRFkQ8//FD8/PzE3t5eli5dKklJSTJkyBBxdHSUadOm\nSXl5eY379lbffvutBAQE1Dj/ypUrMmnSJOnUqZN06NBBFixYICJS5f9Rbfv92LFjMmDAAHFwcBA3\nNzdZtGiRiIiUlJTIjBkzpEOHDuLk5CQDBw6UrKwsEal9fyYmJkpwcLA4OjpKx44dZdq0aXVa16bG\nQFJPe/bsEQsLixr/o4pUDSRRUVFSWFgo5eXlsnDhQunfv79+nru7uxw+fFhEdAfQiRMnRETkhRde\nkPnz54tarRa1Wq0vIyKiUqlk//79IiKyfv16g4N63Lhx8tFHH+mnFy5cKM8//7y+H7cHkvHjx0t+\nfr5cuXJFOnXqJDExMSIi8tFHH0nv3r0lLS1NcnNzJTQ0VMzMzGoNJIGBgXL16lUpLS0VEZFt27ZJ\nRkaGiIhs2bJFbG1tJTMzU98XS0tL+eyzz0Sr1cpHH30knp6e+vaGDBkiixcvlvLycjl48KDY29vL\nzJkzReT3k9K+fftErVbLm2++KX5+flJRUaHfPkOHDpVr165JWlqauLq6SmBgoJw8eVJKS0vlvvvu\nk1dffbXa9Thx4oS4urpKXFycaLVa2bBhg6hUKv3JacaMGfL444/L9evXxdPTU6Kjo/V1N23aJDk5\nOaLRaOSdd94Rd3d3KSsrExHdMWFjYyN79+4VtVots2bNEl9fX3nttddErVbLp59+Kl26dNG3NWrU\nKPHy8pKzZ89KUVGRTJ48WX9M3R5IJk6cKPPnz5fi4mK5du2aDBo0SNauXVvt+i1ZskSCg4MlNzdX\nUlNTpU+fPuLj46OfX9s+u/1YExGJjY2VM2fOiIjIqVOnxM3NTXbs2FHtslNSUqp8GFEURcLDwyU3\nN1dKS0tl//790rFjR4mPj5eysjJ57rnnJDg42KD8xIkT5ebNm3L27FmxsrKS0aNHS3JysuTn50vv\n3r1lw4YN1S7/dn/605/kkUceqXaeWq2Wvn37yqJFi6S4uFhKS0vlP//5j4hU/X9U234fMmSIbNq0\nSUREioqK5NixYyIi8vHHH8v48eOlpKREtFqtnDhxQv8Bpbb9OX36dHnttddERKSsrEzfJ1NjIKmn\nTZs2ibu7e61lbg8kt8rNzRVFUfQHTefOnWXt2rWSn59vUO6VV16RCRMmSFJSUpU2bg0ktx/UX331\nlQwfPlxEdP8Z3N3d5Zdffqm2rKIoBgfi1KlTZcWKFSIiMnr0aPnkk0/08/bt21friESlUklUVFT1\nG+Q3/fv3l507d+r74ufnp59XVFQkiqJIVlaWXL58WSwsLKS4uFg//9FHH9UHkuXLlxt8EtNqteLl\n5SUHDhzQ92Xz5s36+ZMnT5ZnnnlGP7169WqZOHFitX2cP3++LF261OC9Hj166NvOy8uTzp07S0BA\ngMyfP7/W9XV2dtaPZpYtWybh4eH6ebt27RI7OzvRarUiIlJQUCCKouiPg5CQEHnxxRf15RMSEsTK\nykq0Wq1BIMnMzBRra2spKSnRl928ebOMHj262j7dc8898sMPP+inP/nkE4MRye1u32e3B5Lb/elP\nf5I///nP1c67PQCK6I7Bn376ST89Z84cWbJkiX66sLBQLC0t5fLly/ryR44c0c8fMGCAvPnmm/rp\nxYsXy8KFC2vto4jI3r17xdnZWRITE6udf+TIEenUqVO1x/udtsOt+z04OFiWLVsm2dnZBmU+//xz\ng9FupTvtz1mzZskf//hHuXr16h3XsTkxR1JPHTp0wPXr1+t8x4xGo8ELL7wAPz8/ODo6okuXLlAU\nBdevXwcAfPPNN9i9ezdUKhVCQkL0CfO//vWv8PPzQ3h4OLp27YoVK1bUaXkTJkxAQkICUlJS8OOP\nP8LR0RFBQUE1lnd3d9f/3b59e33yMSMjw+BuHm9v7zsu+/a7fzZu3IjAwEA4OzvD2dkZZ86cwY0b\nN2pcNgAUFhYiPT0dzs7OaNeunX6+r6+v/u/09HR07txZP60oCnx8fJCWlqZ/z83NTf93u3btDKZt\nbGxqTLJevnwZ77zzjr7Pzs7OuHr1KjIyMgAAjo6OePjhh3HmzBksXrzYoO7bb7+N3r17w8nJCc7O\nzsjPz9fvZwBwdXU16FPHjh31NxFUruut/bp1e3bu3BkVFRUG7VX2t6KiAh4eHvr+zp8/H9nZ2dWu\nX3p6epV2b3WnfXa7Y8eOYfTo0XB1dYWTkxPWrl1ba/nq3NqfjIwMg31ta2uLDh061HnftmvX7o4J\n9KNHj2LGjBn45ptv4OfnV22Z1NRU+Pr6wszszqfI2vb7unXrcOHCBfTq1QuDBg1CdHQ0AGDmzJkY\nM2YMpk+fDi8vLyxZsgRqtfqO+/PNN9+EiGDQoEHw9/dHVFTUHfvXHBhI6mno0KGwtrbG9u3b61R+\n8+bN2LVrF/bv34/8/HwkJydDdCNBAEBQUBB27NiB7OxsTJw4EVOnTgUA2NnZ4e2338bFixexa9cu\nrFy5Ej/99NMdl2djY4MpU6Zg06ZN2LRpE2bNmtWg9fTw8EBqaqp++ta/a3LrnVWXL1/GH//4R3zw\nwQfIyclBbm4u/P3963QjgoeHB3Jzc1FcXGzQXiUvLy+DaRFBamoqvLy8amyzLssFdCfWl156Cbm5\nufpXYWEhpk2bBgA4efIkoqKi8Oijj+K5557T1zt06BDeeustbNu2DXl5ecjNzYWjo6NRN15cuXLF\n4G9LS0t07NjRoIyPjw+sra1x48YNfX/z8/Nx+vTpatv08PCo0m6lO+2z6u6ce/TRRzFx4kRcvXoV\neXl5mD9/fr1vS761XU9PT6SkpOini4qKcOPGjVr3bX3Ex8djwoQJWL9+PUaPHl1jOR8fH1y5cgUa\njabW9u603/38/LB582ZkZ2djyZIlePjhh1FSUgILCwu88sorOHv2LI4cOYLvv/8eGzduROfOnWvd\nn25ubvjkk0+QlpaGtWvX4plnnsGlS5caZdsYg4GknhwdHbF8+XI8++yz2LlzJ4qLi1FRUYE9e/Zg\nyZIlVcoXFhbC2toaLi4uKCoqwt///nf9vIqKCnzxxRfIz8+Hubk57O3tYW5uDgD4/vvvkZSUBBGB\ng4MDzM3N6/TpCABmzZqFqKgo7Nq1q17PXtwa4KZOnYr33nsP6enpyMvLw4oVK+p1C25RUREURUHH\njh2h1WoRFRWFM2fO1Kmur68vgoKCsGzZMlRUVODw4cP4/vvv9fOnTJmC6Oho/N///R8qKirwzjvv\nwMbGBsOGDatz/2oyb948fPzxx4iLi4OIoKioCNHR0SgsLERpaSkee+wxvP766/j888+RlpaGjz76\nCABw8+ZNWFhYoGPHjigvL8fy5ctRUFDQ4H6ICDZt2oRz586huLgYr7zyCqZMmVJlH3h4eCA8PByL\nFi3CzZs3odVqcfHiRf1zRrebOnUqXn/9deTl5eHq1atYvXq1ft6d9pmbmxuuXr2KiooK/XuFhYVw\ndnaGlZUV4uLisHnzZqNu1X7kkUcQFRWFX3/9FWVlZfj73/+OIUOGVBk53erWYF1b4D5z5gzGjh2L\nNWvWYNy4cbX2Y/DgwfDw8MALL7yA4uJilJaW4siRI1XK3Wm/b9q0ST+acHR0hKIoMDMzw08//YTT\np09Do9HA3t4elpaWMDc3h7u7e637c9u2bbh69SoAwMnJSd+eqZm+B63QokWLsHLlSvzzn/+Eq6sr\nOnfujA8//BCTJk0CoPuEVfmfadasWfD19YWXlxf8/f0xdOhQg/9omzZtQpcuXeDo6IhPPvkEX3zx\nBQAgKSkJYWFhsLe3x7Bhw/Dss89i1KhRVfpy67IqDR8+HGZmZhgwYIDBZYPby95e79b58+bNQ3h4\nOPr27YsBAwbgwQcfrFcw6927NxYvXoyhQ4fC3d0dZ86cwYgRI2rt963TmzdvxrFjx+Di4oLly5dj\n9uzZ+nk9evTApk2b8Nxzz6FTp06Ijo7Gd999BwsLixr7c/t613SyGzBgAD799FMsWLAALi4u6Nat\nGzZu3AgAePHFF+Hr64unnnoKVlZW2LRpE15++WVcvHgRY8eOxdixY9G9e3eoVCq0a9euyuW32ta3\nuj7OnDkTjz/+ODw8PFBeXo7333+/2rIbN25EeXk5evfuDRcXF0yZMgWZmZnVrt+yZcvg6+uLLl26\nYOzYsZg1a5a+rTvts9DQUPTp0wfu7u76y3QffvghXnnlFTg4OOAf//iHfuRWkzttg9DQUPzjH//A\n5MmT4enpieTkZHz11Vc1lq9uu9W0b1euXIkbN25gzpw5sLe3h729PQICAqota2Zmhu+++w5JSUno\n3LkzfHx8sHXr1irLuNN+/+GHH+Dv7w97e3v8+c9/xldffQVra2tkZWVhypQpcHR0RO/evRESEqL/\n0Ffb/jx+/DiGDBkCe3t7TJgwAe+//z5UKlW169Csmj8t87s9e/ZIjx49xM/PT954440q88+dOydD\nhgwRa2tr/W2xda17twsNDZV169Y1Wnu7d+8WX1/fRmuPahcSEtKo+4+oKZlsRKLRaLBgwQLExMQg\nISEBX375Jc6dO2dQpkOHDli9ejX+8pe/1Lvu3eyXX37BiRMn7vjpsDalpaXYvXs31Go10tLS8Oqr\nr+Khhx5qxF7SnQh/vJRaCZMFkri4OPj5+UGlUsHS0hLTp0/Hzp07Dcp06tQJQUFBsLS0rHfdu9Xs\n2bMRFhaGd999F7a2tg1uR0QQGRkJFxcX3HvvvejTpw+WL1/eiD2lO+HXwlBrUfNF5SaWlpZW5fbS\nY8eONXndtm7Dhg2N0k67du0QFxfXKG1R/dXlDj2ilsJkIxJjPm3xkxoRUcthshGJl5dXlecU6vLQ\nW33q+vn54eLFi8Z3lojoLtK1a1ckJSXVubzJRiRBQUFITExESkoKysvLsWXLFkRERFRb9vakY13r\nXrx4Uf9sBF/Gv5YtW2byPrSVF7clt2dLftX3A7jJRiQWFhZYs2YNxowZA41Gg7lz56JXr15Yu3Yt\nAOCpp55CZmYmBg4ciIKCApiZmeG9995DQkIC7Ozsqq1LbVzlV70cP27afhCRAZMFEgB44IEH8MAD\nDxi899RTT+n/dnd3r/GrOaqrS20cAwhRi8Qn26nOQkJCTN2FNoPbsnFxe5qWIiJt9qknRVHQhleP\niKhJ1PfcadJLW0T1whwJNSIXFxfk5uaauhsm5ezsjJycHKPb4YiEiO5KPD/UvA3qu22YIyEiIqMw\nkBARkVEYSKj1CAr6PU9CRC0GcyREdFfi+aHxciS8a4uIqB5EBCl5KcgozICjtSN6dOwBC7O7+1R6\nd689EdFtKjQVSMxJRKm6FL6OvujQvoN+Xqm6FB/98hF+zfoVCnTfQu5m54ZFQxfB1dbVVF02sHTp\nUuzYsQP/+9//8PLLL2PZsmVNvkwGEmo9+BwJNbHLeZfx7tF3kVeaBygABHiw24OY3HsyFEXBd+e/\nw8nMk1A5qfQ/Z5F5MxMfH/8YS4OXQlEUlKpLcSDlAA5eOQgIMLzzcIxWjUY7y3bNsg7dunXDW2+9\nhY8//rjZfnKDyXZqPY4fZxChJlOuKceqo6ugFS18nXzh6+gLbwdv7Dy/E/9N/y+0osX+5P3wcvAy\nOEG72bkhOTcZmYWZUGvVePfou/ji9BcorShFmaYMW85swcqfV6JcU16nfkRFRRl8m3m3bt0wdepU\n/bSPjw9OnTpVY/1Zs2Zh7NixsLe3b7YcEAMJERGA/13/H/JL8+Hczln/nrmZOZzbOePHSz9CK1qU\nacpgaWb409+KouhHIqezTuNc9jl0ceoCe2t72FnZQeWkwoUbF3Ay42Sd+hESEoJDhw4BANLT01FR\nUYGjR48CAC5duoSioiL07du3kda6cTCQEBEBKKkoAaq5EmRjYYP8snxYmFmgd8feyC7ONphfqi6F\njYUNPO09cTb7LGwsbAxGLIqioL1le5zJPlOnfnTp0gX29vaIj4/HwYMHMWbMGHh6euL8+fM4cOAA\ngoODjVrPpsBAQq0HnyOhJuTr5AsRgVa0Bu/fKL6B/u79AQBT+0yFRqtBWkEaisqLcK3oGjIKM/BI\nwCOwtrCGg7UDKrQVVdqu0FbAwcqhzn0ZNWoUYmNjcejQIYwaNQqjRo3CgQMHcPDgQYwaNcq4FW0C\nDCTUejBHQk3I3c4d93W5D8m5ycgvzUepuhSp+amwtbJF2D1hAHTBJjIkEiM6j4CFuQV6dOyBF0e8\niJGdRwIABnkNAqAbpVQqU5dBo9VgiM+QOvdl1KhR+Omnn3Do0CGEhIToA8uBAwfqFUiaK9nOBxKJ\n6K5U3flBo9Xg56s/48eLP6KwvBCBHoEY6zcWHdt3rHO7R68exboT66DWqgHo8iyz+8/WB5u6SExM\nxL333gsPDw9cuHABBQUFUKlU0Gq1yM3NrTVAqNVqqNVqzJkzB127dsVLL70EKysrmJlVHTc01gOJ\nDCREdFdqyvNDYXkhLty4ABFB9w7dYW9tX+82PD098cADD2DdunUAgIEDB8LV1RXR0dG11nv88cex\nceNGg/fWr1+PWbNmVSnLQFIHDCRtDJ8joUbE8wMDSZ3wQCGimvD8wN8jISK6Kx06dAj29vZVXg4O\ndb8rrLFxREJEdyWeHzgiobsRnyMhapE4IiGiuxLPDxyREBFRC8FAQkRERmEgodaDORKiFok5EiK6\nKxl7fkhMBO65BzA3b8RONTPmSIiImkhZGZCeXvP8zEzgjTeAEyear091kZ2djUceeQReXl5wcnLC\niBEjEBcX1+TLZSAhIrrN3r3Am2/qAkp1oqOBoiJg2zZAra6+zM8/A7/9PlWzKSwsxODBg3HixAnk\n5uZi9uzZePDBB1FUVNSky2UgodaDORJqBoWFwPffA9euAUeOVJ2fmQkcPgx06wZkZQHx8VXLlJYC\nX3wBbN4MFBfXb/nG/NRuly5dsHDhQri5uUFRFMybNw/l5eW4cOFC/TpRTwwk1Hrw90ioGfz0E1BR\nAXh7A99+W3VUEh0NWFjociMdOlQ/KjlyRBeQSkt1Qac+GvOndk+ePIny8nL4+fnVrxP1xEBCRPSb\nytGImxvQvj1w86bhqKRyNOLurpt2cKg6Kikt1QUgV1ddO9u3129U0lg/tVtQUICZM2ciMjIS9vb1\n/xr7+mAgISL6TeVoxNpaN+3qajgqiY4GNBqgvBwoKdG92rc3HJVUjkbatwdsbBo2KjH2p3ZLSkow\nfvx4DBs2DEuWLKnfwhuAgYRaD+ZIqAkVFgLffQe4uOgCRXm57hJWbu7vo5K8PN1oROT3l729Lmjk\n5xuORio1ZFRizE/tlpWVYeLEiejcuTPWrl3bgC1Rf3yOhIjuSrefHy5cAD7+uPq7sPr3B+bMuXOb\nBw4A774LODkZvp+XByxYAISG1q1vDf2p3YqKCjz00EOwsLDA119/DfM7POTSWM+RWNS5JBFRG9a9\nO7BypXFtdOsG1HQlydu7Pu10g729PUaO1P3Ou4ODA7p27QpXV9daf6/9yJEjiI6ORvv27eF0SzSL\niYnB8OHD696BeuKIhIjuSjw/8Ml2uhsxR0LUInFEQkR3pdZ6fjh06BDGjRtX5X1FUVBQUFCvthpr\nRMJAQkR3JZ4feGmLiIhaCAYSaj2YIyFqkXj7L7Ue/J4takTOzs613kp7N3B2dm6UdjgiuUuYm5sj\nMDAQffv2xUMPPYTCwkL9vLFjx8LZ2Rnjx483YQ/vLjXtj5MnT2LYsGHw9/dHv379sHXrVhP3tO3K\nycmBiNzVr5ycnEbZlgwkd4n27dsjPj4ep06dgoODg8FXJ/ztb3/Dv//9bxP27u5T0/6wtbXFv//9\nb5w5cwYxMTFYuHBhve/EIWpuDCR3oaFDh+LixYv66fvuuw92dnYm7FEdtdEcya37o1u3bujatSsA\nwMPDA66ursjOzjZl94juyKSBJCYmBj179kS3bt2wYsWKass8//zz6NatG/r164f4W76rWaVSoW/f\nvggMDMSgQYOaq8utnkajwd69e+Hv72/qrtRfG/w9ktr2R1xcHCoqKvSBhailMlmyXaPRYMGCBdi3\nbx+8vLwwcOBAREREoFevXvoyu3fvRlJSEhITE3Hs2DE8/fTT+h94URQFsbGxcHFxMdUqtColJSUI\nDAxEWloaVCoV5s+fb+ou3dXutD8yMjIwa9YsbNy40UQ9JKo7k41I4uLi4OfnB5VKBUtLS0yfPh07\nd+40KLNr1y7Mnj0bADB48GDk5eUhKytLP/9uf5ioPtq1a4f4+HhcvnwZNjY2Vbb13X73SnOrbX8U\nFBTgD3/4A1577TWOtqlVMFkgSUtLg4+Pj37a29sbaWlpdS6jKAruv/9+BAUF4dNPP22eTrcB7dq1\nw/vvv4+XXnrJIBC3iqDcBnMkt++P8vJyTJo0CbNmzcJDDz1k6u4R1YnJLm3V9RNwTSe4w4cPw9PT\nE9nZ2QgLC0PPnj31X7l8q8jISP3fISEhCAkJaUh3W71bt3f//v3h5+eHrVu3Ytq0aRg5ciTOnz+P\nwsJC+Pj44PPPP0dYWJgJe1uDNpQfqW5/bNmyBRqNBocOHUJOTg7Wr18PANiwYUOdf6ObqCFiY2MR\nGxvb4Pom+66to0ePIjIyEjExMQCA119/HWZmZgY/Czl//nyEhIRg+vTpAICePXviwIEDcHNzM2jr\n1VdfhZ2dHRYvXmzwPr9Lh4io/lrNd20FBQUhMTERKSkpKC8vx5YtWxAREWFQJiIiQp9sPHr0KJyc\nnODm5obi4mLcvHkTAFBUVIS9e/ciICCg2deBiIhMeGnLwsICa9aswZgxY6DRaDB37lz06tVL/2DW\nU089hXHjxmH37t3w8/ODra0toqKiAACZmZn668dqtRozZsxAeHi4qVaFmktlfqQNXeIiagv4NfJE\nRGSg1VzaIiKitoGBhIiIjMJAQq1HG3yOhKgtYI6EiIgMMEdCRETNioGEiIiMwkBCrQdzJEQtEnMk\nRERkgDkSIiJqVgwkRERkFAYSaj2YIyFqkZgjISIiA8yREBFRs2IgISIiozCQUOvBHAlRi8QcCRER\nGWCOhIiImhUDCRERGYWBhFoP5kiIWiTmSIiIyABzJERE1KwYSIiIyCgMJNR6MEdC1CIxR0JERAaY\nIyEiombFQEJEREZhIKHWgzkSohaJORIiIjLAHAkRETUrBhIiIjIKAwm1HsyRELVIzJEQEZEB5kiI\niKhZMZAQEZFRGEio9WCOhKhFYo6EiIgMMEdCRETNioGEiIiMwkBCrQdzJEQtEnMkRERkgDkSIiJq\nVgwkRERkFAYSaj2YIyFqkZgjISIiA/U9d1rUNvPatWvYtm0bDh48iJSUFCiKAl9fXwQHB2PKlClw\ndXU1usNERNS61TgimTt3Li5evIgHHngAgwYNgoeHB0QEGRkZiIuLQ0xMDPz8/PDZZ581d5/rjCMS\nIqL6q++5s8ZAcurUKfTt27fWynUpY0oMJG1MZX7k+HHT9oOojWu0QFLp2rVrVS5hnT9/Hj169GhY\nD28RExOt4z4kAAAZG0lEQVSDhQsXQqPR4Mknn8SSJUuqlHn++eexZ88etG/fHuvXr0dgYGCd67a0\nQFJUXoT/Xf8fKrQV8HPxQ8f2HRvUzvXi67hw4wKyCrPgYO0AAEjJS4FGq4G3ozfaWbRDuaYcAKBA\ngUt7F/Ts2BN2VnZV2hIRXMq9hKyiLDjZOKFHhx4wNzM3KFOmLsO56+dQUlECXydfeNp7Nqjfpnb9\nuu7fjvXc7MXFQHY24Otr+L5WCyQlAd27A6mpgIsLYGsL3Lihe3/AAMCihovHeXlAaSng7q6brqgA\nLl8G/PwM209MBBr6X628HLh6FbjnnobVp7tXo+ZIAGDkyJFYvnw5pk2bBhHBypUr8dlnn+HcuXNG\ndVSj0WDBggXYt28fvLy8MHDgQERERKBXr176Mrt370ZSUhISExNx7NgxPP300zh69Gid6rY0pzJP\n4YNfPtCf4KEAE3tMRESPCCiKUqc2RAS7zu/CtoRtSMhOQEFZAfLL8lFcXqw7+QugEQ1srWxhoVhA\nCy3srOzg6+iLrs5dMX/gfNzrca++vZKKEqyJW4Oz2WehQNcHD3sPLB66GB3adwAAJOcmY9XRVSgo\nK9DXG60ajcf6PlYl4LRkIsC6dbp/lywB6rjJAQAxMcBPPwFvvQXY2Pz+/pkzwLvvAi+9BKxeDQwZ\nAkybpvv7+++B994Dhg+vvs3Nm4H0dGD5csDMDDh2DFi/HlixAuig2/Q4exZYtQpYtqxqEKuLAweA\nr7/W9dvBof71ierqjrf/xsbGYtOmTZgyZQpGjRqF8+fP45dffjF6wXFxcfDz84NKpYKlpSWmT5+O\nnTt3GpTZtWsXZs+eDQAYPHgw8vLykJmZWae6LUl+aT7W/LIGDtYO8HXyha+TL7zsvfBNwjdIyE6o\nczsJ2Qn4JuEb5JbkQita2Fna4WbZTQgEao0av8UC5Jfmo1RTCq1oYW9lj+vF16ERDT765SPkluTq\n2/v23Lc4e+0sfB199f26UXwDn574FCKCck053j36LswUM6icVFA5qdDZsTP2XdqHn6/+3NibqUkl\nJQEJCcC5c7pP+XWVnw/s2QPk5ACHD//+vlYLbN0KFBXpAsf168CPPwInTgD79ulGJZ9+qhtp3O7q\nVSAuDrhyBTh9Wjdy+PproLAQ+OGH39vftk3X/q5d9V/fkhJgxw7g5k1g//761yeqjzsGEg8PD4wZ\nMwZHjhxBSkoKHn/8cdjZVb1EUl9paWnw8fHRT3t7eyMtLa1OZdLT0+9YtyU5nXUa5Zpy2FrZ6t+z\nMLOArZUtDl4+WOd2Dl4+CGsLa6QXpsPB2gHXS65DgW4IqhUtKjQVgEAfBCzNLFFQVgBLc0tkF2ej\nQluBX7N+BQCotWocuHwAXg5eBiMidzt3nL9+Xn/5rKCsAE42Tvr5ZooZOrbviH2X9jXClqmnBj5H\nIgJ8+63uspOdne7vuo7a9+8HNBrA21t3Yi4t1b1/5ozucpafn+7kb/vbrn39dV1Q6dABOHVKFzBu\nt2sXYGUFODvrgtHRo7pLXX5+vwehs2d1l7p69NClhC5frt86Hz6sC0IqFbB7N1BQcMcqRA12x0tb\n999/Pzw8PHD27FmkpqZi7ty5CA4Oxttvv23UgutzOccYkZGR+r9DQkIQEhJiVHsNUaIuqfZ9K3Mr\ng0tGd1JQVgBzRXcJS4ECtVb9+7XMys2pAAKBiEBRFGhEA3PFHGXqMihQUFxeDEAXSCq0FbAwMzwE\nFEWBoigoVZfq6lSzn6zMrVBYXljnfjeaBibZK0cjKpVuunJU0r177fUqRyPu7roTf1aW7gR93326\nAODkBKSl6QJNaqqu/UOHAFdXXWDJztaNSgYNAiwtdW1WjkY6d9ZdXrt4EVi7FvDw0OVTzMx0y7xw\nAXB01E3b2OiCz3PP1W19K0cjbm66fms0uoA4aVKDNh/dBWJjYxEbG9vg+ncMJM8++ywm/XYEOjk5\n4ciRI3j99dcbvMBKXl5eSE1N1U+npqbC29u71jJXr16Ft7c3Kioq7li30q2BxFS6unQFAGhFCzPl\n90FgXmkexvcYX+d27vW4F2evnYW9tT3KNGVwsnFCXmmerk3RjRYqA6+FmQXUWjWcbJxQqimFm50b\ntKJFtw7dAADW5tbwc/ZDRmGGQdK/uKIYtpa2cLdzR3vL9hARqLVqg4CTXZyNsHvCjNomzeXW0Uhl\nTKwcldwpV1I5GrGy0k27uelO0I6OusDh46MbTXTooAsoOTm6EYtarWvXzu73UUllrqRyNGL222FQ\nVgacP/97kt3dXXeZy9oa6Nnz9+VWjkrqkiupHI106vR7m7t3A6GhzJVQ9W7/kP3qq6/Wq36Nl7Yq\nT0iTbvsYY2FhgaVLlxqUaYigoCAkJiYiJSUF5eXl2LJlCyIiIgzKREREYOPGjQCAo0ePwsnJCW5u\nbnWq25J0ceqCYT7DkJyXjLzSPNwsu4mUvBR4O3pjqPfQOrczzGcYfJx84GLjgsLyQpgpZjBXzKEV\nLcwVc5jBDFpoYW1uDUszS1RoK6DWqmFjboMKTQUGew+Gn4vujKUoCh4JeARl6jKkF6SjqLwI14qu\nIaswCzP6zoCluSU6tO+A8T3G43LeZeSU5KCovAip+alwsHZAeNfwptpcjSopSXcyt7PTfVIvKdEF\nldOna8+V5OcD0dG6UUdlPUAXLFat0o0SLl7U5SA0Gt38hATA3Fw3Eqm8lHTzJvDJJ7pcydWrwM8/\n6wJRSYkuJ5KcrAs+V67o3isvBy5d0rVRWqp7r6xMF5jqkispKdEFSQeH3/td2T/mSqip1DgiCQkJ\nwR/+8AdMmDAB3W+7BnD+/Hns2LED0dHROHiw7tf4DRZsYYE1a9ZgzJgx0Gg0mDt3Lnr16oW1a9cC\nAJ566imMGzcOu3fvhp+fH2xtbREVFVVr3ZZKURTMDZyLPp36IDYlFiXqEjzc5WGEqEIM8iZ3Ymtl\nixdHvIjYlFj8kPQDUvNT0de1L0rUJUi/mQ61Vg1XW1e4tHOBRquBRjSwMreCXwc/hN8TjqE+Qw0u\nVd3jfA8iQyLxw8UfkJiTiF5OvTCm6xh07/D7/p7UcxJ8HX2x/9J+5JflY6zfWITeEwqXdi6Nuo3q\npAHPkWRk6PIbIoZ5EW9v3V1TNV3eys7WjQTUasN6nTrpAoK3t67tynShublulGFlpTvpV1ToLlU5\nO+vq5+UBmZmAp+fvfSkt1ZV3ctIFnk6ddIHEwUHXxq3LdXXV3YasVtd8SzGgy6907KgLPrfW9/TU\nrRNRU6jxOZKysjJ88cUX+PLLL3HmzBnY29tDRFBYWAh/f3/MmDEDjz76KKwqx/0tUEt7joSIqDVo\n9AcSAd0zH9d/e5qrY8eOMDdvHc8PMJAQEdVfoz2QWFJSgo8//hhJSUno27cv5s6dC4vaxtRERHRX\nqnFEMnXqVFhZWWHEiBHYs2cPVCoV3nvvvebun1E4Imlj+F1bRM2i0S5tBQQE4PTp0wAAtVqNgQMH\nIj4+vnF62UwYSIiI6q/RfrP91stYvKRFREQ1qXFEYm5ujvbt2+unS0pK0K5dO10lRUFBK/jOBY5I\niIjqr9GS7RqNplE6RNRomCMhapH4m+1ERGSg0XIkREREdcFAQkRERmEgodajgb9HQkRNizkSIiIy\nwBwJERE1KwYSIiIyCgMJtR7MkRC1SMyREBGRAeZIiIioWTGQEBGRURhIqPVgjoSoRWKOhIiIDDBH\nQkREzYqBhIiIjMJAQq0HcyRELRJzJEREZIA5EiIialYMJEREZBQGEmo9mCMhapGYIyEiIgPMkRAR\nUbNiICEiIqMwkFDrwRwJUYvEHAkRERlgjoSIiJoVAwkRERmFgYRaD+ZIiFok5kiIiMgAcyRERNSs\nGEiIiMgoDCTUejBHQtQiMUdCREQGmCMhIqJmxUBCRERGYSCh1oM5EqIWiTkSIiIywBwJERE1KwYS\nIiIyCgMJtR7MkRC1SCYJJDk5OQgLC0P37t0RHh6OvLy8asvFxMSgZ8+e6NatG1asWKF/PzIyEt7e\n3ggMDERgYCBiYmKaq+tkSseP615E1KKYJJC88cYbCAsLw4ULFxAaGoo33nijShmNRoMFCxYgJiYG\nCQkJ+PLLL3Hu3DkAukTQokWLEB8fj/j4eIwdO7a5V4GIiH5jkkCya9cuzJ49GwAwe/Zs7Nixo0qZ\nuLg4+Pn5QaVSwdLSEtOnT8fOnTv183k3FhFRy2CSQJKVlQU3NzcAgJubG7KysqqUSUtLg4+Pj37a\n29sbaWlp+unVq1ejX79+mDt3bo2XxqiNYY6EqEWyaKqGw8LCkJmZWeX9f/3rXwbTiqJAUZQq5ap7\nr9LTTz+NV155BQCwdOlSLF68GOvWrau2bGRkpP7vkJAQhISE1KH31CIxP0LUJGJjYxEbG9vg+k0W\nSH788cca57m5uSEzMxPu7u7IyMiAq6trlTJeXl5ITU3VT6empsLb2xsADMo/+eSTGD9+fI3LujWQ\nEBFRVbd/yH711VfrVd8kl7YiIiKwYcMGAMCGDRswceLEKmWCgoKQmJiIlJQUlJeXY8uWLYiIiAAA\nZGRk6Mtt374dAQEBzdNxIiKqwiRfkZKTk4OpU6fiypUrUKlU2Lp1K5ycnJCeno558+YhOjoaALBn\nzx4sXLgQGo0Gc+fOxYsvvggAmDVrFk6ePAlFUdClSxesXbtWn3O5Fb8ipY2pzI/wEhdRk6rvuZPf\ntUVERAb4XVtERNSsGEiIiMgoDCTUevA5EqIWiTkSIiIywBwJERE1KwYSIiIyCgMJtR7MkRC1SMyR\nEBGRAeZIiIioWTGQEBGRURhIqPVgjoSoRWKOhIiIDDBHQkREzYqBhIiIjMJAQq0HcyRELRJzJERE\nZIA5EiIialYMJEREZBQGEmo9mCMhapGYIyEiIgPMkRARUbNiICEiIqMwkFDrwRwJUYvEHAkRERlg\njoSIiJoVAwkRERmFgYRaD+ZIiFok5kiIiMgAcyRERNSsGEiIiMgoDCTUejBHQtQiMUdCREQGmCMh\nIqJmxUBCRERGYSCh1oM5EqIWiTkSIiIywBwJERE1KwYSIiIyCgMJtR7MkRC1SMyREBGRAeZIiIio\nWTGQEBGRURhIqPVgjoSoRWKOhIiIDDBHQkREzYqBhIiIjGKSQJKTk4OwsDB0794d4eHhyMvLq7bc\nnDlz4ObmhoCAgAbVpzaGORKiFskkgeSNN95AWFgYLly4gNDQULzxxhvVlnviiScQExPT4PrUuGJj\nY03bgePHda82wOTbso3h9jQtkwSSXbt2Yfbs2QCA2bNnY8eOHdWWGzlyJJydnRtcnxoX/7M2Hm7L\nxsXtaVomCSRZWVlwc3MDALi5uSErK6tZ6xMRUeOxaKqGw8LCkJmZWeX9f/3rXwbTiqJAUZQGL8fY\n+tSKVOZH2sjlLaI2Q0ygR48ekpGRISIi6enp0qNHjxrLJicni7+/f4Pqd+3aVQDwxRdffPFVj1fX\nrl3rdU5vshFJbSIiIrBhwwYsWbIEGzZswMSJE5ukflJSUmN0l4iIamGSJ9tzcnIwdepUXLlyBSqV\nClu3boWTkxPS09Mxb948REdHAwAeeeQRHDhwADdu3ICrqyuWL1+OJ554osb6RETU/Nr0V6QQEVHT\na7NPtsfExKBnz57o1q0bVqxYYerutGoqlQp9+/ZFYGAgBg0aZOrutDrVPVjLh2obrrrtGRkZCW9v\nbwQGBiIwMLDa58+oqtTUVIwePRp9+vSBv78/3n//fQD1Pz7bZCDRaDRYsGABYmJikJCQgC+//BLn\nzp0zdbdaLUVREBsbi/j4eMTFxZm6O61OdQ/W8qHahqtueyqKgkWLFiE+Ph7x8fEYO3asiXrXulha\nWmLVqlU4e/Ysjh49ig8++ADnzp2r9/HZJgNJXFwc/Pz8oFKpYGlpienTp2Pnzp2m7larxiugDVfd\ng7V8qLbhanpQmcdo/bm7u6N///4AADs7O/Tq1QtpaWn1Pj7bZCBJS0uDj4+Pftrb2xtpaWkm7FHr\npigK7r//fgQFBeHTTz81dXfaBD5U2/hWr16Nfv36Ye7cubxU2AApKSmIj4/H4MGD6318tslAwgcU\nG9d//vMfxMfHY8+ePfjggw9w6NAhU3epTeFDtcZ7+umnkZycjJMnT8LDwwOLFy82dZdalcLCQkye\nPBnvvfce7O3tDebV5fhsk4HEy8sLqamp+unU1FR4e3ubsEetm4eHBwCgU6dOmDRpEvMkjcDNzU3/\nzQ8ZGRlwdXU1cY9aN1dXV/0J78knn+QxWg8VFRWYPHkyZs6cqX8mr77HZ5sMJEFBQUhMTERKSgrK\ny8uxZcsWREREmLpbrVJxcTFu3rwJACgqKsLevXurfK0/1V/lQ7UAGvRQLhnKyMjQ/719+3Yeo3Uk\nIpg7dy569+6NhQsX6t+v9/FZr+fgW5Hdu3dL9+7dpWvXrvLaa6+Zujut1qVLl6Rfv37Sr18/6dOn\nD7dlA0yfPl08PDzE0tJSvL295fPPP5cbN25IaGiodOvWTcLCwiQ3N9fU3Ww1bt+e69atk5kzZ0pA\nQID07dtXJkyYIJmZmabuZqtw6NAhURRF+vXrJ/3795f+/fvLnj176n188oFEIiIySpu8tEVERM2H\ngYSIiIzCQEJEREZhICEiIqMwkBARkVEYSIiIyCgMJETVUKlUyMnJMXU3DKSnp2PKlCm1lomNjcX4\n8eOrndcS14naBgYSalNEpFG+BbalffeVWq2Gp6cntm3b1uA2Wto6UdvBQEKtXkpKCnr06IHZs2cj\nICAAqampeOaZZzBw4ED4+/sjMjJSX1alUiEyMhIDBgxA3759cf78eQDAjRs3EB4eDn9/f8ybN88g\nGK1cuRIBAQEICAjAe++9p19mz5498cQTT6BHjx6YMWMG9u7di+HDh6N79+745ZdfqvRz6NChSEhI\n0E+HhITgxIkT+OWXXzBs2DDce++9GD58OC5cuAAAWL9+PSIiIhAaGoqwsDBcvnwZ/v7++uUHBwdj\nwIABGDBgAH7++Wd9uwUFBfjDH/6Anj174umnn642sG7atAmDBw9GYGAg5s+fD61WazA/Pz8fPXv2\n1PflkUcewbp16+q1X+gu0uTP4BM1seTkZDEzM5Njx47p38vJyREREbVaLSEhIXL69GkREVGpVLJm\nzRoREfnwww/lySefFBGR5557Tv7xj3+IiEh0dLQoiiI3btyQ48ePS0BAgBQXF0thYaH06dNH4uPj\nJTk5WSwsLOTMmTOi1WplwIABMmfOHBER2blzp0ycOLFKP1etWiXLli0TEZH09HTp0aOHiIgUFBSI\nWq0WEZEff/xRJk+eLCIiUVFR4u3trf96iuTkZPH39xcRkeLiYiktLRURkQsXLkhQUJCIiPz0009i\nY2MjycnJotFoJCwsTL7++mv9ut+4cUMSEhJk/Pjx+mU+/fTTsnHjxir9/fHHH2Xo0KHy5ZdfygMP\nPFCfXUJ3GQtTBzKixuDr62vwM8BbtmzBp59+CrVajYyMDCQkJOg/zT/00EMAgHvvvRfffvstAODQ\noUPYvn07AGDcuHFwdnaGiODw4cN46KGH0K5dO33dQ4cOISIiAl26dEGfPn0AAH369MH9998PAPD3\n90dKSkqVPk6dOhXh4eGIjIzE1q1b9fmOvLw8zJo1C0lJSVAUBWq1Wl8nPDwcTk5OVdoqLy/HggUL\n8Ouvv8Lc3ByJiYn6eYMGDYJKpQKgG0kcPnwYkydPBqC79Ld//37897//RVBQEACgpKQE7u7uVZZx\n//33Y+vWrViwYAFOnTpV6/anuxsDCbUJtra2+r+Tk5Pxzjvv4Pjx43B0dMQTTzyB0tJS/Xxra2sA\ngLm5ucFJW6q5BKQoisH7IqLPNVS2AwBmZmawsrLS/31ru5U8PT3RoUMHnD59Glu3bsXatWsBAEuX\nLkVoaCi2b9+Oy5cvIyQkRF+nffv21a7vqlWr4OHhgX//+9/QaDSwsbEx6POt/TUzq3oFe/bs2Xjt\ntdeqbbuSVqvFuXPnYGtri5ycHHh6etZanu5ezJFQm1NQUABbW1s4ODggKysLe/bsuWOd4OBgbN68\nGQCwZ88e5ObmQlEUjBw5Ejt27EBJSQmKioqwY8cOjBw5ssEJ/WnTpmHFihUoKCjQj5AKCgr0J+mo\nqKg6r2PlKGLjxo3QaDT6eXFxcUhJSYFWq8WWLVswYsQI/TxFURAaGoqvv/4a2dnZAICcnBxcuXKl\nyjJWrVqFPn364IsvvsATTzxRbXAkAhhIqI249VN4v379EBgYiJ49e2LGjBkGJ9Lb61TWW7ZsGQ4e\nPAh/f39s374dvr6+AIDAwEA8/vjjGDRoEIYMGYJ58+ahX79+VZZ5+3RNd0g9/PDD2LJlC6ZOnap/\n729/+xtefPFF3HvvvdBoNPq61f0yXeX0M888gw0bNqB///44f/487Ozs9PMHDhyIBQsWoHfv3uja\ntSsmTZpkULdXr1745z//ifDwcPTr1w/h4eH6HzGqdP78eaxbtw7vvPMORowYgeDgYPzzn/+sdp2I\n+DXyRERkFI5IiIjIKAwkRERkFAYSIiIyCgMJEREZhYGEiIiMwkBCRERGYSAhIiKjMJAQEZFR/h+S\n/zLcgIyGXAAAAABJRU5ErkJggg==\n", - "text": [ - "" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

\n", - "

\n", - "\n", - "## Calculating the empirical error rate\n", - "\n", - "[back to top]
" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "w1_as_w2, w2_as_w1 = 0, 0\n", - "for x1,x2 in zip(x1_samples, x2_samples):\n", - " if x1 >= 7:\n", - " w1_as_w2 += 1\n", - " if x2 < 7:\n", - " w2_as_w1 += 1\n", - " \n", - "emp_err = (w1_as_w2 + w2_as_w1) / float(len(x1_samples) + len(x2_samples))\n", - " \n", - "print('Empirical Error: {}%'.format(emp_err * 100))\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Empirical Error: 0.0%\n" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -} \ No newline at end of file diff --git a/stat_pattern_class/.ipynb_checkpoints/7_stat_superv_parametric-checkpoint.ipynb b/stat_pattern_class/.ipynb_checkpoints/7_stat_superv_parametric-checkpoint.ipynb deleted file mode 100644 index 59b1dfb..0000000 --- a/stat_pattern_class/.ipynb_checkpoints/7_stat_superv_parametric-checkpoint.ipynb +++ /dev/null @@ -1,501 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:524fe8616f4c8e3fa7b23777a193027ae20c50e0f2593a91504b1af1c63f7871" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "*Sebastian Raschka* \n", - "last modified: 04/03/2014" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem Category\n", - "- Statistical Pattern Recognition \n", - "- Supervised Learning \n", - "- Parametric Learning \n", - "- Bayes Decision Theory \n", - "- Multivariate data (2-dimensional)\n", - "- 2-class problem\n", - "- equal variances\n", - "- equal prior probabilities\n", - "- Gaussian model (2 parameters)\n", - "- no conditional Risk (1-0 loss functions)\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

\n", - "

\n", - "\n", - "# Sections\n", - "\n", - "\n", - "

Given information
\n", - "• Deriving the decision boundary
\n", - "• Classifying some random example data
\n", - "• Calculating the Chernoff theoretical bounds for P(error)
\n", - "• Calculating the empirical error rate
\n", - "\n", - " \n", - "\n", - " \n", - " \n", - "\n", - "\n", - "\n", - "


" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

\n", - "

\n", - "\n", - "## Given information:\n", - "\n", - "[back to top]
\n", - "\n", - "
\n", - "####model: continuous univariate normal (Gaussian) model for the class-conditional densities\n", - "\n", - "\n", - "$ p(\\vec{x} | \\omega_j) \\sim N(\\vec{\\mu}|\\Sigma) $ \n", - "\n", - "$ p(\\vec{x} | \\omega_j) \\sim \\frac{1}{(2\\pi)^{d/2} |\\Sigma|^{1/2}} \\exp{ \\bigg[-\\frac{1}{2} (\\vec{x}-\\vec{\\mu})^t \\Sigma^{-1}(\\vec{x}-\\vec{\\mu}) \\bigg] } $\n", - "\n", - "\n", - "\n", - "\n", - "####Prior probabilities:\n", - "\n", - "$ P(\\omega_1) = P(\\omega_2) = 0.5 $\n", - "\n", - "\n", - " " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The samples are of 2-dimensional feature vectors:\n", - "\n", - "$ \\vec{x} = \\bigg[ \n", - "\\begin{array}{c}\n", - "x_1 \\\\\n", - "x_2 \\\\\n", - "\\end{array} \\bigg] $" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Means of the sample distributions for 2-dimensional features:\n", - "\n", - "$ \\vec{\\mu}_{\\,1} = \\bigg[ \n", - "\\begin{array}{c}\n", - "0 \\\\\n", - "0 \\\\\n", - "\\end{array} \\bigg] $,\n", - "$ \\; \\vec{\\mu}_{\\,2} = \\bigg[ \n", - "\\begin{array}{c}\n", - "1 \\\\\n", - "1 \\\\\n", - "\\end{array} \\bigg] $\n", - "\n", - "#### Covariance matrices for the statistically independend and identically distributed ('i.i.d') features: \n", - "\n", - "$ \\Sigma_i = \\bigg[ \n", - "\\begin{array}{cc}\n", - "\\sigma_{11}^2 & \\sigma_{12}^2\\\\\n", - "\\sigma_{21}^2 & \\sigma_{22}^2 \\\\\n", - "\\end{array} \\bigg], \\; \n", - "\\Sigma_1 = \\Sigma_2 = I = \\bigg[ \n", - "\\begin{array}{cc}\n", - "1 & 0\\\\\n", - "0 & 1 \\\\\n", - "\\end{array} \\bigg], \\; $" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "####Class conditional probabilities:\n", - "\n", - "$ p(\\vec{x}\\;|\\;\\omega_1) \\sim N \\bigg( \\vec{\\mu_1} = \\; \\bigg[ \n", - "\\begin{array}{c}\n", - "0 \\\\\n", - "0 \\\\\n", - "\\end{array} \\bigg], \\Sigma = I \\bigg)$\n", - "\n", - "$ p(\\vec{x}\\;|\\;\\omega_2) \\sim N \\bigg( \\vec{\\mu_2} = \\; \\bigg[ \n", - "\\begin{array}{c}\n", - "1 \\\\\n", - "1 \\\\\n", - "\\end{array} \\bigg], \\Sigma = I \\bigg)$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

\n", - "

\n", - "\n", - "## Deriving the decision boundary\n", - "[back to top]
\n", - "\n", - "### Bayes' Rule:\n", - "\n", - "\n", - "$ P(\\omega_j|x) = \\frac{p(x|\\omega_j) * P(\\omega_j)}{p(x)}$ \n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Discriminant Functions:\n", - "\n", - "The goal is to maximize the discriminant function, which we define as the posterior probability here to perform a **minimum-error classification** (Bayes classifier).\n", - "\n", - "$ g_1(\\vec{x}) = P(\\omega_1 | \\; \\vec{x}), \\quad g_2(\\vec{x}) = P(\\omega_2 | \\; \\vec{x})$\n", - "\n", - "$ \\Rightarrow g_1(\\vec{x}) = P(\\vec{x}|\\;\\omega_1) \\;\\cdot\\; P(\\omega_1) \\quad | \\; ln \\\\\n", - "\\quad g_2(\\vec{x}) = P(\\vec{x}|\\;\\omega_2) \\;\\cdot\\; P(\\omega_2) \\quad | \\; ln $\n", - "\n", - "
\n", - "We can drop the prior probabilities (since we have equal priors in this case): \n", - "\n", - "$ \\Rightarrow g_1(\\vec{x}) = ln(P(\\vec{x}|\\;\\omega_1)) \\\\\n", - "\\quad g_2(\\vec{x}) = ln(P(\\vec{x}|\\;\\omega_2)) $" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$ \\Rightarrow g_1(\\vec{x}) = \\frac{1}{2\\sigma^2} \\bigg[\\; \\vec{x}^{\\,t} - 2 \\vec{\\mu_1}^{\\,t} \\vec{x} + \\vec{\\mu_1}^{\\,t} \\bigg] \\mu_1 \\\\ \n", - "= - \\frac{1}{2} \\bigg[ \\vec{x}^{\\,t} \\vec{x} -2 \\; [0 \\;\\; 0] \\;\\; \\vec{x} + [0 \\;\\; 0] \\;\\; \\bigg[ \n", - "\\begin{array}{c}\n", - "0 \\\\\n", - "0 \\\\\n", - "\\end{array} \\bigg] \\bigg] \\\\\n", - "= -\\frac{1}{2} \\vec{x}^{\\,t} \\vec{x}$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$ \\Rightarrow g_2(\\vec{x}) = \\frac{1}{2\\sigma^2} \\bigg[\\; \\vec{x}^{\\,t} - 2 \\vec{\\mu_2}^{\\,t} \\vec{x} + \\vec{\\mu_2}^{\\,t} \\bigg] \\mu_2 \\\\ \n", - "= - \\frac{1}{2} \\bigg[ \\vec{x}^{\\,t} \\vec{x} -2 \\; 2\\; [1 \\;\\; 1] \\;\\; \\vec{x} + [1 \\;\\; 1] \\;\\; \\bigg[ \n", - "\\begin{array}{c}\n", - "1 \\\\\n", - "1 \\\\\n", - "\\end{array} \\bigg] \\bigg] \\\\\n", - "= -\\frac{1}{2} \\; \\bigg[ \\; \\vec{x}^{\\,t} \\vec{x} - 2\\; [1 \\;\\; 1] \\;\\; \\vec{x} + 2\\; \\bigg] \\;$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Decision Boundary\n", - "\n", - "$g_1(\\vec{x}) = g_2(\\vec{x}) $ " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$ \\Rightarrow -\\frac{1}{2} \\vec{x}^{\\,t} \\vec{x} = -\\frac{1}{2} \\; \\bigg[ \\; \\vec{x}^{\\,t} \\vec{x} - 2\\; [1 \\;\\; 1] \\;\\; \\vec{x} + 2\\; \\bigg] \\; $ " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$ \\Rightarrow -2[1\\;\\; 1] \\vec{x} + 2 = 0 $\n", - "\n", - "$ \\Rightarrow [-2\\;\\; -2] \\;\\;\\vec{x} + 2 = 0 $\n", - "\n", - "$ \\Rightarrow -2x_1 - 2x_2 + 2 = 0 $\n", - "\n", - "$ \\Rightarrow -x_1 - x_2 + 1 = 0 $" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

\n", - "

\n", - "\n", - "## Classifying some random example data\n", - "\n", - "[back to top]
" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%pylab inline\n", - "\n", - "import numpy as np\n", - "from matplotlib import pyplot as plt\n", - "\n", - "def decision_boundary(x_1):\n", - " \"\"\" Calculates the x_2 value for plotting the decision boundary.\"\"\"\n", - " return -x_1 + 1\n", - "\n", - "# Generate 100 random patterns for class1\n", - "mu_vec1 = np.array([0,0])\n", - "cov_mat1 = np.array([[1,0],[0,1]])\n", - "x1_samples = np.random.multivariate_normal(mu_vec1, cov_mat1, 100)\n", - "mu_vec1 = mu_vec1.reshape(1,2).T # to 1-col vector\n", - "\n", - "# Generate 100 random patterns for class2\n", - "mu_vec2 = np.array([1,1])\n", - "cov_mat2 = np.array([[1,0],[0,1]])\n", - "x2_samples = np.random.multivariate_normal(mu_vec2, cov_mat2, 100)\n", - "mu_vec2 = mu_vec2.reshape(1,2).T # to 1-col vector\n", - "\n", - "# Scatter plot\n", - "f, ax = plt.subplots(figsize=(7, 7))\n", - "ax.scatter(x1_samples[:,0], x1_samples[:,1], marker='o', color='green', s=40, alpha=0.5)\n", - "ax.scatter(x2_samples[:,0], x2_samples[:,1], marker='^', color='blue', s=40, alpha=0.5)\n", - "plt.legend(['Class1 (w1)', 'Class2 (w2)'], loc='upper right') \n", - "plt.title('Densities of 2 classes with 100 bivariate random patterns each')\n", - "plt.ylabel('x2')\n", - "plt.xlabel('x1')\n", - "ftext = 'p(x|w1) ~ N(mu1=(0,0)^t, cov1=I)\\np(x|w2) ~ N(mu2=(1,1)^t, cov2=I)'\n", - "plt.figtext(.15,.8, ftext, fontsize=11, ha='left')\n", - "plt.ylim([-3,4])\n", - "plt.xlim([-3,4])\n", - "\n", - "\n", - "\n", - "# Plot decision boundary\n", - "x_1 = np.arange(-5, 5, 0.1)\n", - "bound = decision_boundary(x_1)\n", - "plt.annotate('R1', xy=(-2, 2), xytext=(-2, 2), size=20)\n", - "plt.annotate('R2', xy=(2.5, 2.5), xytext=(2.5, 2.5), size=20)\n", - "plt.plot(x_1, bound, color='r', alpha=0.8, linestyle=':', linewidth=3)\n", - "\n", - "x_vec = np.linspace(*ax.get_xlim())\n", - "x_1 = np.arange(0, 100, 0.05)\n", - "\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Populating the interactive namespace from numpy and matplotlib\n" - ] - }, - { - "output_type": "stream", - "stream": "stderr", - "text": [ - "WARNING: pylab import has clobbered these variables: ['f']\n", - "`%matplotlib` prevents importing * from pylab and numpy\n" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAHBCAYAAADq7PU3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXdYVMfXx7+79LIsCAhIERRUUFEi+kOMFGsUjRpjbxjz\nGkuKJRo1GjAxVmyJGjUxisGSxC5CNCqgib1hYqEpKNhAel92z/vHzV5ZWGDRxQWcz/Pw6J2ZO3Pm\n7r1z7pk7c46AiAgMBoPBYDQihJoWgMFgMBgMdcOUG4PBYDAaHUy5MRgMBqPRwZQbg8FgMBodTLkx\nGAwGo9HBlBuDwWAwGh1MudWCs2fPok2bNlXmP3jwACKRCK9zd0VcXBw6duwIExMTbNiwoc7a8fPz\nw7Zt2+qs/tfJ1KlTsWTJkirzg4ODMW7cuNcokWpER0fD3t6+yvya+vUq1GXdr5sdO3age/fumhaD\nUYHk5GQIhULIZDK11NcglZujoyMMDQ1hYmICMzMzdOvWDVu2bKlzpdK9e3fcvXtXQY7Tp0/zxw4O\nDsjLy4NAIKhTOcqzcuVK9OzZE7m5ufj4448r5X/++edo1aoVTExM4Orqil9++eWl2hEIBK+1X3XJ\nDz/8gIULFwJQrjBq289Fixahffv20NHRweLFiyvl7969G82bN4exsTGGDBmCrKwsPq+kpAQffPAB\nxGIxbGxssHbt2pfoEUf5fqmb2tTdmF6ENIlQKMS9e/f445pebhiKNEjlJhAIEB4ejtzcXDx48ADz\n5s3DihUrMGnSpNcuh6b3wKekpMDNza3KfGNjY/5ahYaG4rPPPsP58+dfo4QNj9r+pi4uLli1ahUC\nAgIqKcZbt25hypQp2LVrF54+fQpDQ0NMmzaNzw8ODkZSUhIePHiAqKgorFy5EsePH1dLP9RFbd+k\n1fkSREQaf8Y0iTr7XlZWpra6GgTUAHF0dKRTp04ppF26dImEQiH9+++/RERUXFxMs2fPJgcHB7Ky\nsqIpU6ZQUVERERFFRUWRra0trV69mpo2bUo2Nja0fft2vq5jx46Rm5sbiUQisrW1pZCQEP48Ozs7\nIiIaO3YsCYVCMjAwIGNjY1q1ahXdv3+fBAIBSaVSIiLKzs6mDz74gGxsbMjW1pYWLlzI5yUkJJCP\njw+JxWKysLCgESNGVNnfw4cPk5ubG5mampKfnx/duXOHiIj8/f1JS0uL9PX1SSQSUUJCQo3X7t13\n36XVq1dXmX/o0CHq0KEDmZiYUMuWLen48eNEROTn50fbtm0jIqLExETy9/cnc3NzsrCwoDFjxlB2\ndjZfx/Lly8nW1pZEIhG1bt2a/60uXrxInTp1IhMTE7KysqJZs2bx55w/f566du1Kpqam1KFDB4qO\njubztm/fTi1atCCRSEROTk60a9euSnIXFRWRvr4+PX/+nIiIlixZQtra2pSXl0dERAsXLqQZM2YQ\nEdGECRNo4cKFVFBQQPr6+iQUCsnY2JhEIhE9evSIgoODafjw4TR+/HgSiUTUtm1bunLlSo3XduzY\nsRQcHKyQNn/+fBozZgx/nJSURLq6upSfn09ERM2aNaM///yTz//qq69o5MiRSuuX339Lly4lCwsL\ncnR0VLgW8n4REbVp04bCw8P5PIlEQhYWFnT9+nUiInr//ffJ2tqaxGIx+fj40K1btxTqmTJlCvXr\n14+MjIzo5MmTCnVnZmZSQEAAWVpakpmZGQ0YMIBSU1OJiGjBggX8PWlsbEyffPIJERHduXOHevXq\nRU2aNKHWrVvTb7/9VuV19PX1pS+//JK8vb3JwMCAEhMT6eeffyZXV1cSiUTUokUL2rJli8J1qe55\nzsjIoIEDB5KJiQl16dKFFi5cSG+//Taf//fff5OnpyeJxWLq3LkznTt3TkGWhQsXkre3NxkbG9PA\ngQMpPT2dRo8eTSYmJtS5c2dKTk5W2g/5eLB161Zq1qwZ2djY8GMJEfc8eHl5kampKdnY2NDHH39M\npaWlRETUvXt3EggEZGRkRCKRiEJDQ8nAwEDhXn38+DHJZDJatmwZtWzZkszNzWn48OGUmZmp0P62\nbdvIwcGBfHx8aMeOHdStWzf6/PPPyczMjJycnCgyMpKXSZVnjYiqbZeo+vursLCQZs2aRc2bNyex\nWExvv/02FRcX8/KGhoaSg4MDWVhY0LffflvlfVITjUa5ERE5ODjQ5s2biYhoxowZNGjQIMrKyqK8\nvDwaOHAgzZ8/n4i4h0FbW5uCgoKorKyMIiIiyNDQkB+gra2t6a+//iIiTkFdu3aNP0+u3JTJUVG5\nDR48mKZMmUKFhYX07Nkz6tKlC/9Qjhw5kpYuXUpERCUlJfT3338r7WtcXBw/wJSVldHKlSvJ2dmZ\nJBIJESkqnZooLCwkGxsbXmFV5OLFiyQWi+nkyZNERJSWlkZ3796t1E5iYiKdPHmSSktLKT09nXx8\nfHjFcffuXbK3t6fHjx8TEVFKSgolJSUREZGXlxeFhYUREVFBQQFduHCBiIhSU1PJ3Nycf8j+/PNP\nMjc3p4yMDMrPzycTExOKj48nIqInT54oPCjl8fHxof379xMRUe/evcnZ2Zmvs3v37nTo0CEiIgoM\nDKRFixYREVF0dLTCb0pEFBQURPr6+hQZGUkymYzmz59PXl5eNV5fZcpt0KBBtHLlSoU0kUhE165d\no8zMTBIIBPTs2TM+b9++fdS+fXul9cvv29mzZ1NpaSnFxMSQkZERf23K9+vrr79WUKrh4eHk5ubG\nH2/fvp3y8/OptLSUZsyYQR07duTzJkyYQGKxmB/ki4uLFep+/vw5HThwgIqKiigvL4+GDRtGgwcP\n5s+veE/m5+eTnZ0d7dixg6RSKV2/fp0sLCzo9u3bSvvp6+tLzZs3p9u3b5NUKiWJRELHjh2je/fu\nERFRTEwMGRoaKjyX1T3PI0aMoBEjRlBhYSH9+++/ZGtrS927d+f7YmpqSmFhYSSVSmnPnj1kZmbG\nD9S+vr7k4uJC9+7do5ycHHJzcyNnZ2c6deoUlZWV0fjx42nixIlK+yEfD0aPHk2FhYX0zz//kKWl\nJf98Xb16lS5evEhSqZSSk5PJ1dWV1q1bx58vEAj4Z4dI+b26bt066tq1K6WlpVFpaSl99NFHNGrU\nKIX2J0yYQIWFhVRUVETbt28nHR0d+umnn0gmk9EPP/xAzZo1438nVZ+16tolqv7+mjZtGvn7+9Oj\nR49IKpXS+fPnqaSkhJd38uTJVFxcTLGxsaSnp8e/zNeWRqXcvLy8aOnSpSSTycjIyEjhxjh37hw5\nOTkREfcwGBgY8EqIiKhp06Z08eJFIuKU5JYtWygnJ0eh/tootydPnpCenh5vLRIR7d69m/z9/YmI\naPz48TR58mT+jbcqvv76awWrTiaTka2tLcXExBARN5D89NNP1dYhZ/z48dSvX78q8ydPnqxgTZWn\nOiV68OBB8vDwICLOIm3atCmv/Mrj4+NDQUFBlJ6erpC+fPlyGjdunEJa3759KTQ0lAoKCsjU1JT2\n799PhYWF1fZv0aJF9Omnn1JZWRlZW1vTd999R/PmzaOioiIyMDDgB6zAwEDeCqn4mxJxyq137978\n8a1bt8jAwKDatomUK7eePXsqWBlExP9+Dx48IIFAQCUlJXzeiRMnyNHRUWn98kG8/HUYPnw4ffPN\nN5X6lZCQQCKRiL//Ro8ezZerSFZWFgkEAsrNzSUiTrlNmDBBoUz5uity/fp1MjMz448r3pN79+7l\nlYmcyZMn0+LFi5XW5+fnR0FBQUrz5AwePJjWr19PRNU/z2VlZaSjo0NxcXF83oIFC3jLbefOnfS/\n//1Poe6uXbvSjh07eFnkL6FERLNnz6b+/fvzx0ePHlUYuMsjHw/Ktz137lyaNGmS0vJr166lIUOG\n8McVlZuye9XV1VVhDHr06BHp6OiQVCrl279//z6fv337dnJ2duaPCwoKSCAQ0NOnTyk/P1/lZ626\nditS/v6SSqVkYGBAN2/erFROLm9aWhqf1qVLF9q7d2+1slRFg/zmVhWpqalo0qQJMjIyUFhYiE6d\nOsHMzAxmZmbo168fMjIy+LLm5uYQCl9039DQEPn5+QCA/fv3IyIiAo6OjvDz88OFCxdqLUtKSgok\nEglsbGx4GaZMmYL09HQA3EIQIkKXLl3Qrl07bN++XWk9jx8/hoODA38sEAhgb2+PtLQ0hbSamDNn\nDm7fvo3ffvutyjKpqalo2bJljXU9ffoUI0eOhJ2dHcRiMcaNG4fnz58DAJydnbFu3ToEBwfDysoK\no0aNwuPHjwEA27ZtQ3x8PFxdXdGlSxccO3YMAHetfv/9d/46mZmZ4e+//8aTJ09gaGiIX3/9FZs3\nb0azZs0wYMAAxMXFKZXL19cX0dHRuHbtGtq3b49evXohJiYGFy9ehLOzM8zMzGrsmxwrKyv+/4aG\nhiguLn6pVVzGxsbIyclRSMvJyYFIJIKxsTEAIDc3t1JeVZiZmcHAwIA/bt68OX99y+Ps7AxXV1cc\nOXIEhYWFOHr0KEaPHg0AkEqlmDdvHpydnSEWi+Hk5AQA/PMhv8eqorCwEB999BEcHR0hFovh6+uL\nnJwche9D5e/JlJQUXLx4UeH33b17N54+fVplGxXbj4yMhJeXF8zNzWFmZoaIiAj+ngOqfp7T09NR\nVlamUF/55+nRo0cKxwB3TR89esQfl78X9PX10bRpU4Vj+bihSl8cHBz4uuPj4zFgwADY2NhALBbj\nyy+/VOiTKiQnJ2PIkCH8dXVzc4O2trbCta14La2trfn/GxoaAgDy8/NhZGSk8rNWXbvV3V8ZGRko\nLi6udpypKF9BQUGtromcRqPcLl++jEePHuHtt9+Gubk5DAwMcPv2bWRlZSErKwvZ2dkKg0h1eHp6\n4tChQ0hPT8fgwYMxfPhwpeWqUyr29vbQ09PD8+fPeRlycnLwzz//AOAemK1btyItLQ1btmzBtGnT\nFFZGyWnWrBlSUlL4YyLCw4cPYWtrq1JfACAoKAjHjx/HiRMn+AG1KpkTExNrrG/BggXQ0tLCv//+\ni5ycHPzyyy8KA/+oUaNw9uxZpKSkQCAQ4IsvvgDADbi7d+9Geno6vvjiC7z//vsoLCyEg4MDxo0b\nx1+nrKws5OXlYe7cuQCAPn364MSJE3jy5AnatGmD//u//1MqV9euXREXF4eDBw/Cz88Prq6uePDg\nASIiIuDn56dQVv7bKfsNX2VBRMVz27Zti9jYWP44KSkJpaWlaNWqFczMzGBjY4MbN27w+bGxsWjX\nrl2V9WdlZaGwsJA/TklJQbNmzZSWHTVqFPbs2YPDhw/Dzc0NLVq0AMCt3jxy5AhOnTqFnJwc3L9/\nH0DNixfkfVu9ejXi4+Nx6dIl5OTkICYmRmHhR8Vr4ODgAF9f30q/78aNG2tsC+BWlA4dOhRz587F\ns2fPkJWVhf79+6u02MLS0hLa2tp48OABn1b+/7a2tgrPF8Bd06qer5e5Nyq2La976tSpcHNzQ2Ji\nInJycvDtt99W+wKlrG0HBwf88ccfCte2sLAQNjY2LyWzqs9ade1Wd39ZWFhAX19fpXHmVWmwyk1+\nY+fm5iI8PByjRo3CuHHj0LZtWwiFQvzf//0fZsyYwVtKaWlpOHHiRI31SiQS7Nq1Czk5OdDS0oJI\nJIKWlpbSslZWVkhKSlKaZ2Njgz59+mDWrFnIy8uDTCZDUlISzpw5AwD4/fffkZqaCgAwNTWFQCBQ\nePOUM3z4cBw7dgynT5+GRCLB6tWroa+vD29v70rXQhnLli3Dnj178Oeff9ZouUyaNAnbt2/H6dOn\nIZPJkJaWpvTNTf6WZ2JigrS0NKxatYrPi4+Px+nTp1FSUgI9PT3o6+vz1y8sLIz/PcRiMQQCAbS0\ntDB27FgcPXoUJ06cgFQqRXFxMaKjo5GWloZnz57h8OHDKCgogI6ODoyMjKr8PQwNDdGpUyds3LgR\nvr6+AABvb29s3ryZP5ZfL/k1s7KywvPnzxVefFQZNMtTVlaG4uJiSKVSSCQSBStvzJgxOHr0KP76\n6y8UFBRg0aJFGDp0KIyMjAAA48ePx5IlS5CdnY07d+7gp59+QmBgYLXtBQUFQSKR4OzZszh27BiG\nDRumVO6RI0fi+PHj2Lx5M8aMGcOn5+fnQ09PD02aNEFBQQEWLFigcJ6y/pe/Zvn5+TAwMIBYLEZm\nZmal7Q8Vn4sBAwYgPj4eYWFhkEgkkEgkuHz5ssK2GmXtySktLUVpaSksLCwgFAoRGRmp0rMMAFpa\nWnjvvfcQHByMoqIi3L59G6GhofyA369fP8THx2PPnj0oKyvDr7/+irt372LAgAFKZantvQEAS5Ys\nQVFREW7duoUdO3ZgxIgRALjrKBKJYGhoiLt37+KHH35QOK/idVR2r06ZMgULFizgFWh6ejqOHDlS\naxkB1OpZq67d6u4voVCIDz74ALNmzcLjx48hlUpx/vx5lJaWVinXy1xzoAErt4EDB8LExAQODg5Y\ntmwZZs+erTC1t2LFCjg7O8PLywtisRi9e/dGfHw8n1/d20xYWBicnJwgFouxdetW7Nq1S+l58+fP\nx5IlS2BmZoY1a9ZUyt+5cydKS0vh5uaGJk2aYNiwYXjy5AkA4MqVK/Dy8oJIJMKgQYPw3XffwdHR\nsZIsrVq1QlhYGD755BNYWlri2LFjOHr0KLS1tVXqy5dffomHDx/C2dkZIpEIIpEIy5cvV1q2c+fO\n2L59O2bOnAlTU1P4+fkpvHXKCQoKwrVr1yAWizFw4EAMHTqUl6GkpATz58+HpaUlbGxskJGRgWXL\nlgEAjh8/jnbt2kEkEmHmzJnYu3cv9PT0YGdnh8OHD2Pp0qVo2rQpHBwcsHr1ahARZDIZ1q5dC1tb\nW5ibm+Ps2bOVBoHy+Pr6oqysDF26dOGP8/Pz4ePjo3C95PK2adMGo0aNQosWLdCkSRM8fvxY6Z6+\n6q7xhx9+CENDQ+zduxfffvstDA0NERYWBgBwc3PjlYuVlRWKioqwadMm/tzFixejZcuWaN68Ofz9\n/fHFF1+gT58+StsRCAT8NHezZs0wbtw4bNmyBa1atarUL4Cb3vH29sb58+f5ARXgFGrz5s1ha2uL\ndu3aoWvXrgrnVdV/edqMGTNQVFQECwsLeHt7o1+/fgrlP/vsM+zbtw9NmjTBjBkzYGxsjBMnTmDv\n3r2wtbWFjY0N5s+fX+2AVr4+kUiE7777DsOHD0eTJk2wZ88eDBo0qMryFdmwYQPy8/NhbW2NDz74\nAB988AGfZ25ujvDwcKxevRoWFhYICQlBeHg4mjRporTu2t4bAHcPOjs7o1evXpgzZw569eoFAAgJ\nCcHu3bthYmKCyZMnY+TIkQp1BQcHY8KECTAzM8O+ffsq3atPnjzBZ599hnfffRd9+vSBiYkJunbt\nikuXLlUpW3Xy1+ZZq67dmu6vkJAQtG/fHp07d4a5uTnmz59fpdWvyvWtCgG9rFpUE1KpFJ6enrCz\ns8PRo0c1KQqDwWCojeTkZLRo0QJlZWVKZ2UYdYvGr/j69evh5ubWaLxfMBgMBkPzaFS5paamIiIi\nAh9++OEb7YWAwWA0TthLu+bQqHKbOXMmVq1axUx2BoPR6HB0dIRUKmXjm4bQ2FUPDw9H06ZN4eHh\nwaw2BoPBYKgVjS0oWbBgAX755Rdoa2ujuLgYubm5GDp0KHbu3MmXcXZyQlJysibEYzAYDEY9pWXL\nljXvlXspvyZqJjo6mgYMGFApnRcvP5/o9OnXLFXdU5OLoYZOY+5fY+4bEetfQ6ex908V1VVvJoOr\n/PBaUAB88glQbu8Gg8FgMBjVoV1zkbrH19dXwYOEAt99B7RqBcyZ83qFYjAYDEaDpV4ot2r57DNA\nXx+QrziKjQVSUoB339WsXGqgor/DxkZj7l9j7hvA+tfQaez9UwWNeyipjkqRrmNjgc8/BxYvBsr5\nVmQwGAzGm0Ml3aCsTINRbkTAjBnAiBFMsTEYjBpp0qQJsrKyNC0G4xUwMzNDZmZmpfTGpdwATsHJ\nF54QAVu2AC1bAr17a0ZABoNRb1FlAGTUb6r6DVX5bevNakmVKK/YNm8GoqMBT0+NisRgMBiM+kfD\nUm5ySkuBJ0+AH34A5DHKpFLNysRgMBiMekPDmpasitxcbi/c7NmAu3vdC8ZgMOo9bFqy4fPmTEsq\nIzcX+PhjoEMHoH17TUvDYDAYaiE4OBjjxo3TtBg86enpcHV1RUlJidrqvHnzJrp166a2+srT8JUb\nALzzDjBz5otvckpW1zAYDEZ9Y/fu3fD09IRIJEKzZs3Qv39//P333wDqPlzOhg0b4OnpCX19fUyc\nOLHG8suXL8fEiROhp6entnbc3d1hamqK8PDwWtWpCvV/E3dNmJgAo0e/OL52DZg3D9izBzA315xc\nDAajQVJQWoCo5ChcTL0IXW1d+DX3Q1f7rtAWqne4XLNmDVasWIEtW7agb9++0NXVxR9//IGjR4+i\nW7dudT6lamtri0WLFuH48eMoKiqqtmxJSQl27tyJ2NhYtbczZswYbNmyBQMGDKh13dXROCw3Of/+\nC3zxBbBkCVNsDAZDKam5qdgZuxNfx3yNnbE7kZabxucVSYqw/O/l+P3W7yiUFOJ54XNsvboVP179\nUUHZEBGe5D9BUmYSCiWFtZYhJycHQUFB2LRpEwYPHgwDAwNoaWkhICAAy5cvV3rOsGHDYGNjA1NT\nU/j6+uL27dt8XkREBNq2bQsTExPY2dlh9erVAICMjAwMGDAAZmZmMDc3h4+PD9+PIUOGYNCgQTBX\nYay8ePEiTE1N0axZMwBAVFQU3Mutb+jduze6dOnCH3fv3h1HjhxRqR1fX1+cOnUKEomkRjlqQ8O3\n3Mrj4ACEhHDf3wBuy8CtW0C7dpqVi8Fg1AviMuKw6twqCCCAiZ4JzqacxZmUM5jjPQetLVrjQuoF\nPMh+ACczJ/4csZ4YF1IvoFeLXnAxd0F2cTa2Xt2KOxl3IIQQQoEQQ1yHoJ9zP5WnEs+fP4/i4mIM\nGTJEZdkDAgKwY8cO6OrqYu7cuRgzZgyuX78OAJg0aRL27duHbt26IScnB/fu3QMArF69Gvb29sjI\nyAAAXLhwoZKMqliI//zzD1q3bs0fe3l5ISEhAZmZmRCJRLh58yZ0dXVRUFAAoVCIq1evonv37iq1\nY2trCx0dHcTFxaGdGsfqxmW5mZgoKrYNG4Dly4GyMs3KxWAwNA4RITQ2FMa6xrA1sYVITwRbE1sY\n6xojNDYURITrT65DrC9WOE8gEEAoECLheQKICBsvbUT883g4mDjAXmwPSyNL7PlnDy6mXVRZlufP\nn8PCwqJWUboDAwNhZGQEHR0dBAUFITY2Fnl5eQAAXV1d3Lp1C7m5uRCLxfDw8ODTHz9+jOTkZGhp\naSldvKGKQs7OzoZIJOKPDQwM0LlzZ8TExODq1avo2LEjunXrhr/++gsXLlyAi4sLzOTbtFRoRyQS\nITs7W6XroCqNS7mV5/ffgQsXgI0bAe3GZaAyGIzak1WchSd5TyDWU1ReYj0xHuc9RlZxFkS6IpRK\nSyudSyAY6hriYe5DJGQmwFZkyw/Wulq6sDC0QERChMqymJubIyMjAzKZTKXyUqkU8+bNg7OzM8Ri\nMZycnCAQCHiLbP/+/YiIiICjoyP8/Pxw4cIFAMCcOXPg7OyMPn36oGXLllixYkXlvqlguTVp0oRX\npHJ8fX0RHR2Ns2fP8pFdYmJicObMGaWOm6trJy8vD6ampjXKURsar3J75x1g0yZA/N+NnJMDnDyp\nWZkYDIbG0BHqAAJOUZWHQBAIBNDV0kX35t1RKCmERPri+0+hpBDaQm10sOqAnOIcaAm0KlkhRrpG\nSC9IV1mWrl27Qk9PDwcPHlSp/O7du3HkyBGcOnUKOTk5uH//PoiIVxienp44dOgQ0tPTMXjwYAwf\nPhwAYGxsjJCQECQlJeHIkSNYs2YNTp8+rVC3Kpabu7s74uPjFdJ8fX0RFRXFKzO5souJiVEawqyq\ndtLS0lBaWqow7akOGq9yMzFRVGzTpgF37mhWJgaDoTFEeiJ4WHvgcd5jhfRHeY/gYe0BY11jtDZv\njeFth+Nx/mMkZycjOTsZ2cXZmN55OswMzGAjsoGMZJCRosWVWZQJF3MXlWURi8X4+uuvMX36dBw+\nfBiFhYWQSCSIjIzEF198Ual8fn4+9PT00KRJExQUFGDBggV8nkQiwa5du5CTkwMtLS2IRCJoaWkB\nAMLDw5GYmAgigomJCbS0tPg8qVSK4uJilJWVQSqVoqSkBNIqPD117twZ2dnZePToEZ/m7e2NuLg4\nXL58GV26dIGbmxtSUlJw8eJF+Pj48OVqaicmJgY9e/aEjo6OytdPFRqvcivP+vWAlxe32ZvBYLyx\njHUfCytjK05xZXHKy9rYGmPdxwLgrIsBrQZgVe9VmOI5BZ90+QRr+66Fhw33DcvC0AK+jr5IzkpG\nkaQIRITnhc9RVFaEQa0H1UqWWbNmYc2aNViyZAmaNm0KBwcHbNq0iV9kIhAIeGtn/PjxaN68OWxt\nbdGuXTt07dpVwRIKCwuDk5MTxGIxtm7dil27dgEAEhMT0bt3b4hEInh7e2P69Om8VfXNN9/A0NAQ\nK1asQFhYGAwMDPDtt98qlVVXVxeBgYEICwvj0wwNDdGpUye0bdsW2v99+vH29oajoyMsLCz4cjW1\ns2vXLkyZMqVW104VGof7rZooLgb09F5s8r50ifNN2QgCnjIYDOVUNX6UycpwJ/0Onhc9h7mBOVwt\nXWu1h61MVoYTSScQmRCJvNI8tDJvhffd3kcr81bqFL/ekZGRge7du+PGjRu13shdFTdv3sTUqVP5\njesVeRX3W2+GcivPpUvAl18CK1YAb72l3roZDEa9oa59SxIRZCSDllCrztp403kV5fZmLSMkAnbt\nYoqNwWC8MgKBAFoCptjqK2+e5VYx4OnatUDHjkCPHupth8FgaBQWFaDh82ZHBagt5RXb6tVAbCzQ\nubNmZWIwGAyGWnnzlJuc4mKgpITzYiLfea9m32YMBoPB0AxvrnIzMOAWlsgVW2YmMG4c2wvHYDAY\njYA3V7nm91+vAAAgAElEQVSVJzMTmDoV8PcH2rTRtDQMBoPBeEWYcgM435MjRgCTJ7/4JvfsmWZl\nYjAYDMZL80Yqt+HDh+PSpUsvEkxMgPfee6HYzp0Dxo2D39tvIyUlReV6b9y4gW7dusHIyAjDhg1T\nyNu4cSNWrVqlDvF5hEIh+vfvXymtsPBFfKk5c+bg119/VWu7ISEhaNOmDbS0tHDs2LGXquPYsWOY\nOnUqf3z06FG4urrCxcUFI0eOrDJ4YmFhIUaMGAEXFxe4uroqtD98+HBcvny50jkZGRlo3749rKys\ncOPGDYW8lJQU/Pjjjy/Vh1eluvtFFZKTk2FpaQmACybp6emJgoICdYvJ0BDBwcEYN26cpsXgSU9P\nh6urK0pKStRW582bN5VGKlAHb5xyi42NRXp6ukJgPQWuXgWCgoCQEAh0dGoV6t3Kygpr167F2rVr\nK+V9+OGH2Lx5M4qLi19WdKXExcXh7NmzSvOePXuGY8eOYcSIEWpt08/PDxEREfDx8anV9SlPUFAQ\n70MvPz8fkydPRnh4OBISEiASiRASEqL0vJCQEJiamiIhIQFHjx7Fhx9+yA/on3/+Ob766iuF8tnZ\n2ejXrx+mTp2KX3/9Fe+//75CkMf79+9j69atL9WHV6W6+6W26OnpYfjw4diwYYMaJGO8Lnbv3g1P\nT0+IRCI0a9YM/fv35711vOyzpQqlpaWYNGkSHB0dYWJiAg8PD/zxxx/VnrN8+XJMnDixVt5JamrH\n3d0dpqamCA8Pf+m+VAnVY15WPIFAQEFBQdSxY0dq3bo17d+/n8/7+OOPacuWLUREJJVKqU+fPrR+\n/XoiIrp16xY1d3CgtJgYIiLy8/OjlPv3ia5dI1tbW0pPTycion79+lFAQAARET19+pTs7OwU2t++\nfTu9//77leQKDAykXbt2vVSfqurnzp07ydvbWyGtoKCAiIhCQkJo/vz5fF5QUBCNGDGC+vfvT87O\nzjRs2DC6fPky+fn5UcuWLWnOnDl82ebNm9OtW7eqPCbirs+xY8dqLfeVK1fIy8uLP/7tt99o4MCB\nCvlt27ZVem7btm3p6tWr/PGAAQPo999/549btGhBqampRESUk5NDPj4+tG/fPj7/xo0b5OHhQfHx\n8URE5ObmRoaGhtSxY0caNmxYjbLfvn2bevfuTe7u7tS+fXsKDQ0lIqKEhATq0aMHubu701tvvUV/\n/PEHERF98803NHPmTP78jIwMsrCwoMLCQj6tqvulJu7fv08WFhb8cXJyMrm4uNS6nsbKqw5vx48T\n/fuvmoRRwurVq6lp06Z08OBBKiwspLKyMgoPD6cvvviCiLjndezYsXXSdkFBAQUHB1NKSgoREYWH\nh5NIJKLk5GSl5YuLi8nCwoLS0tLU3s6uXbtowIABSs+v6jdU5bdttMrtm2++ISKiuLg4Mjc35xVT\n27Zt6ebNm3zZZ8+ekZOTE505c4bat29PERERfJ6fnx+lzJ1LNGkSjR0zhvbu3UsSiYTatGlDbdu2\nJYlEQrt376bx48crtF/VYLV161b64IMPlMp87do1evfdd8nd3Z1GjRpFkZGRdPfuXVqyZAmdO3eu\nyn7m5+dTly5d6PDhw3yaXLkFBATQkSNH+PJBQUHk4uJCubm5JJVKqUOHDtSnTx8qLS2lgoICatq0\nKSUmJhIRkaOjo4Iyq3gsvz4Vldunn35KHTt2rPTn4eFB9+7dIyKilStX0qxZs/hzQkJCaPr06fzx\n06dPycTERGmfRSIRZWRk8MfTpk2jNWvW8MejR4+mnTt3Kj1XGdHR0eTp6alSWYlEQi4uLgrK8vnz\n50RE1KVLF/r555+JiFOAFhYWlJGRQQ8ePCAbGxuSSqVERPTdd9/RpEmTFOpVdr+cPHlS6XXs2LEj\nrVu3jogqKzciombNmtHDhw9V7n9jprrxo6SEaM8e7l9lZGURTZxI9MUXRGVlystIpUSZmS8nW3Z2\nNhkbGyvcSxWpqNzef/99sra2JrFYTD4+PgrP47Fjx8jNzY1EIhHZ2tpSSEgIERGlp6dTQEAAmZqa\nUpMmTah79+4kk8mUtufu7k4HDhxQmhcTE0POzs788enTp6l9+/b8ca9evahz58788dtvv82PSTW1\nk5qaSgYGBlRaWlqp7Ksot0brfmvSpEkAgFatWuGtt97ChQsXMGDAANy/fx+2trZ8OUtLS/z888/o\n0aMHZsyYgX79+r2o5MkTIDkZ+Pln9Pz9d5w8eRK2trbo2rUrAODixYs4deoUeqjo3cTW1pYP/16R\nU6dOISQkBC4uLjh8+DBWrVqFZ8+eYezYsfDy8qqyToFAgKVLl2LmzJkYOHCgQl7FvgoEArzzzjt8\nRF13d3d07NgROjo60NHRQevWrZGUlISWLVuq1B9lrF+/vsYyycnJaNGihYJc6sLOzq7Ka6wMqoUH\ni7i4OEilUgwdOpRPkwdxjI2NxcSJEwEArq6u6NixIy5cuICAgAC0bdsWx44dw8CBAxEaGop169bV\n2FbPnj1x/fp1lWWTI++/nZ1drc99kzh/Hti7F2jWDCgXnYXn1CnuE/zjx8CNG0CnTpXLXL3K1fHt\nt4C+fm3bP4/i4mI+AoAqBAQEYMeOHdDV1cXcuXMxZswY/h6ZNGkS9u3bh27duiEnJ4d/BlavXg17\ne3s+qOmFCxeUPm9Pnz5FfHw82rZtq7Ttf/75RyHempeXFxISEpCZmQmRSISbN29CV1cXBQUFEAqF\nuHr1Krp3765SO7a2ttDR0UFcXBzatWun8vWoiUar3GozaF27dg2WlpZ4+PChYoalJbB4MWBkhB49\neuDr4GDYlZSgZ9++ICKcPHkSp06dQnBwsMJpVQ3W1bmM+fzzz/n/Dxo0CIMGqR4+o2fPnrCyssIv\nv/xSY9ny8+VaWlqVjsvKygAA2traClGCVf1W+Omnn1b5DfDAgQNwcnKqlO7g4ICoqCj++MGDB7C3\nt1dah4ODA5KTk2Fubg6AWxBS/uVCky6XiEjpbx8YGIjQ0FA4OjoiJycHb7/9tkK+snNOnjyJOXPm\nKG1nwoQJmDFjhtI85nKqZkpLgf37AVtb7l8vL0BX90V+djYQGQlYWwOFhcDvv3Me+rTKuZEsK+PS\nHzwA/voL6NWrdjI8f/4cFhYWEApVX/YQGBjI/z8oKAjr169HXl4eRCIRdHV1cevWLbRv3x5isRge\nHlyIHl1dXTx+/BjJyclo2bKl0sUbEokEY8aMQWBgIFq1Uh7ZIDs7m38pBgADAwN07twZMTExsLGx\nQceOHWFmZoa//voLurq6cHFxgZmZmcrtiEQiZGdnq3wtVKHRLijZvn07ACAhIQHXr1/nrR9HR0ek\npqby5S5duoSNGzfi5s2bSE9Px5YtW15UoqUFGBoCABwMDSHMyEBoZCR69eqFnj178m9RFd+Sqxpc\nUlNTFSwWdbJ8+fJKSrZiX2sz6Dk7O/MrSk+dOoWnT59WKkPlIgHL+e6773D9+nWlf3LF5ujoiLS0\nNP6cvn374vLly0hMTAQAbN68WWERTJs2bfD4MRdgctiwYfxvlJCQgCtXruCdd97hy9b2GpuYmCAn\nJ0chbf78+di4cWOlsq1bt4a2tjb27dvHp8nfXDt27IjQ0FAAwJ07dxAbG8vfc++99x7OnDmDNWvW\n8NZdeZT9Lr169aryOlal2ACu/8peIBgvOH8eyM3l3l1zcoALFxTzT53ivPPp6HDxjuXWW3muXwee\nPgVatAAOHuQcHtUGc3NzZGRkKLxAVodUKsW8efPg7OwMsVgMJycnCAQC3iLbv38/IiIi4OjoCD8/\nP1z4r1Nz5syBs7Mz+vTpg5YtW2LFihUK9cpkMowbNw76+vrVLkaSz1CURx55++zZs/D19YWvry9i\nYmL4yNy1aScvLw+mpqYqXQtVabTKTSqV4q233sLAgQOxdetWPniev78//8NnZ2djzJgxCA0NhYWF\nBXbt2oVly5bh5s2blStcuxa9PD1hZG0NKysr2NjYwNDQUMFqSE5Ohr29PWbPno2IiAjY29vzShYA\nzp07h549e6qtj+Xf+Dt16oROnToppJXvq7x8RSuhKivzm2++werVq+Hh4YGIiAg0b96cz1u1ahXs\n7e1x8eJFBAYGwsHBAfn5+SrLXVEukUiErVu3YsCAAXBxcUFeXh5vyaanpyMzMxNNmjQBwD2s2dnZ\ncHFxwcCBA/Hjjz/CyMiIr+vChQvw9/dXWZYOHTqgdevWaN++PYYPHw6AW55sY2NTqay2tjYOHz6M\nzZs381O6kZGRALiAi2FhYejQoQPGjh2LsLAw3ro0MDDAoEGDEBYWhvHjx/P11XS/qEL53y8lJQX6\n+vpwcHCoVR1vEnKr7b8dFLC05I5LS7nj8labnCZNOCtNHjxabrWZm3OOjgoKOOutNnTt2hV6eno4\nePCgSuV3796NI0eO4NSpU8jJycH9+/cVXi49PT1x6NAhpKenY/Dgwfy9bGxsjJCQECQlJeHIkSNY\ns2YNTp8+DYB7qZo0aRLS09Oxf/9+PkK3Mtzd3REfH6+Q5uvri6ioKF6ZyZVdTEwMHxBVlXbS0tJQ\nWlqqMO2pFmr8KqdBXla88osqKnL9+nXy9/dXqR4/Pz9+lU+lL8/R0UTlFmvURHFxMbVo0YKKiopU\nPudVefr0Kbm6ur629mqDh4cH3b9/v8ZyBw4coG+//ValOi9evEh9+/Z9JbmkUqnCSs6GxIoVK2jZ\nsmWaFqPeoGz8iI4mmjCBKCjoxd+ECUT/LZCmAweIBg0iCgxU/HvvPaJr17gyly4RjR//4vy5c4mm\nTSOq7aO9evVqsrKyokOHDlFBQQGVlpZSREQEzZ07l4gUF5Rs2rSJOnbsSLm5uZSfn09Tp04lgUBA\nSUlJVFpaSmFhYZSdnU1ERD/99BM5OjoSEdHRo0cpISGBZDIZv7gpOjqaiIg++ugj8vLyovz8/Bpl\nLSkpIUtLS4XVkgUFBaSrq0tWVlYkkUiIiFvQZGhoyC/gU6WdXbt28avPK1KVDlBFNzRKy626BQod\nO3aEhYWF0s2+1VJ+Uj4mhvuK7Oys8uk//fQTpkyZAv3afnl+BZo2bYqAgAD89ttvr61NVfnmm2+w\ncuXKGssNGTIECxYsUKnOkJAQfP31168kl1AoxPnz51+pDk1QUlKC3377DZ988ommRam3SCTAvn1A\nURG3Tkz+V1TEpUskgLs7MGcO8OGHin+zZnGLT8pbbXJe1nqbNWsW1qxZgyVLlqBp06ZwcHDApk2b\n+EUm5Wdaxo8fj+bNm8PW1hbt2rVD165dFca5sLAwODk5QSwWY+vWrdi1axcAIDExEb1794ZIJIK3\ntzemT58OX19fpKSkYOvWrYiNjYW1tTVEIhFEIhH27NmjVFZdXV0EBgYiLCyMTzM0NESnTp3Qtm1b\naGtzyze8vb3h6OjIz5Sp0s6uXbswZcqU2l08FXjz4rnVAn9/f4SGhipO88hk3J3+0UeAqyuXVj5G\nHIPBqBdUHD/KyoC//1Ye/ENHB+jWjfPEVx0pKcDSpS+mMeXIZEDr1oCK72ENkoyMDHTv3h03btyo\n1Ubu6rh58yamTp3Kb1yvyKvEc2PK7VWRSjkrzs9P+ZpiBoOhEepq/KgqMpZQqLiikvHqvIpya7Rb\nAV4LUimwZAnw6BELeMpgvCHo6GhaAoYqNMpvbjVRyXFyFfj5+VXvOLm4mNsqsG4dYGCAH3/8ER3c\n3eHu7o4OHTrw895A43GcTEQYOnQo2rRpg44dO6JPnz612jQtp7zj5JKSErzzzjuwtLTkHQFXRVhY\nGNzd3aGjo1NpuX5Dc5z8448/okOHDkrvF1VgjpMZjGqoccmJBqkL8W7cuEF+fn4qlVVYLakC0QcO\nUFb//kSJiZSamkoWFha8D7W6WC0pEAioRYsWdObMGYU0+UrRulgtKZPJ6OjRo/zxhg0bqGfPnrWu\np1OnTvxqybKyMjp16hTduHGjkjupivz77790+/ZtGj9+PG3cuFEh7+LFi/TOO+8opGVlZZGnpydt\n3LiRoqKiqGXLlgpui6KiolR2v6VuoqOjKSsri4io0v2iChXdb61YsYKWL1+udjkbKvV8eGOoQFW/\noSq/baO03IRCIYKDg+Hh4YE2bdrgwIEDfN5PP/2EUaNGAeA2Fvbt2xffffcdAOD27dtwdHTEo0eP\nKtVpZ2fHb5js378/BgwYAIDzvG9vbw88fQrf0FCYjh4NtGwJW1tb2NjY8JuV9fT04OPjoyCLOggO\nDsa8efOU5v3yyy8YPHiwQtmRI0ciICAALi4uGD58OK5cuQJ/f384Oztj7ty5fFlHR0cF7/nyY4FA\nwPcd4Nzw1CYsEABcvXoVOjo6cHR0BMB5RunRowfEYnGN57Zt2xaurq4QCoWV5ty7dOmC+Ph4/prn\n5uZi0KBBmDdvHqZNmwY/Pz/s378fY8eORUJCAgBg+vTpuH37Njw8PPi9QdVx584d9OnTh7e4du7c\nCYBbldazZ0906NABnTp1wvHjxwEAS5YswaxZs/jznz9/DktLSxQVFcHX15ffuFrxfnkZRowYgW3b\ntr30+QxGo0LNilatvKx4anWc/J/lNnbs2OodJ+fkEJVzIhwVFUUOtrZUXFzMpzU2x8lEXKSD2bNn\n88cv4zhZjjJHwFURGBhIGzZsqJRek+NkmYzo/n3uX6L64TiZ6L/7xcGBv1+Y4+RXp54PbwwVqOo3\nVOW3bbQLStTiOLkcPXv2rN5xsokJ8N/3r9u3b2PCiBHY4+gIvdJS4L9ls43NcfLKlSsRFxfHezwA\nXs5xsjqpyXHy/fvA8uXA/PmAk1P9cJx8+/ZtTJgwAXv27OGXWDPHyQzGq9FolVttBq0qHSeXo0eP\nHvj6669hZ2eHnj17Vuk4OSEhAQG9emGrvT28w8KAcs5GG5Pj5O+//x579+7F6dOnFTamv4zj5JdF\n2Wb96q4xEecHMDMTOHQIqMZF40tBL+E4OSEhAQEBAdi6dSu8vb35dOY4+dUxMzOr04CfjLqnovPl\n2tBoldv27dvx5ZdfVuk4We6rsLzj5BEjRmDLli346KOPKtXn4OAAoVCI0NBQnD9/HjKZDIsWLVJw\nnHzv3j307dsX369bh76enpxXVYDbMnD1ap07Th42bJhCmryvb731FoCXc5zcrl27So6Tt2zZgh9/\n/BGnT5+u5OxU/v2yOio6Tq6JNm3aICoqSsHfIylx2gxwjoP79OmjtJ7794GbNwE3NyA2lvNOUZXj\nZJHIDu+9Nx1t2rxIL+84+f333wcA3u+l3HFyYGCgUsfJM2fOrOQ4mb9fvv8effv2VZBB7ji5tjDH\nyS/IzMzUtAgMDdIoF5QAdeA4GdyAY2RkVKXj5Hnz5iErKwuLli2Dx9Ch8PDwwInISCAoCNi5E+f+\n/rvBO07Oy8vDtGnTUFBQgN69e8PDw4OfplWVinIBQOfOneHt7Y3s7GzY29tj8uTJACo7Tt6zZw/s\n7e2xb98+LFq0CPb29rh79y5fT1WOk+VWm6Eht9lWX5+z3tzdlTtOvnvXBps2KXqiULfjZP5+WbQI\nHh4e8PDwwJ9//lmra8kcJzMYytGYh5Li4mL4+vqipKQEpaWlGDRoEJYtW6Yo3EtOsQiFQuTn58Pw\nv3A15blx4wZmzZql8J2oKpS636otW7cCsbEoWbYMbh4euHXr1mvzL/ns2TP4+fkprHqsL7z11ls4\ncOAAv2KyKg4ePIg7d+6o5F/y0qVL+Oqrr/DHH39Uyrt3jwvN5+jIeUoj4lwpBQVx397kyGQydOrU\nDe7unH/JSZPU63jm7l1OlgrbE9XCypUrIZPJqlw9y2A0FlTRDRqz3PT19REVFYUbN27g5s2biIqK\nwl+19TxaBXXiOPllGTUKWLMGP/3yC+c4OTOTi6nxGmCOkznkVpuODudfUCLh/tXW5qy38s+IQCDE\n6NHnYWQENG2qGA7lVZHJgF9+AX77jfvup06Y42QGQxGNfnOTW1alpaWQSqX81NOrIpUHXqqC1zrY\n/7egZPr06ZybrilTgLFjX1vz6vaKoi4CAgIQEBCg1jqr+l2Li7k4XQYGXJBKOQYGnJIpKeGmKQEg\nKQn4998XFl56OhfMUh3W2z//AKmpnFI9fpx771EXenp6uHLlivoqZDAaOBp1nCyTyfDWW28hKSkJ\nU6dOrfQm3+hWfn3xBdCpE6DCZmHG64cICAnhFp40bcqlFRRwltuqVYpRj2qLTAYsWgTk53PvO48e\ncW2p6X2OwXijqNfTkgD3bezGjRtITU3FmTNnEB0drUlx6p5vv1VUbJGRQHi45uRhKJCUBFy5wi04\nef6c+ysu5hTRq4Z4k1ttpqac5SYQcNYbQ/2UlHAx16ry3s94M6gXWwHEYjECAgJw5coV+Pn5KeSV\n30Pm5+dXKb9BUT5YVGQksH49UMH5L0NzlJUpn35s0+bVQpnIZNx3NlPTF2H/bGyAP/8E+vZl1pu6\nOX8e2L0bsLMDarmQl1FPiY6OrrXxo7FpyYyMDGhra8PU1BRFRUXo27cvgoKCFJbKN7ppSTlSKTB3\nLjBtGiD3BsICnjZa/vkHCA7mnNiUJysLGD2azVKrk5IS4PPPuRcVQ0NgxYqaA5AyGh71Op7b48eP\nMWHCBMhkMshkMowbN06te8DqNVpawOrVL47LyoCFC4GBA7lwwIxGhbU1MHu28jz5tz2Gejh/HsjL\n4xYEJScDly8z6+1NhUXi1jRlZcCXX3Ifd1511QKD8QYjt9oMDDirLS+PS2fWW+Oj3i8oYYBTara2\nioqtqEizMjEYDRC51Sb33SAScYuCXteWVkb9gik3TWNsDHz66QvF9vAhMGwY5z6DwWCoRGkpsG8f\nZ709ePDir6iIS69h6yujEcKM9fpEWhowdSrn8+k/X44MBqNmBAJg0CBulr8iOjqvXx6G5mHf3OoT\nubncRqtyzpjx4AHAHOEyGAwGD/vm1tAwMVFUbEeOcNsFCgs1JxODwWA0QJhyq69ERQGbN3ObvJVE\nN2Con9hY5dNaDAaj4cGUW32lUydgy5YX394kEuDcOc3K1EiRh79ZvZqbFa4LSkrqpl4Gg6Ecptzq\nKyYmgL0993+JhHO6XDE+C+OVuXWL84J2+DC3om7fPvVbbwUFwFdfcXHcGAx1cf0654iboRym3BoC\nmzdzXk2+/Za56FIjMhmwdy9w8iRw+jTnCS0jQ/3W25kzQFwcF1OOvZsw1EFmJvdSxpxvVw1Tbg2B\niROBpUtfrGlOTgaOHdOoSI2Bf//lFqPm5nK7MAQCwNxcvdZbQQFnFbZpA9y8yYXTYTBelePHuZez\nyEggJ0fT0tRPmHJrCBgbKyq2qVM1Kk5jQCbjwqIIhdzgUFLCWW0ikXqttzNnXgRDNTRk1tubilAo\nVPjT1taGubk5/P39ERoaqvSctLQ0fP/99+jXrx8cHR2hr68PCwsL+Pv3wU8/HYSDA3cfnzz5mjvT\nQGCbuBsa338PfPwxoOYo1m8acqvt2TNO2QiFwI0bQJcu3HvEvn2Ap+er+SSUW21WVtxx06YvrLcW\nLdTTD0bDQSAQICgoCAAgkUiQkJCAgwcPIiYmBpcvX8aGDRsUyn///fdYuXIlWrRogZ49e8La2hrJ\nycn4/fcDkEhOorBwJnr0WI3ISKBXL0As1kSv6i9sE3dDQypVDC62bx9nEvTvrzmZGhgyGRAUxFls\nSUmciyYiIDubi+dmack53/3ww1cbMCIjuThu5Z3NPH0KODsDs2axz6dvEkKhEAKBANIKfsDOnTsH\nHx8fEBESExPh5OTE5x08eBAWFhbo3r07n5aZCXz44V1ERHihpCQXkydfgUTyFgICgKFDX1t3NA7b\nxN0YqajYduwAOnRQS9UlZSV4kv8EBaUFaqmvvpKQwFlPBQVc0NAWLbjFJG3acP9fuJALUfOqb8LR\n0dy7SHlfhyUl3OKS9HS1dIXRwPH29kbr1q1BRLh27ZpC3pAhQxQUG8B9a9PWbgNn5xEAgNu3Y6Cn\nB4SHs29vFWHTkg2VsjLg0iVuL5ytLZcmk3Hza7WEiHA86TgO3T0EiVQCAPB19MWItiOgp62nTqnr\nBY6OwOLFyvOMjdXXzsKFnEPfigiFXFRuBqM8eno1P2t6eoC3N/DokTYEAsDSUhutW3PvvIWFbGqy\nPGxasrFQUsJF9x4zhvtwVAuik6Ox7do22JnYQU9bD2WyMjzMeQg/Rz9M9JhYRwIzGG8OVU1Lnjlz\nBv7+/tDX10dycjIsLS1rrCs3NxetWrVCRkYGbt26hdatW9eV2PWWeh2Jm6FG5FEaRSLOs0ktICIc\niTsCa2Nr3krTFmrDQeyAsw/OYojrEJjqMzODwXhViAiLFy8GEUEikSAxMREHDx6EtrY2Nm3apJJi\nIyJ8+OGHePbsGaZPn/5GKjZVYcqtMVBaCrRrx62AkH+Ty89XaY5NIpMgsygTjqaOCulaQi0IIEB2\ncTZTbgyGmlhcYT5cKBQiLCwMI0eOVOn82bNnY9++ffDx8cGaNWvqQsRGA1tQ0hgQiYCPPnqh2BIT\nuYCnaWk1nqoj1EFTw6bIK8lTSJfKpIAAMDcwrwuJGYw3DoFAAJlMBplMhoKCAvz555+ws7NDYGAg\noqOjazx/7ty5WLduHXx9fREREQEdFqiuWphya2zcu8ftg5s588VCk2oQCAQY4joE6QXp/CrJkrIS\npGSnoJdTL4j0RHUtMYPxxmFgYICePXvi6NGjkEqlmDBhAoqKiqosP3PmTISEhKBHjx6IjIyEIYsU\nUiNMuTU2LCw4L719+rxIS0qq9hQvOy9M9pyMMlkZHuQ8QFZxFoa4DcGwtsPqWFgG482mffv2+L//\n+z88fPgQa9eurZRPRJg+fTrWr1+PPn364NixY9DX19eApA0PtlqysbN7N7eT+NdfuXXE1SCVSVEg\nKYCBtgF0tNiUR2Okog8AxuuhqtWSAPDo0SO0bNkSBgYGuHfvHkz/2ydCRJg8eTK2bduG/v3748CB\nA0D5qe8AACAASURBVNDV1X3dotdLVNENTLk1ZiIjuX1wmzcD1taaloahYYqLgWXLgA8+UPSawqh7\nqlNuADftuH79esybNw9Lly4FwC0+Wbx4MQwMDDBjxgyl39g8PDwwaNCgOpW9PsKU25tObi7nW0ru\n3LC4mNv47eOjWbleA0/Ty7By80NY+x2GlrYM3ey7oVOzTtAWvrkLhKOigHXrgJ49gU8/1bQ0bxY1\nKbdnz56hRYsWEAgEuHfvHiwtLTFx4kTs3LkTAJSOgwKBABMmTMDPP/9cp7LXR5hyY7yguBiYMYPz\nN/XVV43asaFUJsXEb04h6pg5/jc8BjZu95Fdko0uzbpgWudp0BK+efNyxcXcVkgDA871V3Aw56mF\nwWiIMN+SjBds2MBZcAsXNmrFBgDn4uJx7owemtmXIO2SF0x1LdHCtAWuPLqC2+m3NS2eRjh/ntv6\naGTEhd85cqRu28vJ4cL9MBiagim3N4WpUzmLTb6aIC4OOHpUszLVEbsPPoeWUAgDUSmKcgzx6G4z\nCAQC6Gvr48aTG5oW77VTXAzs38+F3AG4d5xr17jQgHVFZCTwww/Ao0d11waDUR1Mub0pGBkpKrZP\nPuHSGhkZGUDcZVvom2YDAAzEhbh9xg3SMiGkMmmjdARdE3KrTb41SiCoW+stMxP4809uCjQ8vG7a\nYDBqgim3N5EffgDmzQN69NC0JGrnjz8AS5EFICzjlJkhZ709uN0UZVSGLra1cyrdGDhxgtsC8PDh\ni7/SUi5w6tOnddMeANjZAefOMeuNoRnYgpI3kYqhcXbu5Oaq+vbVnExqICeHc8xSVgY8KUzF/ax7\nAICyUl0YWTzHihUC9HfpB0Ej/+ZYkYwMbmqyIkIht0PkJaIkVUlmJjBnDrduSVubU2yensDkyTWf\nm5PDQrYwVINFBWAop6JiO3iQ2w/XwDE05BaEymQAYIeMQn3c+0/BtbHqAp9WNXtdb4xYWLy+tuRW\nm/Z/I4u1NWe9DRgANGtW9XkPHwIrV3LrneQ7VxiMV4EptzeZ0lLg7l1OsclXGzRgFxY6OoC7e/kU\ni//+GK+DrCzg2DHOEc6TJy/SCwq4b2/VWW9HjnCRyiMjgcDAOheV8QbAlNubjK4u8J83BABcKN+Z\nM7lRqJZx4RgMmQzo1497P6qI/N1JGQ8fcr4F2rUDYmKA/v2rL89gqAJTbgyOwkLgs88ABwfAw0PT\n0jAaIObmwOjRtT/vyBFu9aaODjedGRHBrDfGq8NWSzI4pFLA2xv48ssX3+RycjQrE6PRI7fa5N/Z\nrK056+3ZM83KxWj4MOXG4BCJgIkTXyi2W7eA4cPrZq04g/EfcqtNfttpab2w3hiMV4FNSzIqExfH\nLTv86iu2dI1RZxQUcOuZSkuBlJQX6URAbCyXziK8MF4Wts+NUZncXCA+ntugJCcuDmjdWnMyMRol\npaWcMquIUMh9g2MwlMEcJ9dzhEKhwp+2tjbMzc3h7++P0NDQKs/btm0bPvroI/zvf/+DoaEhhEIh\nFi1apD7BTEwUFduPPwKLFnEjEYOhRnR1ua0DFf9eh2IrKADCwrhN/4zGB5uW1DACgQBBQUEAAIlE\ngoSEBBw8eBAxMTG4fPkyNmzYUOmc2bNnIzc3F02aNIGtrS2SkpLqzuvGoUPcztzNm9kcEaNRERUF\n7NsHtGoFdHnzvLI1eti0pAapKoDhuXPn4OPjAyJCYmIinJycFPJPnDgBV1dX2NvbIzQ0FBMnTsTC\nhQvx9ddfq1/I3FxAIuHWeQOcB97LlwF/f/W3xWC8JgoKgNmzuQUsBgbA8uUvvKow6j9sWrKB4u3t\njdatW4OIcO3atUr5ffr0gb29PQDlEXrViomJomL75BPgypW6bZPBqGOiooCSEsDSkgvequQxYzRw\nmHKr5+jp1aMQLd9/D7Rpw4V0ZjAaKHJ3YNbW3LG5OfDbb+zbW2ODGeL1kDNnzuDu3bswMDDA//73\nP02L84LPPuPmcOTf92JjuTXc776rWbkYjFogt9rk740mJsD9+5z1xr69NR6YctMwRITFixeDiCCR\nSJCYmIiDBw9CW1sbmzZtgqVlPfJkL492CXCK7fPPgW++0Zw8jHpPWVn9+pZVVAQcPsyFALp//0V6\nYSHw++/cImF1hgBiaI56dNu9uSxevFjhWCgUIiwsDCNHjtSQRDVABPz8M6fYvLw0LQ2jniKRAEuW\nAKNGcbPZ9QEtLWDCBOXOnXV1X0xKMBo+TLlpmPKrJYuKinDu3DlMmjQJgYGBsLa2hp+fn2YFVIZA\nAKxb92IkIOK2Cjg7A717a1Y2Rr3h8mXgn384y23hwtenOP6fvfMOj6rO/v/7Tm+ZSc+kNwiEhCJV\nFJCm7AKiWNauuGvha/np6u66ru6qu/aCZXV3rbjKiooFaYK0CJEOIZAESCC990wmmT7398fhZjLJ\nTDJJJjMp9/U8eSSTuXc+M4n33Pf5nPM+PQ09lUiAOXN8sw4e/+I3AV5WVoYFCxYgLS0N6enpeOed\nd/y1lCGDXC7HokWLsHnzZthsNtx1110wGAz+XpZrOge2f/+b3G5nzPDvmniGDBYL9ZAlJgLnz5PN\nli8oLia/gfp637wez9DFb8FNLBbjzTffRG5uLg4dOoT33nsPZ86c8ddyhhQTJ07Evffei7KyMrz5\n5pv+Xk7PmM1k4f6f/wCBgfSYq5wPz6ji6FGgsZH8uNVqCnS+aFnduJGGnm7fPvivxTO08Vtw02q1\nmDJlCgBApVIhNTUVlZWV/lrOkOPpp5+GVCrF66+/jubmZn8vxz1SKfDss47AptPRdIHTp/26LB7/\nwak2rj0yONg36q24GDh5EkhLA/bs4dXbaGdI1AUVFxcjKytraJW9+5moqCisXr0azc3NePXVV51+\n9tFHH2HVqlVYtWoVPvroIwDApk2bOh575ZVX/LFkCmwPPEDDTtPT/bMGL2G3+3sF/qG9nXr1B0Jn\n1QZQBtsX6m3jRsfQU4GAV2+jHb/bb+n1esyfPx9PP/00rr32WqefjVb7LY7a2lokJSWBYRgUFhZ2\ntAXcfffd+O9//9vNT5JlWTAMgyuuuAJ79uwZ9PV3Q6cDtm4Fbr7ZsSfX0OC4hR8msCzVyyxeDEyc\n6O/V+JaPPqIm50ce6f85/vEPGirR1YqUZYFnngHi4we2RlcUF1MCIT6e/vSsVqCyEnj1VSA01Puv\nx+NfPIkNfq2WtFgsuP7663H77bd3C2wczz77bMe/58+fPzSrB/uJvVd5EI6dO/WYPdv50bVr12Lt\n2rWDtq5+o1ZT3TfH8ePAk08C69cPqwB39ixw6BCltdLSRk/fU1UVkJlJ/y4uBhIS+neehx+mPjJX\nhIf375y9wak27p5KJHKot9tvH5zX5PEdGRkZyMjI6NMxflNuLMvirrvuQkhIiNuiiZGu3HrjX/8C\njhwhFcFtaQ0bTp0CHnsMeOUVYNo0f6/GY1iWerNqa0mIPvYYMHmyv1flGz76iP7eBALqS3v0UX+v\nyDN0OuAvfyHF2RmWpXuqV14ZWo3kPAPHk9jgt+CWmZmJefPmYdKkSR3ptZdeegm/+tWvHIsbxcGt\nvNzRG7R0KXDjjf5eUR/R6ej2f9Ik+p5lgZycIZ/nO3OGHOITEqhfSqmkNNtIV29VVSSyY2PpvZaU\nUJqvv+rN13BDTy9cAKKiyCUO4IeejlSG9FSAOXPmwG634+TJk8jKykJWVpZTYBvtbNpEexZRUZRa\nGcoFky5Rq50D21tvAa+9NqTbBFiWih7UarqpCAykm4zRUPi5dSv9vQmF9N5lMkr1DRckEqrSfOcd\nYN8+3w495RmajPD70eFJeTmlh7Ra+p+TZYGdO/29qgHw5Ze0//buu3T1HKKcPUsl68HBjseCgsgx\nfiRXT3J7bRERjsciIqisvrjYb8vqMxkZQGsrBerWVn+vhsff8MFtCMKpNi4VFhk5TNUbx7JltIGo\nVtP3zc1DMlrv3EnprfJyoKyMvlpbqSk4P9/fqxs4raZWZJZkYsf5HchvyIedpYjNeSeUlVEwKy6m\ntCTLDh/VqtcDmzcDcXH0O9y7198r4vE3fm8F6InRuOdWXk5m+2q18z5PbS0VIg67vbeuNDcDq1cD\nV1wB/N//+Xs1TtTXu7/jj47uXto+VDCZqGCiJ1F8pu4M3j78NoxWIxgwYMFiauRUrJ6+GmJBz29s\nOJgJb9kCfPcdBTeTifrsXn/d0WvnCTU1wI4dwB13DI/3PJoZ8q0APN0RCICrr3b9M2644rDmrbeA\nefMowA0xQkOHX08UZ+2ZkAC46aaByWrCu0fehVKshFalvXgci2OVx/Bz8c+4Mnl4m11zqo1Lq0ql\nDvXWl1GDW7ZQSnP6dGDChMFZK4/v4IPbECMqCrjtNn+vYhB58knn2SKHDpEs5Qee9oviYhqymZsL\nLFzoyPx2pqCxAO2WdoQpHbMBGYZBmCIMe4v3Dvvgxu21qdWOadpqNaX3FyzwTL1VV9O+Y2Qk8O23\nQGoqr96GO/yeG49vkUqdA9tf/zpgywqWZVGtr8bZ+rNoMjR5YZHDA5alikalkopQ3ZnSWGwWMOh+\npRYJRDDZTIO8ysGnqQlISnJUSEqlFNBiYsggxxO2bqXUbmgoFRXxHu7DH1658fgHliXnktdfH1CX\ntN6sxwfHP8DpmtMQMALYWTsWJy3GTek3QSQY2X/enFFwQgKVwW/d6lq9JQcngxEwMNvMkAgd+2u1\nbbVYOnapT9fcGyxL72niRM8br++4Y2Cvyam2mBiHDyav3oY/vHLj8Tl2O5B35uLAUy6wsSz1wfXR\nE/OTrE+QU5uDOE0cYjWxiFHHYMeFHdhxfscgrHzowKk2hYIuwBKJe/Wmlqpxc9rNqNBVoFpfjSZD\nE4qbixGmDMNVyVddPB+LrKosvHnwTbyw7wXsOL8Dbea27icbZIqLgTVrgKws370mp9q4ghxuigGv\n3oY3fHDj8Tk5ORTHiks6DTx97TXaOJo50+Pz1LfXI6sqC7Hq2A6XG6FAiEhVJH48/2NHqftIhFNt\nnb0atVq6UOt03Z9/ZfKVeGreU5gWNQ0x6hjckn4L/nbF36CR0cjqL3O/xJqDa3Ch6QLq2+uxPmc9\nXs582acBjgvYdjuwYYNj/2wwqaujwhOzmdofSkqo9aOtDfjhh8F/fZ7BY2TnbXiGHNyFy2CgC9mj\nj4K+sVqpyVuloidaLL3aS+jNeggYQbfpCDKRDDVtNbDarU5puJHEoUP0WZaVOT9utZKt55w53Y9J\nCUlBSkhKt8crdBXYcX4HEgITIBSQfNHINChqLkJmaSaWjFkyGG+hG1zAHjOGgkxW1uAPd1cqgYce\ncv8znuELH9xGGCXNJThedRwmqwmTtZMxPnQ8BMzQEeg5OXRnPG4cXbzIfV5BzrccDQ3Agw+SueH4\n8W7PFa4Mh4ARdNtLajY2I04dj88/FWPePGDsWPfraWqiO/Q77hjS5induP568hx1BXd/4CmFTYUA\n0BHYOIJlwThSccQnwa1rmjU4mG6CLrlkcE2PFQrg0ksH7/w8/mPoXPV4Bsy2gm14JuMZbM3fij1F\ne/BK5it4/9j7sNmHhp8jp9oCA+kCJpe78C9saKDm7oULewxsAKAQK3Dt+GtR1lKGVlMr7KwdjYZG\nNBubMVt5G376icFXX/U8IHPHDlrDyZMDf3++RCIBNBrXX30N0u7UrdVuhZhV4bPP3I+w8RZd06xq\nNXWI+HLvjWdkwQe3EUJVaxU25G5AdEA0YjWxiFZHIyEwAQfKDiCramBXCG+ZxHCqjRvfExHhUG8d\niMVkxXLffY7HamvdnnPp2KW4f/r9EAvFKNeVI0IZgScu/zNy96cgOBgoKCDPSFc0NZHlVkwMBd0h\n7Ok8qEwImwCpUOq0v2Zn7Wg2NiOw7tf49lvg4MHBe/3Oe206HU1jaGkhxearvTeekQcf3EYIObU5\nYMFCLHTsUzEMA41MgwPlB/p93txc4O23Bx7gONUmkQDt7bRh395OP3NSb2o1sHKl4/vMTMoZtrS4\nPC/DMJgTNwcvL34ZH6/4GE/NewrS1lScPk0qICCAyrpdrX/HxYLK0FAyDx5u6s1bBEgD8H8z/g86\nkw7FzcUoaipCcXMx5scuQc6+FMTG0mc4WOqNZak3LTUVCAtzfCUlUVM193fCw9MX+D23EYSrRl0A\n/fbntNuBr74Czp0Dliyhi09/aW+n/Y2wMOfHo6OpdsRqdbG3cvw48NxzwJtvUr6tF8hvDvj+e8fe\nTUiIQ711Xj+n2jhLM26PZ8qU4bX35i2maKfgpUUv4cMTH+Jg+UGIBWLsy7RAV6fD5PGBKC4m9bZg\ngfdfWyAAHnjA++flGd3wwW2EkBaeBhYsrHZrR/Myy7JoMbZgdszsfp0zN5eq1sLCaM4ZNzy1P6hU\n5LzVJ8aOpQrKcePoe7ud5NXUqW4PKSwkJ3tuyCbDONTbU0851s+pNq4gU6MBioro9J4MDtfpKCB3\nHo8zXDl9mnq6dGO+Q25dLlJDUyGwybFlXRJswgOINVyK8PBgfPstMHs2zXrjGV3Y7cNvYO8wW65/\naTW1Ym/RXqw7tQ4/F//slyZXd0QFRGHl+JUo05WhQleBqtYqFDUXYWb0TEyNch8M3MGlETUaUj/n\nz7vfuxo01GrnwPbSS+QS3MPm2I4d1FlQVkb7e6WlpBrz8mhKM0CBaccO596mkhI67ttvPVvaunXA\nBx94bz/SX9hswBdfABu+N2DnqVNICEyAVCRFxZk4MGY15HIWZ+vPQqEgg+LB3HvjGZr88gvw4Yf+\nXkXf4ZWbh1ToKvDKL6+g1dQKiVACk82EjWc34ok5T3Q4rfubFeNWID08HUcrjsJoM2Jq5FSkhaV1\nK/H2BE61JSQ4LIkGqt4GxOefk7R6++0e84bLlrnu8QJo/wag/Z3773cdmKTS3pdSVgYcPkz/LigA\nUrq3jg0bsrOBykrAJmhH1fHJSE0og80qQN6+VFhMYtgatCixmRFloz23b7+lz5efcD06MJtpWG9j\nI/DrX9NIoeECH9w8gGVZfJL1Cax2K+IDHSa/1a3VWHdqHf5w2R/8uDoHDMMgOTgZycHJAzpPZ9XG\nBTLOkqjr3pU3qWytxN6ivShtKUViUCIWJCxAhOriHJOVK4EbbnB01tbVkR3+EuceLE88mKXSvvU2\ntbQAH39MHQpyOY1Xkcloj/C774AnnvB+wK9rq8Pe4r0433ge0QHRWJC4AHEa715ZbDb6PQcFARqx\nCKeOp6B1fgOUgUZMXJgDu00AvbkVKkkA7r6EUtsiEe+3OJo4dIj+/hUK6gd9+GF/r8hz+ODmAU3G\nJhQ2FXa7uESoIpBblwu9WQ+VpI+ds0OY8+dp70oqda5UM5spnTcYwe1M3Rm8cfANMGCgkqhwofEC\n9hbtxRNznkBSUJKzG3BdHUmva67x/kJcsGsXWTRNnEitd4cPUxBlGNqr8rZ6K20pxYv7X4TFZoFa\nqkZRUxF+LvkZj8x6BJO1/TeZ7gqn2hITAZZVI0ipwpGMUCy8rgSx6WUwWU0o15XjwVmPYHq01152\nxMJlAkZK8DebSamHhdFN3bFjlOYfLuqND24e0GO1Idv/asShSkICFSm6oq/uF55gZ+3478n/IkAS\n0OF1qJFpUN9ej3Wn1uGv8/7qbLH11ls0/+2uu7y/mC60tAA//ki1LRs30n9lMsfmukrlffW2Pmc9\nBIwAsZpYAPRZ6M16fHryU7x+1ev9SjN3pbNqA0j1L0ifgL2nxDhXkg1lkB4igQh3Tr4T06I8qLDh\nwXff0X+vv96/6/AWnGrjirNksuGl3vjg5gHB8mDEB8ajvr0eoQrHqObatlqMDx2PAGkfZtkPAyQS\nIHlgmc0+Ud9ej9r22m7KOEQegqKmIujNeufP+JlnaJEce/dStYO7EeYDYNcuStOq1VSUcu4ceTtb\nLPTzwEDan+xJvdlstDwPuhlgtBpxtv4s4tTOn4VKokJpSymq9dWIVg9cRnEFNipVZ6NlKeJk6Zhn\n+zuWXtEErUoLmYgvjfSE5mZg2zb696JFDqOC4Upn1cYRETG81Bsf3DyAYRjcPeVuvPrLqyhtLoVM\nLIPBYoBKqsLtk2739/I6YFkWxyqPYUv+FlTrq5EUlIRrx1+LcaHj/L20HhELxGDBgmVZJ4VmZ+1g\nGKb7XLauge2ll4B33vH6ujjVxhWiiERATQ05hHXuyVOrKVC4C2779lFP3d//3rtPopARQsgIYWNt\nEDGOJ7MsfT6dm/QHQmws8Oc/u/5ZaKgGcYEeRGKeDnbudKQld+4EbrzRv+sZKKdOAfX1lI5s6jT/\n12Siyed33um3pXkMH9w8JD4wHi8segEHyw6iQleBOE0cZsXM6kijDQV2F+3GZyc/Q4giBGHKMJTp\nyvBS5kt4fPbjmBgx0d/Lc0uQPAgTQiegoLEAUQFRHY9XtVZhetR0yMVy1wfa7cCmTRTYOB9KlvVa\nfpBTbVxlYEoK7UPecANw5ZWenYOrMGxooLve3gpZxEIxLou9DJmlmU5KtratFklBSQhThPVwtOcE\nBvbYLsjTB5qbge3bHTdB27fT38dwVm/p6cALL7j+mScZiKEAH9z6QKAsEL8e+2t/L8MlJqsJ3+R9\ng2h1NKQiqmcPVYRCJBDhq9yvkB6e3m00zFBi1ZRVeO3AayhuKianEbCIUcfg1om3uj9IICD3Eg6b\nDXj+ebLRmDdvQOtpb6c7cKvVeawMN/F6wQLP3OoPHqSUZFQUtVJMn977cTdOuBFlLWUobi4GC5ID\noYpQ3Dvt3n7/DktK6E7ckwb14YTJRCm0AD/uDHCqjbsJYtnhr95kMsde23CFD24jhNq2Wlhslo7A\nxqGRalDaUgqj1eheAQ0BwpRheH7h88itzUVtWy20Ki3SwtO6pyTdYbNR3q+mpk8DT90hlQKPPOK6\nX1ws9syii1Nt4eFUSl1c7Jl6C5AG4Ol5T+NM/RlU66sRLA9GWlhat9+tp7AstQmWlwMTJlCqaaTw\n3XfUEfLAA1T16Wu6qjaA/j0S1Ntwhw9uIwSlRAk77LCzdqf5bWabGTKRbFgM7ZQIJbgk8pL+HWw0\n0u37k086/KFMJs+6sl0gFA685YFTbaEXa5BCQjxXb0KBEOnh6UgPTx/YIkC9iQUFlK3dvx+46qoB\nn3JI0NgI/PQTcOQIGXG/+67vLaIOHSKVX13t/Hh7O/3sV7/y7Xp4HPDBbYQQLA/GVO1UZFVnIVYd\nC4ZhYGftqGitwLXjr/VK+fiQRqkE/tCpmb66Gli9GnjjDd+Wfl6ks2rjCAjwXL15C5aldQQE0Ee0\ncSMwd+7IUG87dtBeptVKgeT0aWCy99oAPWLOHPc3QSEhvl0LjzN8cBtBrJqyCsZjRuTV5UHACGBn\n7ZgXPw9Xp3i/RH5IU1NDge03v/FLYAOoCd5oJEXRGZYFjh71XXDjVBtno1ZT4z/11thIolqh8M65\nfvqJ+vmDgqiy9f33vavejFYjjlQcwbHKY1CIFZgTNwdpYWlO+54q1eD0fvIMHIYdwh3INMJkyC5v\nSMKyLCpbK9FkbEKEMgJhSu9U1w0rdDpye/11p+Kfigqar+MjWNb9kE2BwDdjdViWKt6qqx2pUYMB\naG0lQetL9caytCWakOCd3vv16+mrpISCm15Pla1r13pHvRmtRrz+y+vIb8yHRqqB1W5Fm6UNV6dc\njRvThnGlyAjBk9jATwUYYTAMg2h1NNLD00dnYAOo8axzYPvpJ+Cee+gK2E8MBnJGNxg8ez7DUOGJ\nqy9fzYs7e5ZG+FgsNIy1qooKIKqrSb35Eq5pPCOjx8HqHtFZtXEqUKmk383771OQGygHyg6goLEA\nSUFJCFGEIEIVgXhNPLYWbEVla+XAX4Bn0OHTkjwjmwMHgDVrKF81gPxRZiYZJickeN7j5m+kUuC6\n61z/zJf7QSxLVl+BgVRosX37wJqAz5yhwFZV1X223IkTQE4OMGnSwNZ8uPwwguRBTo8JBUKwLIv8\n+nynfkyeoQkf3EYBXuxrHn6kpwP/+heQlETf22w04bsP7QIGAxViJCbSf+fMGR4FGUlJjrftT/Ly\naFpRQgI1AO/dS1WEnYtt+sJllwF/+xv9GrvCMN75W5cKpbDZu/eBMAzjNZcYnsGFD24jHJaloZpz\n51KP06hDrXZMFLDZgL/+lao8pk/3uPIgM5MOSUigPZ7MTO+pt+HgJH/hAgWi/jRKc6qNG58kFNLX\nQNQbw9C9iRfaGd0yN34usmqyECQP6mitMVqNEAqESAtPG7wX5vEa/J7bCKeoiO6U16/3zl7EsOaj\nj6ia4tVXPQ5snGqLuDhWLjycvvd07603vvmG0p1DFYOBsrr9XWNeHlWOqtVUYGO1khnvnj0D33sb\nTKZFTcOChAUobSlFSXMJipuLUddWh3un3otAGd+ZPRzgldsIhmWB77+narLSUu/sRQxrbr2VTJe5\nxu6KChpqtnSp20M41ca5o8vldFH2hnpraiIFIxAA8+c7j6wbKmRmUvHprl00F7ave3XnztFnVlfn\n/LhcTjderlKTeXmUTu26n+ZLBIwAd0+5GwsSFuBcwzlIhVJMipiEEAXfvDZc4IPbCKaoiNy9ExKo\nSm7DBtqC8rWLw5Chc16tooIGnq5a5fbpZjPNrzKbKR3JYTKRerviCucBBX1lxw76r81GSubaa/t/\nrsGAU61RUdQsvWMH3R/0heuuc1/U4orGRuD118mX8de92LhmZQFpaQP7HfQEwzBIDEpEYpAffL14\nBgwf3EYonGpTKGiPIjCQ3DFGvXrjePttCmw33OD2KUIhPcVVv5pINLCS/qYmMtfVaul3tXUrsHBh\n/9Sb1UpBob8FGu7orFq12v6rt76wYwfdPGzaRDcP7hq+y8ooXXrvvQP2yOYZofDBbYTSWbUBjgA3\nGtRbha4CxyqPod3SjrTwNKSFpXW3H3vxRWeDx61b6b/LlnU8JBRS3clgwKk2zkl+IOpt3z5g/62L\nVgAAIABJREFUyxZ6S95K5XXdaxSJ6G+mP+rNUxobKYAmJpKw/vln9+pt82aHtdillw6eeuMZvozg\nS9zo5qef6AJVXk53uWVl1MN84QKQn+/v1Q0eP5f8jKf3Po0fzv2AvcV78caBN/DO4Xdgtpmdn9g1\nsL37LuW4fEBn1cah1dIyHFOxu7NrF6mpzhiN5IxfWUlGzd4iM9Ph29jaSl9KJe0RNjR473U6wwV8\nkYiC6qZN1BfXlbIy4PBh2pdraSFfSR6ervDKbYRy9dWU1nHFcBgR3x+aDE347ORn0Cq1HeNhWJbF\nieoTOFh2EFckuPhAOMn07387ZO4gNwYePEjpPldO8ocPuy5U0etJdYvFpCY5hXbgAP0sLo6C3OzZ\n3lFvra2uDYHDwig4ezs1yak2bnSMTEY+mK7U2+bNVBMkENB6/KneLBaH+uYZWvDBbYQSHe0bK8Vm\nYzMuNF6ASCDCuNBxkIn8V+J2ruEcbKzNae4ZwzAIkYcgszTTdXATCslokcNiAZ56ivKDl102KOuc\nM8cxOLwrYW4c0zIyqLDFZCJVtXixQ7Vx8+JqaylwLlgw8DX2tRBkoOzYQcG9s1JTKGjfuPPeG6fa\n4uPpe6WSKjEPHfL93tvJk1Rw9PTTvrNU4/EcPrjx9AuWZbH9/HZsyNtA06JZQC6W48EZD/qtydWd\nkSoDpmOidU/YTEbYnnwCIpaBYMYMby+vg8595Z6MnNPraU9Nq6VeRc4lhVNtnClyeLh31ZsvMZtd\nmwxIJJR65ILb5s10/9E5fSuRUL+gL9Wb3U5KOj+fqjYHa2+Wp//wwY2nX5xrOIcvc75EjDqmw45I\nb9bjncPv4LWrXoNa6vumrXGh4yBkhDDbzB3DWVmWRYOhASvGrXB7HMuyyCjOwLasrzGlNQtHrp6K\n5aUZWJS0CAKD0TszWlzQ2gr84x/AQw/1nCrOyHAOgjU1lEndto2UHtecz6XyvKXefImnkwIkEteu\n/zIZpXp9Fdyys2k/OyYG+Ppr4JJLePU21OCDG0+/2FeyD3Kx3MlnTyVRob69HqeqT2FO/ByfrylY\nHoxbJt6CdafWQcSIIBKKYLAYkBaWhsti3acYdxftxqcnP0VUQBQKbvsVZBYDPsv+DKKyCix4/Rvg\nvfcceTAvsns3Ofdv3gw8+KDr53RWbRwREcAXX1DMNRppD4xDLKZ2j+EW3Dzlnnv6d1xzM3lRLlo0\n8DXY7aQUg4LIVqy4mFdvQxE+uPH0ixZjC6RC1/m0Nkuby8d9weKkxRgbPBaHKg6hzdyGKdopmBg+\n0a3ZrdVuxcazGxGjjunYL5SL5UgzqhH6x2dg+csbEA9CYGttpaBlNtPouauvdq3eDhygPSVzl2JP\ng4F6vNwVDQ0Eq5WUydSpQ9vzsi/8+CPtj40bR2prIHCqLfFib3dQEK/ehiJ8cOPpF5MjJiO3Ltdp\nLAjLsmBZFklB/rWijw+MR3ygZwFJZ9Kh3dKOUEWo0+OsRo3t10yA9qor0FHjUVLiNQW3ezeNbCkq\nouJMd+otPR148knX54iN9cpSupGVBbzzDvDss34bZO5VuEpMhYLaCx54oP/n6qzaOHj1NjTxa5/b\nb3/7W0RERGDixIn+XAZPP7g87nJoVVqUNJegzdwGnUmHwqZCzIiegTHBY/y9vG7YWTsKmwpxpu4M\n2swOZamSqCARSrr1wellAhRMjkWA9KJl1w8/UPRx1XjVRzjVVltLjfW1taTeSku7Pzcqii6Yrr64\nBmtvYrVSoQTncNPLsGOvs2cP7Rt6E65/LiYGOHKEVFd/uXCBGsxbWx39o2Vljo4SnqGDX5Xb3Xff\njYcffhh3DmRyIY9fUEqU+Mvcv2B34W4cKj8EmViGq1Ouxpy4OWCGWC6rXFeOd4+8ixp9DRiGgZAR\n4qb0m7AocREkQgl+PebX+CbvG8Rp4iAWimG1W1GqK8U1KddQqnLPHpob9O9/e6W4hFNtFgsFN7OZ\nGqN72nvzFVlZFGyTk4HTp8nRf6DqzWqlnrTeXHFqaoCPP6aS/vvvH9hrcnTunxMIqOBkIOotOZmG\nSrhiOMz4G034NbjNnTsXxcXF/lwCzwBQS9VYmboSK1NX+nspbjHbzFhzcA3MNnNHqtJsM+Oz7M8Q\nqYpEWngalqcsh8VmwY4LO2Bn7WAYBstTluPa1IteWNOnA++/79isMZuBY8f61Qdnt1P1Y2EhOXG0\ntNBjRUVU8NDU5Jzy8pTt2ymFOZD9JE61BQfTXhvXZ/b44wPbe/vwQ0qhLl/e8/O2bqWqx4MH6bm9\n9Wl60mvf2fUEoMKcI0eAFSv691kJBN738OQZHPg9N54RzZm6M2gyNDntwUmEEgRIArCraBfSwsl3\n8oa0G7A0ZSmaDE0IlAVCKVECAExWE/bVHca+kn2w59sxN2IWFn+wEyKZghrK+njVFwjIcaO62rmA\npLycKhwD+zEqrLYW+PxzisGPPtr/QMSpNs6oJTx84OqtrIwarE+epLE+KpXr59XUAPv3U8CpqaG0\nbW/q7bPPyEXF3dDSpiZqlxCLyZ6Mo7V14HtvPEMfPriNMliWRbW+Gu2WdkQGREIhHpwerqGC3qx3\n2dwtF8tR1+Y8ZEwhVjh9Hla7Fe8cfgena04jVBkKBgzq3nweR9qkmP7pDkj6EUXsdvL9BJxnnAkE\nZIB83XXkutEXtm2jlFh2NhU2JPZjQgun2oRCUpOd1zsQ9bZpE6kxi4UUqzv1tnWrY9KCVtu7equs\npHRjdjZVKbqzwFqxgvbDuhIa2v0xnpHFkA9uzz77bMe/58+fj/nz5/ttLcOdRkMjPjj+Ac7VnwPD\nMBAJRLg+9XpclXzVkNsn8xbR6miAoaDe+T02GZpwZXLP00Zza3ORU5uDxKDEjmNLr1uEPe3lENad\nxqyYWSRrzpyB+VdXokJXAalIikhVpNvPk2GA22/vXtoP0IVdIiG1NGGCZ2XltbXkvxgTQ8Fy48b+\nqTejkQJJV89IrZaCrd3e9zL3sjLg6FFSqBYL7Sm6Um+dVRvg2BvrSb1t3kwBvbGRXsNVhjgoiObC\n8Qx/MjIykJGR0adjhlVw4+k/dtaOfx7+J8p15YjTxIFhGJhtZqw7tQ6hilBMi5rm7yX2G5al8uz5\n87t7M8Zr4jE9ajqOVByBVqWFRChBjb4GcrEcixJ77ujNq8uDVCR1ClQWhRQyuwqna05jljkMePBB\nnLl5Mf65fStMVhPsrB3xgfFYPX01tCptt3MyDCkNd5SU0LDOhx/2rKx82zaH4omI8Ey91ddT0Wfn\ntKhKBTzySO+v1xc2bXIYHEul7tXbtm2kFjsHT7sd2LuX+v+iohyP22w0x+3ECWDsWHIl+eYbYMYM\n7xoYm83AJ58At9xCpf48/qWrsHnuued6PcavrQC33HILLrvsMuTn5yM2NhZr167153JGNMXNxShu\nLkZUQFTHxVoilCBYHoytBVsH5TUtNgu2n9+Ox3Y8hvs334//HPsPqlqrvP46BQXAV185RrJ1hmEY\n3DftPtyUdhMsNgvq2uowLWoanp73NMKUblyKLxIgCYDV1n1SqdlmRoAsAHjvPVTcdR1eVp9CgCQA\nsZpYxGniUKOvwRsH3oDFZvH4PRw/To3AP/xAQeDrr12n0zrDqTbOvYRhKAW4cWPPJfzr1tGEn97O\nPxA41da5XSEighSXXu/8vLg44M47KehxXytWUGDpGrCysmj9NTUUNAMCHOrNmxw+TEF3927vnpfH\nd/hVua1fv96fLz+qaDG2gGGYbukypUTZbe/JG7Asi4+zPsYvpb8gMiASYcownKg6geyabDx7xbOI\nUHmnSYtlySw4NJT2rJYu7V7NJhFKsCxlGZalLHN9EjdMj56O785+B4PFALmY6rxNVhNsrA2zY2YD\nr96ATVkfQF4th1wsx4SMXFhkEjCXjkVxczHy6vIwWevCCLELViuwfj1VTIpE5KJRWtp7U/CPPzpb\nb3Gfx4EDwMqVjsKQzhQXU3EHy5L68bY/dGkpDcnV6ylIV1Q4/9xkovc1dy6pozfeAGbNokDWGzYb\nqSmzmQJaeztVdIaEeFe9mc00RicxkT7jRYt49TYcGfJpSR7vEBkQCTtrh521Q8A4BHujoXFQXPzL\ndeU4VH4ISUFJHQE1KiAK5bpy7Czcidsn3e6V1ykoAM6coQt5RQXdba9a5ZVTQ6vS4r5p9+HjEx/D\n2kYKTigQ4u5L7kachnJ61fpqqCQqpO3NxaSdp7Dl9xcDKEvuJ55w7BilCisqaB8pNdUzS6fJkx3z\nz7riripx40ZSdwoFFZBMneo9yyiWpTWfOAE8/zywcKHr53EVoYcO0fveuRNYsoRaEHoiK4v2IwUC\nCmxHjjiqONva6GdTpw78fRw+TF6UCQlUWbl7t2/H//B4Bz64jRK0Ki0uj70c+0v3IyogClKhFA2G\nBljsFlydcrXXX6+itQIMuivFYHkwcmpzvPIanGpTqSglFxnpXr31l0tjLkV6eDrO1Z8DCxYpISlO\nEw/GBY9DxoVdiMyvxJbfL0NrmJqqM1m7yz23rlitpDrEYrpgGwx0ofbE0mnKlL69F061xcfT51VU\n5F31VlhIAUahoL73nkyOOXUUGUkqbMeOntWbzUaBMzWVik2sVkrL3nuvI1gO1DOy87q4vVutlldv\nwxW/7rnx+JZVU1bhN2m/gd6sR0lLCWLUMfjLnL8gITDB66+lkriWDu2WdoQovDPGmVNtXFm3UEh3\n9du2eeX0HagkKkyLmobpUdO7jfJZlLQIArEE/7ttElpCVTDbzKioL8TDX1xA8vmGXs/NqTbOEspu\nJ1f/1lYKeJ7svXkKp9q4+42QEFJvnc/PsiyKmorww9kfsPncZpS2lLqdk9cZzq5LoaCA9csv3SeN\nd+bQISoiUSrp+Tt3UpBzB9eDFxVFv2+tltRtYSENfh0/3r1a7QucauPaMSQS+ny8sfdWX+8YT8Qz\n+PDKbRQhFoqxPGU5lo1dBjtrh1AweBbm40LGIVgejLq2uo7CDYvNAp1RhyXJS7zyGhu+s6BFJ0Rx\nseMezW6nC+Xy5d17mViWRVFzEWrbahEsD8aY4DFOKdr+EKGKwFNzn8KGvA04XXsaCrsQT3xfi4Qx\nl0MwvWdJxKm24GAqkAgOpiBRXQ1MnEhKRKGg/auBqobiYkrjRUQ4D/osLXWoN5Zl8VXuV9h+fjsE\njAAMGHyT9w1Wpq7ENeOu6bFdhFNtCQkUPEUiKvD53e+6P7erOhKJ6Jie1Nv335Oq7ey/abXS73rp\n0v41v3eFGwRrMjm/jsVC6m3Jkr73IHK0t1Oq9uabaagqz+DDB7dRCOevOJiIhWI8ftnj+OeRf6Kk\npQQMGAgYAW6ddCsmhg/MKLuoqQjrc9bjkNgMdoYS0eGTMC9hLuQXG7C5qsHOtJnb8O6Rd5FdUozS\nQ9OQPP8AEkPi8OiljyJQNrArY6wmFo/NfgxWuxUCfRsEdV/RVZ3bzGptpbK+Lpw6RRdRlcp570yn\nA6ZNA266aUDLcqKlhVJ6XQkKcjRt5zfk48eCHxGnieu48dE1SfD5z5mYHDEZiUGu+ws6qzYu/mm1\nQGYmsGyZ8yw6gFRbXR0Fb86HOjCQgpu7vbebbqKg0xWG8Z6nI8NQ1abFRZEr13vXX/btoz3Vb76h\nNLOIv/IOOgzrSc7BTzAM41FKhGfoYmftKG4uhtFqRJwmzm260lOq9dV4Zu8zEAlECFWEwsbaUKGr\nwJjgMXhy7pNuldh/T/4XGcUZ0J9cgtO7JmPuHfvARh5Feng6Hr300QGtqUcKCqhp7ZNPnBu2QOmv\nkhLXh4WG9u6t6G0+z/68Y0+WY9/XU3C+0IIrfvcjlo6/EvPi51FjfCeKioA//pFUTWdx19QEXHMN\n8NvfOr/Ohg2Uju2KUAjccYfrIDycaW8nhxeNhlT56tW8ehsonsQG/v6BZ1ARMAKvznfbVbgLdtbe\nkeoUMSLEaeJwvvE8ChoKMC50XLdjTFYT9pfuR4ggGdlHx0IdpkNeRhoW/K4S2dXZaDY2D1i9uaSw\nkALb4493C2wAqZXO6TS9WY9dhbtwsOwgRPUizDfOxxUJV0AiHIBk6AM21gYGjuhUViLEqSwRzDYW\n53MCsUe6B7uKduH3s36P9Ij0judpNPQ2XdHV8QQg15Dh4BxSVUVqa6Az2vbtIweYiAhH2wKv3gYf\nvqCEZ1hxvvF8t6IOhmHAgkVNm+tBYBa7BTa7DSUnxoBlGSg0BrQ1qlBzgRrajVbj4Cw2NBT429+A\nKzvZfF244PKpBosBL2e+jI1nN8LO2mG0GvH5qc/x7pF3YWd9U4UwLXIaDFZDxx1x5s5gMGIDJAE6\nGE4th1YRi0BpID45+QlsdkcVSnAwTQR39ZWe7u7VhjYsC3z5JfCvf9tQXt8Mq717M78ntLdTYz7X\nzB4QQIUlrpQrj3fhgxvPsCI6IBp6s97lz9ypL6VYiVDBGOQdjIcqmI6VqQ3I3p0ClUjTbQq311Cr\nnU0P//c/4A9/cLl5dLjiMMp15UgITIBSokSANACJgYnIrsnG2fqzg7O+LkwIm4DLYy9HUXMRzhWY\nUFUQCUZVj9BAKdj2IFSei0KANADNxmZU63sohRwBXCi0YfO+UvxSfBir3vwvfr/999hbtLfP2yT7\n9lEhTOc9YE69WfsXL3k8hA9uPMOKxUmLYbaZOwIcy7Koaq2CVqVFaqjrzRqGYRBTfxfMNgvabS2w\n2CywihvQUCfCdMG9EAl8kB/ato02m/7zHzJa7MKpGrLw6rpuESNCQUPB4K8P1KB+z9R78Pjsx2E9\nuxQKOYNYTQwiVBFQaAzI+3kCrBba6/DJZ+YnWBZ4/oPTKGsvQFC4CU2nLofIGohPsj7BvpJ9fTrX\nyZP03+Jix1dDA1XAdnVv4fEuI/cvlGdEkhiUiIdmPoTPsj/r6MEaGzIW9069F2Kha++l1lYgOzMG\n6cGBqNGXQ2duhVKsRIo6Bsd2CbFyoR4BUi80SfXEnDlUAsnlpwwGMkScNw8AqU6Trbuis7N2qCQq\n2Ow25NXl4WT1SUhEEsyImoHEwMQey/P7g1AghMY4GaJKID0qB1WtlRBLSXa0NgQgL1uBSdPjEa7s\nX5e8xWbB7qLd2FW4C3qzHlMjp2LFuBUeNbz7ijMFBhw42o6IaEAkZGBqFqI6JxWxM0z4/uz3mBs/\n1+MWkj//eZAXy+MWPrjxDDumRU3DZO1kVOurIRVKEaoI7fEiL5EA990H2O0qAOMB0BDTny6sRQnb\ngke2F2NW9CzcNum2btWcZ89SP5arwog+oVbTF0CB7dFHqRxy7lyAYTAnbg52F+6G2WbuKCBpM7dB\nJBRhYsRE/OfYf3C44jDkIjlsdht+LPgRN0y4ActTehlv3Q/0erL2MljGYH9JJZqNZWAYAaTRdsCi\nxH3TbutXUO3sN6pVaREiD8GximMdfqO9GVn7ApYFvv7WBIHYBNHFVg5lsB75B1OQeEkx6s3nYbAY\nOobZ8gxd+ODGMywRCUSIUXvmtySVOpden60/i301LyM2PeyiKorG4fLDaDY240+X/6njwm0wAG+/\nTTZXvU2F7hPvvkvVk0891VE7nxSUhLsm34X/5fwPLMuCZVlIRVI8NOMhlDSX4FDFISQFOnw6rXYr\nvsn7BlMjpzqV7nuD9HSuEEQGi20BcutyUaGrQKgiFJMiru4wke4rZbqy7n6j6iiUtZRh54WduHXS\nrd57E/2kuBg4dYJ6GnQNCggurrO9RYFzRyMRM6MGMpGs55PwDAn44MYz6tiavxUqiapDpQkFQsRq\nYnGm/gxKWko67MgyM8nn8eDB7nPFBsQDD1CFAdfkfeYMcP48Fl59NaZHT8f5xvMQMkKkhKRALpbj\n7UNvQyPVoPxMDCISayGRWzr2vHJrc70e3DojFooxRTsFU7R9NLJ0QYWONplc+Y2erjs94PN7A6EQ\nWLlCDG2ZBNk1JxAiD4ZQIILVZoFeVIrlKcsH1dmHx3vwBSU8o44yXZnLdgIBI0BDO/lBGgzkuhEZ\nSWnNzZu9uACl0jmwPfJIR8pSLVVjauRUTNZO7lBIDMOgrUGDI9/NQlFWD1NIhzjuUnkGqwGh8kGq\nWO0jcXHUSP72EzPw/+4LQsRlOxE8ayui5+7FIzfOwKKkngfc8gwdeOXGM+qI18SjoLEA4SJHUQTL\nsk7N4ZmZ1KMUHk5pTVfqzWQ1Ibs6G+caziFIHoRZ0bP6vm/0/vuUnrziCrdPmR0zG198egoCoa1j\n74eRtAHAoIwrGixSQ1MRIg9BfXt9R/sF5zd6ZfKVvRztW8RCMW5KuwkrUlag1dwKjVQDqah7lasn\n7NlDXqFdp8TzDC68cuMZdSxPWY52S3vHvDWr3YqSlhJMDJ+IWHVsh2rjChs5X8HO6k1v1uPFzBfx\n3tH3kFmaie/OfIcndz+JU9Wn+raYNWucA9vatcBPPzk9JYK9BCi7HKy6BK0GE45mqlDRWoEbJtww\nqClJbyMWivHY7MegkqhQ0lKC0pZS1LTVeMVvdLCQi+UIV4b3O7BVVwMffUSN3Dy+hfeW5BmVnKw+\niS9Of4H69nowYHB53OW4Of1mKMQK7NwJfPihs5mx3U79Sa+/TuptQ+4GbM3fioSghI7ntJnb0G5p\nx5ola/p3MfzkE+qH+89/nEYafPABcPSoHeLAepQ11sKgk+OtNUKkxcR7vRXAF9jsNie/0QBpd1Pp\nkcLHH9NkdLsdePFF98NlefoG7y3Jw+OGKdopmBQxCTqTDlKh1KkC0G4HZs3qfkxiosPFfn/pfmgD\nqDfLztphspogE8nQYGhAYVMhUsP66P5rNpM1V+fAZrOhskaIAweAuDgBBIJwhCvDUVICFJ0E0mP7\n8879j1AgRHJwsr+XMehUV1N6OyaG/r11a88DXHm8S4/BTafToa6uDsnJzn+Ip06dwqRJkwZ1YTw8\ng0lVaxV2Fu5EfkM+tCotrkq+CikhKQBo7MqSXkbO0bRt4ELjBZxrOAeLzQKhQIhAWaCT76LHSCTA\nCy84vm9rAx55BAe1D8JguMRpkKdYTGmuBQsGNqCTZZ1d/Hm8y9atZI4sFNLYn19+oRFAvHrzDW73\n3L7++muMHz8e119/PdLS0nDkyJGOn911110+WRwPz2BQ0lyCZzOexb6SfTBZTciry8OL+1/EgbID\nHp9jbvxcZNVkIbsmGxKhBBqZBkJGiLKWMuTV5w1sgW1twP/7f0ByMjB5Mq64ApgwwfE1ZQopS1fz\nzTzFYqE02Y4dNLKGx7twqo2bZScUOga48vgGt8rthRdewPHjxxEZGYkjR47gzjvvxIsvvojrrrvO\nl+vj4fE6X+d+DaFAiEgl3UIrJUoYLAasO7UO06OmezRi5qqkq/DaL691OPhz42LmxM3BrsJduDql\n/83OsNmoyOT223G94OL9Z3Ozd8ZNX+TIEeDwYQpuCxYAzzxDhTM83mHbNhoC23msjd0O7N5NU+K7\nDnDl8T5ug5vNZkPkRf08c+ZM7N27F8uXL0dZWZnPFtdfzDYzsquzUdRchDBFGKZFTevW18QzOrHa\nrciry0OcJs7pcblYjrr2OlS2VnY0cfeEQCBAalgqxAIx6tvrIRfJEaOJgUqiQllLGZqNzf0Pbmo1\njYTmOH2aZsKtW0e9CQPEYiFXepmMzHtzcoCfj9ZBHHkOEqEEE8ImDHio7GgnJQW47bbujzMMP8fN\nV7j9mNVqNS5cuNCx3xYZGYm9e/di5cqVyM3N9dkC+0qLsQWvHXgN5bpyiAViWO1WbMjbgD9c9gev\nDs3kGZ4IGAEkIgksdouTQuuwvBJ6VuWoECuglqqhkqgQq3FUdlhsFggYATQyjXcWfPYs8NhjwLPP\neiWwAaTa6upoCrhSySK3uBa/X3MQk36zEQIhIBVK8dDMhzAxYmiW5w8H5szx9wp43CYi/vWvf8Fu\ntyMvz7F/oFarsX37dnz88cc+WVx/2Hh2I6paq5AQmIBodTTiA+MhFojx/rH3fTb0cahitVuR35CP\n3NpctJnb/L0cvyBgBFiYuBAVrRVOpcQ1bTVIDEpEqMyzfJFIIMLylOWo0FXAZKXNL4vNgrKWMlyZ\nfCUUYoV3FhwVBbz8MnD55QCA8+eBDf84i/52yHCqzWKh6dAihR7V9UYYq8ZCpZuJhMAEBEgD8N7R\n99zOzePhGQ64VW5TppCXXHp6Ou644w786U9/gsFgwBNPPIGjR4/ijjvu8NkiPcXO2rG/dD8iA5zL\nkYLkQShtKUW5rrxbOmq0UNhUiHePvIsmQxMYhoGQEeK2ibdhfuJ8fy/N56xIWYGyljLk1OYAABgw\nCFeG484Jq/HsswxWrwZiPSizvyr5KtjsNmzJ3wKzzQyhQIhrxl+Da8Zf473FqtU0KgdU3Zj/hw8Q\ndWIPzl//OcZOcD3ipyc41VZcTC5gNYZmiCWAoVmJ3IwJCI2tg5zRoN5aj9zaXMyKcdETwcMzDOg1\n+3v48GE88cQTmD17NvR6PW699VYcOOB5VZmvYVkWDFzXN49W5dZuaceag2sgEogQHxgPgKyj1p5c\ni2h1NMaGjPXzCn3Pqsmr0GhoRF17HTQyDcaHjseun0TIyQE2bQIefLD3cwgYAZalLMPipMVoMbVA\nLVUPqmN85XvfI/TkLmxY/G+EbhbjT6l9L+Xfvh2oqaEvmQxoaZfBZrdDbxSgKj8SxzZPB2tnELHo\ngsv5cjw8w4Veg5tIJIJcLofBYIDRaERSUhIEQ7SsSsAIMCN6Bo5XHke0Orrj8VZTK9RStccjUkYa\np2tOQ2/WOxVKSEXUuJxRnDFqgpvRasSG3A3YV7IPNtYGtVSN36T9Bunh6Whvp96xceNI3Vx9NZno\neoJUJHXyqRwMWBZYX7sIdYvnQREdgrw84EK2HmMajwALF3p8ngceAGbMAAouDvc+U1ePk9UnEawI\ngkRuRuGJRIjENignhiI5yH2jdVsbpUgnTx7oO+PhGRx6jVIzZ86ETCbDsWPHsH//fnw/4R0sAAAg\nAElEQVTxxRe48cYbfbG2fnF96vUIkAagpLkE9e31KGspQ4upBfdcck/HmJDRRqu51eXjchFVCI4W\nPj35KXYV7kKEKgJxmjiIBWL8+9i/kVWVhX37aA9KoSBF49UpAF4gPx84XaKGLDoEDAMES/Qw/O4h\nsMdP9Ok8kZHAihVUfPn448Bbf4/FVXecRtSVX0KorgUr0sPANEBWcJPTDWJXdu4E3nyTLMl4eIYi\nvV7tP/roI8yYMQMAVUxu2rQJn3322aAvrL+EKcPw3PzncKj8EPIb8hEZEInLYi8bUmPsfU2cJq6j\nGrCzF2GLqQWLEkfHCI/atlocKj+E+MB4CBi6p1NKlAixh+Cb7G1o/OGSDqPkiIi+q7fBhGWBb78F\nAgIcachlF95BLtIgu+Zx9Ed3txhbcLTyKKr11ViQsAC1Te1485NoaCOsSA4bD3NNJIqLgYSE7sfq\ndNSMbLdTn9yt/p8xysPTjV6DGxfYOnNn5x6cIUiANABXJl855MZo+IsxwWMwWTsZJ6tPQqvSQiQQ\nobatFhqpBnPiR0fNckN7A4SMsCOwcailahzOUCDK6DwFgFNvnuy9DTaFhdSLJpMBXJvpt7GPoiFE\njrodDMamADh5EigtJVnWC0VNRXjtwGswWAyQCCUw2UxoOTUPKYFLkJJMe4bVBmDjRuDRR7sfv2cP\n9ZnHxQG7dpFVWUiIF98wD48XGJ15ulGGgBHgwRkPYmfhTuwp2oM2cxvmxs3FspRlCJR5z/ViKBOi\nCIGdtcNuA3Iz0pFyaQGkShNajDq0nl0CmxQoL3c8326neFFfTz7GRqsRtW21CJAEIEge5NO1R0YC\nTz7Z9VFqNVCrQQv94x+B55/v9Vwsy+LDEx86FReZDRIcPpCM2IhcpIAqMyMigKwsdFNvnGrTaqkZ\nmWF49cYzNOGD2yhBKpJiecpyLE9Z7u+l+IVwZThmRs/Etv0VyN+bCpHEgvhLs9BoaMALfwvA+ODu\nxzAMEBzMYsf5n/Ddme9gtVvBgsW0yGm4a8pdPnPxUCho2KVLWBZYs5YCm6tRBl2o1lejqrXKqSWm\n+nwERDY1iitaES20QcDQlHCbjca1dA5unGqTXOx/j4z0rXorL6eAruYNh3h6gQ9uPKOGuybfjW3v\n50OgrkXWvigETcjC6pmrcXms+wkXB8sO4fNTnyNWHQupSAo7a8exymMw2Uz4/aW/98k8tdOnKYh0\nGvHmgGGAt95ybMaxLPCvf1HZ5+LF3Z7OgvZdO687ZkIFQuJqUdFagRevmgWpSNjxM6XScaxOR20S\nUinQ1OR4vK3NN+rNagXefhtISwNWrRrc1+IZ/vDBjWfUUHBGhmDLJFw3zYKiEisWM3Nweaywx2O2\n5G9xmsQsYASI08ThdM1pVOuruxkGeJu2NuCf/6Q+7vvvd/OkzoHtvfdIbrkyNgSgVWkRrghHk6Gp\nI70qENrRwhTh0rHpiAx3bz/W3k6l/1ar8+Nxcb7xSzx6lNz26+uBpUu95kbGM0LhgxvPqMBuB77+\nGggKAsRCMRJixNjxI3DV4p5TXNX6akSro2Fn7ahvr0e7pR0KsQIMw6DZ2DzowS0jg+aYHjxIbvLR\n7qvzaQZOQwMpN26CgNXqFHkEjAD3TLsHrx14DaUtpZCJZDBYDAiSB+Hm9Jt7XItWCzzyyMDfU3+w\nWsk2LDycFOS2bbx64+kZPrjxjApOnwbOFxsgDq5ARa0JoYpQWG2h2L1biJUr3R+XHJyMoqYinGs4\nB51JBwAdLRWD6UYCkGrbvJmCSmMjsGUL8NvfAtnZpOS6ZURlMppdw9HSAjz0EPCnPzlt2o0JHoOX\nFr2Eg2UHUdVahaTgJMyMnjmkJwEcPUpxOyGB9iB//plXbzw9MzStRnh4vMw/11bhcFEeDuXU4OTZ\nZvx0PB9ZZWfx/UYrWl33uAMArh1/LbJrstFoaIRGqukIAAGSAPx4/sdeX9dkImP//pCRQcfLZBTg\nDh4kxfLWW1TF2CMtLdTHMH06kJ7e7cfB8mAsS1mGe6bdg4WJC4d0YONUG1ewwg3+3LbNv+viGdrw\nyo1nxNNuaUd99H9x6XWBHWqLZVlU6aswMXkRxGL3VYYx6hhEqaLQYGhAi6kFYoEYqWGpSA5KxrHK\nY2gzt0EpUbo8lmVZfLW1Gl9/zeCPz9Rhdso4jwahAg7V1rn3TiSi/bfISEcPmtt6FoahLvTf/Mbx\npIaGYdmQdvQoUFUFxMTQvh9AqeQ9e3j1xuMePrjxjHgKGgoQNPZcR18XR5hZj0bBRshk7oOb2WZG\nsCIYk7WTYbVbIRRQIzjn+GKxW9we98/Mj/DhhykwtSnxtw+zMW3JWjw2+zGPPE4zMigWicUU6ABK\nTV64QBnGkydJvSUmujmBWg3cdJPj+6NHgaeeAr78Egh20fcwhKmpAeKdf3UQCmlyQ00NH9x4XMMH\nN54RAcuyyK7OxpaCLahqrUJiUCJWjFuBlJAU2Fm7y0kRDJheJ0UEy4MRrgiHzqRzGkDabGxGtDoa\nGqnroaQ/XfgJP+5uhZQNRni8HrqzM6GbRWOHXlz0YjenlK5IpcD8+Y7vbTYgNxdISqLiGIXCA/XG\nkZ1NXeCvvDLsAhsAXHstffHw9AU+uPH4jNq2WtS21SJYHoxIVaRXesTMNjNyanOwp3APMoozEB8Y\nj0BZIIqaivDC/hfwh9l/wJjgMRAIBDBZTR0l/QBQ11aH6yZc1+P5BYwAd0y+A28cfANt5jYESAOg\nM+nAgsUDMx5w+x62n/kZDSdXQhXUDoGQAmhTzkzYpm1FSXMJEoPcSS5i8WLnNrUDB4ATJxwN1Szr\ngXrjSEwkl+OLRSWs3Y66w3vQnjoG0QHREAv7PheOh2eowwc3nkHHbDNjbdZaHCo/BAEjgI21YVLE\nJNw/7X63+1WeUNdWh9cOvIZqfTWOVByBWCCGzqTD7NjZCFOGQWwU48ucL/H8wudx15S78PGJjyFi\nRJCIJGg3tyM+KN4j4+i08DQ8N/857CrchdKWUkyMmIjFSYt7TC8WnoyE3SyFOJiqVQJC9Cg8noQJ\n41R9npNmsQAbNtCeW+fmaavVQ/WmVncEtipdJbL/vAoBZwrxycNzIJMqsWrKKsyI7u4hy8MznOGD\nG8+gs/HsRhwoO9DhyM+yLHJqc/D5qc9x5+Q7YbKaoJFpek3VdeXTk5+i2diMMEUY5CI5NDINdCYd\ncmpzMCN6BjRSDUpbStFmIS/NeE08DpQeQIupBenh6ZgWNc3jcv5YTSzuvuRuj55rMAD6U0tgEdTA\nbHCc32QUoDJrIuJu6tuoAYMBSE6mkTxOa4oFVH0ocjRZTdj94j0Ye7YEux+/AbEqGdot7Xjv6Hv4\nm+JvSApKcnlcdbWjr2yIjnL0K1WtVdhZuBP5DfnQqrS4KvkqpISk+HtZox4+uA1DWJa+hsOFxmKz\nYHfhbkSrozuCF8MwCFeGY92pdcgszYRYKEa4Ihy3TbwNk7TurbA602RoQl59HuLUcR1KiGVZBEgC\nUNlaCYuNCj0kQgmkQkpFxmniEDdx8GfYtLQAl6XFYndBCQx2PWRiGSw2C0ShNZgWOhcKsaJP51Or\nqV1toOTV5eGXSUEom3sdzEr6TIKNDKJO1WFP3B63wW3LFgpuM2e67CoY1ZQ0l+DF/S/CztoRKAtE\nbm0ujlYcxerpqzE7dra/lzeqGQaXR56ufPcd9f0MB0w2E8w2s1MJPMuyOFZ5DLVttQiVhyJeEw+L\n3YI1h9bgfON5j85rtVvBgOlopo4MiKS9MJYFCxY2uw3lunIsSFzg8z0lrRZ4+e9q/PjxTDz05zok\nXLsWSdf9F6v/WIW/PBrh07V0ptnYDINcDNPFwCZrNWD5m1sRXW9EVWuVy2OqqoDMTCAqiv7m7D3X\n3/gUlqVaGX+u6evcryEUCBGtjoZSokSEKgJalRbrTq2D2Wb238J4/Bvctm/fjvHjx2Ps2LF45ZVX\n/LmUYUNzM91F//ST8/7LUEUppv/hOXcPgC6y1fpqaKQaBEgDANBcNblIjm0FnnXmhihCEK4IR7Ox\nGQAwOWIyQhQhqG2vhYARoFpfjVkxs7ByfA/2I4OM0WpEVlUW5CI5whRhOFZ5DE/tfgrFzcV+WU9k\nQCTA0M0FAFz6zSEUT47H9oXxSAl1nUbbupUmAISEAEVFQF6eL1fcMwUFwJo1/luTxWZBXl0ewhRh\nTo/LxXIYrAa3Nww8vsFvwc1ms+Ghhx7C9u3bkZeXh/Xr1+PMmTP+Ws6wYedOR1pyxw5/r6Z3GIbB\nTWk3oaG9AQ3tDbDZbajR18BoNWJC2AQIBQ7jYo1Mg5LmEo/OK2AEWHXJKujNepTrymGwGhCvicfU\nyKn4x4J/4KXFL+GBGQ84VUf6ms+zP4edtSMuMA5hyjDEaeIgEoiwNmttR4DxJSkhKUgJSUFJSwks\nNgt+vvVybFkYA4lYioUJC6kkc9Omjudzqi0iggpWNBrvqjeLpf/n4qaTWyz+U5QCRgCJUNKt15Hr\ngfTn3x6PH4PbkSNHMGbMGCQkJEAsFuPmm2/GDz/84K/lDAuam4Ht28mhQqulOVrDQb1dEnkJ/jzn\nz4hSR6G2rRbhqnCkhqQiXuPcmasz6RCrifX4vONDx+PvC/6OS2MuhUaqwZXJV+LNJW9iWcqyQTc0\n7o1WUyvyG/K73dUHy4NR1lKGRkOjz9ckYAR49NJHsSR5Cera61BsqMK40PF4au5TCMsuIF/KTt3S\nnGoTXrz/CAryrnr74APaz+sPBQVkazZ2rP8UpVAgxILEBahsrXS6WanR1yA5OBkRSv+loHn8WFBS\nUVGB2FjHhSwmJgaHDx/213KGBZxqE1/cQuLU2809m7kPCVLDUpEalgqA7mxfynwJ5xvPIzogGkKB\nEK2mVrSZ27Bs7DKPz1nbVosvTn+B3NrcjsdmRfc+sNMXMAxDKUCw3RrIuZlq/kAhVuCWibfgpvSb\nYGftEAlE9If01WvA66/TTBsAtbXkkiIUAqWljuMNBmo/GGhhSWkpcPgw7ZktWAAEBHh+LKfaVCpn\nRTlhgu+LrK4Zdw3KdeXIqc0BQMYA4cpw3DftPr/9jnkIvwU3/hffNzqrNg5OvS1ZQnfVwwWGYfDw\nzIfxv9P/w9GKo2DBIkgWhEcufQRjQ8Z6dA6j1YhXf3kVrabWjqnSjYZGvPrLq/jHwn8gVOFqsmff\nsdqtuNB4ASabCQmBCVBLex4BbbFZUNtWC4VYgfSwdOQ35DupyNq2WowNGYsgmfd/YSzLwmg1QiKU\nOKV7XSFgBI7Wi64DT+12BH3wGu4bOxPmyxdA08WERdG3Yk+XbN4MyOU0zmfvXmDFCs+P5VQb19De\nWVH6uppTLpbj8dmP40LTBdToa6CRaTA+dDzdNPD4Fb/9BqKjo1FWVtbxfVlZGWJiujfFPvvssx3/\nnj9/PuZ39iQaRRw6RKaxNTXOj7e1kVv80qX+WVd/CZAGYPX01bh90u0wWo0IkgX1ekHuTHZ1Nurb\n6pEQlNDxWIgiBGUtZcgszcS14wfu11TaUoq3D72NJiPlfhkwuC71Oiwdu9Tlzdn+0v348vSXMFqN\nYMEiOSgZJqsJPxb8iEZDIyRCCSZpJ+GvU/7q9Zu7k9Un8XXu16hqrYJcLMevxvwKS8cu9fwi2ymw\n4dVXwRTk43vpQ0gtBO67z/N17NtHk7J78mcuLQWOHKEMqMVCqUlP1Run2hgG0OsdjwuF/lNvDMNg\nTPAYjAke49sXHkVkZGQgIyOjT8f4LbhNnz4dBQUFKC4uRlRUFL766iusX7++2/M6B7fRzNy5dNFw\nxTC0C+xAJVH1a9xKZWslRMLuf75KidLjopSeMFlNWHNwDRWEXFSGFpsFX+V+hVhNLCZFOPfjna45\njQ+Of4AoVRTClGGws3ZkV2fjeNVxKglnqS3ieOVx7C7cjTsm3zHgNXLk1OTgzYNvIlgejDhNHMw2\nMzbkbUCzsRl3Tr6zbyczGgGWReZv/omGr5Q4cABYfpUZUQm9TzOoraV9tMWLex4kunkzjfERCMhD\n02LxXL1ZLHRsV8sxtZrSlEajd5Qlz9Ciq7B57rnnej3Gb8FNJBLh3XffxZIlS2Cz2fC73/0Oqamp\n/lrOkEeppK+hTk0NcOaMs+nvYBAVEAWr3drt8f/f3r3HN1Xfjx9/nSRt0kua9EpbeuMOAnIRrIAo\noHgF3aZu06nbT51u3qZTQYeXOS8TL5vX6YZzTvfdpqIMdYoyFLkrd5D7pff7PW3apLmc3x/HpoQW\naGnapOH93KOPkdMk55225p3P53w+77e91d6h+v/J2FO9hwZHg99zRegjiDPG8b9D/+uQ3D4+8DFW\no5WoiChAm/YrbCikqrmKkUkjfRu3m1qbeGrNU8wZPof4qMBMTS7ZuwSLyeIr7Gw0GMmx5LAyfyVz\nhs8hIaobn36io3Hc/QCL79WmwF1l1Tiu+CX883EYMeK4D/3kE20ByvEaiR45amuTmtr10VtkJNx9\nd9dfjjh1BXVi+OKLL+biiy8OZggiwN5/X5smHTMGkgJz2atT41LHkRSdRGljKWmx2jWtmpYaIvQR\nnJ11do+fv9nVjErH5fomg4laR8eVjmWNZb49e6Bd/yq0FRKpi8Tj9fiOx0bG0uBoYFXhKi4fcXmX\nYlFVlT3Ve/ji8BfUOmo5fcDpzMiZgdVkBSCvPq9DnUu9To+C4itU3R3r1mnT3ZnRNczZ+AtWJlyM\nyTyC9OM8prJSm5IcONC/XNfR1q/XamKWlPgfb22FrVvhnHO6FaoQxyRXPUXAFBdrn8ojI7XFL9de\n23vnMhlMzJ82n7e2v+VbqZZjzeH6cdcHZDFJZpy2kldV/Vc21rbUcuHQCzvcf3D8YPbX7Ccl5ojh\niqqtjDy6OouqfaPLPjv0Gf/c+U9iI2MxGUx8uPdDvsr/igfPeVDbzB6TQlNrk99iF1VVfSWhusPh\n0CrgpKSAVxfBjnHXsSHuctwfw/U3OCg5sAVdahpZliy/a6SffKJNM+r12kjsWKO3yy+H845Rq/ro\nhStC9IQkNxEwH36oJbaUFK1L8kUX9e7oLTkmmXum3kOjsxGP6sFitARsoUZGXAZTM6eypmANKbEp\nROojqWyqJCYyhvMHnd/h/nOHz+Xx1Y9T11KH1WTF7XUTHxVPhb2CCF17+a8mVxOxkbGckXZGl+Kw\nOW28t/s9MuMyfWXE4oxxFDUU8enBT7n29GuZO3wur216DZPBRKQ+Eq/qpdhWzPjU8aTGpnbrda9b\nB1VVWgeCCuKoSL0ckxfe+28lFXm/4vvLVvHqfTOJSU7ntsm3kW3N9hu1gZbgDIbOR28mk/YlRG+T\n2pIiINpGbamp2hubTqeN3vqC2WjGarIGdAWioijcMOEGfjr+pxh0BmxOG9OypvHQOQ+RGN1xKeCQ\nhCHcO+Ve4oxxFDQUUN1czR2T72BM8hhKm0qpaa6h0l6Jw+Xgxgk3kmE5cTdugLy6PFRV7VAfMyUm\nhY0lGwGYmjmVn5z+E2qaayhqKKLYVsyk9EncNPGmLp2joQFee02bGmxthTPO0GpJtn1FJVST5l7E\nFR9t5qtffY/k9KE43A6eW/8cLa4WPv1Ue47KSq2qSVmZtqrx88+1Y0IEg6IGow5QFymKEpQyRaL7\n/vQnrXlm+ncXZtxuKC2Fp5/u3dFbqFFVlRZ3CxG6CCL0EdQ21/LvXf9mfdF6rCYrV512FdOypnV5\n28Oeqj08ve7pDtVcmlqbMOgMPHX+U75jDreDSnsl5kgz8VHxVNorqbJXER8Vf9zmsB98AG++Cffd\np63KPdqiLYv49sA6hrbGUpOpJXbFq+LdsoU5Vz9M0/7JlHVSRlGng1mzOl9YIkRPdCU3yLSk6LGS\nEu0ai9nsv1CgbeN5b157CzWKovi1tEmITuDWybdy6+Rbu/1cLhcMTRiKxWih3lHvu36mqioVTRUd\nlvmbDCbfVoA/b/oz64vXo1f0eFUv41LHcfMZN3dot9PQAJ9+qi2tf/99yM3VppaPVGWvQmexUvPd\nakzFq3LO26ugtBTb5XWcN7PbL02IXifJTfSYwQA/+pE2FXW0tOCWeOy33G548kn4/vcjuDP3Tv6w\n/g/k1+XTVslrSuYUZuTM6PSxS/YuYW3RWnKsOb7msNvLt/P29re5ZdItfvddsQI8nvYqH19/3XH0\nNippFAdrD/q2Goxftg1zlY0/3zCJe+N7vu1CiN4g05IirKmqSqW9kmZXM2nmtC533g62jRu1Kd0R\nI+B3vwOnp4VdVbuwt9rJsmSRY83pdJqx1dPK7Z/cTnJ0st91Oo/XQ0ljCc9f9LxvVWVDA9x7LyQn\na6O1piYtqT79tP/ora6ljkdWPkKLq4UBsQPQN9opbalkeOZ47pl6D7qqam0d/4UdV5EK0RtkWlKc\n0mpbalm0eRF7q/eiKAoRugh+OPqHzBo0K6Rrm7rd8N57kJkJRUWwcyeMGxfFpPRJJ3ys0+3E7XV3\nWIDStu/N3mr3Jbe2UVtbIouNhfz8jqO3+Kh4FkxfwNJ9S9lYshFjhJGLh1/BJcMu0RLbLbfA94PX\nN0+IzkhyE2HJq3p58esXKbGVkGXJQlEUnG4nb257k8SoRManje/xOVweFxtLN7K+aD2KonB25tmc\nkX5Gt2pkdmbrVm2VYU6Olnzeew/Gju1azcSYyBiSopOwOW1++95aXC2YDCbfHkC7XbvW1toKBUdU\nK3M4tKr/06b5n29A7ABuPuNmbj7jqEKTz/9OS2zXd7PMlxC9TJKbCEuH6w5TUF/gVz7LaDASHxXP\npwc/7XFyc3vdvPTNS2wr34bVZEVVVbaWb2VqxlRumXRLe8X97j7vd6O2tnqhVqs2mtJGbyd+vE7R\n8eMxP+aFDS/g8riwmqw0tjZS01zDTRNv8o3oIiPhl7/UkufRIiPb6yif0G9/6z+H+cUXWuacO7eL\nTyBE75DkJsJSg6Oh06nHmIgYKuztrRVKS7VO0/puDrZ2VOxgW/k2BlkH+c6TEJXAhuIN5A7Mpaq5\nivXF64nQRTAjZwa5GbldqtB/5KgNtCRjtXZv9DYxbSLzps1j6b6l5Nfnk25O5/rTr2dC2gTffSIi\nYOLE7r3mTh2d2BYuhBdfPOmnc7qdKIriV9VFiJMhyU0A2id4pzN8KqqnmdPwqt4O5bPqHHWMTRkL\naAsqnnhCq6KRmqq94ad2saDHlrItxETE+D23oigoisLv1/6eaEM0idGJeLweXtv0GjsqdvCLSb84\n4bW+L77QfhdHdIMCwGaDw4dhaBe7qoxMHE3muNHEHb/9XOB4vVq5/xdfbC+wrKpdHgKWNZbx713/\nZkf5DnSKjjMHnslVo6/qdl3MNsc6tdutre4V4U9+zQLQ9qPt2AH339+NKakQlm5OJ3dgLuuL1zPQ\nPJBIfSQ1LTW4vC7mDJ8DaAsqqqrg3Xe1N7y4uK6/fpPB1GlXgoqmChweB+dmn+s7ZjVZ2VC8gfMH\nn3/CZqy33qp1u+7MkZvhW1s77kc70urVWpf2xx4L3Ju5qqoU2YrYUb4DgNNTTyczLlNL2Dod/PGP\n7Xf2eLRlnuedd8JqyA2OBn6/5vc43U4yLZmoqsrG0o3k1efx6IxHMRqM3Ypz61ZttenRfegOHoS3\n3oIHHzz+z06EBym/JbDbtQ/du3ZpHY7DxY0Tb+QHo35Ag7OBgoYC0s3pPHD2A2Rbs32bl4cO1V7z\njh3a/x840LXnPivjLFo9rX4JrtXTSk1LDTmWHL/7KoqCXqdnX82+Ez6v2axV9Ojsq21K0umERx89\ndqxOp7YhOz8fNm3q2us5EVVVWbJ3CQ998RAf7P2AD/Z+wENfPMSSvUs6Lsn2eLQAq6rgzDNP+Nzr\nitbR6GwkzZyGTtGh1+nJiMugoqmC7eXbuxWnxwP/+hesXKm9/vb4tZ/Jzp1a418R/iS5CVau1N4Q\nrVbtDaC/by1UVZXDdYf5YPcH1Dvq+fnEn/Papa/xm+m/8XVLblsGHxGhXeMqL9emZLv6+ofED+GK\n066gxFZCXl0e+XX5lDeVc3bW2Z1eL1JVlShDVEBe37p1sHv3sWNdvx4aG7VSaIsXa1NxPXW47jBL\n9y4l05JJliWLLEsWmZZMlu5dyuG6w/53dji0Ev9/+EN7lWSn87jPHRPZsVmhQWegoKF7jWe3bNF+\nn3Fx2qrPNgcPaj+zIUO0n1tra7eeVvRDMi15imsbtaWmalM1Bw5oI5j+3Df2vwf+y+Ldi4nQRaDX\n6fki7wsmpU/i1sm3YtAZfKO21FQtqTkc2lSky9U+ehs+/PjnUBSFy0ZcxpkDz2RP1R4UFEanjKam\npYYnVz+J2+v2LSBpcbWgV/SMT+359gOnU6sFOWyY1hT26FjbRm0pKVqybhu9nXVWz867qWwTkfpI\nv0UxBp2BCH0Em8o2MSRhSPudY2Lgnnvab5eVaUszn3tOyy5HSTOnsaVsS4fjbq/bv4XQCbRtm4iP\n15Lbtm3a68/O1n5mMTHte/k2bJDeceFORm6nuLZRm9GovcGbzf179FbWWMbi3YvJiMtgYNxAUmNT\nGWQdxKbSTWwq0eboVqzQEplOp03FGo3a15493Ru9AaTGpjJz0ExmDJpBckwyIxJH8MPRP6S0sZT8\n+nwK6guoddTyi8m/6LSbQHetW6eNyqKjtTfqDz7wj7Vt1Na2MCgxMTCjN5fH1eliGJ2iw+VxHfuB\n5eXwi1/Aj3/caWIDODvrbPQ6PQ2OBkAb5VY3VxNrjOWM9K61BoL2UZvFov0tm0za6K1t1JacrN0v\nOVlGb6cCGbmdwo4ctbVJTOzfo7fdVbtBxW+EoSgKFqOFdcXrOCvzLA4caE9mZWXticBg0JLA9u1d\nG711RlEU5gyfw1kZZ7G/Zj8GnYFRSaP8unSfrLZRW1uV/aQk/9HbkaO2NmZzYEZvE9Mm8vmhz/1W\nn6qqisPtYGLacfYUREdrq2SOLM1VUtLe/A2tfc89U+7h9S2vU1hfiKqoZJgz+A4JNX8AACAASURB\nVPkZPyc2MrZL8R05amszYIC2uKS8XBu1teXmmBjtcqCM3sKbJLdT2O7d2pRcRYX/cVXVSjD1x+Sm\nKIqvuPCRVFTfxur587Vjq1fDmjWdP09jY8/iSIpOCkhH8CO1jdoSvxsAKkr76O2+eV7W76iiqiEG\nU2M0yhGbyFVVWz3Yk+Q2Mmkk07Oms7pwNTER2vUxu8vO9KzpjEwaeewHxsX5J7bPPoPnn9cyUWx7\n4hqRNIKFsxdS3lSOTtExIGZAt0qk7d6t5cyoKP/fXW0tHDqkJf8jt1d4PPC//0lyC2dSOPkU5vUe\ne9l5ZKS22KK/qWiq4P7/3U+6Od1XjUNVVQ7XH+aOyXdwZsaxV+/VO+pxuB0kRyf3uIRWb3joITiU\n56KhtQa7y050RDSJ0Um0ehykXPoKTcb9eD164k3x3DDxBr+ko9d3f6P60TxeD99WfsuGEm254VkD\nz2JMypiu/6zWrIHHH4dXXjnmFOXJam7WGuYezevVph876yloMrVXghH9S1dygyQ3EXaWHVzGv7/9\nt7asXNHj9DiZkjGFn5/x806rhNQ76vnb1r+xo2IHiqIQZ4zjutOv69b1nr6wv6SC51a/TL2jHqPe\niNPjxGQw4fQ4SE5WSIzW3qltThuNzkaeOO+Jbi3I6HU2G9TUaM3jQBs+bdqkNZETohskuYlTVmFD\nIZtKN+F0OxmXOo6RSSM7rffoVb08+tWjlNhKSDeno1N0NLU2Ud1czYPnPOjbOhAKnl33LAdrDpJq\nbr9IuqV0C8WNxVw24jK/+xY1FDFn+By+PypEq/V7PLBggTZ18Pzz4VE5QPQZaXkjTllte7FO5EDN\nAQrrC/0KLMdGxmJvtbPs4DJuP/P23gyzyxqdjeyq3NXhNUXqI2lqbcLhdvj1qouKiKKsqazLz9/2\nPtFnOWbRIi2xPf20JDbRKyS5iaBr23Rdaa8kPiqeYQnD+uyaV21LbacLUMxGMyW2kj6JoSu8qrfT\n4xaTxVdD80j2VjuUTmDpUrj88hM/f9v6jksuCUS0XfCTn2gXdo3fldYqLtbKxPRZACLcSXITQdXs\naublb15md9VulO+yTIYlg7vPuvuki+Z2R0pMCqqq+pa4q6qK0+OkprmGszJ6uPM5gOKMcQxLHEax\nrdjvOlqkPpK02DSqm6tJN6ejKArljeWYI+LZvXwiGxu0xqPHWzhRW6vVFo2I0FYPxnZt9X3PmI/Y\nGlFcrO2Fu+GGPjixOFXIJu6T0OJqYUPRBhbvWszawrU0u5qDHVK/tXj3YnZX7Sbbkk22Vfsqbyzn\nja1v9Mn5B8cPZmTSSAobCiltLGXF4RV8uO9DVheuprallkantq5cVVV2Ve7iL5v/wgsbXmBt4Vqc\n7mOXlDoRr+ql0dl4/A3QR1AUhetOvw4FhYL6AqrsVRTUF6AoCq9c+gpTM6dS2lhKsa2YcanjuCjq\nQZrqjeh02ur74/nss/YKLV9+edIv6eS9+KKW2H7wgyCcXIQrWVDSTVX2KhauXUh1czURugjcXjdW\nk5V50+aRZk4Ldnj9isvj4tb/3sqA2AF+qxhVVaWwoZBnL3g2IFU9TsTeaufVTa/yl81/waAzkBSV\nxOiU0TjdToYkDOH+s+/n/T3v8/H+j4mJiMGgM2Bz2hiRNIJ7ptzTrar1qqqyoXgD7+1+j3pHPZH6\nSC4aehFzhs/pUr+3ekc964vWU9hQSEZcBlMzpxIfpe1cdnvd2ghUjfDt5YuK0jaqP/NM56O32lq4\n916tDqXHo91+7rk+Gr218Xj89yl89JFWPubSS/swCNGfyIKSXvCPHf/A5rSRY83xHatoquDNbW9y\n/9n3d2vj6anO5XXh9rrRK/7X19r6ojncjj6JIyYyhtjIWM7JPofk6GQi9ZG+/3gO1B5gffF6Pjnw\nCdmWbN+1wISoBPZW72VD8QbOzTn3BGdot6l0E3/a+CcGxA4gy5KF0+3kg90f0Oxq5pqx15zw8VaT\nlYuHXdzp99qS4/r12or7toanoI3Orr6642PaRm0Gg/bVNnrr00baRye2V1/VvoToAZmW7Iam1iZ2\nVOwgNda/o2VKTAr7a/ZT76gPUmT9U5Qhipz4HOocdX7H7a12zJFmBsQO6LNY8uvzSYhKwGgw+j6g\nKIqCgsLWsq0AfotcFEXBarLyTck3XT6Hqqq8v+d9kmOSfWWljAYj2dZsVhxegc1p6/HrcLu1WpKJ\nRwx409K0ahy1tf73ra2F5cu177cZMAA+/hiamnocSvd5PFqx01df1aodQ/8tciqCTpJbN7StWFM6\nW14HeFRPX4YTMtxeN18Xf80za5/hqTVP8VX+V126HqUoCteMuYZmVzNljWU0u5qptFdSaa/kJ6f/\npEvTdIGSZcnqNLmoqCSYElDp+CbrVb2dtrc5FrfXTXlTOXFG//bYbUmzurm6m1F3tG0bFBRAXR0U\nFmpfpaXa7aOvp61dq9UXLS/X1nQUF2s1Fxsa4Juu5+zA0eu1OdG2xOZywbx5Wt0xIbpJpiW7wRxp\nZljiMEpsJSTHJPuO17bUkmnJJDGq968PhRqv6mXR5kWsK1qH1WRFp+j469a/sqF4A3dPufuEb/7D\nEofxyLmP8NmhzzhYe5BRSaO4cOiFDE88iarFPXDhkAv5puQbGp2NmI1mvKqXElsJg+MHc8HQC1iR\nv8JvL5lX9dLgaGB69nTfc3i8Hr7I+4JlB5dR76hnTMoYvj/q+74pbIPOQGJUIvZWu1//Mq/qRUUl\n3hRPTw0aBA880Pn3Uo4qVnLOOTB6dOf3TU7u/Hifcbm0tugAkycHNxbRL8mCkm4qbCjkqTVP4XA7\niI6IptnVjFFv5L5p9zE4fnCww+tz+6r38eTqJ8mx5vhVi8+rz+P2ybdzZsaZNLua2VK2hfz6fNJi\n05iUPgmLyRLkyDvaXr6dt3e8TW1LLSoqk9Imce3p12IxWVhTuIY3tr7h+3v04mVm9kyuH3+9r/LJ\nW9vfYvmh5aTGpmIymKhpqaHV08rD5z7s23z9VcFXvL75dTLiMjAajHi8HgobCpmePZ2bJt4UtNce\ncpqa4M034ZZb2ouc2u1aSX9xypPyW72krqWOtUVrya/PJ8uSxdTMqQGvAN9ffLDnA/67/79kWjL9\njlfaKzk95XSuHH0lC9cspKq5CqPeSKunleiIaO6bdp/fopxQ4VW91DTXYDKYOrSpqbJXsb1iO63u\nVkYmj2SQdZAvoVfZq5i3fB6Zlky/Ml/lTeWMTRnLbWfeBmiJ/7NDn/Gfvf/RtgEocE7WOfxozI/8\nKoz0lM1pY2/1XjxeD8MSh/X/v8+CAq11zmuvQWbmie8vwpqsluwl8VHxzBk+J9hhhASTwdRp9Qy3\n1010ZDTv7nqXeke9XyKraa5h0eZFPD7r8ZBbXapTdL4pZ6/q5UDNAXZV7cJkMDExbSLnDz6/08eV\nNpaiKEqH+pUJUQnsqd7ju60oChcNvYiZOTOpbanFbDR3uWdZV31T8g2LNi/C5dX20CkoXHnalVwy\n7JKQ+3l3SWGh1sn7l7+UxCa6TJKb6JGJaRNZvHsxTrfTt9/L7XXj9DiZmDaRP6z/AxlxGX6PSYhK\noNBWSHlTecjuDfR4Pby+5XXWFa3DoDPgVb28t+s9fjb+Z50u/TcbzZ0uOmlxtXRaacVoMPbKa69u\nruYvm/9CYlQiURFRgLaf8N1d7zIscVifX8sMCKtVa8J37hE/9/x8/70OQhxFVkuKHkmNTeVn439G\nhb2C/Lp88uryKLYVc8WoKxgaP7TTN/y2JfadfS9UbCrdxJrCNeRYc8i0ZJJtzSY1NpW/b/87Nc01\nHe6fY80hKy6L0sZS33SJy+OiqrmKi4d2vi+tK1RVJa8uj+3l26m0V57w/tvKt+H2un2JDSBCH4HJ\nYGJt4dqTjiOo4uL8E9sHH8Addxy7GaEQyMhNBMA52ecwJmUMu6t241W9jEgc4dujNiF1At9Wfku6\nOd13/7qWOlJiUjrsFwwlawrXYDVZ/abxjAYjHtXDnuo9nJ11tt/9dYqOO3Pv5OVvXiavPs+3Mf2q\n06466RqVtS21vPT1S+TX56MoCl7Vy7nZ53LduOuOuU2ixdXSaWufCH0Eja09bC8eClasgDfe0K69\nRUWd+P7ilCXJTQREQlRChzd8gB+N/hF5dXkU1BcQFRGFw+0gQh/BHbl3dPomHCrcXnen8SkouD3u\nTh+TGJ3Iw+c+TLGtGLvLzkDzwA6LUrpKVVVe2/QaJY0lZFmyfMnti7wvGBA7gEuGdV49f0TSCDxe\nj68QdJtGZyMT0yaeVCwhZfJk+POfYeBA7bbTqTU8nTYtuHGJkCPJTfSqAbED+N3M37GxdCOHaw+T\nak5lSsaUPqkZ2RNnZZzF61te9xu9ub1uFBRGJo885uMURemwcvRklDWVcaDmgC+xgTY6TDens+zg\nMi4eenGni0OGJgwlNyOXDUUbSIhOQKfoqGmuYUjCECalT+pxXEEXF6d9gZbY5s3TtgdMnSp94YQf\nSW6i15mNZmYNmsWsQbOCHUqXTcmcwobiDeyq2kVsZKxvkcwPRv6gT6ZT7a12X43NI5kMJirtlaio\nnVbK0Sk6bj7jZk4fcDpf5X+Fy+vioiEXMT17ekC3GoSEV1/VpiYfe0wSm+hA9rmJsKGqKtXN1egU\nHQlRCT1e9u7yuNhatpUtZVuIiohiSuYUhiUM65Pl9PZWO3ctu4vkmGS/Ki9V9iqyrFnMnza/12MI\neU1NWnJrK7x86BDs2QNzZJtOuJNN3OKUcbjuMH/d8lfKmspQVZXB8YO5ceKNfgtZ+ptPDnzCv3b+\ni8ToRKIjoqlrqaPV28pvzv4NQxKGBDu80HLoENx2G9x1F1x0UbCjEb1Mkps4JVQ3V7PgiwUY9UZf\nfcaq5ioidBE8ed6TfnUcQ5291Y6KSmxkLKqqsql0E58c+IRKeyUjk0cyd/jckKzsEnS//jVccIEk\ntlOEJDdxSvhw34f8Z+9/fPUb2+TX53PjhBv9ihuHqvKmcv5vx//xbeW3AIxOGc1Pxv4kZDe5B0NN\ncw1lTWXEGePIjMv0nx4+uuHpu++C2QwXn/weQxG6pPyWOCUUNRQRHRHd4XikPpKyprIuPcfRS+f7\nUlNrEwvXLKTZ1exL0AdrD/LUmqd4fNbjJ72dIFx4vB7+ufOffJH3BTpFh0f1MCxhGLedeRtWk1W7\n09GJ7R//0PbCiVNW6G40EqKLBsUPorm1ucPxVk9rh9JfRztYe5CFaxZyw9IbuHvZ3Xx+6HM83r7t\ny7epdBP1jnrSzGm+FZKpsanYnLZuNUMNV8sPL+fzQ5+TacnUqsVYssmvz+e1Ta91/PTudsPmzVpi\nS//uequ3Y+1TEf4kuYl+b2rmVKIjo6loqkBVVV8vtuToZCakTjjm4w7XHebJ1U9SZCsiy5JFhD6C\nt7e/zb+//XcfRq+1UWqry3kkk8FEfkN+n8bSU4G+jKCqKp8e+JQ0c5pvU72iKKSb09lXvY/ypnL/\nBxgMsHBhe2JzOuHOO4PUfVUEU1CS23vvvcfo0aPR6/Vs2bIlGCGIMGI1Wbn/7PvJic+h0FZIUUMR\nYweMZd60eX41Fo+2ZO8STAYTSdFJKIpCdEQ0OdYcVuStoLalts/iH2ge2GnncofbQYb5+CPPvtDo\nbORg7cHj1rbcVbmLx756jBuW3sC8z+fxVcFXAUl0Kio2p40og//vsa0DQ1Nr07Ef7HRqC02sVjjj\njB7HIvqXoFxzGzt2LEuWLOGWW24JxulFGMqIy2D+tPk0tTahU3SdXoM72v7q/X4d1QH0Oj0KCmWN\nZZ1W8+8NkwdOZsneJVTZq3x912paaoiOiCY3I7dPYuiMV/WyZM8SPj34qW9EPC51HDdOuNHvOuDO\nip08u+5ZLCYLWZYs7C47r29+HZvDxtwRc3sUg07RMTxpOCW2Er+edC6PC0VRjr/gprUVxo2DG29s\nvybX2KgtNBFhLygjt5EjRzJ8eD9svSFCXmxkbJcSG0BSdBLNLv9rdaqq4lE9fbqII84Yx/xp80mJ\nSaGooYjChkKSopOYN21e+4KJIFiZt5L/7P0PqbGpZFoyybJksaNiB69ved13H1VVeW/3e8RHxfs2\nzsdGxpJlyeLDfR92+PmejCtHXUmzq5lKeyVurxub00ZhQyGXjbjs+L3wzGa4+eb2xLZ/P1x1FZR1\nbZGR6N9ktaQ4ZV087GL+vOnPRBmiiNBHoKoqpY2lDE0YSmZcz+pDlthK+Gj/R3xb+S0Wo4ULh17I\n2VlnH7NYdKYlk4fPfZiaFq2dTmJUYlAbi6qqyscHPiY1NtXXgUBRFDLjMtlRsYOKpgoGxA7A5XVR\n2FBItiXb7/ER+gi8qpdKe2WP9+UNSxzGgukLWLpvKftq9pESncJVk7vZbeHQIa1Nzrx5kCbbK04F\nvZbcZs+eTXl5eYfjTz75JHPn9myqQohAmJY5jZrmGj7a/5E27YaX4QnD+cWkX/QosZTYSvjdqt+h\nqipJ0Um0uFtYtHkRJbYSrh579TEfpyiK39RbMKmo1LbUdkhabde6bE4bA2IHYNAZiI2MxeF2+F3f\n9KpevKoXc2RgRsBDEobw6ym/PvknSE6G3/4WpkxpP3bwIAwd2uPYRGjqteS2fPnygDzPb3/7W9+/\nZ8yYwYwZMwLyvCI8VTdXk1eXh9FgZETiiE5XIbZRFIXLR17OrEGzKGsqIzYylrTYtB6PmP574L+o\nquor/RWpjyQmIobPD33OBUMuCPmOCKBd6xoUP4ia5hq/a49urxsUfP36dIqOS4Zdwr92/oscaw56\nnR5VVSluKGZC2oTQea1xcf6J7e23YckS+Ne/wHjsv5G+oKoqJY0l7K/ej0FnYMyAMX12vbe/WLly\nJStXruzWY4I+LXmiFVVHJjchjkVVVZbsXcLH+z/2/U3FRsbyq7N+xdCE4386NxvNAb3GtrNiZ4cR\nWNtClSJbUei84Z/AlaOu5Om1TwMQb4qnxd1CWWMZl4+4nDhjnO9+Fw65kAZHA8sPL0dB8S08uWHC\nDcEK/fg++QTef1/rCxcCie2dXe+w7OAy3zG9ouemiTcxJXPKcR55ajl6YPPoo4+e8DFBKb+1ZMkS\n7rzzTqqrq7FYLEyYMIFPP/20Y3BSfiskqapKs6sZo8HYaUdor+rlYO1BCuoLMBvNjE0Z2+v1HbeW\nbeWP6/9IljXLF1ODo4FWTyvPXvDscbcE9ITH66GwoRC3102WJQujwcjDXz5Mo7MRi8nid9+C+gJ+\nM/03DEscdsLnLWoo4quCryhvKmd44nCmZ00nPiq+V17D8eyq3MXiPYvJq8vDarIyd/hcZg6a2em1\nw3pHPZX2SixGi29kF5JsNnA4ICVFu93Sou2DO/fcPg9lZ8VOnln3DNmWbPQ6beGLw+2g0l7JM7Of\n6TcfhPqa1JYUAbe5dDPv7nqXyuZKTHoTFw29iEuHX+pLKE63kz9t/BPbyrf5pveiI6L59ZRfn3AE\n1RPPrnuWgvqCDm8GBfUF3JF7R690oc6ry+OVja/49sSZDCZ+Ou6nuL1uXtv0mm+aDqCyqRJrlJXH\nZz1+wg7kW8u28tI3L6FX9ERHRGNz2og1xrJg+oI+6SXXGY/Xg07RBXWRS69oaYFf/QoyM+HBB/u8\nL9yrG19lZ+VOUmJS/I4X1Bdw/bjrmTloZp/G0190JTdIhRLRZdvLt/PC1y/g8rrItmRjNVlZvGcx\n/9z5T999VuStYGv5VnKsOb4vo97Iy9+8jMvj6rXYbE6bX9+zI7W4WgJ+PnurnefWP4fL4yLLkkWW\nJQtzpJnXNr1GujmduSPmUtJYQmFDIQUNBVijrNyZe+cJE5vL4+KNrW+QGJXIwLiBxEfFk23NptXd\nyuLdiwP+OrpKr9OHX2IDePllyMiABQuC0vC0xd2CXtF3+r1WT2sfRxNegn7NTYS2ooYiVheuprq5\nmm+KvyHOFOe73mI0GMmx5LAyfyWXjbgMq8nKF3lfkBqb6vdGaDFZKKgv4HDdYUYkjehxTC2uFppd\nzVhNVt/IaELqBD7c96HftTOv6kVFJduafaynOmnby7fT1Nrkt8w9KiIKg87A6sLVXD/ues4ffD7F\ntmKiI6IZHD/4hIkNoKSxBLvL3mEEOiB2AFvKtuDxenyvWQTArbdqDU913/1udu/Wtg300YruyemT\n2Va+za+5btvfbSD+WzmVSXITx7SxZCOvbnoVnaLDZDCxoWQDydHJTM+e7tso3bZQospehdVkxeF2\ndLr8W1EUXN6ejdycbieLdy9mZf5KbaN1pJmrRl/FtMxpzBw0kzWFayioLyA5JhmXx0V1czWzBs1i\noHlgj87bmTpHXafJKjoi2lemKiEqodur3jq7hgnatKBeCdPRUzDFHHEtePdurdnpgw/22enPHHgm\nqwpWsa9mH/GmeDyqB5vTxnmDzuuwDUN0jyQ30Smn28kbW98gKTrJl8gGxAygwdnAvup9TEjTChK3\n7Wdqq6SROzCXlfkrybRk+j2XXtEzyDqoRzH9ffvfWVu4lkxLJgadgWZXs28T9hnpZ/DgOQ+y/PBy\nNpZsxGqycsVpVzAlY0qvJIRsa7b2CfuoVjmNzkZGJY066edNN6eTGptKTXON3+ittLGU8waf16XR\nnzhJf/mLltjOOafPTmk0GLln6j18Xfw1X5d8jVFv5JzscxiXOk4+yPSQLCgRndpXvY+Faxf6NQAt\nbCjkm5JviNBFcPnIy/GqXgobCpmcPpnbzrwNgNqWWp5Y9QS1LbVYTBYcbgfNrmb+3/j/16OL49XN\n1dz3+X1kWjL93uAbHA3ERsby2KzHTv7FngSP18NTa57iQO0B0mLT0Ov0lDeVExsZy6MzHu2wUrI7\nihqKeHbdszQ4G9ApOryql8Hxg/n1lF8fv9xUmGpuhlde0SppWU7+x3piXm/79CTAG29o1+MuuKAX\nTypOhjQrFSets+s6mXGZ2FvtfFv1LUUNRaioTM2cynWnX+e7T0JUAo/MeIRVBav4tvJbEqMSmZEz\no0vL34+nprkGnaLrMHKJM8ZR2FDY581G9To9d0+5m//u/y9f5n9Jq6eV3IG5fG/k93qU2EArxfX7\n83/PjvId1LTUkGnJ5LTk0445ZRnuVq3SvoYMgR/8oBdPdGRi++tf4dNPpeFpPyYjN9Ept9fNfZ/f\nB+B7s1ZVlfyGfC4YfAEzcmYQGxnb4zfyrgq1kdvRgtnJO5w1N8M990B0NDQ0wHPP9fLoDbRWOY89\npl1/S/puM77H49/tWwSVbAUQJ82gM3DbmbfhcDsoqC+g2FZMfn0+w+KH8b2R32Ng3MA+S2ygVfA/\nK+MsCuoLtBJQQLOrmZqWGi4feXmfxXEsvZnYPF4PK/NX8sD/HuC2/97GXzb/hbLGU6Oy/apV2n5r\ns1mbNVyxog9OajTC44+3Jza7HW65BbZu7YOTi0CRkZs4LpvTxtayrdS21DIkYUhQp8ecbifv7nqX\nVQWrfKslrxx9JWdnnh3Wo6a3tr/F8kPLSYlJwWgwUmWvwqAz8MiMR4K2qbsvtI3aLBYwmbT2bJWV\nfTR6a2O3a90Ehg/XOgroZDwQCqRCiQhLLa4W7C47VpM17K9DVdormbd8HlmWLL/p2BJbCVMyp4Ru\n/cYAWLYM3nkHso9YEV9YCHPm9PK1tyPZbPCf/8C117Yntvp6rbu3CBqZlhRhKSoiiqTopLBPbKCt\nnOxsIU1idCI7K3cGKare53Jp9Y1dLigqav9yu+Hzz7VRXZ+Ii4Prr29PbNu3w49+BFVVfRSAOFnh\n/+4gRD8WExmDSsdPqA63I6zbohgMcPvtWnI7ml6vTVP2uT174N574dFHtf5wIqRJchMihA1LGEZy\ndDJV9iqSY7Q3VLfXTU1zDdeMuSbI0fUeRdEuc4WUgQNh4UKY+F0RblXVEt5ppwU3LtEpueYmRIgr\nayzjha9foKKpwrdwZs7wOXx/5PfDeiFNSFNVbQ/cqlXw1lsQERHsiE4psqBEiDDh8XrIq8+j2dVM\nliXLV+5MBMn778N778Grr0J83/fZO9VJchNCiN5gs2kbu9sSm80GmzbBrFnBjesUIaslhRCiN8TF\n+Se222/XVlKKkCEjNyGE6InHH9fqg919d1Aanp6KZFpSCCF6W0uLtjehLbFt3gwlJXDZZcGNK4zJ\ntKQQQvS2qCj/xDZ/PqSlBTcmISM3IYQICFXVOglcey1MnhzsaMKaTEsKIURfUtX2UZyqwssvw6hR\ncP75wY0rzMi0pBBC9KUjE9tLL8HXX8soLkgkuQkhRKA5nVr3gFdeae/P43YHN6ZTjExLCiFEb2to\ngNtug/vvhzFjgh1NvyfTkkIIEWwNDXDrrZCbC6NHBzuaU4Z0BRBCiN6kKHD55XDVVe3X5GpqIDEx\nuHGFORm5CSFEb4qLgx/+sD2xffMNXH011NYGN64wJyM3IYToK9u3w4IFWl+4hPBtNhsKZEGJEEL0\nFZsNiorar72pKuzYAePGBTeufkY2cQshRKhSVXjuOfj2W/jrX0GvD3ZE/UZXcoNMSwohRDD861+w\nc6dWxUQSW8DJyE0IIYLBZtMWmZjN2u3aWq3h6QUXBDeufkD2uQkhRKiKi/NPbL/8JeTlBTemMCIj\nNyGECLZHHoH0dLj5Zml42gWyoEQIIfoDpxMiI9sT27p1UF0tDU+PQaYlhRCiPzAa/RPbI4/AoEHB\njamfk+QmhBChQlXhnXfgD3+AsWODHU2/JtOSQggRSo5seOr1atVMpkyBGTOCGlYokWlJIUQHjc5G\n6lrq5INjqDo6sR08KA1PT4Js4hb9Tourhf01+/GqXoYmDMVsNAc7pG5TVRWP6kGv6FH6aHVclb2K\nt7a/xbeV3wKQZcnip+N/yuD4wX1yftFNDoeW6F58EWJitGOtrdrCE3FCMi0p+pWtZVv58+Y/43Q7\nUVDQ6XRcN+46zs0+N9ihdYlX9bIybyUf7f+IOkcdGXEZXDHqCiakTejVewUTIwAAEQ1JREFU8zrd\nTh768iHqW+pJNaeioFDbUkurp5XHZz1Ockxyr55fBEB1NfziF/DEEzBiRLCjCSqZlhRhpaa5hlc2\nvoI50ky2NZssaxbJ0cm8ufVN8uvzgx1el3y07yP+tu1vGHQGsi3Z2Fvt/HHDH9lStqVXz7ujYgeV\n9krS49LRKToURSExOhG3183qwtW9em4RAG2J7ZJLTvnE1lWS3ES/saVsC17VS0xkjO+Y0WDEoDOw\nrmhdECPrmmZXMx/v/5gsSxYxkTEoioLFZCExKpHFuxf36ixFeVM5eqVj/cLYyNh+88HglBYZCddf\nDzfc0H6soiJ48fQDktxEv9HY2ohO6fgnG6mPpK6lLggRdU+VvQqP6iFCH+F3PM4YR1ljGa2e1l47\nd2psKh7V0+G43WUnx5rTa+cVARIX57+h+6uv4Kc/hYaG4MUU4iS5iX5jWMIwXF5XhxGO3WXn9AGn\nBymqroszxqGqKl7V63fc4XZgNpo7JL1AOn3A6aTEpFBqK0VVVVRVpaa5Br2iZ3rW9F47r+gF33yj\nXXf74x/BYgl2NCFLkpvoN05LPo0xyWPIq8+jqbUJe6udvPo8Mi2ZTEqfFOzwTig+Kp7cjFyKGop8\nCc7tdVPaWMrFQy/udFQaKEaDkfum3sfI5JEUNhRS2FBIQlQC88+eH9DFJG6vmx0VO/ji8BfsrNiJ\n2+sO2HOL74wcCa+8AqNGabc9Hti8ObgxhaCgrJa87777+Pjjj4mMjGTIkCH87W9/w9LJJxBZLSmO\n5nQ7WZm/kq8KvsLtdTMtcxrnDT6P2MjYYIfWJc2uZt7c9iYbSzeiQwcKXDjkQq4YdQV6Xd/09LI5\nbXi8Hqwma0C3IdS21PLc+ucosZWgqiqKopARl8E9U+4hPio+YOcRR/B44PHHobxcS3i6U2O8ErKF\nk5cvX855552HTqfj/vvvB+Cpp57qGJwkNxGmappraHA2kByd3C/36XXm+Q3Ps6tyFwPjBvqOFduK\nGTdgHHfk3hHEyMLYG2/A11/D889DVFSwo+kzIbsVYPbs2ei++4SRm5tLcXFxMMIQImgSoxMZHD84\nbBKbzWljR8UO0sxpfsfTzelsLd9KU2tTkCILc1dd5Z/YKipg2bLgxhQigj6GfeONN7jkkkuCHYYQ\nogdcHm2hj4L/NKeC9gnb5XEFKbIwZzb7J7ZbboGamuDGFCJ6rfzW7NmzKS8v73D8ySefZO7cuQA8\n8cQTREZGcs011/RWGEIItBWZu6t20+xqJjMukyxLVkCvtyVEJZAam0qDswGryeo7Xu+oJyMuw++Y\n6CXPP6+N5H7yk2BHEhKCVn7rzTffZNGiRaxYsQKTydTpfRRF4ZFHHvHdnjFjBjOkMrYQ3ZJfn88f\n1v+BRmcjKtp/7rkDc7lp4k0B3X6wr3ofz6x7BgUFs9HsO9+8afMYnjg8YOcRx+ByQcQRv8/ly7Um\nqHPmBC+mAFm5ciUrV6703X700UdDc0HJsmXLuOeee/jqq69ISko65v1kQYkQPeP2upm3fB4er8e3\nYlFVVQ7XH+b6069n9pDZAT1fia2EFXkrKKgvIMeaw6xBs/wWmIg+snw5PPccvPQSDBsW7GgCLmRX\nSw4bNozW1lYSEhIAmDJlCn/60586BifJTYge2Ve9j6fWPkW2JdvveFNrEwadgafO77hKWfRzXi/c\ney/88pftie3IHnFhoCu5ISgtbw4cOBCM0wpxynF6nB0WeQBE6CJkBWO40um0Tt5tPB545BG48EKY\nfupUown6akkhRO/JseagKEqH1YpVzVX9oqqL6CGPBx5+GOrr4cwzgx1Nn5LkJkQYizPGceWoKymy\nFVFlr6LR2UhhQyExETFcMky24IQ9hwOSkrTrb0Zj+7FTgDQrFSLMqarKrqpdrDi8gtqWWk4fcDoz\nB80kISoh2KGJvlZaql2L++MfYXD/7cAesgtKukqSmxBCBEhZGdx8M1x3Hfzwh8GOpkckuQkhhNDY\nbLBhA1xwQfuxkhIY2P+2aoRsbUkhhBB9LC7OP7F9+in8/Odgtwcvpl4UlK0AInw53A62lG2hqKGI\nAbEDOCPtjLApDixE2Fi9Gl54QWuTExMT7Gh6hUxLioCpaa5h4dqFVNoridRH4vK4iImMYf60+WRa\nMoMdnhCijc0GtbWQk6Pddrth0yY466yghtVVMi0p+tQ7u96hrqWOHGsO6eZ0sq1aVYxFWxbJhxQh\nQklcnH9iW7AA3nlHq2QSJiS5iYBwup1sKt3UoZ9XYlSitsequSpIkQkhjmvRIm3v28KFYVWiS665\niYBQv/vf0RRFQUHBq3qDEJUQ4oSuvVbb4B0Zqd0uKoKdO6Gf99mUkZsICJPBxNiUsVQ0Vfgdr2up\nIyUmhZSYlCBFJoQ4LrPZP7H98pdaq5x+TpKbCJirx1yNyWCioKGAKnsVhQ2FONwObpp4EzpF/tSE\nCHkvvgg33gjf/36wI+kxWS0pAsrmtLG+aD159Xmkm9OZmjmVpOhj9+wTQoQQjwf0+vbbH36o3b70\n0uDF1AmpUCKEEOLkfPghvPYavPoqZGef+P59SLYCCCGE6D6PB1at8k9s/WygISM3IYQQx+dywf33\nw5VXwpQpwY5GRm5CCCF6yOWC+fO1Dt+T+k+DW9nnJoQQ4ticThgyRGuXExGhHbPbQ74mpYzchBBC\nHFtsLNx2W3tiy8/X+sEVFQU1rBOR5CaEEKJrCgq0Td633gqZoV0MXRaUCCGE6BqbDbZtg3POaT+W\nn99ehLmPyIISIYQQgRMX55/YFi+GO++ElpbgxXQMsqBECCFE9y1fDm++CX/+M0RFBTuaDmRaUggh\nRPfZbNDUBOnp2m2nEzZuhLPP7vVTdyU3yMhNCCFE98XFaV+gJbZ779VuT5sWEn3h5JqbEEKInvnT\nn7TWOb/7XUgkNpBpSSGEED1lt4PJ1N5R4OBB2LsX5szpldPJakkhhBC9LybGP7Hdfnt7A9QgkZGb\nEEKIwPn1r+Gii+CCC3rtFNLPTQghRN86uuHpP/8J8fFw8cUBO4VMSwohhOhbRye2d9+FCRP6PAxJ\nbkIIIQLP5YIdO7Ru3qmp2jGvt89OL9OSQgghep/DoV2Pu+GGHveFk2lJIYQQwedwwF13QXJyn01R\nSoUSIYQQvcvlgsmT4Wc/a78mZ7O1VzjpBTJyE0II0bvMZrjxxvbEtnev1vC0vLzXTinJTQghRN85\neFBrkzN/fvtCk14gC0qEEEL0HZsN9uyB3Nz2Y/v3w/DhXX4K2cQthBAitP397/DRR/B//wdGY5ce\nIi1vhBBChK6PPoKlS7W9cF1MbF0lIzchhBDBYbNpveCSk7Xbzc1aw9Nzzz3uw2SfmxBCiNAVF+ef\n2H71K1izJiBPLSM3IYQQwff009oobsEC0B1/3CULSoQQQvQPdjtERbUntl274NAhuOyyDneVaUkh\nhBD9Q0yMf2K76y6tVc5JkpGbEEKI0HLXXXDFFTB9eqffDtlpyYceeogPP/wQRVFITEzkzTffJDMz\ns2NwktyEEOLUo6qgKO23X38dsrJ83b1Ddlpy3rx5bN++nW3btvG9732PRx99NBhhBN3KlSuDHUKv\nCufXF86vDeT19Xf9/vUdmdgWLYLPPoMzzujWUwQluZnNZt+/m5qaSEpKCkYYQdfv/wBPIJxfXzi/\nNpDX19+FzetzOqGwUNvknZioHfN4uvTQoFUoWbBgAW+//TbR0dFs2LAhWGEIIYQIVUYjPPZY++2m\nJq3ochf02sht9uzZjB07tsPXRx99BMATTzxBYWEhP/vZz7j77rt7KwwhhBDhoKkJ7rgDRozo0t2D\nvlqysLCQSy65hG+//bbD94YOHcqhQ4eCEJUQQohQNWTIEA4ePHjc+wRlWvLAgQMMGzYMgKVLlzLh\nGG3HTxS8EEII0ZmgjNyuvPJK9u3bh16vZ8iQIbz66qukpKT0dRhCCCHCVNCnJYUQQohAC/nyWw89\n9BDjxo1j/PjxnHfeeRQVFQU7pIC57777GDVqFOPGjeMHP/gBDQ0NwQ4poN577z1Gjx6NXq9ny5Yt\nwQ4nYJYtW8bIkSMZNmwYCxcuDHY4AXXDDTcwYMAAxo4dG+xQekVRUREzZ85k9OjRjBkzhhdffDHY\nIQWMw+EgNzeX8ePHc9ppp/HAAw8EO6Re4fF4mDBhAnPnzj3+HdUQZ7PZfP9+8cUX1RtvvDGI0QTW\n559/rno8HlVVVXX+/Pnq/PnzgxxRYO3Zs0fdt2+fOmPGDHXz5s3BDicg3G63OmTIEDUvL09tbW1V\nx40bp+7evTvYYQXMqlWr1C1btqhjxowJdii9oqysTN26dauqqqra2NioDh8+PKx+f3a7XVVVVXW5\nXGpubq66evXqIEcUeM8995x6zTXXqHPnzj3u/UJ+5BbOG75nz56N7rtCobm5uRQXFwc5osAaOXIk\nw4cPD3YYAfXNN98wdOhQcnJyiIiI4Mc//jFLly4NdlgBM336dOJ7UKw21KWmpjJ+/HgAYmNjGTVq\nFKWlpUGOKnCio6MBaG1txePxkJCQEOSIAqu4uJhPPvmEm266KTTLb3XXggULyMrK4u9//zv3339/\nsMPpFW+88QaXXHJJsMMQJ1BSUuJXBzUjI4OSkpIgRiROVn5+Plu3biU3NzfYoQSM1+tl/PjxDBgw\ngJkzZ3LaaacFO6SAuvvuu3nmmWd8g4LjCYnkFs4bvk/02kB7fZGRkVxzzTVBjPTkdOX1hRPlyJp3\not9qamriyiuv5IUXXiA2NjbY4QSMTqdj27ZtFBcXs2rVqvApwwV8/PHHpKSkMGHChC4V1A9a+a0j\nLV++vEv3u+aaa/rd6OZEr+3NN9/kk08+YcWKFX0UUWB19XcXLgYOHOi3qKmoqIiMjIwgRiS6y+Vy\nccUVV3Dttdfyve99L9jh9AqLxcKll17Kpk2bmDFjRrDDCYh169bx4Ycf8sknn+BwOLDZbFx//fW8\n9dZbnd4/JEZux3PgwAHfv4+34bs/WrZsGc888wxLly7FZDIFO5xe1ZVPWv3BpEmTOHDgAPn5+bS2\ntvLOO+9wWSedgkVoUlWVG2+8kdNOO4277ror2OEEVHV1NfX19QC0tLSwfPnysHq/fPLJJykqKiIv\nL49///vfzJo165iJDfpBcnvggQcYO3Ys48ePZ+XKlTz33HPBDilg7rjjDpqampg9ezYTJkzg1ltv\nDXZIAbVkyRIyMzPZsGEDl156KRdffHGwQ+oxg8HAyy+/zIUXXshpp53Gj370I0aNGhXssALm6quv\nZurUqezfv5/MzEz+9re/BTukgFq7di3/+Mc/+PLLL5kwYQITJkxg2bJlwQ4rIMrKypg1axbjx48n\nNzeXuXPnct555wU7rF5zoksEsolbCCFE2An5kZsQQgjRXZLchBBChB1JbkIIIcKOJDchhBBhR5Kb\nEEKIsCPJTQghRNiR5CZEP3HRRRcRHx9/4lYfQghJbkL0F/PmzePtt98OdhhC9AuS3IQIMRs3bmTc\nuHE4nU7sdjtjxoxh9+7dzJo1K6yK/ArRm0KicLIQot3kyZO57LLLePDBB2lpaeG6664Lu9YlQvQ2\nSW5ChKCHH36YSZMmERUVxUsvvRTscITod2RaUogQVF1djd1up6mpiZaWFt9x6ScnRNdIchMiBN1y\nyy08/vjjXHPNNcyfP993XOqcC9E1Mi0pRIh56623MBqN/PjHP8br9TJ16lS+/PJLHnnkEfbu3UtT\nUxOZmZm88cYbzJ49O9jhChGSpOWNEEKIsCPTkkIIIcKOJDchhBBhR5KbEEKIsCPJTQghRNiR5CaE\nECLsSHITQggRdiS5CSGECDuS3IQQQoSd/w818sPAkCVXmwAAAABJRU5ErkJggg==\n", - "text": [ - "" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

\n", - "

\n", - "\n", - "## Calculating the Chernoff theoretical bounds for P(error)\n", - "\n", - "[back to top]
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$ P(error) \\le p^{\\beta}(\\omega_1) \\; p^{1-\\beta}(\\omega_2) \\; e^{-(\\beta(1-\\beta))} $" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$\\Rightarrow 0.5^\\beta \\cdot 0.5^{(1-\\beta)} \\; e^{-(\\beta(1-\\beta))} $\n", - "\n", - "$\\Rightarrow 0.5 \\cdot e^{-\\beta(1-\\beta)} $" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$ min[P(\\omega_1), \\; P(\\omega_2)] \\le 0.5 \\; e^{-(\\beta(1-\\beta))} \\quad for \\; P(\\omega_1), \\; P(\\omega_2) \\ge \\; 0 \\; and \\; 0 \\; \\le \\; \\beta \\; \\le 1$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Plotting the Chernoff Bound for $ 0 \\le \\beta \\le 1 $" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def chernoff_bound(beta):\n", - " return 0.5 * np.exp(-beta * (1-beta))\n", - "\n", - "betas = np.arange(0, 1, 0.01)\n", - "c_bound = chernoff_bound(betas)\n", - "\n", - "plt.plot(betas, c_bound)\n", - "plt.title('Chernoff Bound')\n", - "plt.ylabel('P(error)')\n", - "plt.xlabel('parameter beta')\n", - "\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEZCAYAAACEkhK6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X18zXX/wPHXmS1MI7dpN8xMs9kMMVGYpCFcCpmb3M3N\nJepHdHG5KosKKSm6WSpUQm5qUlaXm3XjbotyE6Vcm2aIuZth95/fH5+cDNvOtnPO95zt/Xw8zqOd\ncz7f73nva33f53NvUkophBBCiGK4GB2AEEII5yAJQwghhEUkYQghhLCIJAwhhBAWkYQhhBDCIpIw\nhBBCWEQShnB60dHRPProo0aHAcCvv/5KixYtqF69OosWLSIzM5NevXpx2223MWDAAKPDK5IjXUfh\nmCRhCKfw8ccf07p1azw8PPD09KRHjx5s27YNAJPJZHB0f3vppZfo0qUL6enpTJgwgdWrV3Pq1CnO\nnj3LqlWrbigfHR2Nm5sbHh4eeHh4EBQUxLp16wyI3LGuo3BMkjCEw5s/fz6TJk3i6aef5tSpU6Sk\npDB+/Hg+//xzAKw59zQvL69Mxx89epSgoKACz++8805cXG7+v5rJZGLgwIFcvHiRixcvsmDBAoYM\nGcLp06fLFIcQtiAJQzi0CxcuMGPGDN5880369OlD1apVqVSpEg8++CBz5swB9E03OzubYcOGUb16\ndYKDg9m9e7f5HMePH6dv377Uq1cPPz8/Fi5caH4vOjqafv368eijj1KjRg2WLl1KeHg4zzzzDPfe\ney/Vq1cnIiKCM2fOmI9Zv349zZo1o2bNmnTu3JlffvkFgPvuu4/4+HgmTJiAh4cHgwYNYtasWaxa\ntQoPDw+WLFlyw++nlCqQ8B544AE8PDw4cuSI+bXFixfTpEkTateuzT/+8Q9OnDgBQHJyMi4uLuTn\n55vLhoeH89577wGwdOlS7r33Xp566ilq1aqFn58fcXFx5rJJSUl06tSJ6tWr88ADD5CWlla6fyRR\nYUjCEA5tx44dZGZm8tBDDxVaRinF+vXrGThwIBcuXKB3795MmDABgPz8fHr16kXLli05fvw4mzdv\nZsGCBXz99dfm49evX0///v25cOECgwcPBmDlypUsXbqUU6dOkZ2dzcsvvwzA4cOHGTRoEK+//jpp\naWn06NGDXr16kZuby5YtW+jQoQNvvPEGFy9e5OOPP2b69OlERkZy8eJFRowYUeTvqpRiw4YN5OTk\nmGspW7ZsYfr06axevZoTJ07QsGFDIiMjCz2HyWQq0LSUkJBA06ZNOXPmDP/617+Iiooyvzdo0CDa\ntGnDmTNneOaZZ1i2bJk0S4kiScIQDu3MmTPUqVOn0Cadqzp06EC3bt0wmUwMGTKEvXv3ApCYmEha\nWhpPP/00rq6uNGrUiFGjRrFy5Urzse3bt6d3794AVKlSBZPJxIgRI/D396dKlSo88sgj/PTTTwCs\nWrWKnj170qVLFypVqsSUKVO4cuUK27dvN5/v2hrD9TWIm/nkk0+oWbMmHh4e9OnTh+nTp1O9enUA\nli9fTlRUFC1atOCWW25h9uzZ7Nixgz/++MOi69ewYUOioqIwmUwMHTqUEydOcOrUKf744w9++OEH\nZs2ahZubGx06dKBXr15Wbd4T5Y8kDOHQateuTVpaWoFml5u5/fbbzT+7u7uTmZlJfn4+R48e5fjx\n49SsWdP8mD17NqdOnTKX9/b2vuF89evXN/9ctWpVMjIyAN281aBBA/N7JpMJHx8fUlNTC7xWEgMG\nDODcuXNkZGRw5MgRli1bxjvvvANgrlVcVa1aNWrXrl3g84py7e/h7u4OQEZGhvmaVK1a1fz+tZ8j\nxM1IwhAOrV27dlSuXJlPP/200DJF3aB9fHxo1KgR586dMz/S09PZsGGD+diS3OC9vLw4evSo+blS\nipSUFLy8vEoc29X3r/1W37BhQ7p162bu0Pf09CQ5Odn8/qVLlzhz5gxeXl5Uq1YNgMuXL5vfP3ny\npEW/xx133MG5c+cKHHv06FFpkhJFkoQhHFqNGjWYOXMm48ePJzY2lsuXL5OTk8PGjRuZOnUqUPQo\nqbCwMDw8PHjppZe4cuUKeXl5HDhwgB9++KHIYwt7vX///nzxxRds2bKFnJwcXnnlFapUqUL79u1v\nemxxTTzXv3/s2DG++uorgoODARg4cCBLlixh7969ZGVlMX36dO6++24aNGhA3bp18fLy4sMPPyQv\nL4/333+/QGd5URo2bEjr1q2ZMWMGOTk5fP/99+YkKkRhJGEIh/fkk08yf/58nn/+eerVq0eDBg14\n8803zR3hN6slXH1eqVIlNmzYwE8//YSfnx9169ZlzJgxpKenF3rstcdfXyYgIICPPvqIxx9/nLp1\n6/LFF1/w+eef4+rqWuyxN2MymcyjqDw8PAgLC+Pee+9lxowZAHTp0oVZs2bRt29fPD09SUpKKtD/\nsnjxYubNm0edOnU4ePAg99xzT5Gffe3zjz/+mF27dlGrVi1mzpzJsGHDCo1TCACTLTdQiouLY+LE\nieTl5TFq1CjzN8Kr4uPj+cc//oGfnx8Affv25emnn7boWCGEEPblWnyR0snLy2PChAls2rQJLy8v\n2rRpQ+/evQkMDCxQrlOnTqxfv75UxwohhLAfmzVJJSQk4O/vj6+vL25ubkRGRhIbG3tDuZtVcCw9\nVgghhP3YLGGkpqbi4+Njfu7t7X3DUECTycT27dsJDQ2lR48eHDx40OJjhRBC2JfNmqQsGZ7XqlUr\nUlJScHd3Z+PGjfTp04fDhw/bKiQhhBBlYLOE4eXlRUpKivl5SkrKDROkPDw8zD93796dxx57jLNn\nz+Lt7V3ssQCurv7k5Vk2jFAIIYTWuHFjfv/995IfqGwkJydH+fn5qaSkJJWVlaVCQ0PVwYMHC5Q5\nefKkys/PV0optWvXLtWwYUOLj/1rdJd68klb/QbOZcaMGUaH4DDkWvxNrsXf5Fr8rbS3fpvVMFxd\nXVm0aBERERHk5eURFRVFYGAgMTExAIwdO5Y1a9bw1ltv4erqiru7u3l8eWHH3szHH8PcueBqs99E\nCCEE2LBJCnQzU/fu3Qu8NnbsWPPP48ePZ/z48RYfezMNGsCmTdCtW9liFUIIUTSnn+k9dCh88IHR\nURgvPDzc6BAchlyLv8m1+Jtci7Kz6UxvWzOZTJw+rfD3hz/+gL9WhBZCCFGE6xe9tJTT1zDq1IHw\ncFi71uhIhBCifHP6hAHw6KPw4YdGRyGEEOVbuUgYPXvC3r26WUoIIURBTz4JiYllP0+5SBiVK8OA\nAdL5LYQQ1zt7Ft57D/z9y36ucpEwAIYPh6VLwXm78IUQwvpWroTu3aFmzbKfq9wkjDZtdE3j+++N\njkQIIRzHkiUwYoR1zlVuEobJ9HctQwghBBw4ACdOwP33W+d8Tj8P49rwT5yAoCA4dgyqVTMwMCGE\ncABTpsAtt8CLLxZ8vcLOw7jWHXfAPffInAwhhMjJgY8+0i0v1lKuEgbotjpplhJCVHRxcdC4Mdx5\np/XOWe4SRs+esH8/JCUZHYkQQhhn6VLr1i6gHCaMypVh4EBYtszoSIQQwhhpabB5MzzyiHXPW+4S\nBsDIkXooWV6e0ZEIIYT9ffgh9O4NNWpY97zlMmG0aKEXJdy82ehIhBDCvpTSM7ujoqx/7nKZMABG\njYJ33zU6CiGEsK9duyArCzp2tP65y9U8jGudPw++vvD777q2IYQQFcHo0Xp01LRphZcp7TyMcpsw\nQC973qoVTJpkx6CEEMIgGRng4wMHD+p5aYWRiXs3ERWl2/KcNyUKIYTlPvkEOnQoOlmURblOGJ06\n6ba8XbuMjkQIIWzvvfd0/62tlOuEYTLpIbbvvWd0JEIIYVuHDukJyz162O4zynUfBsDx49Csmd6N\nz8PDToEJIYSdTZ4Mbm4wZ07xZaUPoxCenhAeDitWGB2JEELYRmam3nF09Gjbfk65TxgAY8dCTIzR\nUQghhG2sWwctW+rhtLZUIRJG165w5gzs3m10JEIIYX0xMTBmjO0/p0IkjEqVdFVNahlCiPLml1/g\n11/hH/+w/WeV+07vq6TzWwhRHj35pF6le/Zsy49xyE7vuLg4mjZtSpMmTZg7d26h5RITE3F1dWXt\nNVvlzZ49m2bNmhESEsKgQYPIysoqUyyentC5s3R+CyHKj8xMvTKtrTu7r7JZwsjLy2PChAnExcVx\n8OBBVqxYwaFDh25aburUqXTr1s38WnJyMosXL2bPnj3s37+fvLw8Vq5cWeaYxoyRZikhRPmxdq3u\n7Pbzs8/n2SxhJCQk4O/vj6+vL25ubkRGRhIbG3tDuYULF9KvXz/q1q1rfq169eq4ublx+fJlcnNz\nuXz5Ml5eXmWO6YEH4OxZ+OGHMp9KCCEMFxOjR4Hai80SRmpqKj4+Pubn3t7epKam3lAmNjaWcePG\nAbpdDaBWrVpMnjyZBg0a4OnpyW233cb9999f5phcXPTFfeutMp9KCCEMdeAAHDmiN0qyF5sljKs3\n/6JMnDiROXPmmDtgrnbCHDlyhAULFpCcnMzx48fJyMhg+fLlVolr5Eg9ZvncOaucTgghDPHWW3rd\nKDc3+32mq61O7OXlRUpKivl5SkoK3t7eBcrs3r2byMhIANLS0ti4cSOurq5kZWXRvn17ateuDcDD\nDz/M9u3bGTx48A2fEx0dbf45PDyc8PDwIuOqV0+vtbJ0qSx7LoRwThcv6gE8+/ZZVj4+Pp74+Pgy\nf67NhtXm5uYSEBDA5s2b8fT0JCwsjBUrVhAYGHjT8iNGjKBXr148/PDD7N27l8GDB5OYmEiVKlUY\nPnw4YWFhjB8/vmDwpRwatm0bjBihxy+7VIiZKEKI8uTtt+G//9Wd3qXhcMNqXV1dWbRoEREREQQF\nBTFgwAACAwOJiYkhppihSqGhoQwdOpTWrVvTvHlzAMZYcRpj+/ZQtSps2WK1UwohhF0oBW++CX91\n/dpVhZm4d72YGPjqK92fIYQQzmLbNt0Xe+hQ6VtIZIvWEsrIgAYNdBvgdV0rQgjhsAYPhtaty9YH\nKwmjFCZMgFq1YOZMKwYlhBA2cuoUBATA//4HNWuW/jySMErh4EHo0gWOHoVbbrFiYEIIYQPPPw/J\nyfDuu2U7j8N1ejuDoCC9IOHq1UZHIoQQRcvJ0aOjHn/cuBgqdMIAffFff93oKIQQomiffqo3SAoN\nNS6GCp8wevbU7YIJCUZHIoQQhVu40NjaBUjCoFIleOwx/Y8hhBCO6KefdN9Fnz7GxlGhO72vOntW\nV/V++QVuv90KgQkhhBVFRel71PTp1jmfjJIqo9Gj9byMZ56xyumEEMIq0tKgSRM4fBiu2QWiTGSU\nVBk9/rgegZCdbXQkQgjxt3ff1ft1WytZlIUkjL80b64nxKxZY3QkQgih5eTAokUwcaLRkWiSMK4x\naRK8+qpe3EsIIYy2Zo1ujmrRwuhINEkY13jwQTh/Xi/uJYQQRlJKf4F1lNoFSMIowMUF/u//YMEC\noyMRQlR0O3boEZw9exodyd9klNR1MjLA1xcSE6FRI6ueWgghLPbII3DvvfDEE9Y/twyrtaKnnoK8\nPJg/3+qnFkKIYh09Cq1a6cl6Hh7WP78kDCv64w/dyZScDNWrW/30QghRpKee0n0YL79sm/NLwrCy\nAQPg7rvLtkmJEEKU1MWLujn8hx9087gtyMQ9K5syRXd+5+QYHYkQoiJZvBi6drVdsigLSRiFaNNG\n/4PJRD4hhL3k5OgvqpMnGx3JzUnCKMJTT+k2ROdttBNCOJPVq/Uig61bGx3JzUnCKEKPHnD5MsTH\nGx2JEKK8UwrmzdPN4Y5KEkYRXFx01dBWIxWEEOKqLVsgKwu6dzc6ksLJKKliZGbqvozNm/X+30II\nYQvdu0O/fnrvC1uTUVI2UqUKTJggtQwhhO3s36931RsyxOhIiiY1DAucPQv+/rB3L/j42PzjhBAV\nzJAhEBwM06bZ5/Nk4p6NTZ6sO6VkuRAhhDUlJelRUf/7H9SoYZ/PlIRhY8eO6U2WfvsNate2y0cK\nISqACRP0elGzZ9vvMyVh2EFUFDRsCM8+a7ePFEKUY6dOQdOmcPAg1K9vv891yE7vuLg4mjZtSpMm\nTZg7d26h5RITE3F1dWXdunXm186fP0+/fv0IDAwkKCiInTt32jJUizz1lN4u8dIloyMRQpQHr7+u\n162zZ7IoC5vVMPLy8ggICGDTpk14eXnRpk0bVqxYQWBg4A3lunbtiru7OyNGjKBv374ADBs2jE6d\nOjFy5Ehyc3O5dOkSNa5r4LN3DQOgb1/o2FFvtCSEEKWVng5+frBrl57dbU8OV8NISEjA398fX19f\n3NzciIyMJDY29oZyCxcupF+/ftStW9f82oULF/juu+8YOXIkAK6urjckC6NMmwavvALZ2UZHIoRw\nZjExcP/99k8WZWGzhJGamorPNWNQvb29SU1NvaFMbGws48aNA3TWA0hKSqJu3bqMGDGCVq1aMXr0\naC5fvmyrUEukTRsICIAPPzQ6EiGEs7pyRY+4nD7d6EhKxtVWJ7568y/KxIkTmTNnjrl6dLWKlJub\ny549e1i0aBFt2rQxl5s5c+YN54iOjjb/HB4eTnh4uLV+hUI9/TSMGgXDhoGrza6gEKK8eu89CAvT\nIy/tIT4+nngrLIpnsz6MnTt3Eh0dTVxcHACzZ8/GxcWFqVOnmsv4+fmZk0RaWhru7u4sXryYtm3b\ncvfdd5OUlATA999/z5w5c9iwYUPB4A3owwA9H6NjRxg3DgYNsvvHCyGcWHa2ngi8Zo1OGkZwuD6M\n1q1b89tvv5GcnEx2djarVq2id+/eBcr873//IykpiaSkJPr168dbb71F7969uf322/Hx8eHw4cMA\nbNq0iWYOtJCTyaRrGS+8APn5RkcjhHAmH3wAgYHGJYuysFmDiqurK4sWLSIiIoK8vDyioqIIDAwk\nJiYGgLFjxxZ5/MKFCxk8eDDZ2dk0btyYJUuW2CrUUnngAXB3h88+g4cfNjoaIYQzyM3VE/SWLjU6\nktKRiXtlEBsLzz0Hu3frWocQQhTlo4/0FqzffGNsHA7XJFUR9OqlvzF88YXRkQghHF1enm7Gfvpp\noyMpPUkYZeDiopcJee452cZVCFG0Tz6BmjX13AtnJQmjjB5+WG+y9OWXRkcihHBUeXkwcyZERzt3\n87UkjDJycYEZM/QfgtQyhBA3c7V20bWr0ZGUjSQMK3j4Yb0Xr9QyhBDXKy+1C5CEYRVSyxBCFOaT\nT6BWLeevXYAkDKt56CGpZQghCipPtQuQhGE1V2sZzz4rtQwhhLZypa5dOPPIqGtJwrCihx7SyeLT\nT42ORAhhtJwc/SXy+efLR+0CJGFYlYsLzJqlaxl5eUZHI4Qw0rJlekvnzp2NjsR6JGFYWY8eUL26\nrooKISqmrCzdd/H880ZHYl2SMKzMZNJ/JDNm6CqpEKLieecdvddFu3ZGR2JdsvigjXTpAgMH6o2W\nhBAVx+XLer+LL76Ali2NjubmSnvvlIRhIzt2wIABcPgwVKlidDRCCHt56SVITITVq42OpHCSMBxQ\n794QHg5PPml0JEIIezh3Du68E777Dpo2NTqawtk8YWRmZmIymahcuXKJP8RWHD1hHDgA990Hv/0G\nNWoYHY0QwtamTYMzZ/SeF47M6gkjPz+fzz77jBUrVrB9+3by8/NRSlGpUiXatWvH4MGD6dOnDyYD\nBxg7esIAGD4cvL3L32gJIURBqam6o3vfPvDyMjqaolk9YXTs2JEOHTrQu3dvWrRoYa5ZZGVl8eOP\nP7J+/Xq+//57vv3227JFXgbOkDCOHoVWrXRt4447jI5GCGEro0frWd1z5xodSfGsnjCysrKKbX6y\npIwtOUPCAN2HkZkJb75pdCRCCFv45Rfo0EEPcqlZ0+hoimeTPozc3FyCg4P55ZdfyhScrThLwkhL\n0x1gO3ZAkyZGRyOEsLa+fSEsDKZONToSy9hkT29XV1cCAgI4evRoqQMTUKeOrmVMn250JEIIa9u+\nHRIS4PHHjY7E9lyLK3D27FmaNWtGWFgY1apVA3R2Wr9+vc2DK08mTtS1jO3boX17o6MRQliDUjB5\nMrzwAri7Gx2N7RWbMGbNmgVgHg2llDJ0ZJSzcnfXI6UmT9ZJQy6hEM5vzRrdPzlkiNGR2IdF8zBO\nnjxJYmIiJpOJsLAw6tWrZ4/YiuUsfRhX5efDXXfppqn+/Y2ORghRFllZEBSk143q0sXoaErGJn0Y\nAJ988glt27Zl9erVfPLJJ4SFhbHakee8OzAXF3j5ZT25Jzvb6GiEEGXx1lu6mdnZkkVZFFvDaN68\nOZs2bTLXKk6fPk2XLl3Yt2+fXQIsirPVMK568EG9A9ekSUZHIoQojXPnICAAtm6FZs2MjqbkbFbD\nUEpRt25d8/PatWs75U3akcybBy++qIfbCiGcz3PP6R02nTFZlEWxnd7dunUjIiKCQYMGoZRi1apV\ndO/e3R6xlVtBQXol2xkz4I03jI5GCFESv/wCH30EBw8aHYn9FVnDUErx+OOPM3bsWPbt28f+/fsZ\nO3YsL730kkUnj4uLo2nTpjRp0oS5RcyXT0xMxNXVlXXr1hV4PS8vj5YtW9KrVy+LPs+ZPPecXv74\nwAGjIxFClMTkyfDvf4ODjP2xqyL7MJRShISEcKAUd7W8vDwCAgLYtGkTXl5etGnThhUrVhAYGHhD\nua5du+Lu7s6IESPo27ev+b358+eze/duLl68eNN5H87ah3HV66/Dhg3w1VcyzFYIZxAXB088ob/o\n3XKL0dGUnk36MEwmE3fddRcJCQklPnFCQgL+/v74+vri5uZGZGQksbGxN5RbuHAh/fr1K9BPAnDs\n2DG+/PJLRo0a5dRJoSjjxsGxYzppCCEcW06OHqjyyivOnSzKothO7507d9KuXTv8/PwICQkhJCSE\n5s2bF3vi1NRUfHx8zM+9vb1JTU29oUxsbCzjxo0DKDAhcNKkScybNw8Xl/K77bibG8yfr5cNycoy\nOhohRFHeegt8fKBnT6MjMU6Rnd5KKRYvXkyDBg1KfGJLZoNPnDiROXPmmKtHV2sSGzZsoF69erRs\n2ZL4+PgizxEdHW3+OTw8nPDw8BLHaqRu3fRY7gULnGfhMiEqmlOnYNYs+OYb52w+jo+PL/Zeagmb\n9WHs3LmT6Oho4uLiAJg9ezYuLi5Mveau6OfnZ04SaWlpuLu7884777Br1y4+/PBDXF1dyczMJD09\nnb59+/LBBx8UDN7J+zCuOnIE2raFn37Smy0JIRxLVBTcdptujioPSn3vVMUYOnSo2rVrV3HFbpCT\nk6P8/PxUUlKSysrKUqGhoergwYOFlh8+fLhau3btDa/Hx8ernj173vQYC8J3Gs88o9SAAUZHIYS4\n3o4dSnl6KnXhgtGRWE9p753FzsPYuXMnH330EQ0bNiywWm1xM71dXV1ZtGgRERER5OXlERUVRWBg\nIDExMQCMHTvW4qRWERY7nDZNz8/YuhU6dzY6GiEEQF4eTJigd9GrXt3oaIxX7NIgycnJN33d19fX\nBuGUTHlpkrpq3Tp49ln48UfdIS6EMNY778CHH8K33zpn30VhbLY0iK+vLykpKWzduhVfX1+qVatW\nrm7SjuShh8DTU8/PEEIYKy0NnnkGFi4sX8miLIqtYURHR7N7925+/fVXDh8+TGpqKo888gjbtm2z\nV4yFKm81DNB7Ardvr2sZ14xKFkLY2ciRuhlqwQKjI7E+m9UwPv30U2JjY839F15eXly8eLHkEQqL\n3HmnbjOdONHoSISouL77Dr7+GmbONDoSx1JswqhcuXKByXOXLl2yaUBCd4Dv2yczwIUwQna2XoVh\nwQLp6L5esQmjf//+jB07lvPnz/POO+/QpUsXRo0aZY/YKqwqVeDNN/Wm8pcvGx2NEBXLq69CgwZw\nzbJ24i8WbdH69ddf8/XXXwMQERFB165dbR6YJcpjH8a1Bg3Sf7hz5hgdiRAVQ3IytG4NCQng52d0\nNLZT2ntnoQlDKVXs/AdLythSeU8YJ09C8+bw3/9CaKjR0QhRvikF3btDp056+fLyzOqd3uHh4cyb\nN4/Dhw/f8N6vv/7K3Llz6dSpU4k/UFiufn2YPRtGjdITiIQQtvPxx3DiBEyZYnQkjqvQGkZWVhbL\nly9nxYoVHDhwAA8PD5RSZGRkEBwczODBgxk0aBC3GLjOb3mvYYD+1tOlC/TqJXuAC2Erp09DSAh8\n/jm0aWN0NLZn9Sapa+Xl5ZH21wbUderUoVKlSiWP0AYqQsIA+O03aNcOEhOhUSOjoxGi/Hn0Uahb\nV283UBFYPWFcuXKFt99+m99//53mzZsTFRWFq2uxS0/ZVUVJGKDXstmyRe/4JbNOhbCer76Cf/5T\n76L313Szcs/qfRjDhg1j9+7dhISE8OWXXzJ58uQyBSjK5skndbV52TKjIxGi/EhPhzFj4O23K06y\nKItCaxghISHs378fgNzcXNq0acOPP/5o1+CKU5FqGAB790LXrnrZEC8vo6MRwvn985+Qmwvvvmt0\nJPZl9RrGtc1PjtYUVVGFhsL48TB2rO4MF0KU3qZN8OWX5WdTJHsotIZRqVIl3N3dzc+vXLlC1apV\n9UEmE+np6faJsAgVrYYBetmCsDDdRDV0qNHRCOGcLl7Uo6LeekvPvahobDpKylFVxIQBeivXBx7Q\n//X0NDoaIZzPuHH6y9d77xkdiTEkYVQwM2boYbZffCGjpoQoia+/1nt079+v9+muiGy2vLlwTE8/\nDadO6R3BhBCWOXdOJ4slSypusigLqWE4sUOHoEMH2LkT/P2NjkYIxzd4MNSuLbtalvbeKcOfnFhg\noK5pDB2q9xyWwWxCFO6TT2D3btizx+hInJfUMJxcfr6em9GlC0yfbnQ0Qjim48ehZUu9KVlFWCuq\nONLpXYH98Ydew/+LL+R/BiGul58PERFw7716sIiQTu8KrUEDWLRIb7iUkWF0NEI4lvnz4coV+M9/\njI7E+UkNoxyJitIzwN9/3+hIhHAMu3friXmJidCwodHROA6pYQheew2+/x5WrTI6EiGMl5EBAwfq\nEVGSLKxQ2bkpAAAYT0lEQVRDahjlzNVvVAkJ4OtrdDRCGCcqSvdfLFlidCSOR2oYAoC77oJp02DA\nAL30gRAV0UcfwbZtsHCh0ZGUL1LDKIeUgn/8A5o0kZU4RcXzyy96QuvmzdC8udHROCaHrWHExcXR\ntGlTmjRpwty5cwstl5iYiKurK+vWrQMgJSWFzp0706xZM4KDg3m9ok/NLAGTCZYuhTVrYP16o6MR\nwn6uXIFHHoEXXpBkYQs2rWHk5eUREBDApk2b8PLyok2bNqxYsYLAwMAbynXt2hV3d3dGjBhB3759\nOXnyJCdPnqRFixZkZGRw11138dlnnxU4VmoYRdu+HR56SPdnSKefqAjGjNFLl3/8sSzKWRSHrGEk\nJCTg7++Pr68vbm5uREZGEhsbe0O5hQsX0q9fP+rWrWt+rX79+rRo0QKAW2+9lcDAQI4fP27LcMud\n9u1hyhTo3x+ysoyORgjbWrYM4uMhJkaSha3YNGGkpqbi4+Njfu7t7U1qauoNZWJjYxk3bhygM9/1\nkpOT+fHHH2nbtq0twy2XpkwBb2/4v/8zOhIhbOenn/Tf+rp1UL260dGUXzZdru5mN//rTZw4kTlz\n5pirSNdXkzIyMujXrx+vvfYat9566w3HR0dHm38ODw8nPDy8rGGXK1f7M9q00d/Ahg0zOiIhrOvc\nOejbV8+3CA42OhrHFB8fT3x8fJnPY9M+jJ07dxIdHU1cXBwAs2fPxsXFhalTp5rL+Pn5mZNEWloa\n7u7uLF68mN69e5OTk0PPnj3p3r07EydOvDF46cOw2M8/Q3g4/Pe/8FdLnxBOLz9fjwj089MTV4Vl\nHHLxwdzcXAICAti8eTOenp6EhYXdtNP7qhEjRtCrVy8efvhhlFIMGzaM2rVr8+qrr948eEkYJbJy\npV7RNjFR7wkghLObORO++gq2boVbbjE6GufhkJ3erq6uLFq0iIiICIKCghgwYACBgYHExMQQExNT\n5LHbtm3jo48+YuvWrbRs2ZKWLVuaayqidCIjoV8/PewwN9foaIQom88+g8WL9fBxSRb2IRP3Kpi8\nPOjZEwICYMECo6MRonQOHIDOneHLL2VJ/9JwyBqGcDyVKukx6l9+KWvsCOd05ozut5g/X5KFvUkN\no4I6dAg6dYJPP4V77jE6GiEsk5MD3brp3fNeftnoaJyXQ3Z625okjLKJi4MRI/QibX5+RkcjRNGU\ngrFj9XarsbG6tixKR5qkRIl16wZPP637NM6fNzoaIYo2fz7s2gUrVkiyMIrUMARPPKGbqL78Etzc\njI5GiBt99hmMHw87d8I1i0eIUpImKVFqubm6E9HTE955R9bhEY4lMRF69JARUdYkTVKi1Fxd9aS+\nPXtg1iyjoxHib0eO6C8z774rycIR2HQtKeE8PDzgiy/0Crfe3jBypNERiYru9Gndz/bsszppCONJ\nwhBm9evDxo16uO0dd+i9wYUwwqVLejDGgAHwz38aHY24SvowxA127oTevfXQxXbtjI5GVDTZ2Xrj\nr7p19eRS6VOzPunDEFZz9916KfSHHoL9+42ORlQkeXl6CX5XV71OlCQLxyIJQ9xU9+56ueju3XXH\noxC2phRMmAB//gmrVskQb0ckfRiiUAMG6Al9XbvCd9+Bl5fREYny7D//gR9+gC1boEoVo6MRNyMJ\nQxRp7FhIT4cuXfR+yfXrGx2RKI9mzYL16/XfmIeH0dGIwkjCEMV66inIytJJY+tWqFfP6IhEeTJn\njl5BOT4e6tQxOhpRFEkYwiJPP61Hr9x/v04asmOfsIZXXoH33oNvvoHbbzc6GlEcSRjCYs89p5NG\nly56b/C6dY2OSDizV16BN9/UNQtPT6OjEZaQhCEsZjLB7Nl6yGPnzrBpk/RpiNJ58UVYulQnC1lM\n0HlIwhAlYjLB889D5coQHq5HtMi3Q2EppXRNddUqqVk4I0kYolSeeUaPk+/YUTdPNWpkdETC0SkF\n06bpNcvi46XPwhlJwhClNm0a3HqrThpxcdCsmdERCUeVl6fXhNq7V0ZDOTNJGKJMJkyAWrV0R3hs\nLLRta3REwtFkZcHgwXoS6ObNMs/CmcnSIKLMBg3SQyN79tQ1DSGuSk/Xfxegm6IkWTg3SRjCKh58\nUNcwhg/Xm90IcewYdOgATZroTu7KlY2OSJSVJAxhNe3bw7ff6pm7zzyjOzlFxbRvn/57GDIE3ngD\nKlUyOiJhDbIfhrC6U6f0fhqNG+umKllIrmLZuFEvUb5woV7AUjge2Q9DOIx69fT8jLw8PVfjxAmj\nIxL2oBS8+ipERcGnn0qyKI8kYQibcHeHFSt030bbtrBnj9ERCVvKyoJRo/Ts7R074J57jI5I2IJN\nE0ZcXBxNmzalSZMmzJ07t9ByiYmJuLq6snbt2hIfKxyXyaT7Ml59FSIi4KOPjI5I2EJqql4q5uxZ\n2LYNGjY0OiJhM8pGcnNzVePGjVVSUpLKzs5WoaGh6uDBgzct17lzZ/Xggw+qNWvWlOhYG4YvrGzf\nPqX8/ZUaP16prCyjoxHWsnWrUnfcodQLLyiVl2d0NMJSpb132qyGkZCQgL+/P76+vri5uREZGUls\nbOwN5RYuXEi/fv2oe83Sp5YeK5xHSIjeTe3YMejUSf9XOC+l4OWXITJSN0NNnw4u0sBd7tnsnzg1\nNRWfa5ah9Pb2JjU19YYysbGxjBs3DtA995YeK5xPjRqwbh306QOtW+sd1oTzOX1aT8ZbswZ27YIH\nHjA6ImEvNksYV2/+RZk4cSJz5swxD/FSfw3zsuRY4ZxcXGDqVJ04nnhCPzIzjY5KWGrrVmjZUtcY\nv/tO+isqGputJeXl5UVKSor5eUpKCt7e3gXK7N69m8jISADS0tLYuHEjbm5uFh17VXR0tPnn8PBw\nwsPDrfdLCJtp3x5+/BFGj9ajqD78EJo3NzoqUZisLJgxAz74QDdBSa3CucTHxxMfH1/2E1m1J+Ua\nOTk5ys/PTyUlJamsrKxCO66vGj58uFq7dm2JjrVh+MJO8vOVWrJEqTp1lJozR6ncXKMjEtf76Sel\nQkKU6tNHqT//NDoaYQ2lvXfarEnK1dWVRYsWERERQVBQEAMGDCAwMJCYmBhiYmJKdawof0wmvf7U\nDz/ohQs7doRffjE6KgGQkwMvvKD3cZ88WTcj1qtndFTCSLI0iHAY+fl63aHnnoNJk+Cpp+CWW4yO\nqmJKTNQztr294e23oUEDoyMS1iRLgwin5+ICjz+uZ4Vv2wZ33QXbtxsdVcWSnq6Tda9ef++OJ8lC\nXCUJQzicBg30jWr6dOjfXzdZ/fmn0VGVb0rpmfiBgXqjowMH9D4nMmBRXEsShnBIJhMMHKj7M+rW\n1du/zp+vR+sI69q9W/cdvfoqrF0LS5bIFqri5iRhCIfm4QHz5ukx/5s3Q1CQ3oxHuq7KLjlZb53a\nsyc8+igkJMDddxsdlXBkkjCEUwgM1M1UixfDSy/pG9vXX0viKI0//4Qnn9R9RE2awOHDMGaMbHIk\niicJQziV++7TI3gmTdKzxO+9FzZtksRhiVOnYMoUnXxzcnQ/RXS07LMtLCcJQzgdFxe96N3PP8Nj\nj8H48Xrm+Kef6k2bREFJSTq5Nm0KV67o7VMXLoQ77jA6MuFsJGEIp1Wpkm6DP3hQf3OePVt/e377\nbcjIMDo6YymlFwYcOFAv9OjurmsUb7yh51YIURoycU+UG0rBt9/q0T7ffgtDhsC4cTqJVBSXL8PK\nlToxnDuna1+jR0P16kZHJhxJae+dkjBEuZSSAu+8A+++C40awdCheo/pmjWNjsz6lILvv4dly/Ty\nHe3b60QRESF7VIibk4QhxE3k5OjRVMuWwVdf6U7zfv30UNIaNYyOrvSU0p3/a9fC6tW6yWnYMN1E\n5+lpdHTC0UnCEKIY587pTZvWrIFvvtEjrHr0gG7dwN/f6OiKd+mS3o8iLg4+/xyqVoW+fXUCbNFC\nZmULy0nCEKIE0tP1jffqw90dwsOhQwf9aNTI+BvwpUuwY4eetPjdd7pG0aaNTnAPPqgnMRodo3BO\nkjCEKCWlYP9+3VH+7bf65pyfD61a6UfLlhAQoCe5Valim89PTdUT6A4c0Isv7tkDR47omsPVJNax\no8yZENYhCUMIK1EKjh3TOwLu2QM//QS//qrnM9xxh14c0dtbP+rV0x3pt92m+0QqVwY3N/3Iz4fs\nbN2PcumSbhI7fx7OnNEJIjVVd84fOQK33qqTUlDQ34kqOFifTwhrk4QhhI3l5ur1l1JSdEI5dgxO\nn9aJ4Nw53cyVnf13kqhUSSeOW27RTV5XE0utWuDlpROOlxf4+enXhbAXSRhCCCEsIhsoCSGEsClJ\nGEIIISwiCUMIIYRFJGEIIYSwiCQMIYQQFpGEIYQQwiKSMIQQQlhEEoYQQgiLSMIQQghhEUkYQggh\nLCIJQwghhEVsmjDi4uJo2rQpTZo0Ye7cuTe8HxsbS2hoKC1btuSuu+5iy5Yt5vdmz55Ns2bNCAkJ\nYdCgQWRlZdkyVCGEEMVRNpKbm6saN26skpKSVHZ2tgoNDVUHDx4sUCYjI8P88759+1Tjxo2VUkol\nJSWpRo0aqczMTKWUUo888ohaunTpDZ9hw/CdztatW40OwWHItfibXIu/ybX4W2nvnTarYSQkJODv\n74+vry9ubm5ERkYSGxtboEy1atXMP2dkZFCnTh0AqlevjpubG5cvXyY3N5fLly/j5eVlq1DLhfj4\neKNDcBhyLf4m1+Jvci3KzmYJIzU1FR8fH/Nzb29vUlNTbyj32WefERgYSPfu3Xn99dcBqFWrFpMn\nT6ZBgwZ4enpy2223cf/999sqVCGEEBawWcIwWbjZcJ8+fTh06BCff/45jz76KABHjhxhwYIFJCcn\nc/z4cTIyMli+fLmtQhVCCGEJKzeNme3YsUNFRESYn7/44otqzpw5RR7j5+enTp8+rVauXKmioqLM\nr3/wwQfqscceu6F848aNFSAPechDHvIoweNqf3FJuWIjrVu35rfffiM5ORlPT09WrVrFihUrCpQ5\ncuQIfn5+mEwm9uzZA0CdOnUICAhg1qxZXLlyhSpVqrBp0ybCwsJu+Izff//dVuELIYS4js0Shqur\nK4sWLSIiIoK8vDyioqIIDAwkJiYGgLFjx7J27Vo++OAD3NzcuPXWW1m5ciUALVq0YOjQobRu3RoX\nFxdatWrFmDFjbBWqEEIICzj1nt5CCCHsxylmehc3ARDgiSeeoEmTJoSGhvLjjz/aOUL7Ke5aLF++\nnNDQUJo3b84999zDvn37DIjSPiz5uwBITEzE1dWVdevW2TE6+7LkWsTHx9OyZUuCg4MJDw+3b4B2\nVNy1SEtLo1u3brRo0YLg4GCWLl1q/yDtYOTIkdx+++2EhIQUWqbE981S9XzYkSUTAL/44gvVvXt3\npZRSO3fuVG3btjUiVJuz5Fps375dnT9/Ximl1MaNGyv0tbharnPnzurBBx9Ua9asMSBS27PkWpw7\nd04FBQWplJQUpZRSp0+fNiJUm7PkWsyYMUNNmzZNKaWvQ61atVROTo4R4drUt99+q/bs2aOCg4Nv\n+n5p7psOX8OwZALg+vXrGTZsGABt27bl/Pnz/Pnnn0aEa1OWXIt27dpRo0YNQF+LY8eOGRGqzVly\nLQAWLlxIv379qFu3rgFR2ocl1+Ljjz+mb9++eHt7A5gnyZY3llyLO+64g/T0dADS09OpXbs2rq42\n6841TIcOHahZs2ah75fmvunwCcOSCYA3K1Meb5SWToa86r333qNHjx72CM3uLP27iI2NZdy4cYDl\nc4OcjSXX4rfffuPs2bN07tyZ1q1b8+GHH9o7TLuw5FqMHj2an3/+GU9PT0JDQ3nttdfsHaZDKM19\n0+HTqqX/k6vr+u7L482hJL/T1q1bef/999m2bZsNIzKOJddi4sSJzJkzB5PJhFLqhr+R8sKSa5GT\nk8OePXvYvHkzly9fpl27dtx99900adLEDhHajyXX4sUXX6RFixbEx8dz5MgRunbtyt69e/Hw8LBD\nhI6lpPdNh08YXl5epKSkmJ+npKSYq9WFlTl27Fi5XHvKkmsBsG/fPkaPHk1cXFyRVVJnZsm12L17\nN5GRkYDu6Ny4cSNubm707t3brrHamiXXwsfHhzp16lC1alWqVq1Kx44d2bt3b7lLGJZci+3bt/Of\n//wHgMaNG9OoUSN+/fVXWrdubddYjVaq+6bVelhsJCcnR/n5+amkpCSVlZVVbKf3jh07ym1HryXX\n4ujRo6px48Zqx44dBkVpH5Zci2sNHz5crV271o4R2o8l1+LQoUOqS5cuKjc3V126dEkFBwern3/+\n2aCIbceSazFp0iQVHR2tlFLq5MmTysvLS505c8aIcG0uKSnJok5vS++bDl/DsGQCYI8ePfjyyy/x\n9/enWrVqLFmyxOCobcOSazFz5kzOnTtnbrd3c3MjISHByLBtwpJrUVFYci2aNm1Kt27daN68OS4u\nLowePZqgoCCDI7c+S67F9OnTGTFiBKGhoeTn5/PSSy9Rq1YtgyO3voEDB/LNN9+QlpaGj48Pzz33\nHDk5OUDp75sycU8IIYRFHH6UlBBCCMcgCUMIIYRFJGEIIYSwiCQMIYQQFpGEIYQQwiKSMIQQQlhE\nEoYQNrJs2TJOnDhRpnNER0fzyiuvWFz+woULvPXWW2X6TCEKIwlDVGh5eXk2O/fSpUs5fvx4iY65\nPp6Srol27tw53nzzzRIdI4SlJGEIp5acnEzTpk0ZMmQIQUFB9O/fnytXrgAwa9YswsLCCAkJKTDz\nOzw8nEmTJtGmTRtee+01NmzYwN13302rVq3o2rUrp06dAvS3+2HDhtGxY0d8fX1Zt24dU6ZMoXnz\n5nTv3p3c3FxAr1kVHh5O69at6datGydPnmTNmjX88MMPDB48mFatWpGZmXnTctfH8/rrr9/wO+7d\nu5f27dtz55138u6775pfnzdvHmFhYYSGhhIdHQ3AtGnTOHLkCC1btmTq1KlcunSJ+++/n7vuuovm\nzZuzfv16m/w7iArCisuWCGF3SUlJymQyqe3btyullBo5cqR6+eWXlVJKnT171lzu0UcfVZ9//rlS\nSqnw8HA1fvx483vnzp0z/7x48WI1efJkpZTeaKdDhw4qNzdX7d27V1WtWlXFxcUppZR66KGH1Gef\nfaays7NVu3btVFpamlJKqZUrV6qRI0eaP2f37t1KKVVsuWvjudaMGTNUaGioyszMVGlpacrHx0cd\nP35cffXVV2rMmDFKKaXy8vJUz5491bfffquSk5MLrB2Um5ur0tPTlVJ6syB/f/8SXmEh/ubwa0kJ\nURwfHx/atWsHwJAhQ3j99deZPHkyW7ZsYd68eVy+fJmzZ88SHBxMz549ARgwYID5+JSUFB555BFO\nnjxJdnY2fn5+gG4O6t69O5UqVSI4OJj8/HwiIiIACAkJITk5mcOHD/Pzzz9z//33A7pJydPT03xu\n9dfKO7/++muR5a6N51omk4k+ffpQuXJlKleuTOfOnUlISOC7777j66+/pmXLlgBcunSJ33//vcD+\nBgD5+fn8+9//5rvvvsPFxYXjx49z6tQp6tWrV8qrLSoySRjC6V3bzq+UwmQykZWVxWOPPcaePXvw\n8vLiueeeIzMz01yuWrVq5p8ff/xxpkyZQs+ePfnmm2/MzTsAt9xyCwAuLi64ubmZX3dxcSE3Nxel\nFM2aNWP79u1FxlZcuWvjsfT3/fe//82YMWMKvJecnFzg+fLly0lLS2PPnj1UqlSJRo0aFbgOQpSE\n9GEIp/fHH3+wc+dOQG9F2qFDBzIzMzGZTNSuXZuMjAxWr15d4Bh1zZqb6enp5m/7S5cuvWmZwgQE\nBHD69Gnz5+fk5HDw4EEAPDw8zFuBFlWuKEopYmNjycrK4syZM8THxxMWFkZERATvv/8+ly5dAvTu\naadPn8bDw4OLFy8W+N3q1atHpUqV2Lp1K0ePHi32M4UojNQwhNMLCAjgjTfeYOTIkTRr1oxx48ZR\npUoVRo8eTXBwMPXr16dt27YFjrm2VhIdHU3//v2pWbMm9913n/mmajKZCpS7fsSSyWTCzc2NNWvW\n8MQTT3DhwgVyc3OZNGkSQUFBDB8+nH/+85+4u7uzffv2QssVxWQy0bx5czp37kxaWhrPPvss9evX\np379+hw6dMjcFHfrrbeyfPlyGjVqxD333ENISAg9evTgX//6F7169aJ58+a0bt2awMDAMl1rUbHJ\n8ubCqSUnJ9OrVy/2799vdChClHvSJCWcXnncv10IRyQ1DCGEEBaRGoYQQgiLSMIQQghhEUkYQggh\nLCIJQwghhEUkYQghhLCIJAwhhBAW+X/QP95z8Rls+wAAAABJRU5ErkJggg==\n", - "text": [ - "" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Finding the global minimum: " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from scipy.optimize import minimize\n", - "\n", - "x0 = [0.39] # initial guess (here: guessed based on the plot)\n", - "res = minimize(chernoff_bound, x0, method='Nelder-Mead')\n", - "print(res)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " success: True\n", - " nit: 12\n", - " message: 'Optimization terminated successfully.'\n", - " fun: 0.38940039155946954\n", - " nfev: 24\n", - " status: 0\n", - " x: array([ 0.49999219])\n" - ] - } - ], - "prompt_number": 29 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

\n", - "

\n", - "\n", - "## Calculating the empirical error rate\n", - "\n", - "[back to top]
" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def decision_rule(x_vec):\n", - " \"\"\" Returns value for the decision rule of 2-d row vectors \"\"\"\n", - " x_1 = x_vec[0]\n", - " x_2 = x_vec[1]\n", - " return -x_1 - x_2 + 1\n", - "\n", - "w1_as_w2, w2_as_w1 = 0, 0\n", - "\n", - "for x in x1_samples:\n", - " if decision_rule(x) < 0:\n", - " w1_as_w2 += 1\n", - "for x in x2_samples:\n", - " if decision_rule(x) > 0:\n", - " w2_as_w1 += 1\n", - "\n", - "emp_err = (w1_as_w2 + w2_as_w1) / float(len(x1_samples) + len(x2_samples))\n", - " \n", - "print('Empirical Error: {}%'.format(emp_err * 100))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Empirical Error: 23.0%\n" - ] - } - ], - "prompt_number": 17 - } - ], - "metadata": {} - } - ] -} \ No newline at end of file diff --git a/stat_pattern_class/.ipynb_checkpoints/maximum_likelihood_estimate-checkpoint.ipynb b/stat_pattern_class/.ipynb_checkpoints/maximum_likelihood_estimate-checkpoint.ipynb deleted file mode 100644 index 7e97fd0..0000000 --- a/stat_pattern_class/.ipynb_checkpoints/maximum_likelihood_estimate-checkpoint.ipynb +++ /dev/null @@ -1,871 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:b9f69eba330d08829c8a58fb4de8ca105650cb5664f5cbdee50230933b48c661" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Sebastian Raschka \n", - "last updated: 04/14/2014 \n", - "\n", - "[Link to this IPython Notebook on GitHub](https://github.com/rasbt/pattern_classification/blob/master/stat_pattern_class/supervised/parametric/parameter_estimation/maximum_likelihood_estimate.ipynb)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Sections\n", - "\n", - "- [Introduction](#introduction)\n", - "- [1) A simple case where the parameters are known - no MLE required](#one)\n", - " - [Generating some sample data](#sample_data)\n", - " - [Plotting the sample data](#plotting_data)\n", - " - [Defining the objective function and decision rule](#objetive_function)\n", - " - [Implementing the discriminant function](#discriminant_functions)\n", - " - [Implementing the decision rule (classifier)](#decision_rule)\n", - " - [Classifying our sample data](#Classifying our sample data)\n", - " - [Drawing the confusion matrix and calculating the empirical error](#confusion_matrix)\n", - "- [2) Assuming that the parameters are unknown - using MLE](#two)\n", - " - [About the Maximum Likelihood Estimate (MLE)](#about_mle)\n", - " - [MLE of the mean vector $\\pmb \\mu$](#mle_mu)\n", - " - [MLE of the covariance matrix $\\pmb \\Sigma$](#mle_cov)\n", - " - [Classification using our estimated parameters](#classifying_mle)\n", - " - [Conclusion](#conclusion)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "# Introduction" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Popular applications for Maximum Likelihood Estimates are the typical statistical pattern classification tasks, and in the past, I posted some [examples](https://github.com/rasbt/pattern_classification#param) using Bayes' classifiers for which the **probabilistic models and parameters were known**. In those cases, the design of the classifier was rather easy, however, in real applications, we are rarely given this information; this is where the Maximum Likelihood Estimate comes into play." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "However, the Maximum Likelihood Estimate still **requires partial knowledge** about the problem: We have to assume that the **model of the class conditional densities is known** (e.g., that the data follows typical Gaussian distribution). In contrast, non-parametric approaches like the Parzen-window technqiue do not require prior information about the distribution of the data (I will discuss this technique in more detail in a future article, the IPython notebook is already in preparation). " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**To summarize the problem:** Using MLE, we want to estimate the values of the parameters of a given distribution for the class-conditional densities, for example, the *mean* and *variance* assuming that the class-conditional densities are *normal* distributed (Gaussian) with $p(\\pmb x \\; | \\; \\omega_i) \\sim N(\\mu, \\sigma^2)$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To illustrate the problem with an example, we will first take a look at a case where we already know the parameters, and then we will use the same dataset and estimate the parameters. This will give us some idea about the performance of the classifier using the estimated parameters. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "# 1) A simple case where the parameters are known - no MLE required" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Imagine that we want to classify data consisting of two-dimensional patterns, $\\pmb{x} = [x_1, x_2]^t$ that could belong to 1 out of 3 classes $\\omega_1,\\omega_2,\\omega_3$. \n", - "\n", - "Let's assume the following information about the model and the parameters are known:\n", - "\n", - "####model: continuous univariate normal (Gaussian) model for the class-conditional densities\n", - "\n", - "\n", - "$ p(\\pmb x | \\omega_j) \\sim N(\\pmb \\mu|\\Sigma) $\n", - "\n", - "$ p(\\pmb x | \\omega_j) \\sim \\frac{1}{(2\\pi)^{d/2} \\; |\\Sigma|^{1/2}} exp \\bigg[ -\\frac{1}{2}(\\pmb x - \\pmb \\mu)^t \\Sigma^{-1}(\\pmb x - \\pmb \\mu) \\bigg]$\n", - "\n", - "$p([x_1, x_2]^t |\\omega_1) \u223c N([0,0]^t,3I), \\\\\n", - "p([x_1, x_2]^t |\\omega_2) \u223c N([9,0]^t,3I), \\\\\n", - "p([x_1, x_2]^t |\\omega_3) \u223c N([6,6]^t,4I),$\n", - "\n", - "#### Means of the sample distributions for 2-dimensional features:\n", - "\n", - "$ \\pmb{\\mu}_{\\,1} = \\bigg[ \n", - "\\begin{array}{c}\n", - "0 \\\\\n", - "0 \\\\\n", - "\\end{array} \\bigg] $,\n", - "$ \\; \\pmb{\\mu}_{\\,2} = \\bigg[ \n", - "\\begin{array}{c}\n", - "9 \\\\\n", - "0 \\\\\n", - "\\end{array} \\bigg] $,\n", - "$ \\; \\pmb{\\mu}_{\\,3} = \\bigg[ \n", - "\\begin{array}{c}\n", - "6 \\\\\n", - "6 \\\\\n", - "\\end{array} \\bigg] $\n", - "\n", - "\n", - "#### Covariance matrices for the statistically independend and identically distributed ('i.i.d') features: \n", - "\n", - "$ \\Sigma_i = \\bigg[ \n", - "\\begin{array}{cc}\n", - "\\sigma_{11}^2 & \\sigma_{12}^2\\\\\n", - "\\sigma_{21}^2 & \\sigma_{22}^2 \\\\\n", - "\\end{array} \\bigg] \\\\ \n", - "\\Sigma_1 = \\bigg[ \n", - "\\begin{array}{cc}\n", - "3 & 0\\\\\n", - "0 & 3 \\\\\n", - "\\end{array} \\bigg] \\\\\n", - "\\Sigma_2 = \\bigg[ \n", - "\\begin{array}{cc}\n", - "3 & 0\\\\\n", - "0 & 3 \\\\\n", - "\\end{array} \\bigg] \\\\\n", - "\\Sigma_3 = \\bigg[ \n", - "\\begin{array}{cc}\n", - "4 & 0\\\\\n", - "0 & 4 \\\\\n", - "\\end{array} \\bigg] \\\\$\n", - "\n", - "#### Equal prior probabilities\n", - "$P(\\omega_1\\; |\\; \\pmb x) \\; = \\; P(\\omega_2\\; |\\; \\pmb x) \\; = \\; P(\\omega_3\\; |\\; \\pmb x) \\; = \\frac{1}{3}$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "## Generating some sample data\n", - "Given those information, let us draw some random data from a Gaussian distribution." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import numpy as np\n", - "\n", - "np.random.seed(123456)\n", - "\n", - "# Generate 100 random patterns for class1\n", - "mu_vec1 = np.array([[0],[0]])\n", - "cov_mat1 = np.array([[3,0],[0,3]])\n", - "x1_samples = np.random.multivariate_normal(mu_vec1.ravel(), cov_mat1, 100)\n", - "\n", - "# Generate 100 random patterns for class2\n", - "mu_vec2 = np.array([[9],[0]])\n", - "cov_mat2 = np.array([[3,0],[0,3]])\n", - "x2_samples = np.random.multivariate_normal(mu_vec2.ravel(), cov_mat2, 100)\n", - "\n", - "# Generate 100 random patterns for class3\n", - "mu_vec3 = np.array([[6],[6]])\n", - "cov_mat3 = np.array([[4,0],[0,4]])\n", - "x3_samples = np.random.multivariate_normal(mu_vec3.ravel(), cov_mat3, 100)" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 35 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "
\n", - "\n", - "## Plotting the sample data\n", - "To get an intuitive idea of how our data looks like, let us visualize it in a simple scatter plot." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%pylab inline\n", - "\n", - "import numpy as np\n", - "from matplotlib import pyplot as plt\n", - "\n", - "f, ax = plt.subplots(figsize=(7, 7))\n", - "ax.scatter(x1_samples[:,0], x1_samples[:,1], marker='o', color='green', s=40, alpha=0.5, label='$\\omega_1$')\n", - "ax.scatter(x2_samples[:,0], x2_samples[:,1], marker='s', color='blue', s=40, alpha=0.5, label='$\\omega_2$')\n", - "ax.scatter(x3_samples[:,0], x3_samples[:,1], marker='^', color='red', s=40, alpha=0.5, label='$\\omega_2$')\n", - "plt.legend(loc='upper right') \n", - "plt.title('Training Dataset', size=20)\n", - "plt.ylabel('$x_2$', size=20)\n", - "plt.xlabel('$x_1$', size=20)\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Populating the interactive namespace from numpy and matplotlib\n" - ] - }, - { - "output_type": "stream", - "stream": "stderr", - "text": [ - "WARNING: pylab import has clobbered these variables: ['f']\n", - "`%matplotlib` prevents importing * from pylab and numpy\n" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAcMAAAHPCAYAAAAvRLGlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd8VGX2/z93JmWSSQ9JJoUUIGAoSwcBlQACK4guZX+7\n6q6Cfd1dxbrWBdRVEHR13a+7rutSdFmVXhKBUEKRIgQILXQmpPfeJpm5vz+ONzOTzIRJMi0z5/16\n3VfIc9u5E71nPs9ziiCKogiGYRiGcWNkjjaAYRiGYRwNO0OGYRjG7WFnyDAMw7g97AwZhmEYt4ed\nIcMwDOP2sDNkGIZh3B52hgwDQCaTYdKkSd2+TnJyMmQy/t+KYXoa/H8t4xTIZLJObatXr7a6DYIg\nWOUa1riONUlPT2/3+SmVSkRFRWHixIl45ZVXcPr0aavdb/78+ZDJZLh586bVrmkrepKtjG3xcLQB\nDAMAixYtMnIioiji448/RlVVFRYuXIigoCCj44cPH27V+1+8eBG+vr7dvs6aNWvQ0NBgBYusT3x8\nPObPnw8A0Gg0KCkpQUZGBlasWIEVK1bgwQcfxOeffw6lUtnteznbF4KO6Em2MraDnSHjFCxatKjd\n2MqVK1FdXY2FCxciNjbWpvfv37+/Va7Tu3dvq1zHFsTHx+PPf/5zu/HMzEw8/PDDWLt2LcrLy5Ga\nmtrte4miiJ5S3Kon2crYDp4mZXoc0rpcc3Mz3n77bQwYMAAKhQILFiwAAFRXV2P58uWYPHkyYmJi\n4O3tjfDwcNx///04evSoyWuaWjNcvHgxZDIZ9u/fj/Xr12PMmDFQKpUIDQ3FAw88gPz8fLO2GSJN\nUy5ZsgSnT5/GzJkzERQUBKVSieTkZBw5csSkTQUFBViwYAHCw8Ph6+uL4cOHY82aNUbXswZDhw7F\n7t27ERYWhh07dmDLli1G+zdv3ozf/OY36N+/P/z8/ODn54dRo0bh008/bedEZDIZ1qxZAwBISEho\nnZZNSEhoPSYjIwPPPfcchg4ditDQUPj4+KB///546aWXUFlZ2c4+jUaDv/3tbxgxYgRCQkKgVCqR\nkJCAX/ziF9izZ0+74y9evIj58+ejd+/e8Pb2hkqlwkMPPYTLly932lbGfWBlyPRY5syZgxMnTmDG\njBmYM2cOwsPDAQAXLlzAm2++iYkTJ2LWrFkIDg5GdnY2tm7diu+//x7btm3D9OnT213P3HTZZ599\nhq1bt+L+++/HpEmTcPToUXz77bfIzMzE6dOn4eXlZdF1Tpw4gQ8++ADjx4/Hk08+iezsbGzYsAFT\npkzB6dOnjdRpcXExxo0bh5s3b2LixIkYP348CgoK8Mwzz2Dq1Kkd3qcrhIWF4amnnsK7776L//73\nv7j//vtb97322muQy+UYN24coqOjUVVVhT179uC5557D8ePHWx0KQAp/8+bNyMzMNJreNpzm/uKL\nL7B582YkJydj2rRp0Ol0OHHiBD766CN8//33OHbsGPz8/FqPnz9/Pr755hsMGTIEjzzyCHx8fJCX\nl4cffvgBO3fuxJQpU1qP3bFjB+bMmQOtVotZs2ahX79+yMnJwcaNG5GSkoJ9+/a1TrFbYivjRogM\n46TExcWJMplMzM7ONhqfOHGiKAiCOHToULGsrKzdeVVVVSbHc3NzxaioKDEpKandPkEQxEmTJhmN\nLVq0SBQEQQwMDBTPnTtntO/BBx8UBUEQv/vuu3a2yWQyo7F9+/aJgiCIgiCIq1evNtr3+eefi4Ig\niM8884zR+KOPPioKgiC++uqrRuOZmZmit7e3KAiCuGTJknbPYQrp/m2fry179uwRBUEQ4+Pjjcav\nX7/e7lidTic+8sgjoiAI4rFjx4z2SeNt/24S2dnZok6nazf+5ZdfioIgiMuWLWsdq6ysFAVBEEeP\nHm3yHMO/c3l5uRgUFCSGhYWJWVlZRsedO3dO9PPzE0eMGNEpWxn3gadJmR7LO++8g5CQkHbjAQEB\nJsejo6Mxd+5cXLx4Ebm5uRbf59lnn8WgQYOMxp544gkAwPHjxy2+zh133IGHH37YaOzRRx+FXC43\nuo5Go8H//vc/BAUF4c033zQ6/mc/+1m7a1iLqKgoAEBJSYnRuKlpQ0EQ8OyzzwIAdu3a1an7xMbG\nmlS1CxYsgL+/v9H1pOO8vb1NnmP4d16zZg2qqqqwZMkS3HbbbUbHDRo0CI8//jhOnTqFrKysTtnL\nuAc8Tcr0SARBwJgxY8zu/+GHH/DJJ5/gyJEjKCkpgUajMdqfl5eHmJgYi+41atSodmPSuRUVFRbb\nbOo6Hh4eiIiIMLrOpUuX0NjY2LpG2ZYJEybg3//+t8X3tRTxp/W/tk6nrKwMy5cvR2pqKq5fv476\n+nqj/Xl5eZ26T3NzMz7//HN88803uHDhAqqrq6HT6UxeLyAgALNmzcK2bdswbNgwzJ07F3feeSfG\njBnTLvpXWns9ffo0Fi9e3O6+0pphVlYWkpKSOmUz4/qwM2R6LBERESbHN23ahHnz5sHX1xdTp05F\n3759oVQqIZPJsG/fPuzfvx9NTU0W38fUGpKHB/2vo9Vqu3Ud6VqG16mqqgJg/vnMjXcXKSAoLCys\ndayyshKjR4+GWq3G2LFjMX/+fISEhMDDwwMVFRX45JNPOvVZAsCvfvUrbN68GX379sXs2bOhUqng\n7e3dmk7T9nrffvstli1bhrVr17ZGHSsUCsybNw8rVqxoXSsuKysDQGuS5hAEAXV1dZ2yl3EP2Bky\nLsdbb70FhUKBEydOYMCAAUb78vLysH//fgdZZhkBAQEAgKKiIpP7zY13l3379gEAxo4d2zr273//\nG2q1GosXL26XlnHkyBF88sknnbrHiRMnsHnzZkydOhXff/+9UeStKIpYtmxZu3MUCgUWLVqERYsW\nITc3FwcOHMCqVavw9ddfQ61W48CBAwCAwMBAAMCZM2cwePDgTtnFMLxmyLgcV69excCBA9s5Qp1O\nh0OHDjnIKstJSkqCQqHAmTNnUFtb226/LZ6huLgYn3/+OQRBwEMPPdQ6fvXqVQDA3Llz251j7kuF\nXC4HYFo1S9e777772qWgHDt2DI2NjR3aGRMTgwcffBA7d+5E3759cejQodYp5nHjxgFAq3O0hI5s\nZdwLdoaMy5GQkIDLly+joKCgdUwURSxevBhZWVlOX3HE09MTv/71r1FZWYl3333XaF9mZqZRKoM1\nyMzMxNSpU1FWVoYZM2bg3nvvbd0nBc9IqlHi1KlTeP/9901eLzQ0FACQnZ3dbp+56xUXF+P3v/99\nu+NLS0tx9uzZduO1tbWora2Fp6dna2rLggULEBQUhCVLlpgMbNLpdEhPT7fYVsa94GlSxqkRzVQG\nMTcOAM8//zyefvppDB8+HHPmzIGnpyd++OEHZGVltQZj2JKObLOUpUuXYu/evfjggw9w7NgxjBs3\nDgUFBVi3bh1mzpyJzZs3d7og+I0bN1oDS5qbm1FaWoqMjAycPHkSgiDgt7/9Lf75z38anfPwww9j\n+fLlWLhwIfbt24d+/frhypUrSElJwdy5c/HNN9+0u8/dd9+NFStW4IknnsCcOXPg7++P4OBg/P73\nv8fo0aMxYcIEbNy4ERMmTMCECRNQVFSEHTt24LbbbkNUVJTR55ebm4sRI0ZgyJAhGDJkCHr37o3q\n6mps374dRUVFeO6551qDjEJCQrB+/XrMnj0bt99+O6ZMmYKBAwdCEATk5OTgyJEjqKioMAoA6shW\nxs1wXFYHw3RMfHy8yTzD5OTkdrl8bVm1apU4bNgwUalUimFhYeKcOXPEc+fOiYsXLxZlMpm4f/9+\no+NN5eGZO1YURfHGjRuiIAjiggULbmmblOdnLi8wPj5eTEhIaDeel5cnPvLII2JYWJjo4+MjDh8+\nXFyzZo24fv16URAE8ZNPPunwM5BIT08XBUEQZTJZa76jj4+PGBUVJU6cOFF85ZVXxMzMTLPnX7hw\nQbzvvvvE8PBwUalUiqNGjRK//PJLUa1Wm/wMRFEUP/roIzEpKak1J9Lw+crLy8VnnnlGjI+PFxUK\nhdivXz/xjTfeEOvr69t9FpWVleLbb78tTp48WYyOjha9vb3FqKgocdKkSeI333xj0l61Wi3+4Q9/\nEBMTE0WFQiEGBgaKSUlJ4sMPPyxu2bKlU7Yy7oMgis5RlO/RRx9FSkoKwsPDW6dFXn75ZWzfvh1e\nXl7o27cvVq5c2bpIzjDuyhtvvIH3338fO3fubK1GwzBM93CaNcMFCxZgx44dRmPTpk3D+fPnkZmZ\nif79+5tdo2AYV8RU7dOzZ8/ib3/7G0JDQzFx4kQHWMUwronTrBneeeedUKvVRmOG33rHjh2LDRs2\n2NkqhnEco0aNQmJiIgYNGgSlUtm6VgdQLl3bmqgMw3Qdp3GGt+I///kPHnjgAUebwTB24+mnn8bm\nzZvxzTffoKamBsHBwbjnnnvw0ksv4a677nK0eQzjUjjNmiEAqNVqzJo1q10o9V/+8hecPHmSlSHD\nMAxjE5xeGa5atQqpqakm+5YBQL9+/XDt2jU7W8UwDMM4M3379m0t8mAJThNAY4odO3Zg+fLl2LJl\nCxQKhcljrl271tqpmjfLt0WLFjnchp648efGnx1/bj1j66xIchpn+MADD2D8+PG4dOkSevfujf/8\n5z/44x//iNraWkydOhXDhw/HM88842gzGYZhGBfEaaZJ//e//7Ube/TRRx1gCcMwDONuOI0yZOxL\ncnKyo03okfDn1nX4s+sa/LnZB6eKJu0KgiCghz8CwzAMY2U66xucZpqUYRiGsS4hISGtLa5cleDg\nYJSXl3f7OqwMGYZhXBR3eD+ae8bOPjuvGTIMwzBuDztDhmEYxu1hZ8gwDMO4PewMGYZhGLeHnSHD\nMAzj9nBqBcMwDGOETtQhIz8De67vQY2mBiMiR2BywmQE+wQ72jSbwakVDMMwLoq592OtphYHsw/i\nZMFJKD2VSE5IxtCIoRAEAQDw7flvsf3SdgT7BMNL7oXyhnIEK4Lx5l1vGjnEmqYaFNcVI8A7AGHK\nMLs9lyHWSq1gZ8gwDOOimHo/1mpq8d7B95Bfk49gRTA0Wg1qmmowa8As/HLQL1FcV4w/pf0JMQEx\nkMvkrefdrLqJe/rdg18O+iV0og4bL2zEjms7IIoidKIOwyOH47Hhj0HppbTYvqqqKhw6dAgzZ840\nGh8zZgy2bNmCyMjILj1jR+Pm4DVDhmEYNyJdnY78mnzEB8UjUBGIMGUY4oLikHolFUW1RbhRcQMA\njBwhAIT6hCKjIAMAsOf6Hmy5tAUqPxV6B/ZGbGAsTheexsrTKztly549ezBjxgwAQEZGRuv47Nmz\nIZPZ1z2xM2QYhnEjjucfR6hPqNGYXCaHCBHXKq5B4WG6d6xGq4G/lz9EUUTKlRRE+kfCQ0ZhJ4Ig\nICYgBhn5GSitL7XYFkEQWqdmly1b1joeEhIChUKBjRs34v333+/sI3YJdoYMwzBuhI/cB826ZpP7\nvOReuK3XbVB6KVHVWNU6rhN1KG8ox5SEKdCKWlQ2VsLHw8foXJkgg0yQobqp2mJbTp06BQBIS0uD\nv78/AGDdunWIiopCYGAgRo4cCY1G09lH7BLsDBmGYdyISQmTUNFQAZ2oax2r1dRC4aFAUq8keHt4\nY+HtC9Gsa0Z2ZTbUlWrcrLqJ6f2mY0zMGMgFOeIC41DVVGV03RZdCwRBQLgy3GJbZDIZ4uPjkZaW\nhsbGRvTp0wf5+fmYNWuW1Z7XUjiAhmEYxkUx9X7UiTp8lfkV9qn3AT/t8vbwxh/H/BGDIwa3HtfY\n0oiLpRfR0NyA+KB4RPrrg1nOFJ7Bh0c+RJAiCEGKIDS0NKCgpgCzk2ZjTtIcq9mfnZ2NVatWYdGi\nRZ16xo7GzV6HnSHDMIxrYu79KIoicqtzcb3iOrw9vDE4fDD8vPw6de2zRWex/sJ6ZFdlI8QnBPcm\n3ovkhGTIBOtNOKrVaqxevZqdoSWwM2QYhjGNPd6PWp0WMkHWGghjLWpra/H5559j//79eO+99zB4\n8GCTx7Ez/Al2hgzDMKZxh/cj5xkyDMMwjJVgZ8gwDMO4PewMGYZhGLeHnSHDMAzj9rAzZBiGYdwe\ndoYMwzCM28POkGEYhnF72BkyDMMwbg87Q4ZhGMbtYWfIMIzr4OLVVhjbwc6QYRjXYe1aYN8+R1vB\n9EA8HG0AwzCMVSguBtLSAKUSGDcOUJju2M7cmldfBQoL24+rVMDSpfa3xx6wM2QYxjVITQU8PIC6\nOuDQIeDuux1tkdNyK2dXWAjEx7ffr1Z3fL7hNSyhqqoKhw4dwsyZM43Gx4wZgy1btiAyMtLMmdaH\nnSHDMD2f4mLgwAEgOhrQaIBNm4A77mB1aIZbObuunt+ZawDAnj17MHv2bABARkYGRo4cCQCYPXs2\nZDL7ruLxmiHDMD2f1FRAJgPkcsDHR68OGadGEITWPojLli1rHQ8JCUFNTQ02bdqEJUuW4OTJkza3\nxSmc4aOPPoqIiAgMGTKkday8vBxTp05F//79MW3aNFRWVjrQQoZhnBZJFRpOqUVEkDpsbHScXcwt\nOXXqFAAgLS0N/v7+AIB169YhMjIS27ZtQ3R0NF544QWsWLHC5rY4hTNcsGABduzYYTS2dOlSTJ06\nFZcvX8aUKVOw1FVXbRmG6R4HDpASLCgAcnNpKyujLSPD0dYxHSCTyRAfH4+0tDQ0NjaiT58+yM/P\nx3333Yfnn38eY8aMQU5ODhISEmxui1OsGd55551Qt5lo3rp1K/bv3w8AeOSRR5CcnMwOkWEYWhO8\neRPo149+nzwZGDbM9LEqlf3sciFUKtNrf9b+OBcvXozFixd3eMymTZvwxhtvWPfGJnAKZ2iKoqIi\nREREAAAiIiJQVFTkYIsYhnEKfviB8gk/+AAIDgZCQmhjLOZWzs5ZdMfWrVvx7LPPIi8vD4mJiTa9\nl9M6Q0MMF1kZhnFjmpqAjRtpWnTXLuBXv3K0RT2S7jo7c85U2mcNNm3ahPfeew+ffvopkpOTba4O\nndYZRkREoLCwECqVCgUFBQgPDzd7rKHMTk5ORnJysu0NZBjG/hw+DNTUAAkJlGA/bRqpQ8au2EM5\nzp49uzXtwhLS09ORnp7e5fsJougcxfzUajVmzZqFs2fPAgBeeeUVhIaG4k9/+hOWLl2KyspKk2uG\ngiDASR6BYRhb0tQEvPQSpU74+gI5OeQMWR2axR3ej+aesbPP7hTRpA888ADGjx+PS5cuoXfv3li5\nciVeffVVpKWloX///ti7dy9effVVR5vJMIwjkVShry/9rlKROqyocKxdjEvgNMqwq7jDNx+GcXua\nmoAXX6R/S84QAPLzgVmzWB2awR3ej9ZShk67ZsgwDNNKeTkQGkppFYb07k37GKabsDJkGIZxUdzh\n/ehSa4YMwzAM40jYGTIMwzBuDztDhmEYxu1hZ8gwDMO4PewMGYZhGLeHnSHDMAxjmqIioBslznoS\n7AwZhnEMOp2jLWCOHSOHZ44NG4AvvwRKS80f0zb3s4fCzpBhGPvT0AC88w5VkHEE5vLP8vKAn/qo\nujxVVcA//0kOzxS5ucCPPwJeXsD335s+pr4e+POfgRs3umhCFVJSUtqNjxkzBgUFBV26ZldhZ8gw\njP05dIi60G/fbv97nzwJfPZZe4coisB335EScod6p7t3089jx6joeVu2biVHGBkJ7N1rWh3u3w9c\nvAhs3mz+C0YH7NmzBzNmzAAAZGRktI7Pnj0bMpl93RM7Q4Zh7EtDA708Bwyg4tv2VIdaLfDNN+SM\nr1833qdWA6dPAx4ewM6d9rPJEVRVkdqLjAQUCmDbNuP9kipUqejzkMvbq8P6enKYAwYAmZnmGxx2\ngGGv2mXLlrWOh4SEoKamBps2bcKSJUtw8uTJTl+7s7AzZBjGvhw6RM15lUpSHvZUhydP0hpZUBCw\naZNezYgiOWhfX3IQu3e7tjrcvZvWbL28gIiI9upQUoWSOlOp2qvD/fuBxkZqqaVQdEkdnjp1CgCQ\nlpYGf39/AMC6desQGRmJbdu2ITo6Gi+88AJWrFjRrce1BHaGDMPYD0kVRkTQ7yqV/dShVgusW0cF\nv8PDgbNn9epQUoXh4YCnJ73UXVUdSqpQakkvkxmrQ2ndVKulf+fl0ReIqipgxw46RlKF0t8xIqJL\n6lAmkyE+Ph5paWlobGxEnz59kJ+fj/vuuw/PP/88xowZg5ycHCQkJFjn2TuAu1YwDGM/JFUYFka/\ny2R6dfjkk7a9t6QKpRerry+pwxde0KvCn6bsoFKRepo+HQgOtq1d9mb3bur04dHm9b9/P7XD8vam\nllimVJ7kQCVVKDlDQdCrw4UL9Z/jLVi8eDEWL17c4TGbNm3CG2+8YdH1ugM7Q4Zh7IOktrRa4yk5\nnY7Wp+bNA0JCbHNvQ1UoIanDAwdInQYE0FqZRFkZsGuX6/VKDA8HZs9uPy4I9OUkPByYM6fja6Sn\n09/N8O8oikBWFlBSQtewAlu3bsWzzz6LvLw8JCYmWuWa5uAWTgzD2I+CAmrU2xaZDIiJ0a9RWZuz\nZ4GlS2l9y5DaWmDkSMDcizY6Ghg92jY22QGbvR+rqkznF8pk9IXGQmXYEZs2bcJ7772HoKAgJCcn\nm1WH1mrhxM6QYRjXp7GR1r5MERCgn7Z1Mdzh/cjO8Cfc4Y/NMAzTFdzh/cjNfRmGcV1++MFx1WkY\nt4SdIcMwzkVlJfCvfwHfftulqiYM0xXYGTIM41ykpVHFk9Onu1TVpFMcPEj3YdwedoYMwzgPlZWU\nfhEZSZGfXax5aRH19cDatcCaNUBzs23uwfQY2BkyDOM8pKWR8/P0pIRuW6pDKXG8vBw4ftw292B6\nDOwMGYZxDiRVKFU5EQTbqUPDcmKhocD69awO3Rx2hgzDOAe7d1PVl5ISiiTNz6fKMUeOANnZ1r2X\npAoVCsDf32XVYXBwcGtnCFfdgq1ULo/LsTEM4xzExAAPPmh6n5eX9e7Ttsg0oFeHo0fTFK2zUVVF\nTruTFXrKy8ttZJDrwc6QYRjn4PbbabM1Bw9SWbiGBuPxykpqOGwPGzqDRgO89x5w333AhAmOtsZl\nYWfIMIx70b8/daowRUyMfW2xhGPHKIho3TpgzBjnVK4uAJdjYxiGcVY0GuCVV6jdUkkJtblidWgR\nXI6NYRjX5+BBCrZxdY4do+lbPz8qJs5RrzaDnSHDMD2L4mLg88/1ndldFY0G2LAB6NWLfvfzo6jX\nH390rF0uCjtDhmF6Fjt20LrZ/v3kGF0VQ1UowerQZrAzZBim51BcDOzbR4EucjmQmupoi7pOZSWl\nTJjj+HHqJp+drd/Kyqgh8Y0b9rPTTXD6aNL3338fX3/9NWQyGYYMGYKVK1fC29vb0WYxDOMIduwg\nJyiXU/3SAweAGTOA8HBHW9Y5RBH4z38ob3DhQtPHPPcc0NJieh+/A62OUytDtVqNL774AidPnsTZ\ns2eh1WrxzTffONoshmEcgaQKIyPpd7mcnElbdajTUeSlM3PjBpCZCZw6Zb72qlxOTs/Uxlgdp3aG\nAQEB8PT0RH19PVpaWlBfX4/o6GhHm8UwjCPYsQOoriZHV1hImyBQcW/DtcOTJ4F33qHpRGdEFKne\nqq+vvvYq43Ccepo0JCQEL774ImJjY+Hj44Pp06fj7rvvdrRZDMM4gpgYYM6c9uOCoP+3Vgt89x1V\nmElPB+69127mWYykCuPj6feMDBpLSHCoWe6OUzvDa9eu4eOPP4ZarUZgYCB++ctf4r///S8eeugh\nR5vGMIy9mTz51secOkUqsV8/Sr1ITjaOxnQ0hqpQEGhKNysL+PvfgQ8/dLR1bo1TO8MTJ05g/Pjx\nCA0NBQDMmTMHhw8fbucMFy9e3Prv5ORkJCcn29FKhmGcAkkVBgfTulpzs/Opwxs3yGH37k32FRQA\ndXU0BfzMM0Dfvo62sMeSnp6O9PT0Lp/v1OXYMjMz8dBDD+H48eNQKBSYP38+xowZg9///vetx3A5\nNoZhAAAnTpDCkqYfm5ooSf3DD51HHe7eDWzaRP8WReDoUXLijY3A888DTz/tWPtciM76BqdWhkOH\nDsXDDz+MUaNGQSaTYcSIEXjyyScdbRbDOB9aLb1cPZz6f2nLqK+nlk2deRZDVSi9AL28qIpLV9Sh\nKAJffglMn04qzlrcfTdtAK0V1tXRWmFVFUWVarUURcrYHaeOJgWAV155BefPn8fZs2exevVqeHLF\ndoZpz3ffAf/9r22uLYrAtWvW7zZv7l6ffgqkpHTuvMJCih6tqDBOUhdFClbpLFlZwPff2y7SU6ul\nLhQhIfR7YCBNmZ4+bZv7MbfEBb5GMoybU1ZG6QWiCNxzj/UT0G/cAN5/H/jTn4DEROteuy2XLwPn\nzpHznTyZGtpaQnQ08Nln1rFBFKkmaGQkTb1mZwNxcda5tsTp0+T8DCNIQ0LIQQ4bxurQATi9MmQY\n5hbs3EmRibYoTyZFP1ZVARs36tWhLVSi5IQCAqjyyr591r+HJWRlAVevAqGhlAe4dav175GeTpGk\nOTn6rboaKCqiezN2h5Uhw/RkysooKCMqihzi/v3WLU8m5cQlJQEXLtCL2teXAlWeftq6iunyZeDS\nJQqAaW4Gtm8HJk2yXB1aA0OHLAj0OdpCHT71FNDQYHrfT9HzjH1hZcgwPRlJFXp46Gt2WksdGubE\nyWSAUkmOYvlyWqNcv94695HutWEDRX0KAgW/OEIdSqpQWsuTyWyjDqX+hKY2Gb+WHQF/6gzTU5FU\noVSrE9AXr7ZGayNJFUoqMyyM2gqlppKzSkszX1ezs0iqUOrdBwAqFanDmhrr3MMStm8nxZabq5++\nbGqiFIi8PPvZwdgdniZlmJ7K8eOUOlBQYDze1EQNYLuTbC6pQg8Puoc0duUK5e4lJpJz2LABePFF\n/XnFxZTe0Nmo7+PH6fo5OcbjOh1Nz44d2/Vn6QyzZwNTp5reJ6lFW7B7NxARAQwZYrt7MB3i1En3\nlsBJ90yPp6WFpjcNa2xagkZDQRem8PfvXneDpiZg6VLquSdRXk4pD97eQJ8+pNhUKuCf/6R1vqYm\n4PXXKTefQ93LAAAgAElEQVRv2rTO3a+lRe9026JQuPbUYXU1JdyHhgLvvecauaJOgEsl3TOMyyOK\nwD/+QQEqnS1C7+VlPK1oTby9gUWL9L+LIvDCC6SOoqJozNfXWB0ePUoqddMm4I47aL+leHi4rxPY\ns4c+3+JiKtU2erSjLXJLXPjrFsP0ANRqmtLctMl8dKEzcP06TeVJL+3iYlKNtbXArl20vrhhA+X7\nNTYChw452uLOcfaseWVqS6qraQ1WpdLnGZpr6MvYFDf9KsYwToC0LqdUUgmyQ4fMr1c5Go2G2ieZ\nchhJSeQsq6tpulQu75o6dBSFhcCKFcCCBdTlwp7s2UPVaLy8aFOrWR06CHaGDOMo1GqK1oyLIzW1\neTM5EB+frl1PFCknbsQI61cwSUoCliwxva+pCXj5ZYo2BWiNr6iInHtn1w4dQUoKqbENG4Bx4+zX\nSd5QFUpI6nD4cPedNnYQPE3KMI5AUoUKBQXO+Pjo1WFXuXIF+OQT+9e3PHqUpkwVClI5Wi2tZW7a\nRM/kbBgGVRQW0mcuBQQdOWI/O9LTgZISID+fvhip1RSkdPVq1+qpMt2Cv3owjCMwVIUS4eFdV4dS\n0rog2L++ZVaWXg0a4uVF+Xr9+3f92lVVpJCUStP78/IoLeMXv7D8mt9+C8TGAuPHkyqUChaEh9tX\nHQ4ZQoraFNHRtr8/YwQ7Q8Z9KCoiJ2SvnLWOOHSI1t9yc43HNRrgzJnO23jlCnDxIikctZrU4ciR\nVjO3Q6zVgy81laYJb7+dfhdF4F//oo4O5lq3bdgAHD5Mz2pJq6XiYmqkGxgIxMTQ3yEmhvb5+tL+\nI0fss3aYkGBcqJtxKOwMGffhu+8oOOG22+hl6EjmzDG/ntbZ5O62pcycrfvB6dOkvgYPNn+MVAhc\nqaQ1Ty8v6lxx7hw906xZxpV2AKoXmpFBdUS3bgUMmn4DoM+lvt5YVaamki1VVVRfVaOhnoISCgWV\nmbPn2iHjFPCaIeMe3LxJwSWiSBF8jkappIojprbOVm+RVKGUc+hMvfE0GmDlSmDVqo5TBnbvpmoz\nVVWkzESR1hyVSnKM27a1P2fLFppOVqloqrRt9Zrz54HFi/UpK8XFVKouMpKCfTIyqJJOSIh+i4mh\nqWt7loBjnAJWhox7sGULfesPDaWmrVOmOF4dWgNJFUqOREIudw51ePSo3q4TJ/RToIZUVdHfRKWi\nbhUbN5KzOneOUjVEkaZCDdWhpArj4qg6jbe3sTrU6UjhXbumT1lJTaVj5XJysr17U1eMiRPt8lEw\nzg0rQ8b1kVRhRASpDK3WOdShNdBqqRbokCFUGUbabruNVE5jo+Ns02j0ji00lJyTKXUoqUIvL3JS\nlZXU7V6ppClSmay9OpRUoVSmLSLCWB1euECFABITKSgpO1uvCiXCwsg+RyTbM04HK0PG9ZFUofTi\nVKlcRx16eBgHsIgiKaS77iIn6UiklIv4ePpdrW6vDg1VoYSXF6UdzJ5NThKgSM8ffiB12NJCas/H\nx7hrRmUldZ146ilaD/Tyor97cTHwxRdULSc/n64p/bdQV0fryB0FLOl0wNdf070d/ZkyNoOdIePa\n3LxJL86gIMopkygvJ3U4Z47jbLMFV68CX31FgSMPPGDfezc1kQMSBGNVKCGpw1Gj9AnlBw7Q30Jy\negCpu8ZGKpEWEaEf9/KiVk9DhwJ/+INpG4KCqM1UWpo+GCciglIwXnuNrr1vH/D443qHeKs0hsxM\nWr/08gJ+/evOfy5Mj4CdIePayGT0jd5U9XprdYO3NxoNUFqqL5gtIYrkgEJCaOpx+nTbth0yRKcD\nPvwQmDCB1uCOHaOpydBQoKJCf1xZmbE6HDHCvDOKjTVfiPyuu8zb8etf02eRm0tOd8YM2ldcTFOp\nubmkLocOtey51q0jG6XPlNWhS8LOkHFtYmKA3/zG0VZYl/R0ShZfutQ4Of/qVVori4+nF/7OnfZR\nh6JI9z17lnI5x42jLxoLFpg+3tDBRUdbN8H84kVScg0NtJ6an0+BNuHh9EWhsZG+RKxbR+ust2oN\nlZlJqjIhgVTlzp2sDl0UdoYM05Oor6cpu8pK48LekiqUgk4iI22jDrVaUnx9+ujH/vMf6rwRFqZP\njZg4ERgwwHr3tZSLF4GBA+mLgb8/fU7h4VSI+69/pTXCoCBaazx7tmN1KKlCSQmqVKwOXRiOJmWY\nnsShQ6RuYmMpSlLKoZNUobRGJ63J7dpl3fsfPw68/z5N0wKkljZupOCWwED7RmiKIjnimzfp96oq\nSp+oqaFUCymA5sYNCirKyyNHKAj0c90647XKtkiqMCiIfvf0pHvu3Nk1Wxmnhp0hw/QUJFUYEUHT\no3V1+sLemzZRtGRODjmHmzcpZy8lxXjNrju0tFAATHU1lTQDKFK3sJD2FRaSMpXUoa25fJmc34YN\n+mIKBQXkwGQy+qIgl5Pj/vvf9RV6AHJwOTmkDs2xcSN95tnZ+q2piZ7dMKfTEjZvBvbu7fqzMjaH\np0kZpqcgqUIpwjIiQl/Ye/x4WgNri0xmvVZAJ06QY0lMpBf7kCGkPFtayLlcuEA/Kyv1Ba+9vKxz\nb4CcV2Eh9fqTig2Eh5OCU6tJuQUGGucfyuVkQ1mZPkpVcogtLRR1am6qdPZs03magtC5Um0VFZTy\n4eVFgUM9ocejG8LOkGF6AvX1+kjR5mYa8/AglWaPpsCSKgwNpfvKZMBHH9GLXhRJMdXUkDqrqKD9\nWVmWRWxagihSrt+NG7QmmJsLXLpEwUJFRfSlYOFCWqtsW0qtpYUiSX/4gZz1lCn6fea6YQAU6WoN\npKnqxsae0+PRDWFnyDA9gYICUjyNjcZqJSCASo7Z2hlKqlBKoPf1pSnKmTNpXQ4gh3P0KCnVfv06\nLszdWaT6qzIZ5QmeOaOf9oyI0KvDhAT6TNqiVAL/+Aepx3nz6Fx7UFFB6lOlouCjTZvo82F16HSw\nM2SYnkDfvhQN6QgkVahU6h3x1as0fvo0OT6AVFtTE73or1+n36V93cGwK4e/PylEuVx/bUEghyyp\nQ2ka1JCdO8mRNjeTM501q/t2WcKuXWS/pydtRUWsDp0UDqBhGGdHFEkVOSoisaKCnI1CQc6kuZmi\nWSdNojWwl18GnniCpnCnTaOpVKWSVJA1bDbsyqFQkBK+edM4WKipSZ9Q35bSUpq+ValIRW7fTsFG\ntsZQFUpERNDnUl9v23tfvkxpIIzFsDJkGGfnyhXggw+onFhiov3uu3cvvcgHDgTefbfjY9eupdw7\n6cUvdZ24dq176rBtr0YAGD6cAmIee8y46EBpqelC4JIq9PCgzV7q8OBBWtNt+4WgtpYct626Zeh0\nVJIvL49K30mpIUyHsDNkGGdGSqavraWfr7xiehrQ2lRXk4MLCyNH2FEbqPJyfXskKecPoECWzZuB\nl17quh0XL1IFmZAQWjcF6PlFkaJWJ0ygMVEkO0+coC8N0mckqULD0nWSOpw0qf3aYUODsYPtDuPH\nm//y0rZRsSFpabTe2tExHXHuHP0d5HJ69rlzu3YdN4OdIcM4M1euUFRmUhKlLly9ah91uHcvKYz8\nfApO6Siy0tOTSt6ZmhI1FcxiKVotJdXffnv7OqyAcRHwrCz6bACaIpSq3xw+TFOShkXaAcrR/PFH\nYPJk/VhNDfD228DvfmdcYaer9OplvraqOYqKqBHy+PH63oydQaqaExREjl7qzsLq8JawM2QYZ0VS\nhdIUoZ+ffdRhdTUl66tU5EjWraMUCXPq0N8f+PnPrW/H6dMUhOPnRzVWzT2zNJUaEKD/t6QOJ040\nnX8JGDtTgKZOL1+mQgLmAnFsTUoKrYv++CNN48bGdu58SRXGx+sVNKtDi3D6AJrKykrMmzcPSUlJ\nGDhwII4ePepokxjGPkiqUFIXvXrp1aEt2buXVJmXFykKSR3aE62WnHDv3hSZeuGC+WMlVRgSQsE7\nly6RUwMoCT8hwfRmOEVaU0OOaOBAcsKGfRLtRVERrTNGRZFDNGxmbAmGqlBy5FLvzspK69vrYji9\nM3zuuecwY8YMZGVl4cyZM0hKSnK0SQxjeyRV6OFB6QwNDfTTw4PGbRVZaqgKJYKD6SWr1drmnqY4\nfZrWCAMDSfGtX2/6mQ1VoSDQ5u+vL9FmKfv2UT1Vb29KDdm82f7Ruykp9PeVy2ld88cfjddgb8WF\nC8D58+T41Gra8vKAkhIuBWcBTj1NWlVVhYMHD2L16tUAAA8PDwT29M7kDGMJTU30TV9ShVotbb16\n0c+mJn2yuzVJT6fk+baFtrOzKdF9+HDr37MtkioMCSFVGBioV4eDBumPE0VykufOUasuKV3C25tq\njhquHXaEpAqlLwDh4Xp1mJBg9ccziaQKY2Lod5lMrw4tXTvs1Qt47jnT+wy/3DAmcWpneOPGDYSF\nhWHBggXIzMzEyJEj8cknn8CXqzcwro5CAbz+uv73tWvp5WwYKWkLkpKAF14wvc9eL1RJFapUND0b\nEkJOcP16msaUnv/SJeBf/yI1GxZmHKwyYAClX1iCoSoE6PqSOrTX2mFqKik6w/6KOh2wfz9w3300\nXXwrVCp2et3AqZ1hS0sLTp48ib///e8YPXo0Fi5ciKVLl+Ltt992tGkMYz/KyiiBuqWFHMBtt9nu\nXomJ9s1lNIX0rD/+SNPDOTnkEGtqSCH27aufHvX0pA4S4eHAW2913nGJIikynY7uI6HTUVpHWVnn\nI0K7wuDB9AymsFaqB9MhTu0MY2JiEBMTg9GjRwMA5s2bh6VLl7Y7bvHixa3/Tk5ORnJysp0sZBg7\nsHMnveQDAsgBvP66YyIdO+LMGXJcY8d2/1qPP05BO+++S06ipoYc0rPPAtHRdMylS7RVV5OaOn68\na18UBAFYvFhf/LztPnsty/z0jmO6Tnp6OtLT07t8vlM7Q5VKhd69e+Py5cvo378/du/ejUGGawY/\nYegMGcalkFRhVBQFVly+bHt12Fmamyk3TqOhFIzurmWGhlLiuZ8f/TskhKaIa2vpM5BUodQpIyCA\nplW/+65r6rCjzhVMj6GtEFqyZEmnznf6aNJPP/0UDz30EIYOHYozZ87gdcN1FIZxdSRV6OHR9UhJ\nW3PiBFWhqaujJPfu0ramp6EqFkW9KszLoylEqWaqpA4Zpgs4tTIEgKFDh+L48eOONoNh7I+hKpQI\nDXUuddjcTJGfUp/DjRupekp31GFaGqUDtE3lyMujnMJNm8j5lpXRNKbUsLc76pBxe5zeGTKM23Lp\nEikhU50YzpyxjzNsbKRSZlIfw7ZIqlDaX1xM6tCwzFlnGTyYojhNERBA06ZaLUV/SoW5pSLcFy/a\nNyWCcRkEUXSm+ZbOIwgCevgjMIxpbvXftT3Uz7ZtwI4dwPLl7RvSNjcDf/qTfvoWoCCaujpgxYr2\n6rCxkRz80KHdt6u4mO5jipgYijJl3JrO+gZWhgzjrDh6qq+2Vt/7b/9+4J57jPdnZFCqQ3AwqUOJ\nigrgyBHqCmHIgQPUmHfFCvNpBJbS3fMZpg3sDBmGMY2UjN67N7B1KxW9NlSHkZHAM8+YPrdtknhD\ng77Zb0oKsGCB7exmmC7AzpBhmPZIqlClorW5oqL26jAujjZLOHiQHGJ8PCnEmTNZ3TFOhdOnVjAM\n4wDaliiLiCB1WF/f+WtJqjAigvIEPTxIHTKME8HOkGEYY2prqadfYCA5soYGmt6sriZ12FkkVSiV\nFVOpSB0WF1vXbobpBuwMGYYxpqREPz1qSExM5x1YQwPlHioUVIi6spKqxjQ2sjpknApeM2QYxpiE\nBKoLag1qa6mDRNuWUJGRNGXaEVotcOwYMG6c4yNrGZeH8wwZhnFOMjKADz8E3nyTWje5C01NQGmp\nvig50yU66xt4mpRhGOdDavDr4UE/3ekLb1oa8MEHNJXM2A12hgzDOB9Sg9+EBErsz8pqf4wrOou6\nOkppKSmxTtFzxmLYGTIM41xIqjAkRN+xoq06rK8H/vxnKlreFqleaU9k3z6aJo2JocAjV3T4Tgo7\nQ4ZxRfbsoXWnnoikCqXGuiEh7dXhoUPkCDduNHaSzc3AO++YVpLOjqQKVSqq9FNby+rQjrAzZBhX\no6AA+Pe/KUn+VrRtk+RoJFUoCFTvtLycap3qdHp1WF9PSfwDBpDTu3JFf/7x48DZs8D69T1vnVFS\nhVJKS3g4q0M7ws6QYVyNbdtIWRw8SGXUzJGbCyxeTLmAzoJGA/TpAwwbRj+lbeRImjpsaSFV2NhI\nSfx+fnp12NxMTjAhAbh6ldo59RTq6ujLS0gIfQYaDQUPVVayOrQTnGfIMK5EQQG9PGNj6d8pKcCj\nj5o+dutWIDOTnOa0afa10xw+PsCTT5rfL6nCiAj6vVcvvTosLdX3VtRoyDG++WbPyFHMz6c2WM3N\ntEmEhAA3bjjOLjeCnSHDuBLbtgFeXoBMRmtPBw9SUWzJeUjk5FBC+223AZs3A3feqS+X1lnq64HV\nq4FHHmnf89DaSKpQeh5BIHW4bh11vg8NpfGQEL06TEqyrU3WIDGRcioZh8HTpAzjKkiqUKWi3zsq\nir1tG5VI8/UlZ3bwYNfve+AAkJpKjsrWpKfTuuLNm/qtoQH48Uea9i0rI6UoRaGuX0/rjQxzC7gC\nDcO4Cl98AXz/vV4dAeQ4GhqAjz/Wq6mcHJo+jIsjBdnQQPVCP/yw8+qwvh548UUK+mhqomvYUh3W\n1rYv7QZQw+Dr12naV6sFxowhm8rKqJzbn/5kO5sYp4Q73TOMu3LbbcaOUEIQSCFKSKpQ9tPEkI8P\nBdp0Ze3wwAH9tGV2NqlDW64/+vmZHn/lFWDnTvq3IAB33QXcey+wdCmlaqjVtJbIMGZgZ8gwrsKd\nd976mLIy4NQpUk+5ufpxnQ7YtQuYOtU44CQvj7YxY9pfq76eWj1JijMigoJb7rjD+uqwrAy4dAkY\nP970fm9vcsxxceT4jx2j1IuqKspX3LwZWLjQujYxLgU7Q4ZxJ0JCgCVLTOfgeXkZO0JRBNaupeT2\ngQPbqzJDVQiQ2iwqso063LKF8vAGDDCtfg8dovSEsDC97X/9K6nBwEBWh8wt4QAahnEnBAGIiqKO\nCG03yZFIXLsGnDtHuX3p6cb7mppoulWjMQ5m0WgoZcPUul5XkaZwPTyAHTva729oIOVnGDErCMD5\n86QYBYEc9ebN1rOJcTlYGTIM0x5RpClPpZKU1bZtQHKyXh16eABPPGG6DqiHx617FXaGlBS6nkpF\nZeZ+/nNjdXjiBDliX1+yTxSp/RNA4wMGkKM0pw41GlLFjFvDzpBhmPZIqjA+npRVczOpw3vvpf1y\nOVWJsTWSKoyJoXvKZKQOH3qI9osiMGgQ2dnYCDz7LEWVFhaSGhQEip4FKDF/7Vrg9df11y8ooOnU\nN97Q10Jl3BJ2hozTI4oi8mvycb3iOhQeCgwMGwill9LRZrkuhqpQWkOMiGivDu2BpAolpWmoDs+e\nBYqLgZ/9DKiupv0tLcDddwP9+xtfp7SUegRWVtLzSc+VkkJ5iXv2AHPm2O+5GKeDnSHj1OhEHb4+\n8zX23tjbOubj4YM/jvkjBoa7Ufdze3L9OiWxBweTcpIoKTFWh7amqAjYvZucb2GhfryqitYlT5yg\niNZTp6iUmdQI+N1321edWbmSHHpRkb4qTUEBBd4MGkRFA6ZMYXXoxrAzZJya43nHkXYtDQnBCZAJ\nFO9V01SDT3/8FB9O/xC+njYu/+UIGhq6XhrNGnh6ArNnm97Xq5f97BBF4J57TFeQKS6m6NHaWpr+\nnDKF1N6NG5R4P3y4/tiiIop8jYmhDhgbNtC0aEoKrRUqFHQPVoduDTtDxqnZd2Mfgn2CWx0hAPh7\n+6OsoQxZJVkYGTXSgdbZgPx8quLyxhuUBuEIYmOBBx90zL0NUamA3/62/XhjI1W9CQ8n51dWRl8g\nfH1Jza5bBwwdqi8qkJqqD+oJDSXnefAgqcLevfX3YnXo1nBqBePU1DXXwVPmaXKfRmvF8H1nYft2\nellL1VRcmbIy6rvY2Z6KUk5hfT1dQy4Hzpyh9UCAgn8yM+nfkiqU6rUKAk2pfvQRKWBpLdLLS68O\nGbeEnSHj1IyOHo3yhnKjMa1OCwEC+gT3cZBVNiI/nwptDx5Ma2Xl5bc+pyfz/ffk/E+ftvycxkZ9\nC6fmZiAykhRiWRkpuqgo6n1YX0/H79pFTjI3l8rFZWfT53rmDJ2Tk6PftFpg/37T6SKMy8PTpIxT\nkxyfjB9yfoC6Uo0QnxBotBpUNVbh3gH3IsIv4tYX6Els304KRcp527kTeOABx9p0KyoraR0uIaFz\n55WWAnv30jTlunWUpmFJbmJGBp0rdX+PjaWfNTV0jbZrnWPGUHNgQ0QR+M1vaLztVLSnJ6nOgICe\n0QeRsRrctYJxemqaarA/ez8y8jPg7+WPSQmTMEw1DIIrvazy8yn/LTaW1rpaWijacflyx60dWsKX\nX5LKWr68c4nrX39NkakxMbTu94c/UO3Re+8FgoLMn1dVZRzhakivXt0P8KmtBd56C3jsMVLoTI+F\nu1YwLoe/tz/u7X8v7u1vp5B+RyCpQinoQ+oy4azqsKUF+N//aD1OpwOOHqVOEZYgqcKoKPo9JAT4\nxz9o+tLLC/h//8/8uYGB1g9wEUVygv7+5KBv3qQ+iAMH6v8ejMvTI/7SWq0Ww4cPx6xZsxxtCsNY\nn9paWjdrbm6/hnXkCI07GydPUo/EigoKTtmwwfJ6pDt2kJORHH5AAOUMenqS86+osJ3dpjhzhoqX\nl5RQYYH+/UmtXrhgXzsYh9IjlOEnn3yCgQMHoqamxtGmMIz18fMDli0zHVXp4UFOwploaQFWraJ1\nuqIiSmMoKbFMHVZUUHCQTkcKDCBFWF1N1/L3B9LSOlaH1kSnozXLGzeAzz+nLx7e3qQ+WR26FU7/\nV87NzUVqaioef/xxXhtkXBd/f1ora7vZs/SZpZw8SUrWz4+6V+TnU8cLS9Shry+tD/7xj8Dvfgc8\n9RRNk95+O1WCiYwkdSilSdias2dJhcfG0rSvVAA8OJjVoZvh9M7w+eefx/LlyyHjb2cM43gkVVhR\nQet7crl+ireoiNRhR3h7A6NGAaNH06ZQkCKWOkt4etIaXlqa7Z9FUoVBQWR7UxP9BCiSVFKHpirg\nMC6HU3uY7du3Izw8HMOHD2dVyDDOwMmTpARVKnJk/v7kzGpqqN5nVZX+2F27gLy8jq+3fj2lMmRn\nU3sltZrUZUqKvvi2rZBUYVAQ2alQAMePU23W7Gx6psJCvYNkXBqnXjM8fPgwtm7ditTUVDQ2NqK6\nuhoPP/ww1qxZY3Tc4sWLW/+dnJyM5ORk+xrKMO6AVktKyteXEt0l6upIRb3xhj4oprgYWL2a1N/C\nheaved99wLRp7ccFgZSnKNJ9Paz8qjJUhYIATJxIY9nZwK9/TWXZJLy9rXtvxiakp6cjvW0T6k7Q\nY/IM9+/fjxUrVmDbtm1G45xnyDB2ormZ6nc2NbXf5+1NRbWlXMNVq6hsWksLsHhx+4a6lpKeTl0p\nFi60bhJ8Tg7wzjv0TIbX1WqBvn2BP//ZevdiHIJL5xm6VJI1w/Q0PD2B+++/9XHFxVTWLCaGokw3\nb+5YHZqjsZGmUSsqaOqyb9/OX8McvXtTaogprK1CmR6BU68ZGjJx4kRs3brV0WYwDHMrDLtERERQ\ngI1a3fnrHD5MOZiBgVSP1NozQL6+prfOVNJhXAb+CsQwjHWQAk4kVQjQFKRCYV4diiIFzLRdl2ts\nBDZupLVJHx8KdrG2OnRiXn3VuJ+xISoVsHSpfe1xB9gZMgxjHb76isqzNTQYr8OJIvDDD1REOy7O\n+JxDh+ic114zTm6XVKFUa1SpJHX44otuUUC7sND8MmtXRDZza9gZMow7U11N5dC6S04OcOwYObC5\nc6nuqFRSTnqrK5XG52g0lKhfVETJ7VJhbENVKBEW5nbqkLEvPWbNkGEYK5OXRx0aiou7f61t22g6\nNDaW+gROmQJcvkzb5MnA9OntO0ocPUqVZsLCKM1BSm4/d47yFQ37DebmUmTqgQPdt5VhTMDKkGHc\nlW3baM4tNRWYP7/r15FUYVwcTWGePUvXLiqi30+cAMaNMz5HoyH1FxZGQStqtV4dDh1KLaFM0cny\ndLz2xlgKO0OGcUfy8kiZDR5MuXwzZhhPS3YGSRVKa34+PsAnnwDDh9PY+vVUgs2w4LikCqUp1MBA\nUocDB9JxKlV3nq4VXntjLIWdIcO4I9u2UQqBpyelQXRVHebkkGPr3ZumMQFKys/JAX72M3JyarWx\nOjRUhRLBwcbqsIdjTpFaqkZVKvPO2krfE5g2sDNkGHdDUoWxsfR7ZCSlQ3RFHV67RtOcpaX0uyhS\nxRilktb8QkKoE4ShOrx4kVShXE7tmyR0OloTdAFnaE6RWqpGefrW/rAzZBh3Q1KF0rSmXE5bV9Rh\ncjJtEidOkGOUVF9BAf0sKdGrw8GDgY8+Mn09H5/O3b+HsHs3BdrW1hp/xLxu6Tx02Rnm5+fj8OHD\nSExMxNChQwEA2dnZKCgowODBg+HnjH3YmB5DfXM9LpRcQFNLE/qG9IXKj+eGrEJdHXD+PE1VZmfr\nxyVF98AD3StMrVQC8+aZ3ufvTz9lMlKM1karpcjYyEjrX7ub1NZSTXDAWDGq1d2fUmWsQ5ec4YED\nB3DPPfegoaEBAPDiiy9i+fLlUKlUOHnyJCZMmACtqa7dDGMB54vP4+8//h0NLQ2tYz/v93P8atCv\nuD5td1EqKVLTVI8+ubz7HRqSkmhzBMePA19/Dbz3nnVyJ+1Ed6dUGevQpTzDd999F6tXr0ZlZSXO\nnTuHwsJCvPrqq/D29sa4ceO4iwTTZeo0dfj0x0+h9FIiPige8UHx6B3QG6mXU3Gq8JSjzXMNFArT\nNTl7cquilhZalywuBvbubR2WAlFMbRyIwhjSJWU4fvx4zPtpKmTgwIH46quv8OWXX2LlypWYMWOG\nVXfY8CoAACAASURBVA1k3IvzJefR2NxoNC0ql8kRqAjEvhv7MCJyhAOtY5wWaa2yXz9qDDx5MhAQ\n4LBpxrbRoLW19JNXj5yXLjnDgJ+mIK5fv44+ffoAAB577DGkpKQgJSXFetYxbodGqzE57in3RK2m\n1s7W2J5mbTMAej6mi0iqMDSUAoO0WlKHv/iFw0xq64Tnz+96S0fGPnRpmnTChAl47bXX0K9fPxw9\nerR1fObMmejbty8HzzBdJiEoARAAnWi8plXeUI6RUSMdZJX1Kakrwf/9+H94evvTeHr70/jH8X+g\nrL7M0Wb1TCRVKAXoqFSkDqurHWuXAeama3mq1nnocqf7+vp6XL16FT/72c/a7TNUjLaGO927Hl9l\nfoVd13ZB4aGAVqdFfUs94oPi8cadb8Df29/R5nWbWk0t/rzvz6hpqkGkfyREUURhbSGCfYKxJHkJ\nfDxdM73AJrS0UDhmS4veGQLAzZvUJcOB6tBSzKlGtRpYtcq+trgSVu90f/36dWzZsgXz589HcHBw\n67ivr69JRwjAbo6QcU3mDZyHrJIs7Lq+C1qdFqG+oZjQewK85K7RdPV43nFUNFQgLuindkYCEB0Q\nDXWlGhkFGbgj9g7HGtiTKC4mR9jQQJuEQkFFwq2ArVMfzFWbYdVoX27pDBctWoS1a9eioKAAH3zw\nAQBykMuXL8f8+fMxduxYmxvJuBcbsjYgryYPMxJnQCbIoBN1OJF/AqG+oXhwyIOONq/bXCu/ZlL9\nKTwUUFeq2Rl2hqgo4OOPbXoLW6c+cC6hc3DLNcPo6GgcPHgQzz77bOtYnz598H//93/YtWsX9uzZ\nY1MDGfeitK4U6y+sh07UoVZTC1EUIRNkiAmIwb4b+9DY0mjxteo0ddh3Yx8+O/4Z1p1fh7zqPBta\nbjkqfxUam9s/R5O2CRHKCAdYxDDMLZ1hUFAQZDIZYmJijE+UyfDWW29hy5YtNjOOcS8uFF/AS2kv\n4XzxeZwtPos91/cgsygToijCU+4JrahFfXO9RdeqaKjAkv1LsDpzNc4Xn8fOazvx1r63kJGfYeOn\nALQ6LfJr8lFSV2JyzWJczDh4yj1R2VjZOlbeUA6FhwKjo0fb3L5u0dJCDXmbmhxtCcNYlVtOkz71\n1FO4/fbbERISgrvvvhuTJk3C+PHjoVAoAAAajelQeIbpDA3NDfj78b8jWBGMYJ9geMo84SHzwPWK\n6+jl0wshviHw9/JHgLdllUW2Xd6G0vpSxAfFt47VN9fjy1NfYnD4YHh72CbBPLMwE6tOr0JVUxVE\nUURiaCIeH/E4wpX6AtihvqF4afxL+OLkF7hZeRMQgHBlOJ4c+SSCFEE2sctqnDxJVV5CQoBJkxxt\njU2R1goPHQJOn9aP+/kBd9/tOLsY23BLZ/j4449j3LhxqKurw8qVK/GXv/wFXl5eGDp0KLy9vTlY\nhrEKWaVZaGhuQLgyHIPCBiGjIAO+nr5QyBXIKs1C35C+eGLkE/CQWZYaezjncLt6pr6eviitL4W6\nUo0BvQZY/RmyK7Px8dGPEeITgtjAWIiiiJuVN7Hi8Aq8O/ldowCgxNBELL17KQpqCiAIAlR+KsiE\nLmU62Y+WFuC77yiyY+NGYPz4nl215hZIa4WnT1NdUU9dE2LrLyKjdqijTbMaXBdVzy3fLPHx8fjw\nww9bf7906RL27t2LtLQ0XL16FZ999plNDWTcA8Nk+9jAWHjIPHCx9CIqNBUI8gjCs2OfxchIy/MM\n5TK52bBqWzmdvTf2wlPu2Zr+IQgCVP4qqCvVuFByAcNUw9rZER0QbRNbbMLJk5TPFx9P0SOHD/d8\ndVhURL0UvcxHKvv5UcepsTUHcW/5GpwP/ABqtapb0Z5dcULmzrnVeR3BdVH13NIZti24PWDAAAwY\nMAC/+93vcPHiRbz99ttY6m5fIRir0yeYZhi0Oi3kMjmiA6IRHRCNGxU3MHfgXIyKGtXh+S26FsgF\neWsh74lxE5F6JdVomrS6qRr+Xv5GY9YktzoXfl7tC06Ioojy+nITZ/QgJFUodZsID7ebOrSFEwBA\n657LlgHTpgE//7nZw+6+G/BoacS0XZvhrdThCf8UPLbqsS7elOiKEzJ3zq3OM6TtZylNAfPUrwXO\n8Le//S3+8Ic/YNmyZVAqla3j586dw/nz56EzVf2eYTpJuDIcMxJnYOulrQhUBMJL7oXyhnKo/FVI\njk82e965onNYn7Ue6ko1ghRBmJk4E1P6TMHMxJnIKsnC9Yrr8JJ7oUXXAi8PL7xw+ws2K33WL6Qf\n9tzY025dUybIoPLv4UljJ09CV1KMkjAlKkrz4ePhg8gqDbw6UocFBUBaGvDb3wLd6DZiDSfQSlER\nEBhIeYhHjpCNW7YAd91FxcrN0Dv7EDw1tagMSkD//ENA4UynTQTsSHW2/SylKeDKyvbHuxu3dIYj\nR45EcHAwXnnlFbz88suI/+mTXLNmDVasWIH5nW0GyjBmmDdwHvqF9MM+9T7UaGowOX4yJsZPNFt1\n5lzROSw/vBxBiiDEBcahoaUBazLXoKqxCvMGzcPrd76Oc8XncKX8CkJ9QjEicgSCfYJNXssaTE6Y\njHR1OkrqStDLtxe0IkWVJgQnYECo9dco7YZWi+b//ReXc06hNK8BAmQARBQ1i0j8r4DgCRNMTzNu\n2ULOcMwY4Lbb7GdvSgowbBgQ3WYKurkZ+PBD4PbbgZkzSdn27k2Nhw8cMKsOPVoakXRpM+qUERBl\ncrTIPOgej3VPHdoKnvrsGhZFI0h5hYYsWbIEY8eORbJhl2uG6QaCIGB45HAMjxxu0fEbLm5AkCKo\n1cH5evoiLigO31/7HtP7TYe/t3+nrtddIvwi8Nqdr2Ht2bW4UnYFcpkcd8TegV8O/CXkMrldbLAV\nRwcH4bhvOML9IiBpvLrmemTI6/CErgUeaOMM8/KAo0eBiAhKxXj99W6pQ4vJz6do12vXAIPcaABU\nwzQvD/j+e3Le1dU07RsRYVIdSpVhBuYfQlN5Lcr8egEA/HupaH5xpvOqQ6bzdLnTvY+PD+bOnWtN\nWxjGYnSiDjcqbiAuMM5o3EPmAYhAUV2RQ+qYxgfF4/U7X0dDcwPkMrlrlJCTy/FdZDmUcaNR7aEw\n2nWz6iam1uejn6Kf8TnbtpHDCQujsmiXLtlHHW7fTgtgGRlAdjYQ99N/H83NwLp15LxKS4HPPgMG\nD6Z9CgVNn7ZRh0uXAmhsBF7YCPRRAD5V+vsUNTm1OrQUKTiottZYObqjj++yM2QYRyJAQIhPCOqb\n66H00q9li6IIrai1OB/RVtiz2HZTSxMulV1CY0sjEoISEKYMs/o9mnXNkAum1W2LrsV4QFKFsbGk\nBv39u6YOd+6kQB1YqOzz8ynCNTaWapZu2aJXhydOAOXlNH9YWEgOeuBACgwCgF69gM2b268d1tYC\niYlA23xqlQqQd13tO0s9UilohouCszNkeiiCIODexHux8vRKxAXFwUPmAVEUkVOVg+Gq4UZJ7rei\nTlOHi6UX0aJrQb+Qfgj1DbWh5dblavlVfHz0Y9Rp6lrHZibOxNyBc1sja63BuJhxOJB9AL0De7eO\nNTQ3wEvu1T46V1KFsp9SWEJDO68Oq6ooejUoCDLdEFj0qtq+XX/f8HC9OoyKIlUYGqq/tlwOnDkD\nJCToz/fyAnJzgf799WO9egHPP2+ZzZ2gKxGw5hyotK8713BHJdgWdoZMjyU5IRmVjZVIuUINpXWi\nDsNUw/DYCMunrjILM/HZ8c+g0Wogguqgzkmag5mJM63qTKyFVqdFVmkWcqtzofRU4uszX7eulUr7\nt17eij7BfTAiaoTV7jtrwCycKT4DdaUa/l7+aGxpRIuuBU+NegoKw6nTwkKabvT0JEckUVcHbN1q\nuTPcswcQRaCsDKPE4/hRPc7kYa0vcUNVCJBD9PEhdTh6NCnFuDiaLh06lFRhWRnwwQcUXdoDsNSB\nduTwOAvOPF3uZ+gscD9DplZTi6LaIgR4B3RqirCysRIv73oZQYqg1qnWFl0LblbdxGt3vIaksCRb\nmdwl6jR1+OuRv+JqxVUIEFBaX4prFdcwve90BCr0L/Sy+jLEBsbi5QkvW/X+NU01OJJzBBdKL6CX\nby/cFXcXYgNjjQ+qrwfOnSNHVltLuXySIvPzAwYNuvWNqqqAF18kdSfVQF22DPDo4Lv7F1+QMjRo\nMwdRpLZO48cDV660P8fDA3jiCf3aYSfh6i3OjdX7GTKMs+Pn5Qe/kPbJ7rfibNFZNOuajdYcPWQe\n8PX0xcGbB53OGW69tBXXKq4hLjAOgiBAEARcKb+CE/knMDlhcquS9fbwRrXG+l3e/b39Ma3fNEzr\nNw1YvRrwqgfaiipfX0qlAIB//IPWD99+Wz9lagl79gA6HU1benmRzDl+HBhnWh0CoHv27Wt637Bh\n+mIBVsTRKQw2K0bgprAzZNyW+uZ6CGg/Feol90J1k/WdSXcQRRHp6nRE+Ue1Or0gRRAUHgrUaGpQ\n3VTdqg7L6sswa8As2xmTnQ3s2AFcvw4sWmTa0eXmAseOkVM7e5amJi2hqgpITTVexAoNBdavp+lO\nc+rQ0uu7EFYtRsA4vzPMycnBww8/jOLiYgiCgCeffNKotyLDdJW+IX2hgw6iKBqtD1Y3VWNEpPXW\n26yBCBEancYoXzHAOwDxQfE4V3wOlY2V8JR7oqSuBCE+IZicMNl2xmzZgqNZAWj5UY3vT19AXrB+\nmrFVkUhBND4+FAgzZMit1aEoAn/9K1WFaVvZqqoKOHWKHCLD2ACnd4aenp7461//imHDhqG2thYj\nR47E1KlTkZTkXFNYTM+jb3Bf3B59Ow7nHEaobyg8ZB4orS9FTEAMbo+53dHmGSETZBgZORJni84i\n0j+ydbxfSD/IBBniguLQ0NyAGYkzcHefu23XCio7G8jIQKEYh8helZhauQ77hw2E+FPxc7UaelUo\npVao1ZapQ7WaUiDGjgWmT2+/Py6u/RjDWAmnd4YqlQqqn6ZM/Pz8kJSUhPz8fHaGTLcRBAFPjHwC\nQyKGYJ96H5pamjBv4DwkxyfD19N8nUpHMW/gPFwqu4SblTcRoAhAvaYezbpmvH7n67csZG41/j97\n5x0eV3nm7ftMb9KojHqXLMtyb9gGY8cGG4zpCRBISJYAoS0kLBs2ZfPlg3wJJMACSSDZZTeE3YQQ\nOgaMKQbM4t5t3C2s3ttIml7O+f6YaKzRjGRJVhnb731dXNhHc855z4DmN8/zPs/vWbMmFO1JKtyG\nZJLsVaS1HqIlvU8RSv/WiqSkU0eHihLq8+sthSwtHZN9PoFgIOJeDPtSVVXFnj17WLhw4UQvRXCW\noFFpuDD/Qi7Mv3Cil3JKMi2ZPLzsYT6v/pwjbUfItIRMzHvbKsacv0eF4QhNkvAarEw9+CqtaaHo\nMNlZB5s2QVZWqJITQg4vlZWDR4dVVSHX6MLCUGT5wQdw003j8VQjZig9e6Li9MzhjBFDh8PBdddd\nx29+8xssluFXDgrGBlmR438obT/8QT+V9kpkRaYwqTCyTy7OSTGmcPWUq7maq8f/5h9+GGqdqKsj\nxQGWv2+zmpwtpLYfo802hUR3ExTnhCK9vmXtubkhkYslhr1RodEYSqtmZYUMvi+9dEyiw9GqwhzK\n62IVuaxfH7I27b8GIZATyxkhhn6/n6997WvcfPPNXHPNNVE/f+ihh8J/XrZsmTAPHwd2N+7mzcNv\nUttdS7o5navKrmJx3uK4bFTvy9G2ozy741kcPgcQqhy9bc5tnJcjCjNOyaWXhtsmPmoLGbv00p2Y\nC0C1bT78epgp275RIYQqRiVpzKLDia7CdDhCLZf91zDce4+GI83ZxIYNG9iwYcOIz497MVQUhdtu\nu42pU6dy//33x3xNXzEUjD3b6rbxzPZnsJlsFFgLcPgc/MfO/8Dpc3LppBiFD3FCl6eLp7Y+hUlr\nCjeLu/1u/rDzD2QlZJH79w90wQDk54cdXvxTYVvfyKYh9K8RfQivWQM9PaGexF6CwVCLxRhFh2cD\npxtFnm0p3P6B0MMPPzys8+NeDDdt2sRf/vIXZs6cyZw5IcPeRx99lFWDTKYWjB2yIvPqoVdJN6eH\np0Ik6BPQqXW8eeRNlhUuQ68Z28nnI2VX4y68AS+ZlpOf2EatEbWkZmP1Rm6cceO4rMPhc3Co9RC+\noI9JKZMi1nOmMKoflrNnxw7V1OrTMsMWDM5EmwbEG3EvhhdeeCFy/54jwYTh9DnpcHdE2XDpNXr8\nQT/t7nayE7IHOHtisXvsMecK6jV62txt47KG/U37eXbHs2EvVIDVpau5fur1cZ9iHjPEtoYgDoh7\nMRTEFwaNAb1ajy/oi5jVF5SDKCgk6MZ/huBQKU4uxi/7o5rsHT4HU9Omjvn9e7w9PLvjWRL1iWEL\nuKAc5N2j71KWWsaszHPPReVsJ9a+nsNxbu7pxTtCDAXDQqvWcsmkS3jz8JsUWAtQq9TIikxtdy1L\n8pdMyEDdoTI9fTqlyaUc7zhOVkIWKklFk6OJdHM6C3PGvl3nQMsBvEFvhBeqWqUmQZ/AhqoNQgzH\nifEsPImVTu7dq+u/BiGQE4sQQ8GwuXLylfR4e9hQtQEJCRmZRbmL+ObMb57y3E53J8fajyFJElNs\nU045hDcoB9nfvJ8tdVuA0Fy9mRkzY6Y7T4VGpeGBCx5g3fF1fFb9GQE5wEVFF3F56eURAjUcTnSe\nYM3RNRxrP0aaKY3VpatZmLMwZsrTE/DEvIZWrcXpd8b8mWD0mejikIm+vyA2QgwFw0aj0vDtWd/m\nqrKraHO1kWRIwmaynfK8j098zItfvIisyOHrfGfOd1ictzjm62VF5r92/xcbazeG069b6rZwYd6F\nfHfed0fU32jSmvja1K/xtalfG/a5/anoqOCRzx/BoDGQYkgJpUG3P0v79HYun3x51OsnpUwConsz\n7R47qyetPu31CATDQQz6jUSIoWDEJBmShuyBWW2v5s/7/0x2QnZ4r9ET8PDH3X+kJLkkoqIyKAfZ\nUb+DVw+9yieVnzAjfQYpxhQ0Kg1ppjQ21W7iwvwLmZY+hNl4Y8irh17FpDWFvwhY1VZMWhNvHXmL\nZYXLoqLN3MRclhcuZ33lepINyWhUGjrcHeQm5rI4P/YXAsHIOdtaB0Yb8R5EIsRQMC5srd+KRqWJ\nKLoxaAygwM76nVxRdgXQJxqs2Uizs5mAHGBf8z7qeuq4IO8CNCoNBo2BPU17JlQMZUXmaNtRCqyR\nVmhatRZf0Meao2sIyAEyzZksyF1AkiEJSZL41qxvUW4r57Pqz3AFXKwsXsmSgiWYdWa6vd009DRg\n1prJTcw9d6tLRwnROiAYDkIMBeNCj6cHrUobdVytUofdYCCUetxcu5ni5GI8AQ+NPY2oJBV13XXU\ndtVSlFyErMho1dHXGk8kJBL1iXgCHoxaY/i4w+tgV+Mu3AE3KcYUvEEvbx59k3+54F8oSi5CJalY\nkLuABbkLwufIiswbh99g7bG14b+XpJRwz3n3kGIUDecCwXggxFAwLszMmMnnNZ9HtDUoioIv6GNq\n+sm2hqNtR1Gr1Cgo2D126rrrUFDwBDw09DQwO2M2mQmZnJc9sfZpkiSxatIqXvripbDIKYrC5trN\nGDVGym3l4efscHfwn7v/k19e9MuY0d7m2s2h6tykAjQqDYqiUNNVw7Pbn+WnS386ZhGimJR+5iFS\nv2OHEEPBuDA7azZltjKOtB3BZrKhKArt7nZmZ85mWtrJdKdBY0BRFGq7aml2NmPUGOnwdIQn0h9s\nO4hBa4gZZY43l5RcQquzlQ3VoaragBzAHXCzonhFhIAlG5Kp6a6hydEUMYuwl3XH15FmTkOjCv06\nSpJEliWLE50nqOmqGbOpFBPt0SkYPiL1O3YIMRSMCzq1jgfOf4DPqz9nU+0mJEkKmXvnL45ok5id\nOZuXDrzE0bajaFVaZGRSjak4/U7SzeloVVpSDCmsq1jHHfPumMAnClXD/sPsf2B16WqaHE3oNXoe\n+fyRiLQphMQNZYCLAG3uNtJMaVHnqCQVPb6esVi6QCDohxBDwbhh0BhYWbKSlSUrB3xNmjmN2+fe\nznff+S4evyfsdJObmEuqMZVubzdmnZlDrYcGvVdtVy1rj6/laPtR0k3prJq0itmZs8ck5ZhmTiPN\nHBKzuVlzOdB8gOzEk5Z0ne5OMiwZZFgyYp5fbivnaNvRiJ/3OvrEq7XdmYBoHRAMByGGgrjjgrwL\nuG/Bfbx88GWkLol0czo6tQ5ZkVFQ0Kl1g/Y1VnZW8sjnj6CSVCQbk2l0NPLU1qf45oxvjvlUjRun\n38iv7L+iyl6FUWPEG/SiU+v43sLvDdgXeXXZ1fyi+Re0OFuwmWy4/W6aHE2sLl0tCmhOg5HsoYl9\n1HMXIYaCuORr5V/jQMsBOlwduHwuAuoAnqCH0pRSXH4Xq0oGnlry+uHX0aq1pJvTgVBEatFZeP3w\n6ywpWIJJaxqzdaeb0/n58p+zo34HlfZKsixZLMxdOKioFSUX8a9L/5U3Dr/B4dbDJBuTuWX2LSwr\nXDZm6zwXGEmxidhHPXcRYiiIS9LMaTy07CFeP/Q6/7P/f/D4PRRaC0kyJPHV8q8yL3tezPNkReZg\ny0HyrHkRx3VqHUE5SENPQ9gJZqyw6CwsL1rOcpYP+Zzi5GJ+cMEPxnBV0YzEo7O/yXk8Ew/FJqNd\n/SlSv2OHEENB3GIz2bhz/p3cMe8Oartrcfld5CbmYtFZBjxHQsKis+AL+kJN/X9HURRkRcaoOVnc\n4va7OdF5AkmSKEkuGbU5jA09Dfxv1f/S4GigNKWUC/MvJNmYPKxruPwuDrcexhv0UpxcPCYzD4f6\nYewJeFh3fB0fV36MO+BmftZ8ri25nMxjDbBwYWgqvSAmoy3IIk07dggxFMQ9kiRFzU8c7LWXlFzC\nK4deoTipOBzFNDmaKEkpCRekbK3byp/2/Am/7AclNOT37vl3Mz1j+mmt9UDzAZ7a9hQSEiatiQMt\nB/jwyw/58ZIfD7kY5lDLIX63/Xe4A+7wsVWTVvH1aV8f96hMURSe3f4s+5r3kZ2QTbIhmT1Ne3B/\n+hH/uEuF/tHHoLh4XNc0GgwUse3aNXCadDwR/YTjjxBDQVxQ113HJ5WfUNddR0lKCcsKlg1YfXkq\nVk1aRUNPA1vrtiIhoaCQa83lrvl3IUkSdd11PLfrOdJMaeE2CIfPwW+2/4Zfr/j1iItWAnKAP+75\nI0n6pPAoqxRjCo09jbx68FW+v+j7p7yG0+fkd9t/h0lrCj9/UA7y6sFXaXG0kJ2QzbT0aZTZykZk\nVD5cKjoq2N+yn6KkorAQ5xkymPH5JpokGwVvvQX/9E/jFh2OpMBl/frQDMFeev9ssYT+WbHi5M82\nbhy9tZ4O8ZDiPdcQYiiYcA40H+DJrU+iltRYdBZOdJzgkxOf8OMlP6YwqXDY19Oqtdw5/06uLLuS\nxp5GEvWJlKSUhMVjU+0mVJIqoh/QorPQ7mpnV8OuQVs/BqOxp5Eub1dUFJthyWBv096ogcixONR6\nCHfAHfFFoLarlkOth6jprmFWxizeOfYOC3MXcse8O8KN+mNFQ08DElJERJp9uA6rB6qyJQr27YPK\nynGLDkdS4OJwQFIMP/mkJLDbI48ZjeM361AQXwgxFEwoQTnIn/b+iSRDUni2odVgpdXZyov7X+Qn\nS34y4tRgdkJ2zNRkh6sDvTp6f1Cj0tDp6RzRvSDks6ooSlSRiazIqFXqIUVy3qA3okHf7Xezr3kf\nCboETFoTuYm5KIrClrotzMmcw/l550ecrygKuxt38/axt2nobqAgqYBrp1w7YlPzBH1C2P0HQO0P\nMvWzw9gTNCTrzaA2wThHh0Olt9ikb1QIoWiw/7Fe5s2DF14Y65WdJN7TtecSQgwFE0qrq5VOT2dU\nNGUz2ajoqMDld0WNQur2drOzYScNPQ3kJeYxP3v+sIbzTk2byrb6baRx0vVFURR8so/JqZNPeb7T\n56S+px6jxhgxXSLLkkVuYi5trrZwEz6EIsbF+YuHFMUVJRWBdHLmYaurFRkZn+xjkiVUBStJEsmG\nZDbWbIwSw8+qPuP5Pc+TYkoh05JJi7OFX2/6Nfcvup+5WXOH9P70ZVraNKwGK22uNmwmG9mH69A6\nnDiTVMxLKgZjCoxzdDhUelOmt9wSLSxvvTV69xlsf+9U1Z8DRbrxkq49lxBiKJhQtCotCrGjqaAc\nZHPtZjo9nRRYC5iVOYtWZyuPbXoMh8+BXqPHG/Cy5ugafrj4h1gNVo63HyeoBClJLgnv2/VnQc4C\nPvjyA6rt1WRYMlAUhSZHE5NTJ0f4pPZHURTer3ifNw6/gazIyIpMpiWTb8z4BuVp5WhUGu6cfyeP\nb3qcKnsVaklNUA6Sl5THdVOvG9L7kZOYw8VFF/PhiQ9JNiTj9Dlx+pxkWDIiPEp7vVD74gv6ePXQ\nq2QlZIVTwL1zIP924G/Mzpw97H1GvUbPDy74Ac9sf4a61hMs/nAnHjnIAuN0Uj0SeDrB74/b6HA8\nGGx/bzyjTMHpIcRQMGIURaG2u5YuTxdZCVlDmnbfnxRjCmWpZVR2VkaYWB9rP0aLs4UXv3gRnVqH\nL+gjwxzaR5MVOUIYGnsa+bfN/4bD78AT8ACgklTcPONmlhUti7qnUWvkRxf+iPcr3mdTzSbUKjVf\nLf8qK0tWDjoaak/jHl764iVyrbnIiszuht1srtvMe8ffY0nBEm6eeTOLchfx6IpH2de0jzZXG3nW\nPKalTRvWyKlvzvwmZallfFL5CWpJTZurjTmZc8KtH4qi0Onp5KvlX404r93VjifgiYhKARL1idR0\n1eD0OQf8gjAYuYm5PHLxI9TWHkRf/QYpkgld3+cpLgarddjXnUgsltB+ocMRGbkdORKKJGMxHpWc\nvcU+zc2R0Wv/Qh/B6CPEUDAiujxdPLvjWY61H0MtqZEVma8UfoWbZ948rKIOSZK4dc6tPLH52y7V\nxwAAIABJREFUCarsVUDow77R0ciU1CkRHp8VHRWc6DgRVeCSqE9kzdE1rJq0inRryHXGG/Dywr4X\nyE/Kpzg5On2XqE/khmk3cMO0G4a81nVfriPJmIRWpeWz6s/o9naTac6ky9uFJ+DhDzv+QJIhiSm2\nKVHpy+HQf+bh2mNreeXgK3R5u9CqtTh8DqalTWNR7qKI88w6MwoKQTkYYX7uD/rRqrSn1UepklQU\n5M+AH8wY8TVGg5EYBcSiV1j6R299U6qxqlCbmsZWFHuLfYx/r+1qaIBAIBR8NzWFjt9yi2ixGAuE\nGApGxHO7nuNExwkKrAVIkoSsyHxc+TFppjQun3z5sK6Vbk7nFxf9goMtB2l3t6NRaXhh7wtR447S\nTelsr9tOUA6iUZ/8X7fZ0UxQCUbsG+o1enQqHRtrNsYUw5HQ5mrDpDXR4e7A7rGTZDhZoqiSVFh0\nFtYdX8cU25QBr6EoCjvqd/DBiQ+wu+1MT5/OZaWXDdpUv7p0NWW2MrbUbsEVcDE3cy6zM2dHRZuJ\n+kQW5S5iS+0W8q354f8udd11rJ68+pSVrGcCo+na0vuzgYhVhVpYOD7tDdnZcM01oeiwt+r1mmtO\n/ly0WIw+QgwFw6bF2cKh1kPhD1wIiUFOQg7vV7zP6tLVw64A1al1zMmaA4TK+VWSKuoaZp0Zk85E\nu7s9ovWg2dlMiiEl6sNer9HT6Y6uDq3rruOL5i8AmJ4+PaIIppegHAwX8ORZ87CZbJTbytnZsDO0\nv8nJAcUACboENCoN9T31gz7nm0fe5M3Db5JiTMGoNbKpdhPbG7bzs6U/iznrEELR86SUSWEbOYfP\nQaW9EpPWRE5CTsTab555My6/i71Ne8MR++L8xVw75dpB13U2E88RVH+h7tsDKRhfhBgKho3D54gp\nVnq1niZfE0EliEYa+f9amZZMUk2pUdFXi7OFq8quotXVSo29BhkZh89BsjGZRH1iVBFOj7eHmRkz\nw39XFIW3j77Nm0feDIvZywdf5pop13B12dXhcxt6Gnh669O0OlvD0dWqSatYNWkVOxt24g64kRUZ\nX8CHw++gwFpAgj6BJkdTxP36c6LjBP+z73/IScghyZCEJEnkJubS0N3Au8fe5bvzvjvo+6IoCmuP\nr+WtI2+F7eVKUkq4e/7dpJpSATBpTdy/6H4aexrp9HSSZkqL2kOMJ851p5X+zxir8lUwPggxFAyb\nTEsmKkkV1UTe4e5gUsqk024EV0kqvjv3uzyx+Ql6vD0YtUacfieJukTuOe8evEEvv/jsFxxtPYpF\nbyHdlI5Za6bSXkm6OT3UkuBsJTsxm4W5C8PXrbJX8eaRN8lNzA2vMSAHeOvIW8xIn0FJSglBOcjT\nW5/G6XOGi3SCcpC1x9aSb83nX5f8K68fep2j7Ufp9HQyM2MmpSmldLo78QV9rC5dHfU8siLzysFX\n+NuBv3Gw9SDV9moS9YksyFmAWWfGZraxr3nfKd+X7fXbefnAy+Rb89GqtaECpq5afrf9d/zfr/zf\niC8CWQlZA0aa8cTZ4LQizLPPDoQYCoaNSWvi2vJreemLl7CZbJh1Zjrdnbj8Lu6deu+o3GNy6mR+\nedEv2VS7iYaeBoqTizk/93wS9Yk8tukxFBRWFK9AkiT8QT8nOk8wP3s+ra5W/LKfK8uuZEXxiohx\nTTsbdqKRNBFirVFp0Kq07KjfQUlKCRUdFbQ6WyOqVdUqNTaTjQ8qPuDh5Q/zwAUPcNf8u3jjyBt8\nVvUZ9Y568hPzuXv+3WHHHEVRqOmqYV/zPr5o/oIdDTvIMmdRZa/CarDS4+the/12lhUuwxvwYtWf\nuhrzvYr3SDWlhvcKJUki05JJtb2aSnvlqO2Nnsv0FbZYzfqxGM0Idihp0/XrQ18iYlW9nisR9Vgg\nxFAwIi6bdBmpxlTWHl9Li7OFSSmTuGbKNaM6HinNnMY1U66JOFbfXc+RtiMR+5VatZashCza3e38\nasXAnwR+2Y9KFd1np5JUIcNuQtMiYu13GjQGurxd4b+bdCZunnkzN0y7AX/Qj0lrCp+nKApvHnmT\nt4++jQoVOxt3hio8JTVmrRmnz4lFa6HL2xUqxvHauW3Obad8P9pd7WGXnl4kSUJCosfbc8rzBaem\nr5DESuFWVY1txDeUtKnDERLHMz2ijjeEGApGhCRJLMxdGJGGHA+6vF2xi2u0ZpocAzg4/53ZmbN5\nv+L9iL1FRVFwB9zh4p08a17M9oQ2V1vMdgmdWhdVuFNpr+Tto2+H07H7W/Zj0Buo6KxgXuY8jrQf\nocvbhdPnpKarhuumXseS/CWnfPYyWxkHWw5GVJ7KioyCMuSJGIKhEw8RVqwUrMMhUrBjgRBDwRlF\npiUzplh1ejoHjErdfjc7GnZwqPUQRo2RQ62HwkUlPb4eLsi9gHJbORCygbu05FLWHluLzWTDoDHQ\n5mpDo9bE3A+Mxa6GXRHp2DRzGq3OVtSSmi5vFyuKV9DiaKHB0cBjKx+jzFY2pOteNfkq9jXto8XZ\ngs1kwxPw0NjTyMXFF8d1kcxocS4W2wwUqTocJ5vyB2rIPxffr9NBiKHgjCLFmMLywuV8+OWHZCdk\nY9AY6PR04vA5uLY8un2g093JTz7+CY2ORtJMaQTkAH7Zj1VvJc+ax6LcRczKmBUhrDdMu4G8xDw+\n/PJDurxdnJ93PqtLV5NpycTld+H2u0kyJEWc05egHIyIXKekTqHF0YIn4MEv+3H4HDj9Tr4181tD\nFkKAgqSCUAHP4dc52HIQq8HKzTNv5uLii4fxDsYXwyk+ibdim5GMkzodep9/797I/sf+kzf6v74/\nIpUaGyGGgjOOm2bcRKoplbXH1nK47TAmrYlLiy8l3Zwe8bomRxN3vXMXB1sPYtFZqOmqodxWzqTk\nSXR7u7l97u0xG9FVkorF+YtZnL84fMzld/H8nufZXLsZWZFJMiRx4/QbWZCzIOr82Vmzea/ivbDZ\nttVgZUn+ErbUbcGkNWHUGLlj3h0R1x8qRclF/OCCH0S1kZypxFWEEgyCSjVkf9WRjJMajFOJq2Bs\nEWIoOOPQqDQsL1zO3sa9dPu60av1/G/t/7K1fivfX/h9pqZPJSAHeHLLk1R0VpBpyUStCplmH2g5\nQII+AV/QR2Vn5ZAiM0VReG7Xc+xt2kteYh5qlRqHz8Ez25/hh4t/GDUeaXLqZJYVLmND1YZQYQ0S\nTp+T2+fezm1zbxuVobxngxDGHf/935CeDldcMSG3H6q49vqq9tLXX7Wvt+rGjaEosu95wt90YIQY\nCs5IPvzyQ462H6U4qTgsDD3eHn6/8/c8eemT4RYJk8aE8vcBgWqVGr1Gz5cdX5JnzRuyoDT0NLCv\naV/Yeg5Cw4C9AS9vH3s7SgxVkopbZt/Cednnsa1+G4qisDB3IdPTp4/LdHrB4MSKwKyuRq7b/b/o\nLHoWLlsW1xYw/QWtr79q3+rToaZTBSHiXgzff/997r//foLBILfffjs//OEPJ3pJgjhgQ9UGMi2Z\nEYKWoE+gs6uTLzu+xOFzgAT5SflUdFSEnWy0Ki2dnk7K08pDswOHQJurLWYFa6I+kbquupjnqCQV\nMzJmMCNjYo2tR5MOdwc763eGi5VmZMyIS7/TUxWOxIrA5u5eiylRi7PbB59+CldeOe7rG8lA3/49\nh32jwYaGaG9VwcDEtRgGg0Huvfde1q9fT05ODueddx5XXXUV5eXlE700wQQTVIIoikJADkQ53siK\nTHZCNoqiUJpSSquzFbvbjlqlpsfXQ1ZCFnfNu2vIY5VsJluohaHfPl2rqzVU3XqW7N8NxqGWQzy9\n7WkCwQAatYZ1FesoSgrtXw5nsPJ4MNzCEUtPI3k1m+hOzKXHH4B334Xly8csOly7FtQxaq9qa4d/\nrf49h32jwYaG2OlUsf8Ym7gWw+3btzNp0iQK//5f+sYbb2TNmjVCDM9x7B47Lr+L9yvex6Q1kWZK\nC0cpWpWW4uRiDBoDF+RdwOfVnzM/ez6d7k6qu0LDfJ9Y+QRT06cO+X7ZCdnMypzF3qa95Cbm4gl4\n2Fa3jcaeRmZkzuDhzx7m0pJL2dW4iy21W7B77GQnZHNJySUsL1o+ojmP8YQ/6Offd/07CbqEiHmI\nlfZK3jv+HtdPu35c1tG/8nTXLnC7T4416mXjRqioGPr+2OTja5FVGhSVmoBaDb6xjQ7dbsjNjT4e\nDA5+3nB7DnsnX/Qihg0PTlyLYX19PXl5eeG/5+bmsm3btglckWCi8Qf9PLH5CbwBLzaTDafPSaOj\nkfqeemZlzuJ7C74XnvL+ndnfId+azwcVH6BWqbm2/FqunXItOYk54esF5ACegAeT1jTgfp4kSdw5\n707+duBvrD2+lo01G/EH/eQm5mLVWanqrOK2t29jcupkquxVBJUgX3Z+yeHWw3xS+Qk/XvJj8q35\nY/q+tLna2F6/nRZnC5NTJzM3ay4GjWFUrl1pr8Thc0Q9Q5Yli8+qPxs3MRyqqfXevdFWagPRGxXu\nbc/F2xDSwXeDmZg3vcvf/rac5DzLgBWvozVbsRe1evDrxVqHMPYePeJaDM/21JNg+BxoOUBddx0l\nKSXkWfOo766n1dWKy+fiosKLIlxitGpteNpEL0E5yCeVn/De8ff4ouULXD4XWZYsCpIKuH7a9RGt\nEgE5QEVHBb6gj8KkQpYXLeeVg69g0VrISskiIAfY3bQbnVpHQA5wtO0oVoMVg8aAoih0ebtw+V38\nZf9f+MmSn4zZe3Ko5RBPbXuKYDCITqNjQ+UGshOz+eHiH2I1nP4EelmRYx7vnegRz/Qd0OtwhMSj\nb+SYV7cZTdCL1dWITgc+CbK1oMHNIu0uPmv6yoDXHk5bSN99wubmSLHW6aC4GGy2yMit7zl99wUH\n62HsW2nat8q09zzBwMS1GObk5FDbJ5FeW1tLboz8wkMPPRT+87Jly1i2bNk4rE4wEdR116GWQhsu\nOrWOouQiipKL6HR30uM7tT/ni/tf5KMTH9HmaqOhuwG1So2r00WSMYlntj/DA4seYHbWbKrsVfxm\n62+we+wh/09JQiNpCMpBEg2JqFVq1Co1WrWWI21HsBltdPu6w3MWez1DtWotx9uP4/Q5h723drTt\nKG8dfYvKzkqyLFlcOflK5mTNifiSGJAD/Meu/yBRlxiRwqy2V7Pm6Bq+Pevbw7pnLIqSijBoDLj8\nrgjj86aeprhv+O8/oLewMCSETU0hoWjQrGJL+fls7wGzGUwmWLo09Fq3MQVi10cNm777mFotGPoE\n7R7Pqc/py2A9jH1Tw+daWnTDhg1s2LBhxOfHtRjOnz+f48ePU1VVRXZ2Ni+//DIvvfRS1Ov6iqHg\n7CbNlEZQid5ccfqdEenPWLQ4W/i06lMyLZl80fIFycZkVJKKbm83jY5GSpJLeOPIG0xJm8KTW55E\nQgpPr/AH/bxy6BXKU8sjoiGVpAoJqt+FTq2LKqbRqrTIijygW81AfNH8Bf+25d+w6CzYTDY6PZ08\ntfUpbp1zK8uLlodfV22vpsfXE5XCzE7IZmPNRr4181unnWHRa/TcNuc2nt3xLCpU6DV6nH4nmZZM\nLp98+WldeyywWE6KXd8IrLceZsWKvkJhBswR6cbRtDzvje76Vnm6XOD1QsLfv7v4fKFozmgc/vVH\nO1V7JtM/EHr44YeHdX5ci6FGo+GZZ57h0ksvJRgMctttt4nimXOcWZmzSDYk0+JsIc2UhiRJdHu7\nAViav3TQc+u665AkCU/Ag4QU3iM0aU20OluZmzmX6q5qDrQcoNvbHR7HBKGUq0Vnwe6xY9QY6fH2\nYNFZUBQFvUqPJElkWbJw+p1YdBYcPgcmrQlvwMt5OecNa/9OURReOvASyYbkcJozyZCEhMRvt/0W\nh89Bma1sVCeEnIp52fP4xUW/YHPNZtrd7ZTZyliQsyAiUowX+ordaOypnY7HZywLtfT0yMIXhwNm\nzx6eeI23Fdy5QFyLIcBll13GZZddNtHLEMQJRq2RBxc/yH/t/i+q7FVAyK/0gUUPnHKYrUVnQUHB\nqDWioISjuIAcwKgx4vA5yDBn4Pa7Y55fmlzKkfYjXFx0MQdbD9LsaMYT8FCUXMS3Zn2L9SfWs795\nP3aPHbPOTElyCZkJmdw4/cZhPaM74Kahp4EC68mZiq3OVrbVb6PL08Wf9/0Zo9bI3Ky53D73diw6\nCz3enog0aWNPI8sKl43qvnt2QjbXTbtu1K53uoxXVDTaHp/FxaFIsLfScyTpzNG2ghOcAWIoEEAo\nWqroqKCiowKT1sR9C+7DL/sJyAEyLZlDcnYpSS4h05yJ3WMnJyGH+p56LDoLLr+LspQyWpwt3DX/\nLnITc8P37CsmZp2ZFcUr6HR3kpeYR7o5nbzEPP75/H/GZrZx/dTr+bLzS6o6q1Cr1OQm5jI9ffqQ\n+xl70al1GDQG/LI/XJyzvX47GkmDRWehOKUYvVrPzsadTK2dyp3z7uTprU/T6elEr9bjDrjJSsji\nqilXDe9NhlD+7tNP4ZJLQj6dccxYDtXte3ygCExwdiHEUBD3+IN+ntv1HNsbtqNChYKCVqXlvgX3\nMTNz5pCvo1apuX/R/Tyz/RkcPgdd3i5anC3kJ+Zj1Bq5tvxaLsi7AICFOQvZXLuZDEsGWpWWVlcr\nVoOVny79KRJSWEhVqMKWa9MzpjMrYxazM2cjKzKbajbx889+jt1jZ2bGTK6YfMUpo1cIea+uKFrB\n28fepjCpkA53B76gD5WkIishK5xyzTBn8EnlJzy64lEeufgRttVto9XVSmlqKfOy5oVbTIbF1q3w\nxz9CTg7MOPPdc4Y6FWMgYf3Rj0L7fe+9B4HAyeMeT6gVYtcumDcv+tr9rzeYn+hAUawQ6PFFiKFg\nQNx+N4daD+EJeChIKiAnIWdC2l021W5ia91WipNP+pA6fU6e3fEsT616alj7VhmWDB5e/jDV9mpc\nfheJ+lBlaKoxFb1GH37d7XNvZ1LKJD6u/Bin38n5ueczxTaFhp4GipOLmZY2jXePvcvrh18PRaUK\nvHb4NVaXrub6qdfzysFXWHNkDRqVBrVKzcaajexu3M3PvvKzIQniVVOuosPTwZbaLXR6OnH5XRQl\nFzE7c3b4NWpJjS/oA0IzE68oO02Daa8XXn8drFZ49VWYNi3uosPh7t+dbvTY1BQSMocDEhNPHne7\nQ9WnanV0ujKWgK1YEdnmMRQGW3tfkwHB6CDEUBCT4+3HeXrr0zj9TlAACZYVLONbs7417MrI02VD\n1QZsJltUyrLN1caRtiPMzZo7rOupJBVFyYP7kmrVWlaWrGRlyUoONB/gDzv/wMaajaEWC5WGy0ou\n462jb5FnzQvbwQXlIGuPrSU/MZ9XDr5Ctb06XPkqIZFuTufdY+/y3XnfPeUadWodd8y7g6vLrqbS\nXsnTW5+mKKkowgu01dXKZZNGcT9961bo7oaCgtAn+sGDI4oOR2OorDfgxRPwkKBPiEiBn2kz+vpG\nd73C2nu89znide3nGkIMBVF4A15+s+036DX68AR1WZH5uPJjSlNLRzSH73TwBX0DCnBADsQ8Plp0\nuDv47fbfkqhPDL8Xbr+b3+34HTaTLcIXtXcqxtrjaznUeohkQ3I42pQVmfruejZUbRiSGPaSYckg\nw5LB7XNv58/7/4xBbcCgMdDl7SLdnM4lJZeMzoP2RoVpaaF5fqcRHZ6OYHkDXt44/AafVH1CUA6S\nYkzhxuk3Mj97/rDWMFwGM8+2WkPtD30JBkPN8qeir/gPVtna//69VnMQarnom4rNzBQtFWOBEENB\nFEfajuD0ObElnfTUVEkqUk2pfFL5ybiL4aLcRbx++HUsupPGyf6gH0mSxry9YHfjbvxBP3q1nsae\nRhQUUowpSEi0OlshLfL1KklFm6uNgByISLv29iO2u9pHtI4VxSsosBawoXoDdredyzMu54L8CyLe\nk9OiNyrs/bROTj6t6HCk/Gnvn9hSu4XcxFy0ai093h5+u+23MedGjiYDCfjGjfC1r0U37+/ff7Iq\ndCzuv3fvSf9Suz3yZ+daM/14IcRQEIU36I15XKvShtKm48xFRRexvX47lZ2VWA1WfEEfbr+br0//\nOinGlDG9t91tx+6xs795f0TKM9mYjMvvCk+zh1D1qcvvYmn+Uj6v+TzCdUZWZHxBX7hSdSSUppZS\nmlp6+g/VH58PXnsNZDkyPPH5QtHh9OlDnv5+OjQ7mtlat5XCpMJwSjxBn4Bf9vPmkTfHVAxHi/4j\nlfoykhFNgvFDiKEgiuLkYpCIGo/U7m5n9aTV474ei87CT5b8hK11W9nbtJcEfQJL85cyOXXymN87\n3ZLOgZYD2Ey2cKQXlINU26tZUbyCKnsVZq0ZSZLo8fVwfu75LC9azocnPqSuu44uT9fJa5nTR9bu\nMNYEg7BkCfj90T8zGkFRRiSG69fDsWMnqzD9/lCk1Zv267+H2OZqQy2po4q0rHorNV01w77/aGA0\nhiKxYBDq+lizqdWhv/f+vJempsj9wL5s3DjGixWcFkIMBVHYTDauKL2Ct468RZIhCZ1aR4e7gxRT\nCitKhjgXZ5QxaU1cVHQRFxVdNK739fg9JOoTcQVc4QG/Dp+DBH0CszNnszh/MVvrtiLLMgtzFzIz\nYyYqScWK4hV8VvUZWpUWRVLwBXzkWnNZVrhsXNc/JIxGuOGGUb+swxHabuytwvR4Qqm/3rRf/z2v\nFGNKeE5lX0Hs9naTkzC41d5YMW/e8FKSg+0L9hfOXkSrRHwgxFAQk6+Wf5Xi5GI+rvyYHl8PF+Zf\nyEVFF43KFIQzCXfAzfT06fiCPqq6qpBlmdKUUlKMKfhlPzMzZjIzYya+oI9qezVV9ioKkgq4dc6t\nlKWW8WnVp7j8LhbmLOTi4otJ1Cee+qZnOL3FHQ5HZOHJqQpOshKymJM5Jzw3Uq1S4/a76XB3cMvs\nWyKuHeuegzEaFa6ny2DCKlolJh4hhoKYSJLEnKw5zMmaM9FLmVB6U7GTUydTZisLH6+0VzIzI9Tw\nv7txN3/c/UfcgVD5X5Ihibvn381XCr/C0oKlHG0/yp7GPXxQ8QFzs+YyKWXSmPRryorM0bajNDub\nSTIkMTVtakQrxnjRKy633BLpyTkUvjvvu/z1i7+ypXYLEMoI3DH/jnB/5UiF61QVriMV2dGi//37\npmX7R5SiWnRsEGIoEAxCma2MOVlz2NWwizRzGmpJTYurhXxrPgtzFlLfXc8z258h1Zgabr3o8nTx\n5JYneeTiR3jn2DusP7EevVqPgsJ7x9/jstLL+Pq0r4+qIDp9Tp7e+jTHO46jKAoqSYXNZOMHF/wg\nPFbqTMCkNXH73Nu5cfqNOH1OUowpw7azGwkTbWw90fcXCDEUCAZFJam457x72FizkU+rPiUQDHBd\n+XUsL1qOUWtk07FNqCRVxKxCq8GK3W7nrSNvsaFqA4VJheGK06AcZF3FOs7LPo+SlJJRW+frh1+n\noqOCAmtBWGSbHE08t+u5kIXcGTYo26KzjF7byATR33Gmd7gwiMkS8YgQQ4HgFOjUugGLd1qdrTHH\nM2lUGnY37MagMUQ4qKhVarSSlj2Ne0ZNDANygM+rPycnMdIuL8OcwQn7CVqcLRMSHWZmRldhwsm0\n31im+/rvEfbOE7RYIgfgjjYDOc70/ky4zsQvQgwFgtNgim0KOxp2YDPZIo77g37yrHnUd9dHnySB\ngjJqawjKQQJyALUU6dIjSRISUti/dLz51a8mLvqJ1cSelDR6TfIDMVTHmfEmHgqI4p34cuEVCM4w\nFuYuxGayUdtVS0AOhKpO7VUUJRdxddnVuANuZEUOvz4oB/EH/aNamKTX6JmSNoVWV2vEcafPSYIu\nYUjG4Gc7vVMjeqdF9P5zrhSj9H456P+PaOk4iYgMBYLToNcQYM2RNWyp24JaUrNq0iqumHxFqDey\n8CI+qfoEg8aAoij4gj5Wla6iJHn09gsBbpx2I49sfITarlqSDEk4fA58QR/3Lrg3wjjhXKU3NSqs\nzAQDIX5LBILTJMWYwnfmfId/mPUPVHRWsLVuK3/94q/MzZzLN2Z+g4W5C9nVuAuVpGJ+9nxKU0pH\nvaClIKmAny/7OZ9UfsLxjuOUp5VzcdHFp5zOIRAIQggxFAhGibeOvsWaI2vQa/SopdAMw9mZs7lv\nwX2Up5VHvLbd1c6RtiNIksQU25RR8VjNsGRw04ybTvs6glMzlD24sZosMR77f+fiHqMQQ0Hc4g14\n2dmwk/3N+7EarJyfe35cRjqyIlPZWcmaI2si5hsqisLepr3sbNjJ+Xnnh1//0Zcf8dKBl5BlGaRQ\n+8a3Z36bZUXLJugJBMNlKGOqxko0xmOm45k2N3I0EGIoiEtcfhePb3qcE50nsOgs+II+PvjyA26Z\ndQvLi5ZP9PKAkAh+UvkJ7xx9hyNtR6jrqUOj0pCbmBuq5JQkrHorW+q2hMWwyl7Fi1+8SHZCdtgd\nxhvw8t/7/ptJqZNOa6qF4CQT7SgTb4j349QIMRTEJRuqNnCi80REJOgL+vjL/r8wN2tuXHikvnf8\nPV4+8DJZCVlkWjKp665jR8MOFBTyrflAqIWib8vDtvptaCRNhE2aXqNHJanY1bBLiOEocbam8kaK\neD9OjRBDQVyyqXZT2N6sF51ah6zIHGs/xnk5503QykJ4Ah7eOfoOedY8dGod6eZ0dGoderWew62H\nyUvMQ0Ghy9PF4ryTw5BdPhcadfSvnVqlnpBZkWcz5+K+l2DkCDEUjAtBOcinlZ+yrmIdXd4upqVN\n49ryaylMKoz5erWkjujP60tfRxcIucD0+HrIMGdE2KKNFU6fkxf3v8jGmo2YdWbyrfmUppQyI2MG\n+5v34/Q5qbRXIiGxpGBJRE/hrMxZfFr1acSYIkVR8Aa8zEgfv4ny5wLn4r6XYOQIMRSMCy9+8SIf\nffkRmZZMsixZHO84zi//95f8n6/8n3BKsS9fKfgKL+x7gQRdQlg03H43WrU2PD2ix9tNNDQOAAAe\nt0lEQVTD83ueZ2/TXlSSCpWk4sqyK7ly8pXDal1QFIXDbYfZULUBu8fO7MzZLMlfQoI+Ieq1vqCP\nJzY/wbH2Y6hVajQqDRUdFTQ7mllasJQEXQJV9iquKL2CWZmzKE0tjRDvGekzmJkxk31N+0g1paIo\nCp3uTuZmz2Vq2tThvq3jhoiyIjnb9+DO9ueLhRBDwZjT6mzl08pPKUouCgtDujmdJkcT7xx9h39c\n8I9R5ywpWMK+5n3sa9qHVq0lKAcBuKTkEjZUbiDRkMjn1Z/zZeeX5FvzkSQJf9DPqwdfJdmQzJKC\nJUNe37qKdbx84GVMWhN6jZ5XDr7ChqoN/GTJT0gyRM4f2t+0n8rOSkpTS3H5XZywn8Cqt9Lt7aa2\nuxZFUbjnvHu4fPLlMe+lVWv53sLvsbl2M5tqQibf1029jkW5i1Cr1DHPiQdElBXJRH4BGA+hOhe/\n4AgxFIw5DT0NSJIUld5MMaZwuO1wzHN0ah3fX/h9Drcd5kjrETQqDdsbtvN+xftoVBocPgf7mvex\nsnhlOArUqrWkm9N599i7QxZDu8fOa4deIzcxNzwqKMmQRLW9mo++/Ijrp10PhCpHq+xVfHzi47Cv\n6PT06SgoVHdV4w16OdF5gvsX3s+qSasGvadOrWNZ4bL4nHoviHvORaEaD4QYCsacBH1CTGNqt99N\nqjF1wPPUKjXT06czPX06rx18jYbuBgqTCpEkiTZXGypJxc6GnawsWRkWWrPOTF13XcSe3GCc6DyB\noihRM/PSzGlsq9/G9dOup8XZwu+2/Y667jrquuuotFfi9DuZljaN2ZmzKbeVc6LzBFdPuZrrpl03\nzHdHIBgfRKp7cIQYCsacwqRCbEYb2+u2o9foSTGmkGZOo83Vxg3TbhjSNT6t/pSshKywwFl0FvRq\nPe6AG7vHHnZw6XR3UpJcMuQ9Q61KG/O1ATmASWtCVmR+u+23tLvaKUgqCK/7YMtBEnQJFCQVEFSC\nmHVmlheOTf+jN+CluqsalaSiMKlQeI0Og/4zBSH09x/96NwTAJHqHhzxWyUYcyo6KmhxtdDoaMTl\ndyErMiatiR8u/iGLchcN6Rr+oD9iT82gMVCcXMze5r24/W4Ug4LdY6fH18M95fcMeW2TUydj0pro\n9naTqE8EQgU1bc42bplzC5WdldR311OQVACEJrEvyl3Eltot7G7cjYSEXqPnH8/7xzGZDrGzYSfP\n73keT8ADgFVv5Z7z7qE0tXTU73W2kZkZmmNosUQfF9MaBP0RYigYU4JykH/f+e+kGFK4quwqur3d\n+GU/XZ4uvEHvkCO4RbmL2Fy7OaIpvTi5GE/Ag06to7qrmsKkQu6Yd0eUD+hg6DV67ltwH09vfZoO\ndwcogASL8haxtGAph1oPRa0xw5LBqkmrqOmq4cHFD1KcXIxeox/yPYdKXXcdv9/xe2wmG+nmdAC6\nPF08ueVJfr3y12HxFsTmV78S0ZBg6AgxFIwptd212D128q35eANearpqqO6qJigHqe6q5uqyq0kx\nndqk+uqyqznQcoDqrmoSdAm4/W4CcoCffeVnLMhZQFAJopbUI5oGUWYr4/FLHudAywFcPhcFSQUU\nJxcjSVJYfINyMByZuv1u9jTuQafRsaFqAypJFW73GE02Vm9ELakxaU3hY1aDFbvdzu7G3eNagHO2\nldrv2hUavtsfsX927iLEUDCmKEqocCYoB9lct5kuTxcJugRkRabJ0cSjGx/loWUPDdos7/a7+bzm\nc9x+N23ONvxBP0sKlrCqZFU4famRTu9/ZYvOEjNlm2JM4ZKSS1h7bC1p5jRkWWZ95Xr8QT9LC5ay\nv3k/W+u3csvMW5ieMR21Sk2yIXlURjS1uFowaAxRx9UqdSiKHUfONoFwu8+OiFEUxYweQgwFY0qe\nNY9EfSInOk7Q5e4iyRjq23N4HEyxhaazb6/fPqD5dkAO8OSWJznWfoxMSybT06fT5GiisrMSm8k2\nLs9ww7QbyE7I5oOKD9hUu4lEfSKLcheF05RNPU088OEDTM+YjkbSUJpayq1zbiXTMrKwqcnRRKe7\nkxxLDnsa95Bqiqy49cv+UR8OLBg9BhIoGH2REmng0SOuxfDBBx/k3XffRafTUVJSwp/+9Ces1ok3\naD6XURSFSnslHe4O0kxp4Yb3gdCoNNwx9w7uW3cf7oAbrU+LX/Zj1popt5Xj8Dk40naEqWlTaXI0\nYTVYKbAWhK95sOUgx9qPhVsqIDTItqqzalARHU1UkoqlBUtZWrCUO9+5E5vJFm7FcPqc7GjYgTfg\nJUGbQJo5jdquWh7b9Bi/vOiXGLXGId/H6XPyn7v/k31N+1BJKrwBL23uNgCyE7KRFZlGRyMlySVM\nS582Js96tpGZCa+/HooE+9LWFqo0XbFi9O85kEDBxIrU2ZbqHm3iWgwvueQSfv3rX6NSqfjRj37E\no48+yq9E7D9h9Hh7+N3233G8/TiSJCErMjPSZ3D3eXdH7Gv1Z2r6VO4+727+sOMPmHVmUowp5CTk\noFVraXG2sK95H9vrt4evOSl5EvcuvJckQxJfdn6JVh3d/mDRWzjYevC0xdAT8HCg5QDtrnayE7Ip\nTysftHXBqDUSkANhMazpqkFWZHQaHRq1BkmSyLBkUGWvYm/T3og5hqfiv/f9N/ub94e/YMiKjL/N\nj0VvodXVikalYXXpai4vvVy0VwxArKjM7Q594PcVvrfeim65ONsRH52DE9e/UStXrgz/eeHChbz+\n+usTuBrBn/f/mS87TtqfKYrCgZYDvHrwVf5h9j8Meu6K4hWsP7Eek9YUTi86fU7quutI1CcyLX0a\nKkmFooQcXZ7b9RwPXvAgVr01bMXWF4/fg814emnSJkcTj296nHZ3OxISCgoFSQX88/n/HF6jrMhU\ndFTQ5ekiKyGLiwov4rXDr1GUVIQkSXR7u5EVGbPOHGHdplFpaHQ0Dnktdo+dnQ07w7MQIRSRFicX\nY/fY+cPlf4hru7b+TNReVqyobO/e+BM+sdcXf8S1GPbl+eef56abbproZZyzdHu7oz6sJUkiJzGH\nz2s+5+vTvx6z2KOXJEMSD5z/AL/f8XtqumoAMGqMpBhTIjxLJUkiOyGbw62HaXG2MDdrLq8cfIUe\nb0/YONvtdxNUgizOXzzg/U6Foij8567/xOV3RUzOqOmq4bVDr3HrnFtpd7Xz9LanqeuqC0dqczLn\nMCN9BgdbD6IoCr6gD7/sZ0HOggi7uYAcICchJ/z3dlc77oCbDHNGlNsNgMPnQCLask6n1uEJePAG\nvZhUA0ff8Ua872VZLKE19l/PeKUM4/39OReZcDFcuXIlTTG+Ij3yyCNceeWVAPzyl79Ep9PxjW98\nY7yXJ/g7bn9o06X/h7VaUhNUgviCvkHFEEIN7k9c8gTV9mpkRSYnMYd71t6DXh3Zo9frY+r0O8mw\nZPD9hd/n9zt/T0dXB5IioVVruXP+neRZ80b8PK2uVk7YT5CfGDkxIzshm821m7l5xs08t+s5Whwt\n4YpVRVHY3bibq8uu5trya6nvricoB/nbwb/hC/pQFAUFhSZHE+nmdGZlzqLT3ckf9/yRg60HkZAw\naU3cNOOmiBmHQHgf0hvwRvQsdnu7yUrIwqgZ+t6j4NSsWBESnhdemOiVCOKFCRfDjz76aNCfv/DC\nC7z33nt8/PHHA77moYceCv952bJlLFu2bJRWJ+jFZrKRqE/E6XNGtEF0e7vJNGeSoIsedxQLjUpD\nScrJSsjSlFKaHE0RFZO+oA+1Sk2WJeToMjV9Kk9e+iQnOk8gKzJFSUXDKkyJhT/oR0KK2ovsFfcG\nRwPH2o9FjJfqjVrXV67n2vJrmZQyCYBJqZP4y/6/hPdSZ2fO5hszvoFOrePRjY/S0N1AfmIotez2\nu3lu13OkGFIizAEMGgPXTrmWv+z/C2nmNCw6C3aPnS5PF/80+59GpVVDcPYhimJOsmHDBjZs2DDi\n8ydcDAfj/fff5/HHH+ezzz7DYBg46ugrhoKxQa1S840Z3+DZ7c9i8VtI0CfQ5enCE/DwwPkPjPjD\n+oZpN/DoxkcJOAKkGFNw+p20u9r55sxvRgieTq1jim3KaD0OmZZMrHprRPoVQhFjua0cRVFQSaqo\n59KpdeE0bW9vY741nx9f+GMcPgcqSRX+snCs/Rg19ppwZAmhAhyL1sK6inVRTjmXlFyC1WDlnaPv\nUN9dT1FyEXfNvyuu5xyeCYx3SnQggRqLe8baX+zdj+xvKnC270f2D4QefvjhYZ0f12J433334fP5\nwoU0559/Pr///e8neFXnLgtyFpC4JJH3jr9HbXct5WnlXF56eUSkN1xKU0v56dKf8vbRtznefpx0\nczo3z7iZednzRnHl0ahVam6dcytPbX2Kbm83Zp2ZHm8POrWOm6bfRJo5DY1KE5W2bHO1UWYri6rm\nlCQpahiw3WOPeW+LzkJjT3RxjSRJLMpdNGS/VkE0sYRo0iS48MLxE4Kh3GfXrlBhT3+C0bViQ6Jv\nQU5fP1aL5WQVrdiPHJy4FsPjx49P9BIE/ZhimzKqERqEPEbvX3T/qF5zKMzImMHPl/+cTys/paGn\ngQvzLmRZ0bJwM/+N02/k+T3Pk2RIwqwz0+nuJKgEhzxpI8OcgYISNU7K7rEzJ2vOmDxTvDBR6bsz\nJfJxuyE3N/p4Xd3Irte3IGfvXkj6e2GzPfb3MUEM4loMBfGN2+9mf/N+mp3NZFuymZExY0wMq8eS\n3MRcvjXrWzF/tqwwJIzrjq+j2dnMvOx5rJq0KmIfcTDyrfnMypjF3ua95CbkolFp6PR0EpADXDbp\nstF8jLjjTBGlicJojC1UxiFuhfdvzdi4MSSC/Sd0CIaOEEPBiGhyNPHYpsfocHeEi04yLZk8eMGD\nUfZhZyqSJDEjYwYzMmaM+Py7z7ubNw+/yadVn+IP+ilMLuTeBfdG7CMKxod46u2bN+/0Wiv6t2b0\nRoMiEhw5QgwFw0ZRFJ7f83xUj159dz0vHXiJexfcO3GLizMMGgM3zbiJ66ddjz/ox6AxjKjYKCAH\nAITzzGkw3r19g4lvLNavj1340nuOiLbHFvGbJRg2nZ5Ojrcfj0oXZiVksathFy6/a1B7tnMRjUoT\nFrLeAccW3alzWp3uTl479Bpb67aioDA/ez7XTb0uPN9QEL8MV3wdjlCa83QF22I5GSE6HCfPPRfb\nLYaDEEPBsAnIAYgR3Eh/PxjLPk0QqkT96xd/ZU/jHpBgcspkbp5584DmAZ6Ah8c2P0aLo4XshGwA\n9jTuoaKjgoeXPRxVvdr/3E01m9hcuxmNSsPSgqUszF0oIsuzlF4BdDhg9uyTx0VEOXTEb4Zg2KSZ\n0sg0Z2L32Ek2JoePt7naKE0tHVLEc67hCXh4bNNj2D128qx5SEjUdtfyq02/4hfLfxHxPvayr2kf\njT2NEanonMQcqu3VbK/fzsXFF8e8lzfg5YnNT3C8/TgpxhRkRebfd/47+5r3cdf8u6JchATjT6xq\nW4dj5NFb3/YJ4aozMoQYCoaNJEncOudWHt/8OI4uB2adGafPiU6t45szvincUmKwr2kfLc6WCGFL\nN6dT01XDxpqNXFl2ZdQ5lfZKdGpd1HGT1kRFR8WAYrircRfH249TlFwUPpZkSGJb3TYuLrqYMlvZ\n6T+QYMisXx9pFO5whPoe+0dtt9wy8OgnwdgjxFAwIkpTS/l/y/8fn1d/Tm13LUXJRSzJX3LWVJKO\nNvU99WhV0QbdZq2ZSntlzHPSzen4g/6o456AhwxLxoD32tO4JyqFKkkSGpWGI21HhBiOMw7Hyb6/\nXgoLT69wZ7h9nPFUSRuvCDEUjJgMSwbXTbtuopdxRpBhzsAvRwuby+8iLzH2nuH87Pm8dug1Otwd\npBhTgJAXrFqljjL67otZZ8YX9EUdlxX5tD1dB2M8J7yPhPE2Aui9X//xUaPRCzjc91JMyTg1QgwF\ngnFgTtYckg3JNDuaw5Wgdo8djUrDhfkXxjwnUZ/Igxc8yH/s+g9q7DUgQbIhmQfOf4A0c9qA97og\n7wI+rQz1NfaOi/IEPKgkFXMyx875Jl4nvPcy3mLce7+hpj/H09NUEI0QQ4FgHDBpTfzL4n/h+T3P\nU9FZAUC2JZv7Ft43qLAVJRfxyMWP0NjTiKzIZCdkn3LIb2lKKTdMu4HXDr+GIisghVo7bp97+6D3\nEkwsEx05n+sIMRQIxomshCx+suQndLg7kBUZm8k2pGIjlaQiJzHnlK/rRZIkLp98OQtyFnCs/Rhq\nlZpyWzlWg/V0li8QnNUIMRQIxhFJksatyCjNnCYiwThAzBw8MxBiKBAIBGNIPKQ/hSCfGiGGAoFg\nVBAFIPFLPAhyvCMpiqJM9CJOB0mSOMMfQSAQCASjzHC1QfgyCQQCgeCcR4ihQCAQCM55xJ6hQCAQ\nCIZEvLsMnQ5CDAUCgUAwJOLdZeh0EGlSgUAgEJzzCDEUCAQCwTmPSJMKBALBBCLGK8UHQgwFAoFg\nAhHjleIDIYYCQRwRlIMcaj3EgZYDmHVm5mfPJzshe6KXJRCc9QgxFAjiBH/Qz7M7nmVP4x7+f3v3\nGxNHnfhx/LMUFqStUvoHOLa6lEJpEAja9NALFQ/X8EBpmxjTJmf6zycSn0j9U59oiYetrZjc1cY0\nWj3iRW1MWsGkErhQYs+Lh21pK8Gz1AXLn4JpC7WtCAXmHlx++5NCa0HlO7PzfiWTdGYX+sk3w3yy\nM9+diY6M1vDosA58dUAbcjdoxR0rTMcDwvqWe5QhYBP/6viXjnUfU8qclNCjnQaHB1V5vFJZC7I0\n55Y5hhPC7cL5GiazSQGb+OeZfyo+Nn7MMw6jI6M1Yo3oP+f+YzAZEP74ZIiwMDg8qLpgnerb6jU4\nMqjlv1uuh9IfmrZnB/4aLFnyaOKH/VriZvThiscr2QNPrYDjjVqj+svnf1FTT5MSZyUqMiJSvZd7\ndWv0rdpasNUxT3ivb6vX347/TSlx/3+adGhkSD2Xe7QzsNNRxQ6YxlMr4DrfXPhGJ3pPKCUuRbFR\nsfLO8GrhbQt1cfCiDn972HS8m/aHhX9Q5vxMtfW3qfdyrzq/71T3pW6tvXMtRQj8xjhNCsf79uK3\nkjTmWpsk3RZ9m05+d1IPLXnIRKxJi46MVuk9pTrRc0InvjuhWd5Z+n3y7+WP85uOBoQ9yhCON9s7\ne8LtA8MDmhc7b5rTTN7Vkas61HZI/2j7hwauDmjZ75Zp5ZKVjsgOhAtOk8LxshKyNMs7S/0/9oe2\nDQ4PamB4QAX+AnPBboJlWdpzdI/+/uXfZVmWZnln6fCZw/rzp39W30Cf6XiAa9i+DCsqKhQREaEL\nFy6YjgKbio2KVek9pfLIozMXz+jMxTM698M5rc9Zr/S56abj3VBbf5uOdB9RSlyKZnpnKjoyWr5b\nffr+x+/V0N5gOh7gGrY+TdrR0aG6ujrdcccdpqPA5hbNWaSdD+5UsC+oqyNX5Y/za6Z3pulYP6vj\nYocsyxp3vTPuljh9+d2XWr10taFkgLvY+pNhaWmpduzYYToGHCIyIlLpc9OVuSDTEUUoSTO9M8cV\noST9OPyj4mPiDSQC3Mm2ZVhVVSWfz6fs7GzTUYDfTOb8TM32zh5zfXBoZEiXhy7rj4v+aDAZ4C5G\nT5MGAgH1TPAgr/Lycm3btk21tbWhbXyxHuHolqhbVHpPqf7677/qzMUzkiSPPPpT9p+0dN5Sw+kA\n97DlHWiam5tVWFio2NhYSVJnZ6eSk5PV2NioBQsWjHmvx+PRiy++GFovKChQQUHBdMYFfrHh0WF9\nc+EbDY0MyR/n1+zoib8uAmBiDQ0NamhoCK2XlZVN6kOULcvwWikpKTp69Kji48dfQ+F2bADCyZYt\n/3vg77USE8P7qRG/tsl2g61nk/6fiSYYAEA46umR/P7x26/3HEH8OhxRhsFg0HQEAEAYs+1sUgAA\npgtlCABwPcoQAOB6lCEAwPUcMYEGANwiMXHimaOJidMexVUc8T3DG+F7hgCAa022GzhNCgBwPcoQ\nAOB6lCEAwPUoQwCA61GGAADXowwBAK5HGQIAXI8yBAC4HmUIAHA9yhAA4HqUIQDA9ShDAIDrUYYA\nANejDAEArkcZAgBcjzIEALgeZQgAcD3KEADgepQhAMD1KEMAgOtRhgAA16MMAQCuRxkCAFyPMgQA\nuB5lCABwPcoQAOB6lCEAwPUoQwCA61GGAADXs3UZ7tq1S0uXLtWdd96p5557znQcAECYsm0ZHjp0\nSNXV1Tp58qSam5v19NNPm44UVhoaGkxHcCTGbeoYu6lh3KaHbcvwjTfe0PPPP6+oqChJ0vz58w0n\nCi/8gU0N4zZ1jN3UMG7Tw7Zl2Nraqk8//VR5eXkqKCjQkSNHTEcCAISpSJP/eSAQUE9Pz7jt5eXl\nGh4eVl9fnz7//HN98cUXevTRRxUMBg2kBACEPcumioqKrIaGhtB6amqqde7cuXHvS01NtSSxsLCw\nsLCEltTU1El1jtFPhjeyatUq1dfX67777tOpU6c0NDSkuXPnjnvf6dOnDaQDAIQTj2VZlukQE7l6\n9ao2btyo48ePy+v1qqKiQgUFBaZjAQDCkG3LEACA6WLb2aQ/58MPP1RmZqZmzJihY8eOjXlt27Zt\nSktLU0ZGhmpraw0ltL+tW7fK5/MpNzdXubm5qqmpMR3J1mpqapSRkaG0tDS98sorpuM4ht/vV3Z2\ntnJzc7V8+XLTcWxr48aNSkhIUFZWVmjbhQsXFAgElJ6ergcffFD9/f0GE9rTROM2lWObY8swKytL\nBw4c0IoVK8Zsb2lp0b59+9TS0qKamhqVlJRodHTUUEp783g8Ki0tVVNTk5qamlRUVGQ6km2NjIzo\nySefVE1NjVpaWvT+++/rq6++Mh3LETwejxoaGtTU1KTGxkbTcWxrw4YN4w7a27dvVyAQ0KlTp1RY\nWKjt27cbSmdfE43bVI5tji3DjIwMpaenj9teVVWltWvXKioqSn6/X4sXL+YP8AY4S35zGhsbtXjx\nYvn9fkVFRWnNmjWqqqoyHcsx2M9+Xn5+vubMmTNmW3V1tdatWydJWrdunT766CMT0WxtonGTJr/P\nObYMr6e7u1s+ny+07vP51NXVZTCRve3atUs5OTnatGkTp2BuoKurSwsXLgyts1/dPI/HowceeEDL\nli3Tm2++aTqOo/T29iohIUGSlJCQoN7eXsOJnGOyxzZbl2EgEFBWVta45eOPP57U7/F4PL9RQvu7\n3hhWV1friSeeUFtbm44fP66kpCRt3rzZdFzbcvM+9Et99tlnampq0ieffKLdu3fr8OHDpiM5ksfj\nYT+8SVM5ttn2e4aSVFdXN+mfSU5OVkdHR2i9s7NTycnJv2YsR7nZMXz88cf18MMP/8ZpnOva/aqj\no2PMGQhcX1JSkqT/3V949erVamxsVH5+vuFUzpCQkKCenh4lJibq7NmzWrBggelIjvDTcbrZY5ut\nPxnerJ+eGy4uLtYHH3ygoaEhtbW1qbW1lRls13H27NnQvw8cODBmNhbGWrZsmVpbW9Xe3q6hoSHt\n27dPxcXFpmPZ3g8//KBLly5Jkq5cuaLa2lr2s0koLi5WZWWlJKmyslKrVq0ynMgZpnRsm/L90gzb\nv3+/5fP5rJiYGCshIcEqKioKvVZeXm6lpqZaS5YssWpqagymtLfHHnvMysrKsrKzs62VK1daPT09\npiPZ2sGDB6309HQrNTXVevnll03HcYRgMGjl5ORYOTk5VmZmJuN2A2vWrLGSkpKsqKgoy+fzWW+/\n/bZ1/vx5q7Cw0EpLS7MCgYDV19dnOqbtXDtue/fundKxjS/dAwBcLyxOkwIA8EtQhgAA16MMAQCu\nRxkCAFyPMgQAuB5lCABwPcoQAOB6lCEAwPVsfW9SAOMdPXpU7777rmbMmKH29na99dZb2rNnj/r7\n+9XV1aWysjItWrTIdEzAUShDwEGCwaDeeecdvf7665Kk9evXKy8vT5WVlRodHVV+fr7uuusuPfXU\nU4aTAs5CGQIOUlFRoR07doTWr1y5ovj4eOXl5amzs1ObN2/W+vXrzQUEHIp7kwIO0t7eLr/fH1r3\n+XzasGGDXnrpJXOhgDDABBrAQX5ahF9//bW6u7t1//33mwsEhAnKEHCo+vp6eb1e3XvvvaFtwWBw\nzHsuXbqkRx55ZMyDiQGMRxkCDjEwMKBnn31Wzc3NkqS6ujrl5OQoJiZGkjQ6OqqdO3eG3r937169\n9tpr2r9/v7gaAtwYE2gAhzh48KBeffVV3X333YqMjNTp06cVFxcXer28vHzM5JlNmzZJksrKyqY7\nKuA4TKABHOL8+fN65plnNG/ePEVEROiFF15QSUmJYmJi5PV6tXLlShUWFo77uYiICLW3t+v22283\nkBpwBsoQCHOUIfDzuGYIAHA9yhAA4HqUIeACXA0BbowyBMLUe++9p5KSEnk8Hm3ZskW7d+82HQmw\nLSbQAABcj0+GAADXowwBAK5HGQIAXI8yBAC4HmUIAHA9yhAA4HqUIQDA9ShDAIDrUYYAANf7L6s6\n0nX+T+nzAAAAAElFTkSuQmCC\n", - "text": [ - "" - ] - } - ], - "prompt_number": 36 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "\n", - "## Defining the objective function and decision rule\n", - "\n", - "Here, our **objective function** is to maximize the discriminant function $g_i(\\pmb x)$, which we define as the posterior probability to perform a **minimum-error classification** (Bayes classifier). \n", - "\n", - "$ g_1(\\pmb x) = P(\\omega_1 | \\; \\pmb{x}), \\quad g_2(\\pmb{x}) = P(\\omega_2 | \\; \\pmb{x}), \\quad g_3(\\pmb{x}) = P(\\omega_2 | \\; \\pmb{x})$\n", - "\n", - "So that our decision rule is to choose the class $\\omega_i$ for which $g_i(\\pmb x)$ is max., where \n", - " $ \\quad g_i(\\pmb{x}) = \\pmb{x}^{\\,t} \\bigg( - \\frac{1}{2} \\Sigma_i^{-1} \\bigg) \\pmb{x} + \\bigg( \\Sigma_i^{-1} \\pmb{\\mu}_{\\,i}\\bigg)^t \\pmb x + \\bigg( -\\frac{1}{2} \\pmb{\\mu}_{\\,i}^{\\,t} \\Sigma_{i}^{-1} \\pmb{\\mu}_{\\,i} -\\frac{1}{2} ln(|\\Sigma_i|)\\bigg) $" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "## Implementing the discriminant function\n", - "Now, let us implement the discriminant function for $g_i(\\pmb x)$ in Python code:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def discriminant_function(x_vec, cov_mat, mu_vec):\n", - " \"\"\"\n", - " Calculates the value of the discriminant function for a dx1 dimensional\n", - " sample given the covariance matrix and mean vector.\n", - " \n", - " Keyword arguments:\n", - " x_vec: A dx1 dimensional numpy array representing the sample.\n", - " cov_mat: numpy array of the covariance matrix.\n", - " mu_vec: dx1 dimensional numpy array of the sample mean.\n", - " \n", - " Returns a float value as result of the discriminant function.\n", - " \n", - " \"\"\"\n", - " W_i = (-1/2) * np.linalg.inv(cov_mat)\n", - " assert(W_i.shape[0] > 1 and W_i.shape[1] > 1), 'W_i must be a matrix'\n", - " \n", - " w_i = np.linalg.inv(cov_mat).dot(mu_vec)\n", - " assert(w_i.shape[0] > 1 and w_i.shape[1] == 1), 'w_i must be a column vector'\n", - " \n", - " omega_i_p1 = (((-1/2) * (mu_vec).T).dot(np.linalg.inv(cov_mat))).dot(mu_vec)\n", - " omega_i_p2 = (-1/2) * np.log(np.linalg.det(cov_mat))\n", - " omega_i = omega_i_p1 - omega_i_p2\n", - " assert(omega_i.shape == (1, 1)), 'omega_i must be a scalar'\n", - " \n", - " g = ((x_vec.T).dot(W_i)).dot(x_vec) + (w_i.T).dot(x_vec) + omega_i\n", - " return float(g)" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 39 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "## Implementing the decision rule (classifier)\n", - "Next, we need to implement the code that returns the max. $g_i(\\pmb x)$ with the corresponding class label:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import operator\n", - "\n", - "def classify_data(x_vec, g, mu_vecs, cov_mats):\n", - " \"\"\"\n", - " Classifies an input sample into 1 out of 3 classes determined by\n", - " maximizing the discriminant function g_i().\n", - " \n", - " Keyword arguments:\n", - " x_vec: A dx1 dimensional numpy array representing the sample.\n", - " g: The discriminant function.\n", - " mu_vecs: A list of mean vectors as input for g.\n", - " cov_mats: A list of covariance matrices as input for g.\n", - " \n", - " Returns a tuple (g_i()_value, class label).\n", - " \n", - " \"\"\"\n", - " assert(len(mu_vecs) == len(cov_mats)), 'Number of mu_vecs and cov_mats must be equal.'\n", - " \n", - " g_vals = []\n", - " for m,c in zip(mu_vecs, cov_mats): \n", - " g_vals.append(g(x_vec, mu_vec=m, cov_mat=c))\n", - " \n", - " max_index, max_value = max(enumerate(g_vals), key=operator.itemgetter(1))\n", - " return (max_value, max_index + 1)" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 40 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "## Classifying the sample data\n", - "Using the discriminant function and classifier that we just implemented above, let us classify our sample data. (I have to apologize for the long code below, but I thought it makes it a little more clear of what exactly is going on)" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "class1_as_1 = 0\n", - "class1_as_2 = 0\n", - "class1_as_3 = 0\n", - "for row in x1_samples:\n", - " g = classify_data(\n", - " row, \n", - " discriminant_function,\n", - " [mu_vec1, mu_vec2, mu_vec3],\n", - " [cov_mat1, cov_mat2, cov_mat3]\n", - " )\n", - " if g[1] == 2:\n", - " class1_as_2 += 1\n", - " elif g[1] == 3:\n", - " class1_as_3 += 1\n", - " else:\n", - " class1_as_1 += 1\n", - "\n", - "class2_as_1 = 0\n", - "class2_as_2 = 0\n", - "class2_as_3 = 0\n", - "for row in x2_samples:\n", - " g = classify_data(\n", - " row, \n", - " discriminant_function,\n", - " [mu_vec1, mu_vec2, mu_vec3],\n", - " [cov_mat1, cov_mat2, cov_mat3]\n", - " )\n", - " if g[1] == 2:\n", - " class2_as_2 += 1\n", - " elif g[1] == 3:\n", - " class2_as_3 += 1\n", - " else:\n", - " class2_as_1 += 1\n", - "\n", - "class3_as_1 = 0\n", - "class3_as_2 = 0\n", - "class3_as_3 = 0\n", - "for row in x3_samples:\n", - " g = classify_data(\n", - " row, \n", - " discriminant_function,\n", - " [mu_vec1, mu_vec2, mu_vec3],\n", - " [cov_mat1, cov_mat2, cov_mat3]\n", - " )\n", - " if g[1] == 2:\n", - " class3_as_2 += 1\n", - " elif g[1] == 3:\n", - " class3_as_3 += 1\n", - " else:\n", - " class3_as_1 += 1" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 81 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "## Drawing the confusion matrix and calculating the empirical error\n", - "Now, that we classified our data, let us plot the confusion matrix to see what the empirical error looks like." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import prettytable\n", - "\n", - "confusion_mat = prettytable.PrettyTable([\"sample dataset\", \"w1 (predicted)\", \"w2 (predicted)\", \"w3 (predicted)\"])\n", - "confusion_mat.add_row([\"w1 (actual)\",class1_as_1, class1_as_2, class1_as_3])\n", - "confusion_mat.add_row([\"w2 (actual)\",class2_as_1, class2_as_2, class2_as_3])\n", - "confusion_mat.add_row([\"w3 (actual)\",class3_as_1, class3_as_2, class3_as_3])\n", - "print(confusion_mat)\n", - "misclass = x1_samples.shape[0]*3 - class1_as_1 - class2_as_2 - class3_as_3\n", - "bayes_err = misclass / (len(x1_samples)*3)\n", - "print('Empirical Error: {:.2f} ({:.2f}%)'.format(bayes_err, bayes_err * 100))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "+----------------+----------------+----------------+----------------+\n", - "| sample dataset | w1 (predicted) | w2 (predicted) | w3 (predicted) |\n", - "+----------------+----------------+----------------+----------------+\n", - "| w1 (actual) | 98 | 1 | 1 |\n", - "| w2 (actual) | 2 | 93 | 5 |\n", - "| w3 (actual) | 1 | 2 | 97 |\n", - "+----------------+----------------+----------------+----------------+\n", - "Empirical Error: 0.04 (4.00%)\n" - ] - } - ], - "prompt_number": 85 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "# 2) Assuming that the parameters are unknown - using MLE" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "### About the Maximum Likelihood Estimate (MLE)\n", - "\n", - "In contrast to the first section, let us assume that we only know the number of parameters for the class conditional densities $p (\\; \\pmb x \\; | \\; \\omega_i)$, and we want to use a Maximum Likelihood Estimation (MLE) to estimate the quantities of these parameters from the training data (*here:* our random sample data).\n", - "\n", - "\n", - "Given the information about the form of the model - the data is normal distributed - the 2 parameters to be estimated are $\\pmb \\mu_i$ and $\\pmb \\Sigma_i$, which are summarized by the \n", - "parameter vector $\\pmb \\theta_i = \\bigg[ \\begin{array}{c}\n", - "\\ \\theta_{i1} \\\\\n", - "\\ \\theta_{i2} \\\\\n", - "\\end{array} \\bigg]=\n", - "\\bigg[ \\begin{array}{c}\n", - "\\pmb \\mu_i \\\\\n", - "\\pmb \\Sigma_i \\\\\n", - "\\end{array} \\bigg]$ " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For the Maximum Likelihood Estimate (MLE), we assume that we have a set of samles $D = \\left\\{ \\pmb x_1, \\pmb x_2,..., \\pmb x_n \\right\\} $ that are *i.i.d.* (independent and identically distributed, drawn with probability $p(\\pmb x \\; | \\; \\omega_i, \\; \\pmb \\theta_i) $). \n", - "Thus, we can **work with each class separately** and omit the class labels, so that we write the probability density as $p(\\pmb x \\; | \\; \\pmb \\theta)$ " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "##### Likelihood of $ \\pmb \\theta $" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Thus, the probability of observing $D = \\left\\{ \\pmb x_1, \\pmb x_2,..., \\pmb x_n \\right\\} $ is: \n", - "
\n", - "
\n", - "$p(D\\; | \\; \\pmb \\theta\\;) = p(\\pmb x_1 \\; | \\; \\pmb \\theta\\;)\\; \\cdot \\; p(\\pmb x_2 \\; | \\;\\pmb \\theta\\;) \\; \\cdot \\;... \\; p(\\pmb x_n \\; | \\; \\pmb \\theta\\;) = \\prod_{k=1}^{n} \\; p(\\pmb x_k \\pmb \\; | \\; \\pmb \\theta \\;)$ \n", - "
\n", - "Where $p(D\\; | \\; \\pmb \\theta\\;)$ is also called the ***likelihood of $\\pmb\\ \\theta$***." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We are given the information that $p([x_1,x_2]^t) \\;\u223c \\; N(\\pmb \\mu,\\pmb \\Sigma) $ (remember that we dropped the class labels, since we are working with every class separately)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And the mutlivariate normal density is given as:\n", - "$\\quad \\quad p(\\pmb x) = \\frac{1}{(2\\pi)^{d/2} \\; |\\Sigma|^{1/2}} exp \\bigg[ -\\frac{1}{2}(\\pmb x - \\pmb \\mu)^t \\Sigma^{-1}(\\pmb x - \\pmb \\mu) \\bigg]$\n", - "\n", - "So that \n", - "$p(D\\; | \\; \\pmb \\theta\\;) = \\prod_{k=1}^{n} \\; p(\\pmb x_k \\pmb \\; | \\; \\pmb \\theta \\;) = \\prod_{k=1}^{n} \\; \\frac{1}{(2\\pi)^{d/2} \\; |\\Sigma|^{1/2}} exp \\bigg[ -\\frac{1}{2}(\\pmb x - \\pmb \\mu)^t \\Sigma^{-1}(\\pmb x - \\pmb \\mu) \\bigg]$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "and the log of the multivariate density" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$ l(\\pmb\\theta) = \\sum\\limits_{k=1}^{n} - \\frac{1}{2}(\\pmb x - \\pmb \\mu)^t \\pmb \\Sigma^{-1} \\; (\\pmb x - \\pmb \\mu) - \\frac{d}{2} \\; ln \\; 2\\pi - \\frac{1}{2} \\;ln \\; |\\pmb\\Sigma|$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "#### Maximum Likelihood Estimate (MLE)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In order to obtain the MLE $\\boldsymbol{\\hat{\\theta}}$, we maximize $l (\\pmb \\theta)$, which can be done via differentiation:\n", - "\n", - "with \n", - "$\\nabla_{\\pmb \\theta} \\equiv \\begin{bmatrix} \n", - "\\frac{\\partial \\; }{\\partial \\; \\theta_1} \\\\ \n", - "\\frac{\\partial \\; }{\\partial \\; \\theta_2}\n", - "\\end{bmatrix} = \\begin{bmatrix} \n", - "\\frac{\\partial \\; }{\\partial \\; \\pmb \\mu} \\\\ \n", - "\\frac{\\partial \\; }{\\partial \\; \\pmb \\sigma}\n", - "\\end{bmatrix}$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$\\nabla_{\\pmb \\theta} l = \\sum\\limits_{k=1}^n \\nabla_{\\pmb \\theta} \\;ln\\; p(\\pmb x| \\pmb \\theta) = 0 $" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "## MLE of the mean vector $\\pmb \\mu$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "After doing the differentiation, we find that the MLE of the parameter $\\pmb\\mu$ is given by the equation: \n", - "${\\hat{\\pmb\\mu}} = \\frac{1}{n} \\sum\\limits_{k=1}^{n} \\pmb x_k$\n", - "\n", - "As you can see, this is simply the mean of our dataset, so we can implement the code very easily and compare the estimate to the actual values for $\\pmb \\mu$." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import prettytable\n", - "\n", - "mu_est1 = np.array([[sum(x1_samples[:,0])/len(x1_samples[:,0])],[sum(x1_samples[:,1])/len(x1_samples[:,1])]])\n", - "mu_est2 = np.array([[sum(x2_samples[:,0])/len(x2_samples[:,0])],[sum(x2_samples[:,1])/len(x2_samples[:,1])]])\n", - "mu_est3 = np.array([[sum(x3_samples[:,0])/len(x3_samples[:,0])],[sum(x3_samples[:,1])/len(x3_samples[:,1])]])\n", - "\n", - "mu_mle = prettytable.PrettyTable([\"\", \"mu_1\", \"mu_2\", \"mu_3\"])\n", - "mu_mle.add_row([\"MLE\",mu_est1, mu_est2, mu_est3])\n", - "mu_mle.add_row([\"actual\",mu_vec1, mu_vec2, mu_vec3])\n", - "\n", - "print(mu_mle)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "+--------+-----------------+-----------------+-----------------+\n", - "| | mu_1 | mu_2 | mu_3 |\n", - "+--------+-----------------+-----------------+-----------------+\n", - "| MLE | [[-0.17370434] | [[ 8.65908903] | [[ 5.77749337] |\n", - "| | [ 0.01919151]] | [ 0.02617762]] | [ 5.67218058]] |\n", - "| actual | [[0] | [[9] | [[6] |\n", - "| | [0]] | [0]] | [6]] |\n", - "+--------+-----------------+-----------------+-----------------+\n" - ] - } - ], - "prompt_number": 77 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "## MLE of the covariance matrix $\\pmb \\Sigma$\n", - "\n", - "Analog to $\\pmb \\mu$ we can find the equation for the $\\pmb\\Sigma$ via differentiation - okay the equations are a little bit more involved, but the approach is the same - so that we come to this equation: " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "${\\hat{\\pmb\\Sigma}} = \\frac{1}{n} \\sum\\limits_{k=1}^{n} (\\pmb x_k - \\hat{\\mu})(\\pmb x_k - \\hat{\\mu})^t$\n", - "\n", - "which we will also implement in Python code, and then compare to the acutal values of ${\\pmb\\Sigma}$." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import prettytable\n", - "\n", - "def mle_est_cov(x_samples, mu_est):\n", - " \"\"\"\n", - " Calculates the Maximum Likelihood Estimate for the covariance matrix.\n", - " \n", - " Keyword Arguments:\n", - " x_samples: np.array of the samples for 1 class, n x d dimensional \n", - " mu_est: np.array of the mean MLE, d x 1 dimensional\n", - " \n", - " Returns the MLE for the covariance matrix as d x d numpy array.\n", - " \n", - " \"\"\"\n", - " cov_est = np.zeros((2,2))\n", - " for x_vec in x_samples:\n", - " x_vec = x_vec.reshape(2,1)\n", - " assert(x_vec.shape == mu_est.shape), 'mean and x vector hmust be of equal shape'\n", - " cov_est += (x_vec - mu_est).dot((x_vec - mu_est).T)\n", - " return cov_est / len(x_samples)\n", - "\n", - "cov_est1 = mle_est_cov(x1_samples, mu_est1)\n", - "cov_est2 = mle_est_cov(x2_samples, mu_est2)\n", - "cov_est3 = mle_est_cov(x3_samples, mu_est3)\n", - "\n", - "cov_mle = prettytable.PrettyTable([\"\", \"covariance_matrix_1\", \"covariance_matrix_2\", \"covariance_matrix_3\"])\n", - "cov_mle.add_row([\"MLE\", cov_est1, cov_est2, cov_est3])\n", - "cov_mle.add_row(['','','',''])\n", - "cov_mle.add_row([\"actual\", cov_mat1, cov_mat2, cov_mat3])\n", - "\n", - "print(cov_mle)\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "+--------+-----------------------------+-----------------------------+-----------------------------+\n", - "| | covariance_matrix_1 | covariance_matrix_2 | covariance_matrix_3 |\n", - "+--------+-----------------------------+-----------------------------+-----------------------------+\n", - "| MLE | [[ 3.988021 -0.19957158] | [[ 3.79760541 -0.04062998] | [[ 4.35960544 0.51274876] |\n", - "| | [-0.19957158 2.69991303]] | [-0.04062998 3.05143476]] | [ 0.51274876 4.44341942]] |\n", - "| | | | |\n", - "| actual | [[3 0] | [[3 0] | [[4 0] |\n", - "| | [0 3]] | [0 3]] | [0 4]] |\n", - "+--------+-----------------------------+-----------------------------+-----------------------------+\n" - ] - } - ], - "prompt_number": 76 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "##Classification using our estimated parameters\n", - "\n", - "Using the estimated parameters $\\pmb \\mu_i$ and $\\pmb \\Sigma_i$, which we obtained via MLE, we calculate the error on the sample dataset again. " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "class1_as_1 = 0\n", - "class1_as_2 = 0\n", - "class1_as_3 = 0\n", - "for row in x1_samples:\n", - " g = classify_data(\n", - " row, \n", - " discriminant_function,\n", - " [mu_est1, mu_est2, mu_est3],\n", - " [cov_est1, cov_est2, cov_est3]\n", - " )\n", - " if g[1] == 2:\n", - " class1_as_2 += 1\n", - " elif g[1] == 3:\n", - " class1_as_3 += 1\n", - " else:\n", - " class1_as_1 += 1\n", - "\n", - "class2_as_1 = 0\n", - "class2_as_2 = 0\n", - "class2_as_3 = 0\n", - "for row in x2_samples:\n", - " g = classify_data(\n", - " row, \n", - " discriminant_function,\n", - " [mu_est1, mu_est2, mu_est3],\n", - " [cov_est1, cov_est2, cov_est3]\n", - " )\n", - " if g[1] == 2:\n", - " class2_as_2 += 1\n", - " elif g[1] == 3:\n", - " class2_as_3 += 1\n", - " else:\n", - " class2_as_1 += 1\n", - "\n", - "class3_as_1 = 0\n", - "class3_as_2 = 0\n", - "class3_as_3 = 0\n", - "for row in x3_samples:\n", - " g = classify_data(\n", - " row, \n", - " discriminant_function,\n", - " [mu_est1, mu_est2, mu_est3],\n", - " [cov_est1, cov_est2, cov_est3]\n", - " )\n", - " if g[1] == 2:\n", - " class3_as_2 += 1\n", - " elif g[1] == 3:\n", - " class3_as_3 += 1\n", - " else:\n", - " class3_as_1 += 1" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 87 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import prettytable\n", - "\n", - "confusion_mat = prettytable.PrettyTable([\"sample dataset\", \"w1 (predicted)\", \"w2 (predicted)\", \"w3 (predicted)\"])\n", - "confusion_mat.add_row([\"w1 (actual)\",class1_as_1, class1_as_2, class1_as_3])\n", - "confusion_mat.add_row([\"w2 (actual)\",class2_as_1, class2_as_2, class2_as_3])\n", - "confusion_mat.add_row([\"w3 (actual)\",class3_as_1, class3_as_2, class3_as_3])\n", - "print(confusion_mat)\n", - "misclass = x1_samples.shape[0]*3 - class1_as_1 - class2_as_2 - class3_as_3\n", - "bayes_err = misclass / (len(x1_samples)*3)\n", - "print('Empirical Error: {:.2f} ({:.2f}%)'.format(bayes_err, bayes_err * 100))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "+----------------+----------------+----------------+----------------+\n", - "| sample dataset | w1 (predicted) | w2 (predicted) | w3 (predicted) |\n", - "+----------------+----------------+----------------+----------------+\n", - "| w1 (actual) | 96 | 1 | 3 |\n", - "| w2 (actual) | 2 | 94 | 4 |\n", - "| w3 (actual) | 1 | 3 | 96 |\n", - "+----------------+----------------+----------------+----------------+\n", - "Empirical Error: 0.05 (4.67%)\n" - ] - } - ], - "prompt_number": 89 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "## Conclusion" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "I would claim that the results look pretty good! The error rate on our random dataset increased by just 0.67% (from 4.00% to 4.67%) when we estimated $\\pmb \\mu$ and $\\pmb \\Sigma$ using MLE. \n", - "In a real application of course, we would have an separate training dataset to derive and estimate the parameters, and a test data set for calculating the error rate. However, I ommitted the usage of to separate datasets here for the sake of brevity." - ] - } - ], - "metadata": {} - } - ] -} \ No newline at end of file diff --git a/stat_pattern_class/.ipynb_checkpoints/parzen_window_technique-checkpoint.ipynb b/stat_pattern_class/.ipynb_checkpoints/parzen_window_technique-checkpoint.ipynb deleted file mode 100644 index 40ec4fb..0000000 --- a/stat_pattern_class/.ipynb_checkpoints/parzen_window_technique-checkpoint.ipynb +++ /dev/null @@ -1,241 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:1dc421e78a819dd419a9b98fe207e709e94c5feeb36e3717da92f361df05604e" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#Sections\n", - "\n", - "- [Introduction](#introduction)\n", - "- [Defining the Region $R_n$](#region_rn)\n", - " - [Example 3D-hypercubes](#3d_hypdercubes)\n", - " - [The *window function*](#window_function)\n", - " - [Implementing the window function](#implement_window)\n", - " - [Quantifying the sample points inside the 3D-hypercube](#count_hypercube)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# Introduction\n", - "\n", - "\n", - "The Parzen-window technique is a widely used approach to estimate a probability density function $p(\\pmb x)$ for a specific point $\\pmb x$ from a sample $\\pmb x_n$. \n", - "\n", - "**Where would this be useful?** \n", - "Imagine we are about to design a classifier for a pattern classification task where the parameters of the underlying sample distribution are not known. Therefore, we wouldn't need the knowledge about the whole range of the distribution; it would be sufficient to know the probability of the particular point, which we want to classify, in order to make the decision. And here we are going to see how we can estimate this probability from the training sample. \n", - "However, the only problem of this approach would be that we would seldom have exact values - if we consider the histogram of the frequencies for a arbitrary training dataset. Therefore, we define a certain *region* (i.e., the **Parzen-window**) around the particular value to make the estimate.\n", - "\n", - "**And where does this name *Parzen-window* come from?** \n", - "As it was quite common in the earlier days, this technique was named after its inventor, Emanuel Parzen, who published his detailed mathematical analysis in 1962 in the *Annals of Mathematical Statistics*: [On the Estimation of a Probability Density Function and Mode](http://ssg.mit.edu/cal/abs/2000_spring/np_dens/density-estimation/parzen62.pdf).\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## Defining the Region $R_n$\n", - "\n", - "The basis of this approach is to count how many samples fall within a specified region $R_n$ (or \"window\" if you will). To illustrate this with an example and a set of equations, let us assume this region $R_n$ is a hypercube. \n", - "And the volume of this hypercube is defined by $V_n = {h_n}^d$, where $h_n$ is the length of the hypercube, and $d$ is the number of dimensions. \n", - "For an 2D-hypercube with length 1, for example, this would be $V_n = {1}^2$ and for a 3D hypercube $V_n = {1}^3$, respectively." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "" - ] - } - ], - "prompt_number": 46 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## The *window function*" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Once we visualized the region $R_n$ like above, it is easy and intuitive to count how many samples fall within this region, and how many lie outside. To approach this problem more mathematically, we would use the following equation to count the samples $k_n$ within this hypercube:\n", - "\n", - "$k_n = \\sum\\limits_{i=1}^{n} \\phi \\bigg( \\frac{\\pmb x - \\pmb x_i}{h_n} \\bigg)$ " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "where $\\phi$ is our so-called *window function*, defined as \n", - "$\\phi(\\pmb u) = \\Bigg[ \\begin{array}{ll} 1 & \\quad |u_j| \\leq 1/2 \\; ;\\quad \\quad j = 1, ..., d \\\\\n", - "0 & \\quad otherwise \\end{array} $\n", - "\n", - "and $\\pmb u = \\bigg( \\frac{\\pmb x - \\pmb x_i}{h_n} \\bigg)$ \n", - "\n", - "All that this basically means is that every point that lies within the coordinates +1/2 and -1/2 of each axis (remember that we have a unit hypercube with of length 1) is counted as 1, and 0 otherwise." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### Implementing the *window function*" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def window_function(x_vec):\n", - " \"\"\"\n", - " Implementation of the window function. Returns 1 if 3x1-sample vector\n", - " lies within the hypercube, 0 otherwise.\n", - " \n", - " \"\"\"\n", - " for row in x_vec:\n", - " if np.abs(row) > 0.5:\n", - " return 0\n", - " return 1" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 53 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### Quantifying the sample points inside and outside $R_n$ (the 3D-hypercube)\n", - "Using the *window function* that we just implemented above, let us now quantify how many points actually lie inside and outside the hypercube." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "X_all = np.vstack((X_inside,X_outside))\n", - "assert(X_all.shape == (10,3))\n", - "\n", - "k_n = 0\n", - "for row in X_all:\n", - " k_n += window_function(row.reshape(3,1))\n", - " \n", - "print('Points inside the hypercube:', k_n)\n", - "print('Points outside the hybercube:', len(X_all) - k_n)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Points inside the hypercube: 3\n", - "Points outside the hybercube: 7\n" - ] - } - ], - "prompt_number": 56 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -} \ No newline at end of file diff --git a/stat_pattern_class/.ipynb_checkpoints/proj_2014-checkpoint.ipynb b/stat_pattern_class/.ipynb_checkpoints/proj_2014-checkpoint.ipynb deleted file mode 100644 index e3e1913..0000000 --- a/stat_pattern_class/.ipynb_checkpoints/proj_2014-checkpoint.ipynb +++ /dev/null @@ -1,1294 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:788394f9fd3d23cb7c7479d260feb27c2d78d8d6e7c42254b761d819f2d4c4e1" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Sebastian Raschka \n", - "Last updated: 04/12/2014\n", - "
\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Sections\n", - "- [1)](#task_1)\n", - " - [Description of Task 1](#descr_task_1)\n", - " - [About the dataset](#about_data)\n", - " - [Reading in and analyzing the dataset](#reading_data)\n", - " - [Dividing the dataset radomly in training (70%) and test (30%) sets](#divide_data)\n", - " - [Visualizing the 3 classes in a scatter plot](#viz_div_data)\n", - " - [1 a)](#task_1a)\n", - " - [Description of Task 1 a)](#descr_task_1a)\n", - " - [Discriminant Functions](#discr_func)\n", - " - [Decision Boundaries](#decision_boundaries)\n", - " - [Implementing the Discriminant Function for arbitrary covariance matrices](#impl_discrfunc)\n", - " - [Implementing the descision rule](#decision_rule)\n", - " - [Classifying data and calculating the empirical error](#empirical_error)\n", - " - [Empirical error of the training dataset](#emp_err_train)\n", - " - [Empirical error of the test dataset](#emp_err_test)\n", - " - [1 b)](#task_1b)\n", - " - [Description of Task 1 b)](#descr_task_1b)\n", - " - [About the Maximum Likelihood Estimate (MLE)](#about_mle)\n", - " - [MLE of the mean vector $\\pmb\\mu$](#mle_mu)\n", - " - [MLE of the covariance matrix $\\pmb\\Sigma$](#mle_sigma)\n", - " - [Error on the test set using the estimated parameters](#error_mle)" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import numpy as np\n", - "\n", - "np.random.seed(1234568)" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 3 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# 1)\n", - "\n", - "### Description of Task 1): \n", - "[65 points] Consider the dataset available here: [project_data.txt](./data/project_data.txt). It consists of two-dimensional patterns, $\\pmb{x} = [x_1, x_2]^t$ , pertaining to 3 classes $(\\omega_1,\\omega_2,\\omega_3)$. The feature values are indicated in the first two columns while the class labels are specified in the last column. The priors of all 3 classes are the same. Randomly partition this dataset into a training set (70% of each class) and a test set (30% of each class)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### About the dataset" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The data set consists of 1500 rows and 3 columns, where \n", - "- column 1: $x_1$ values \n", - "- column 2: $x_2$ values \n", - "- column 3: class labels \n", - "\n", - "**Excerpt from the dataset: ** \n", - " 1.8569 -3.4702 1 \n", - " -0.2096 -2.8342 1 \n", - " -1.0265 2.1614 1 \n", - " [...] \n", - " 9.3851 4.0336 2 \n", - " 10.1375 1.1495 2 \n", - " 11.7569 0.8005 2 \n", - " [...] \n", - " 3.9854 5.1360 3 \n", - " 2.7592 5.9536 3 \n", - " 4.1379 4.3258 3 \n", - " [...] " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### Reading in and analyzing the dataset" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import numpy as np\n", - "\n", - "all_projdata = np.genfromtxt('./data/project_data.txt', delimiter=' ')\n", - "\n", - "# Test if the data is read in in the correct dimensions:\n", - "assert(all_projdata.shape == (1500, 3))\n", - "assert(all_projdata[all_projdata[:,2] == 1].shape == (500,3))\n", - "assert(all_projdata[all_projdata[:,2] == 2].shape == (500,3))\n", - "assert(all_projdata[all_projdata[:,2] == 3].shape == (500,3))\n", - "\n", - "# Print min and max values of the 2 dimensions:\n", - "print(\"Range of x_1: ({}, {})\".format(min(all_projdata[:,0]), max(all_projdata[:,0])))\n", - "print(\"Range of x_2: ({}, {})\".format(min(all_projdata[:,1]), max(all_projdata[:,1])))\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Range of x_1: (-6.8114, 17.4559)\n", - "Range of x_2: (-7.9943, 11.9156)\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### Dividing the dataset radomly in training (70%) and test (30%) sets" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Accomodation, since numpy arrays cannot be empty\n", - "test_set = np.zeros(shape=(1,3))\n", - "train_set = np.zeros(shape=(1,3))\n", - "\n", - "#np.random.shuffle(all_projdata)\n", - "\n", - "for i in range(0,3):\n", - " cl_shuffle = np.copy(all_projdata[all_projdata[:,2] == i+1])\n", - " np.random.shuffle(cl_shuffle)\n", - " test_set = np.append(test_set, cl_shuffle[0:150,:], axis=0)\n", - " train_set = np.append(train_set, cl_shuffle[150:,:], axis=0)\n", - " \n", - "# delete the first placeholder row used for initializing the array \n", - "test_set = np.delete(test_set, 0, axis=0)\n", - "train_set = np.delete(train_set, 0, axis=0)\n", - "\n", - "assert(test_set.shape == (1500*0.3,3))\n", - "assert(train_set.shape == (1500*0.7,3))" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 5 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### Visualizing the 3 classes in a scatter plot" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%pylab inline\n", - "\n", - "import numpy as np\n", - "from matplotlib import pyplot as plt\n", - "\n", - "# Test Dataset\n", - "f, ax = plt.subplots(figsize=(7, 7))\n", - "ax.scatter(test_set[test_set[:,2] == 1][:,0], test_set[test_set[:,2] == 1][:,1], \\\n", - " marker='o', color='green', s=40, alpha=0.5, label='$\\omega_1$')\n", - "ax.scatter(test_set[test_set[:,2] == 2][:,0], test_set[test_set[:,2] == 2][:,1], \\\n", - " marker='^', color='red', s=40, alpha=0.5, label='$\\omega_2$')\n", - "ax.scatter(test_set[test_set[:,2] == 3][:,0], test_set[test_set[:,2] == 3][:,1], \\\n", - " marker='s', color='blue', s=40, alpha=0.5, label='$\\omega_3$')\n", - "plt.legend(loc='upper right') \n", - "plt.title('Test Dataset', size=20)\n", - "plt.ylabel('$x_2$', size=20)\n", - "plt.xlabel('$x_1$', size=20)\n", - "plt.show()\n", - "\n", - "# Training Dataset\n", - "f, ax = plt.subplots(figsize=(7, 7))\n", - "ax.scatter(train_set[train_set[:,2] == 1][:,0], train_set[train_set[:,2] == 1][:,1], \\\n", - " marker='o', color='green', s=40, alpha=0.5, label='$\\omega_1$')\n", - "ax.scatter(train_set[train_set[:,2] == 2][:,0], train_set[train_set[:,2] == 2][:,1], \\\n", - " marker='^', color='red', s=40, alpha=0.5, label='$\\omega_2$')\n", - "ax.scatter(train_set[train_set[:,2] == 3][:,0], train_set[train_set[:,2] == 3][:,1], \\\n", - " marker='s', color='blue', s=40, alpha=0.5, label='$\\omega_3$')\n", - "plt.legend(loc='upper right') \n", - "plt.title('Training Dataset', size=20)\n", - "plt.ylabel('$x_2$', size=20)\n", - "plt.xlabel('$x_1$', size=20)\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Populating the interactive namespace from numpy and matplotlib\n" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAHPCAYAAAA4ZiFsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VGXaP/DvmT7JTHonHQIxdINUEaRZWBHsuLovoq5l\nXRV11Vd3V/RdFezlp7u2ta1rQREUlCotIC0UIdQEkhDSSMJMMsn0eX5/PJzpkzrp9+e6coWcOefM\nM7Pu3HM/5X4ExhgDIYQQQnxIursBhBBCSE9FQZIQQggJgIIkIYQQEgAFSUIIISQACpKEEEJIABQk\nCSGEkAAoSBJCCCEBUJAk/YpEImnTz6effhr0NnzyySftvrd3+1QqFeLi4pCbm4u7774ba9asgcPh\n6PZ2drXe1FbSu8i6uwGEdKVnnnkGgiA4/2aM4Y033oBer8fDDz+MiIgIj/NHjx7daW1xb0dbr3vm\nmWcAAHa7HTqdDocPH8bnn3+Ojz76CGPGjMEXX3yBrKysbm1nd+hNbSW9AwVJ0q+IwcXdxx9/jPr6\nejz88MNITU3tsrZ0pNjV3//+d59j1dXV+POf/4xly5ZhxowZ2Lt3L2JjYzvSRAAda2dX601tJb0E\nI6SfS0tLYxKJhJWUlPg8tnPnTnb99dez+Ph4plAoWEpKCrvnnntYeXm5z7lFRUXs7rvvZgMHDmRq\ntZpFRUWx4cOHs3vvvZfV1tYyxhibMmUKEwTB74+/5/cmCAKTSCQBH3c4HOzyyy9ngiCwhx9+2OOx\nvXv3sgcffJCNGDGCRUVFMZVKxbKystijjz7Kzp8/73Fua9p59uxZ9uyzz7KJEyc635+kpCR26623\nsiNHjvht38qVK9m0adNYQkICUyqVLCkpiU2ZMoW9++67PufW1tayJ598kmVnZzO1Ws3Cw8PZ9OnT\n2bp169rcVkLaS2CMvnqR/i09PR1nzpzB6dOnPTLJf//73/jjH/8ItVqNOXPmICUlBSdOnMAPP/yA\n+Ph47Ny5EykpKQCAiooKDBs2DA0NDZg9ezays7NhMplw6tQp/PLLL9i1axdycnLw6aefYsWKFVi5\nciXmzp2LUaNGOZ/voYceQnh4eLNtlUgkEAQBdrs94Dm//PILZsyYgfj4eFRUVDiP33vvvVixYgWm\nTp2KlJQUOBwO7N27F9u2bcNFF12EXbt2QaPRAECr2vnVV1/hzjvvxLRp05Ceng6NRoMTJ05g1apV\nUCgU2L59O0aMGOG87v3338e9996LxMREXHPNNYiJiUF1dTUOHjwIANi1a5fz3JKSEkydOhUlJSW4\n7LLLkJubC4PBgFWrVqGyshLvvfce7rrrrla3lZB26+4oTUh385dJHj9+nMnlcpaVleWTNW7cuJFJ\npVI2b94857G33nqLCYLA3nrrLZ/7NzU1MaPR6Pz7448/ZoIgsE8//bTNbW0pk2SMMbPZzGQyGZNI\nJOz06dPO4yUlJczhcPic/9FHHzFBENjSpUs9jrfUzurqamYwGHyOHzx4kGk0GnbVVVd5HL/44ouZ\nSqVi586d87lGzLRFU6ZMYVKplH399dcex3U6HRs1ahRTq9Wsqqqq1W0lpL1odishfvzzn/+EzWbD\nm2++icTERI/Hpk2bhmuuuQY//vgjGhsbPR5TqVQ+91Kr1X6PdxaFQoHo6GgAQE1NjfN4amqq34kt\nd9xxB7RaLdatW9em54mNjUVoaKjP8REjRuDyyy/Hpk2bfDJeqVQKmcx3KkRUVJTz3wcPHsTWrVtx\n/fXX46abbvI4Lzw8HIsXL4bJZMJ3333XpvYS0h40cYcQP3799VcAwObNmz26AUXV1dWw2+04fvw4\nLr74Ylx77bV4+umn8ac//Qlr167FrFmzcOmllyInJ6ermw7ANYHFPSharVa89957+Oqrr3DkyBHU\n19d7LBc5e/Zsm59n9erV+Ne//oW9e/eitrYWNpvN+ZggCKipqUF8fDwA4LbbbsOjjz6KnJwc3HLL\nLbjsssswadIkn8lF4nuv0+mwePFin+c8d+4cAODo0aNtbi8hbUVBkhA/amtrAQAvv/xywHMEQXBm\nkqmpqdi9ezcWL16MNWvWYPny5QCAlJQUPPbYY/jzn//c+Y2+wGQyoa6uDgA8AtDNN9+MFStWYODA\ngZg3bx4SEhKgVCqdy2DMZnObnufNN9/EokWLEBUVhZkzZyI1NRUhISEQBAHff/89Dh486HHPRYsW\nISYmBu+++y7eeustvPHGGxAEAVOmTMHLL7+M3NxcAK73fv369Vi/fr3f53Z/7wnpTBQkCfEjPDwc\ngiBAr9c7J7O0JDs7G1999RXsdjsOHjyIDRs24O2338ZDDz2E0NBQLFy4sJNbzeXl5cFutyMhIcE5\nEWnv3r1YsWIFZs6ciZ9//hkSiWukhTGGpUuXtuk5bDYbFi9ejMTEROzbt8+ZLYq2b9/u97rbb78d\nt99+O/R6PXbs2IHvv/8e//73v3HFFVfg2LFjiImJcU60eeutt/DAAw+0qV2EBBuNSRLix4QJE8AY\nw9atW9t8rVQqxcUXX4zHH38cX375JQBg5cqVHo8DaHaGans5HA48//zzAIBbb73VebywsBAAMGfO\nHI8ACfBZpSaTyedezbWzpqYGer0eEydO9AmQBoMB+/bta3Zhf3h4OK666iq8//77WLBgAerq6rBt\n2zYA/L0H0Kb3vjPfU9K/UZAkxI8HHngAcrkcixYtwsmTJ30et1gszg91ANi3bx/0er3PeZWVlQCA\nkJAQ5zFxUk1JSUlQ21xdXY1bbrkFW7ZsQVpaGp566innYxkZGQCATZs2+Vzzpz/9ye/9mmtnXFwc\nQkJCsHfvXo9uT6vVioceesjZZerO+7lFVVVVAFzvUW5uLiZPnozly5fj448/9nvNoUOHnGOTLbWV\nkI6gdZKk30tPT0dpaSmKi4s91kl+8cUXWLhwIRhjuPLKK5GVlQWr1YrS0lJs27YN8fHxOHLkCADg\n4Ycfxvvvv49LL70UmZmZiIyMRFFREX788UcIgoBNmzZh3LhxAPiElOTkZMhkMtx+++3OTOzBBx9E\nWFhYs20Vs8BnnnkGjDE4HA7odDoUFBQgLy8PVqsV48aNwxdffIHMzEzndQ6HA1OmTMH27dsxYcIE\nTJo0CVVVVVizZg2ys7NRVFQEuVyO06dPO69pqZ1PPfUUlixZgvT0dMyZMwcWiwWbNm2CTqdDTk4O\nNm3a5PGeRkREQKvVYvz48UhLSwNjDNu2bcPevXsxZswY/Prrr86M8OzZs5g2bRpOnjyJkSNHYuzY\nsYiIiEBZWRl+++03FBQUYOfOnRg7dmyH31NCmtVti08I6SHS09MDVtw5dOgQW7BgAUtLS2NKpZJF\nR0c7q+hs2rTJed6uXbvYfffdx0aOHMmioqKYWq1mWVlZbOHChaygoMDnvmvWrGETJkxgGo3Gufax\nLRV3xIoySqWSxcbGsjFjxrA//vGPbO3atQGvraurY/fffz9LT09nKpWKDRo0iD399NOsqamJpaen\ns4yMjDa102azsddee43l5OQwtVrNEhMT2R/+8AdWWlrKFixY4POa/vWvf7F58+axzMxMFhISwqKi\notjFF1/MXn75Zb/rLRsaGtgLL7zAcnNzmUajYWq1mmVmZrLf/e537IMPPmCNjY1BeU8JaU6PzyQX\nLlyI1atXIy4uDocOHQIALF68GB9++KFz5t6LL76IK6+8sjubSQghpA/q8WOSd9xxB9asWeNxTBAE\nPPLII9i/fz/2799PAZIQQkin6PFBcvLkyYiMjPQ53sMTYEIIIX1Ajw+Sgbz99tsYOXIk7rzzTuh0\nuu5uDiGEkD6oVwbJ++67D6dPn8aBAweQmJiIRx99tLubRAghpA/qlRV34uLinP++6667cM011/ic\nM2jQIBQVFXVlswghhPRwAwcOdBbXaI1emUm675H3/fffY/jw4T7nFBUVgTHW73/E9XT9+YfeA3oP\n6D2g90D8aWvy1OMzyfnz52PLli2oqalBSkoKnn32WWzevBkHDhyAIAjIyMjAe++9193NJIQQ0gf1\n+CAp1r5011WFogkhhPRvvbK7lbTe1KlTu7sJ3Y7eA3oPAHoPAHoP2qPHV9xpL0EQ0EdfGiGEkHZq\na2zo8d2thBBCgi8qKgrnz5/v7mZ0msjISOfm4x1BmSQhhPRDff0zMtDra+vrpjFJQgghJAAKkoQQ\nQkgAFCQJIYSQAChIEkIIIQFQkCSEEEICoCUghBBCWq2wrhBrC9eirKEMAyMH4oqBVyAlPKW7m9Vp\naAkIIYT0Q/4+I20OG/ac3YO80jzYHDZMSJmACckToJQpAQD55fl4e/fbUMvU0Cg0qDfXw8ZseGLS\nExgcPdh5H4vdgrL6MiikCgzQDoAgCF362oDgLQGhIEkIIf2Q92ekgznw3t73sKNsByJVkRAg4Lzp\nPIbGDsUjEx6BIAh4bN1jkElk0Cg0zuvqjHWIVEVi8dTFEAQBO8t24rODn8FkMwEMGBA2APddch+S\ntEmtbpter0deXh5mz57tcXzs2LFYuXIlEhMT2/z6WjoeCI1JEkIIwYnaE9h5dicyIzIRpY5CpDoS\nGREZKDhXgP0V+3Gu8RwazA0eARIAIlWRKNWXotHaiKK6Ivxr77+gVWiRGp6KlPAU1Bnr8MqOV2C2\nmVvdlo0bN+Lqq68GAOTn5zuPz5s3DxJJ14YtCpKEEEJw5NwRyCVyj65RQRCgUWiwv3I/VDIVHHD4\nZGF2ZodUIoVcIscvp3+BUqqEWq52Xh8bGos6Yx0KzhW0ui2CIDjbsXTpUufxqKgoqFQqLF++HC++\n+GJHXm6rUZAkhBACpVQJu8Puc9zmsCFEHoJIdSSGxw1HeUO58zHGGM7Wn8WlqZdCKVOi0lCJUEWo\nzz0YY6g317e6Lfv37wcArF+/HlqtFgCwbNkyJCUlITw8HLm5ubBYLG19ie1CQZIQQghyk3IhCIJH\nt6jVboXZZsb45PEAgDtG3YFEbSKKdcUo0ZWgRF+CITFDcGPOjQCA7Jhs6E16j/syxiAIAhI1LY8j\niiQSCdLT07F+/XqYTCZkZmaivLwc11xzTRBeadvQxB1CCOmH/H1Gbi3Zik8OfAKHw+E85/qc6zE7\na7az+9PusONk3UmcN55HbGgsBkYOdD5W01SDZzY9AzuzIy40DjaHDeX15bgo9iL8ZdJfIBGCk5eV\nlJTgk08+wTPPPNOm19fc8UBonSQhhBAAwGVpl2FY3DAcPXcUDubAkJghiAuN8zhHKpEiOybb7/Ux\nITF4avJT+O7od9hfsR8KqQJXDb4KcwbPCVqABNClCRBlkoQQ0g919mek3WGHRJAEfY2kwWDAe++9\nhy1btuCFF17AsGHD/J5H6yRbQEGSEEIC6+ufkbROkhBCCOlkFCQJIYSQAChIEkIIIQFQkCSEEEIC\noCBJCCGEBEBBkhBCCAmAgiQhhBASAAVJQgghJAAKkoQQQkgAFCQJIYSQAChIEkIIaRujEfjmG8Bm\n6+6WdDoKkoQQQjwdPw7k5wd+fNs24MsvgQubI/tlNAIXttzqzShIEkIIcbHbgU8+AT7+GDCZfB83\nGoEVK4DERGDZMv/ZJGPA668D69a1qwl6vR6rV6/2OT527FhUVFS0657tRUGSEEKIy8GDQHk5YDAA\nv/7q+/i2bUBTExAXB1RX+88mjx4FCgqAlSv5uW20ceNGXH311QCAfLeMdt68eZBIujZsUZAkhBDC\n2e08O4yM5EHwu+88s0kxi4yP539HRflmk4zx66Ki+LVbt7a5GYIgOPehXLp0qfN4VFQUGhoa8P33\n3+PZZ5/Fvn372vUy24KCJCGEEE7MIiMigJAQ32xSzCLVav53WJhvNnn0KFBYyINkfHy7ssn9F+63\nfv16aLVaAMCyZcuQmJiIH3/8EQMGDMAjjzyCV155pUMvtzUoSBJCCPHMIkXu2aTJBCxfDpjNQEmJ\n66epiV/ncLiyyLAwQBAAlapd2aREIkF6ejrWr18Pk8mEzMxMlJeXY86cOVi0aBHGjh2LM2fOICMj\nI8hvgi+B9dGtqfv6rtuEENIRPp+R+/YB//gHzwDd1dQADz0ETJoE5OX5n6ijUACXXQYcOwYsXQqk\np/MgCfAgqdcDr77Ks9Mgef7557Fo0SKEBLhnoBjQ1tgga3cLCSGE9B3h4cBtt/l/LC6OB8Jp05q/\nx6+/8ozyzBnP4w4H74bNzQ1KU3/44Qc8+OCDOHv2LLKysoJyz0AokySEkH6oUz4jLRbeHetPaCgQ\nhJmp33//PV544QVERERg6tSpePrpp/2eF6xMkoIkIYT0Q339MzJYQZIm7hBCCCEBUJAkhBBCAqAg\nSQghhARAQZIQQggJgIIkIYQQEgAFSUIIISQACpKEEEJIABQkCSGEkAAoSBJCCCEBUJAkhBBCAqAg\nSQghhARAu4AQQghplSefBCor/T+WkAAsWdK17ekKFCQJIYQACBwExQBYWcm3ivSnuLh192gNvV6P\nvLw8zJ492+P42LFjsXLlSiQmJrbuRkFAQZIQQgiAwEFQDIBddY+NGzdi3rx5AID8/HzkXtiHct68\neZAEYbuttqAxSUIIIT2KIAgQBAEAsHTpUufxqKgomEwmLFu2DC+++CLy8/M7vS0UJAkhhPQo+/fv\nBwCsX78eWq0WALBs2TIkJiZi+/btiI6ORlZWFk6cONHpbaEgSQghpEeRSCRIT0/H+vXrYTKZkJmZ\nifLycsyZMwe33norMjIysHfvXlx//fWd3hYakySEENIqCQmBxxYTEoL3PIsXL8bixYsDPp6RkYG5\nc+di8eLFeOGFF4L3xH5QkCSEEAIgcBAUA2BPWOLxxBNP4H/+53+gVCpx/PjxTn8+CpKEEEIABCcI\nthRoO2ru3LkoLCxEQUEBnnvuueDctBkCY4x1+rN0A0EQ0EdfGiGEdFhf/4wM9Pra+rpp4g4hhBAS\nAAVJQgghJAAKkoQQQkgAFCQJIYSQAChIEkIIIQFQkCSEEEICoCBJCCGEBNDjg+TChQsRHx+P4cOH\nO4/V1dVh5syZGDx4MGbNmgWdTteNLSSEkN4nMjLSudtGX/yJjIwMyvvU44PkHXfcgTVr1ngcW7Jk\nCWbOnIkTJ05g+vTpWNITaiURQkgvUldXB8ZYn/2pq6sLyvvUKyruFBcX45prrsGhQ4cAANnZ2diy\nZQvi4+NRWVmJqVOn4tixYx7X9PVqEoQQQtquX1TcqaqqQnx8PAAgPj4eVVVV3dwiQgghfVGvDJLu\n3HewJoQQQoKpV+4CInazJiQkoKKiAnFxcX7Pc9+PbOrUqZg6dWrXNJAQQkiPsHnzZmzevLnd1/fK\nMcnHH38c0dHReOKJJ7BkyRLodDqfyTs0JkkIIcRbW2NDjw+S8+fPx5YtW1BTU4P4+Hg899xzuPba\na3HTTTehtLQU6enp+OabbxAREeFxHQVJQggh3vpckGwvCpKEEEK89YvZrYQQQkhX6JUTdwjpz558\nEqis9D2ekABQXQ1CgouCJCG9TGUlkJ7ue7y4uPX3oEBLSOtQkCSkHwpGoCWkP6AxSUIIISQACpKE\nEEJIANTdSkgnaeu4X6Dzm7uGENK5KEgS0knaOu4X6PzmriGEdC4KkoT0MgkJ/oNmQoLvsUDZqdfO\ncs3eg5D+jIIkIb1MW7pdm8tOP/kkGK0hpG+jiTuEEEJIAJRJEhIk3l2beXnAgQOARgPMmNF97fK2\nYQNv54IFvo/RBCFCPFGQJCRIvLs2DxwAIiIAna511wcaaxQfCxaDgQduKiZASMsoSBLSSTQaHiAN\nBs/gEyjgUQZHSM9DQZKQTiJ2sRYXd98kGX/ZqcFAs1gJaS0KkoR0ge4qKO7v3gsWBJ7xSgjxREGS\nkC5ABcUJ6Z0oSBISJM0t8g9Ubo4Q0rNRkCQkSJrrNvW33KK7tGYWLdWRJYSjIElIP9OaAEd1ZAnh\nqOIOIYQQEgBlkoR0gbYUJSeE9BwUJAnpAjSGR0jvRN2thBBCSACUSRJCfHRVHVlCejqBMca6uxGd\nQRAE9NGXRgghpJ3aGhuou5UQQggJgLpbCelnuquOLCG9EQVJQvoZ70IBGzbwnUEMBs/gSUGTEAqS\nhPR7BgPfHBrwDJ5UWYcQGpMkhBBCAqJMkhDSKjSWSfojCpKEkFahPTFJf0RBkpB+xrtQgMHAf2s0\n3dKcVqEslnQXKiZASBfpqR/0zbULcD2Wl+cKpBoNMGMG/3dxMfDJJ53bxgULAmexnf3cpG9pa2yg\nTJKQLtJTuytb2ixabPOBA65ZsDpdZ7eKkJ6BgiQhxIeYXebl8eAIAKWlQF0dkJnZvW0jpCtRkCSk\njwlGt66Y9bpnj5WVgMUStGYGVaDXDHR/dzbp3ShIEtLHdFa3rkLBJ/nodPy3eL+esCtIoNcMdH93\nNundKEiSPqcnTZBxb4t71yXgOfmlN8jM5AFy7lyaMEP6DwqSpM/pSRNk3Nvi3nUJ9I7JLxqNZzvF\nDLKrs8dA+1v2hCyW9G0UJEm/YrKZsL5oPTaXbIbNbsPE1Im4cuCVCFeFd/pz95SA0xbemW53ZZA0\npki6C9VuJf2Ggznwxs438O2RbyEVpFDL1Vhzcg1ezHsRTdamTn1ucacNQkjvQpkk6Tf0Jj2O1hxF\nekQ6BEEAAKRFpKH4fDF2le3C5RmXB/X5nnzSNQ5ZWsonvgD8t7iMIj29Z04s6W3dm4HaKz5GSHtR\nkCT9Rr25HrESuTNAijRKDQ5XHw56kKys5F2sERH83yoVP24yBfVpfIgBIz8fMBpdx9VqXhygNROY\nunOCk7ee2F7Sf1CQJH1OoKwiPoHB7rD7HDfbzIhSRwW8X0dmy4rjkO7rCy0WfqyzaqWKbWqulFtP\nQ0s4SE9FQZL0OYEC13ljOJ7YIIfBYoBGwSOUyWaC1WHFpamXBrxfR2bLihNfVqzwLOk2d27L1xJC\nuh8FSdJvRKoj8dC4h/DunndR11QHBga5VI67L74baRFp3d28oPFXUg7ofesyCekJKEiSfmVo3FC8\nfuXrKKwrhN1hx8CogQiRh3T687ov/3CvVgMEf2KJv5JyAH/+DRv44wsW+F7nr/u4JxVmIKQ7UJAk\n/Y5CqkBObE6nP4/72OigQZ7HuyvAGAw8YLe2+7gjXc0UYElfQEGSkE7SmYFg/Higpsb3eEwMkJ3N\n/+2veAHQ/szVfa1nSYkr8KvVQG6u697i625LgKUlHKSnoiBJSAvcP8Ddl1WISyrEc7oyO6qpAZKT\nfY+Xlbn+7a9aDhB4FmlLDAZX921pqev5dTrXPds7E5UyS9JTUZAkpAXuH+BdsayiI2sGa2p8J+yI\n7HZXxudOzBANBt+xyvz89gdVQvoCCpKE9DAdWTNot7sKGJw65bk+s7GRZ8EHDnjOdHXPEL2fNy+v\nHS+AkD6EgiQhfYw4FmkwuErhAbx7OCGBH6+sdFXlKS4G5HJAJuPrOd3vo1a7ArN77VlZGz853Mcz\nvTNWmshDejIKkoT0Eu7LN6qqXEHHvRYs4L+AAcADp/iYuJuHeC/Jha0O3Lt5LRZgwADXrh/uXc3u\nwTQQ97FcsUSfeNw9Y6WKOqQnoyBJSC/hvnxDrfY8Ls5ilUrbfl+bDQgL8/+Ye+1X96DnnlUGKq/X\nmrFcbx2t4UpIsFGQJKQNump3DH9ba5WWuro5Bw/27L4cNYr/2253XV9a6psZbtjgOes1P59fL45d\nms0AY67HGxv9F0X3Dmbie9LR94FquJKehoIkIa3Q1Qvj3SfTiCorXcHMPdC5b4T85JP8b39t1Wh8\nA6/RyMcjRYzxrlebjf/bauUTfcRxTPH1UkZH+gsKkoS0Qkcqz7TVsWNAUZFn8AJ4oGppwowYvIYP\n5+d67z5y/jzw3XfA7Nmu41qtaxuvmhp+XVMT4HDwQO0+89Xf66XKOqQvoyBJSA+Tnc33nPTOJI8d\n8wx6zTEagRw/lfd0Ot41KwYvtRqoq3M9LnbXOhyA17abAbXmCwRV1CG9FQVJQnoJhYKPEXpX/3Gv\n/APwoFNb69u1CvAga3fbUjM3l0/2EQPysWM8q/RX8q4jujyjPHcOiI52TdslpJ0oSBLSzby7K/Py\neHZXV+e5tCMzk5ed87ckw11xMR9TDA/n3avuQdFu54+Lk3EAzxqvYqYqXuO+zrIjWtslG5SMs7ER\neP554JZbeJFbQjqAgiQh3cy7u/LAAR6s3Jd2iNyXfjRHKuVdthaL57IQhYL/LY4vugee/HzezdrY\nyCfsyGS8DUeO8Nm0In9BXaziA/gvGpCfD1x/vW87vQNiUDLOrVuB8nLg22+BMWPaXvmAEDf0Xw8h\nPVBmJg+Qc+d6Hu/oRCG7nS/zEHmvZRQDmXeFnEGDXEHVX1CPiHAFdPexVPG8Litv19gI/PADfwMr\nK4G9eymbJB1CQZJ0OpvDBqPViFBFKCRC7xwj6qr1kV3F3+bL7hlhoCUmgP8Nm3uMrVt5Ch0fz8ck\nKZskHUT/5ZBOY3fYsaZwDX46+ROMNiPCleG4Luc6XJpyKYTWTp3sITpr4smTT/ru2lFezn/CwnwD\nc2uDckwM38pKnIjjrr7e/+bL3hlha7nXivU+3qXELDI+nv+t1fI3kLJJ0gG982s96RVWHFuBrwq+\nglapRWp4KmQSGd7f+z62n9ne3U3rMcSapuJ6xIgI/0s3/BGzW++frs5uZ8zwHxANBp6xdhkxi1Qq\neSUExoCoKJ5N2mxd2BDSl1AmSTpFk7UJawrXIDUsFXIpXxUfqghFgiYBy48ux8SUid3a9Wq1W7G1\nZCs2FW+CxW7BhOQJmJE5A1qltsvbUlPDMz6Hw619Vh5kCgt9uz5bQ63m2Z2/dZWd0fMoZqaAb1F1\nsT2d3l198CAPjCUlnsfVap6ap6YG8clIf9Grg2R6ejrCwsIglUohl8uxe/fu7m4SuaDOWAcHczgD\npChUEYpSfSlMNhNC5CHd0jYHc+Cfe/+JPWf3IC40DlKJFCuPr8Se8j14evLTCFWEdml7YmJ4ouPe\nLVpVxbtb/a11FDW3iD83lz/mrwasuMGyd4DSaPhMVqMR+M9/XMfVat4tLHY5+xufdb+fe3etwcDP\nnT27C9aT825NAAAgAElEQVRKPvlkJz8B6Y96dZAUBAGbN29GVFRUdzeFeAlXhgPg45JSiWsNgtFq\nhEahgVKq7K6m4WTtSeSX5yMzMtM5NpoekY5iXTF2lu3E9Mzp7b53TyvR5p6FisQA5x1gZ8xwBdTm\nZtX6ex3Nrdl0n/TTKRoaeA0/78FXQoKgVwdJAGDuWxaQHkOr1GJK+hRsOLXBOR5psVtQ3lCO20fe\n7hE4g6k1Wy0V1RVBIkh8Jg+FKcNwsOpgs0FSb9LjZN1JSAUphsQM8cmGu6rGq78JPyK7nWduzS3K\nD/QelZfzrNZ7v0iDwTOb7DEYA/75TyApCbjttpbPP3WKT+wJ7dreAtJ79eogKQgCZsyYAalUinvu\nuQd33313dzeJuLll2C2QCBJsLt4MxhhkEhluGnoTZmT6SW+CpDVbLYUqQsHg++XKbDM7M2B/Np7a\niP8e+i8czAEIgEKiwL1j7sXoxNEdb3gruC/bEKvyGAy8GHmIW6xubPTcscOd+CUiP99z7aJezyv0\n1NXxeS9iEHXf0DlQYO1WhYXA4cPA8ePAlVfyvutAmpqAV18FLr8cuOGGrmsj6dV6dZDcvn07EhMT\nce7cOcycORPZ2dmYPHlydzeLXKCQKnDbiNswN3su6s31iFJHQSXr/i6xUQmjoJAqYLAYoFHw2SYW\nuwUmuwmXpV3m95pT50/h898+R5I2CQopr9XWZG3Cu3vexdKZSxGlbrnL31+Wm5/PS815r4jxV3LU\nfdmGuH2VSsUDnHtPo8USeMcO8UuE9xeJN9/k95ZIeFvEblfGPEvj9SiMAcuX86UeZjOwZk3z2WRe\nHn+z1qzhfcveFeQJ8aNXB8nExEQAQGxsLObNm4fdu3d7BMnFixc7/z116lRMnTq1i1tIAECj0DiD\nUU8QrgrHg2MfxDt73kGtsRZggESQ4LbhtyErOsvjXDGwFdY5UN34R4/uVU2UAVk3fYR9FftalR37\ny3LT0/nWVQCfMCMymfiPWGsV8J1so1C4zjGZXMfbM3vVZuMxQyr1vN69Ok9zuqXYQmEhn2mUns7f\nhF9+CZxNNjUB33/PF4+eOwds3Oi/Th7pczZv3ozNmze3+/peGySbmppgt9uh1WrR2NiIdevW4Zln\nnvE4xz1IEuJuWPwwvH7l6zhecxw2hw2DogYhXOXb1SoGtipZLSxGHULkrjUVusoI5H92I0rYYPzn\nwqWBqtY0Jzc38OQW7+zTYODjhaWl/Dmys4HffuO/ne1qQzEAcfar0ciXoVit/EcQeLer3c7v11Jh\ngC4fqxSzSI2GN1Ym42lwoGwyL89ViSchAfj5Z2D6dMom+wHvBOnZZ59t0/W9NkhWVVVh3rx5AACb\nzYbf//73mDVrVje3quey2C3YfHozfin+BSabCeOTx+PKQVciQtV/PyRUMhVGJoxs1bnxmniUN5R7\nZJKMMTTqtJicq0bshXkghYU86FRW+u6n2J4xPffsU6yIIx5v7d6SzTEY+D0lEt5lq1LxeGOz8YSs\nvt4107UzNphuN/csUpSQ4D+bFLNIsRKPXM6DLGWTpBV6bZDMyMjAAX9T+4gPB3PgX3v/hT3lexAf\nGg+VTIV1heuQX5GPv1/2925ZQN/bDNAOwKnzp3DedB6h8lAwxtBgaUC0OhoxIa4PZDF79Lf0obma\np4Fm5ebnB56I1BmkUh4gxS5cq9UVHL27Trt1uctvv/Hf3oUDBIGnxJde6jqWl+dKhxsb+TGtFli1\nirJJ0qJeGyRJ6xXVFSG/Ih+ZEa51gakRqSjWFWNb6TZcnXV1N7cweIKyH6Efcqkcl6ZeitPnT+NM\n/RlIJBJkRGQgRB6CmqYaRKojIZO0//9OgWblBto9Q6FwbaXFGJ/8IxKr2/h7vd7vjzhBR5woFBnJ\nf5tMvAvXff/KJ5/0LYiu0fgviN7prrsOuNCT5MN7FlRdHTBwoOcxpZJP562tpSBJmkVBsh84rTsN\nAYLPusAIVQQOVR3qU0GyMzMYhVSBITFDMCRmCMrqy7C1rBQO5kCZpBYyiQxjksYgXhMftOfbsIFX\n3nn3XZ7dNTXx0nUSCV/y4XAAo0bx3sXWvm7v88QiAB9+yLtWRVYrD5DuvZYtbZHVpQTBNxgGcsst\nndsW0qdRkOwHNHIN/CwLhMlmQqQ6susb1Iv4y0wbLY3YX1mMmFgrTPpIhKtssNgt2HV2F2ZmzoRa\n7n9n5OZmgPrrtjQY+PBZY6NrbgrAu0LFma3BqmZz1138tziRx2Bw9Vi6b5zclV2/hPQEFCT7gREJ\nI6CWq1FvrkeYMgwAn8hjtBoxJW1KN7euZ/OXoX1dsArhReuRHJaMFUv4rBaFVIEmaxPKG8oxMGqg\n70UB7iUKNF4pk/GApVB4Hm9o4Nme93VtHQ/0DtziriQJCb4BsTM3Tu5p5fwIEVGQ7Ac0Cg0WTViE\nt3a9hRJdCQRBgESQ4PaRt2NIzJDubl6vU9dU56w9q4kyQFfJx7QaLXKUGiWQ1gdvfWBSEu9qDQsD\nzp/nWSTg2jFEnLsmjgu2dTwwUPdrW5SXe5axMxj4fdoS4Jor50cBlHQnCpL9xODowXjtitdQWFcI\nq92KzMhMmtXaTjmxOdh5didiEYsZf+QbJjLGUKwvxiPjH8HIdgTIlnbWAHiA9C4UIM456Y5xQXGz\nZfciCIArCw3WBJ6uqodLiD8UJPsRhVSBnNhW7uhLAho7YCzWnVqHEl0J4jXxcDAHqgxVGBI9BEPj\nhrbrns3trHHkSIeaGzTee0IOGsR/2+2+u4YQ0ldQkCSkjdRyNZ6Y9ATWFq5FXmkepBIprrvoOswa\nOAsyiSxo3YNidulw8JmnFgsPSBKJa5ZrVwpUGai59Z+E9HYUJAlphzBlGG4ceiNuHHqjz2PB6h4U\nA6qYUa5YwZf8WSy8TrfDwdfNA/zYhg2u7K6rBNqyS6PxbEtLW5gR0lNRkCSkhxMzSnFphjjTVaHw\n3P1DLAwQjOcK9Jh3sBO37LJYPHcL8R4jbWkLs4QEXujde3xTfWE1DS09Id2FgiQhPUhzGZe4sF+j\n4VmkzeYqACAuFeloVtZSd7D37Fdxy66O1pFdsiRwIP3uu27YYYSQCyhIkj7DwRyw2q1QSBU+1YV6\ni+YyLpH34zaHDWX1ZSg40Yj0G7ahoHoycmJzuuw9cC+RJwpGwBY1t0tKhxw/DqSmutJVQvygIEl6\nPZvDhrWFa/Fz4c8wWAxICUvBjTk3YkTCiO5uWqez2q3YfmY7juxKglkXh9efGImXHXVIDS9FWkRa\nh9YSeme1+fk8o1Or+fpNwLVlV2qq5wzX4uIesIbRYgHOnPGt2wrwQd1XXgHmzAGuuabr20Z6DQqS\npNf7+vDXWFu0FknaJESro6E36/Hqzlfx+MTH270koyO6YgNisXxcg9mEOmMGTLVxAABj9QCkX1yI\n8+b9yE2KRmV5+ze79lerNfTClmDiOKTRyH/EfS5rani3sFhQQJSXx3e3au0em0GxYwfwxRfASy+5\nKreLNm7kDV+1Crj88pY3zCT9FgVJ0qvpTDpsPL0RaeFpkEqkYIwhQhUBB3Ng+dHlnRIkjVYjCusK\nwcAwKGqQxx6TQOdmUGIAFsvHNVobnbuPKNQWWIwKSAQJwIDaplrk52uwYAHPAt0nxajVvBtTvGdb\n22yx8ElD4mQhhYIXNigtdRU4cA+whYW+e2y6v6agM5v5YKbBAKxfD9x0k+sxvZ5vupyaClRUAJs2\nUTZJAqIgSXq1KkMVAKDSUIljNcfQYGmARqHB4KjBaDA3gDEW1LG5fRX78H7++zDbzIAAKCQKLBy9\nEOOSxwXtOUQffsh3/hBZra59g/V64LbbgO2lRag316Nk12ioNCaYDBemuwqAVCKF0ciD1YEDQHKy\n6146nSuItWVpijj+KGKMt8vh4Pe0Wl1bN7oTS+Z1ytiiP7/+ygvcZmYCa9cCM2e6ssmNG11V4hMS\nKJskzaIgSXq1CFUEKgwVOKs/i1BFKMKV4bDYLfi17FeMShgV1ABZ3ViNd3a/g+iQaIRoePZotBrx\nXv57SAlPQZI2qcPP4d5Vq9e7ujcB/hkuBroq/t0AaRFp2H12NxhzbfNitVshESSIDYntcHu8ZWa6\nJuhERACnTvGgmdTxl+567Yx5bIPV5kxTzCLj4vg2Koy5skkxixRvqlTytJiySRIABUnSq8WExKDR\n3AgmMOesVplEBokggdluhtVuhVwqb/YeFQ0VWFe0DkdrjiIuJA6zBs3C0NihPgF299ndYGAe3atq\nuRoCBOws24nrLrquw6/HvdszL88z+/MnSZuE9Ih0lDmsEGwmWOwSGG1G5CbmQilTdrg9LbFYXF2t\nAI9J7d1jcskS8H7Zb78F/vIXQCptX6PELDI6mv+dmOjKJjdt4lE9LIwHU4B/+1i5krJJ4hcFSdKr\n6c16pEWkQWPUoKKhAhAACSQYmTASKqkKerMeMSExAa8/oz+D/9v6f2i0NCJCFYEGcwNe2v4SFoxc\ngGmZ0zzO1Zl0kEt8A65CqsB50/k2tz0Y5et+2ShBQ8NoCA12GOoccNgkKPo5GSftEkilPCFbsYKP\nFVZW8oDmvui/ufbk5/NALY5f2u18I2a12jW+abG0La40W3knnmFJ5LfA7t3A/v3AmDGtv7HIbOZB\nVqv1HIQ1m3k2abEA2dmu41YrD5hyOd9mhYIk8UJBkvRqIfIQqOVqjA4fjWFxw2CxWxAqD4UgCKg0\nVCJUHtrs9R/t/wj7K/bD6rBCEASEykMxLHYYvir4ChNSJnhsoJwdnY0Npzb4jHM22ZowNKbtE4Q6\nUr5OKnWfwCMgJZn/X1mj4YmSmM2Vl/NzjEZX7VeLxbXVVnPtcR+z9B5LFIOdweDaDQQAQkJ4QXaj\nEfjPfzyvEYshBKy8c7AeCDsKpKXxQDd6dNuzybo6ICrKlSWKBgzgU2/vv991zGQC/v53YP58YGjX\nz4ImvQMFSdKrqWQqTEufhp8Kf0J6RDpC5CFwMAdKdCWYNXCWR5DzZjAb8E3BNwiRhSBcGQ5BEGC0\nGrGnfA+GxAxBWX0ZsqKznOePTBiJQZGDcLLuJOI1fAZNVWMVMiIyMDpxdKe+zlOnPKvaiPtKqtW+\nO3C47+0o7kVpNLquAfjfYjBuz+xS77qy/p7fu13NBn/GeLo7XgOEhwOnT7cvm0xMBJ57rnXniutS\nli0DcnI8xkEJEVGQJL3edTnXocnWhLzSPAgQ4GAOTE6bjBtybmj2un2V+8AYg0qucmaGarkaOpMO\nlYZKqGQqj/PlUjkemfgINpzagK0lW8HAMHfIXMwaOKtTxv9iYnj3JsB7AuVuPb3h4Tw45eU1fw+Z\njCdMYlEZnY4HW/cErbISzmUigbK8QN2kzV3TJnV1vHFiuhkV5ZtN2my+G2q2oa0e3dgmE/D990BW\nFg/IR47wbLKhAfjsM+DOOz0L45J+i4Ik6RRWuxUHKg/gcPVhaBVajEseh5TwlA7d0+awoVRfCgBI\nDU91rQ+U8mUY87LnodZYiyh1FKLUUS3er8pQhZTwFFQZqhChinAGSpvDBpVUheQw31kzIfIQzBky\nB3OGzOnQa2mNnTtd//aXsbVGUpJrUg0A/PYbMGKE5xIQUXMBN1DXsFiFx12bS9IxBhw9yr8FiNmc\nmE0eOMAHRHU6XhTgkUdcgbSNbS0+5QBMFxZ45uUBjY1AbCxPtb/9lmeTmzbxST4XXQRMm+Z7E9Lv\nUJAkQWeymfDar6/heM1xqOVq2Bw2rDq5CgtHL8RlaZe1656Hqw7jg30foMHSAAAIV4bj3jH3YkjM\nEOc5kepIRKojA93CR0pYChI0CZBJZChvKHceFyDg9yN+3yPrv4qVdkRVVbx7U6Pp4mo2F/irq9rm\ngF5fD5w7B9jjXKkzwDPHNWv4k6xfDxw6xP++7bb2NfbsWeDtr4AHHuBZpLjoNCqK92fv2QOsXs1n\nNi1fDkyc6JlN6nS8TS0EadK3UJAkQbe1eCuO1xxHekS6M9CYbWZ8dvAzjEoYhTBlGPQmPUr1pVDL\n1ciIyIBUEniCRnVjNd7c9SbClGFIDU8FANSb6/Har6/hxRkvtipr9GdU4igkaBKgkCqQFZUFg8UA\ng8WAmNAYzB48u133DMRfF2B7SrWJk3JEajWfnGM0uu5fVcWTspAQ/nnOGMPJIjuaTDYYGuQ4fITB\nbpVixQqhU4Jrfr7v/pIAHxOdPdvP2KRDCwyagYRYO/DE056PhYTw4LR2Lc/0Nm4ErrwycKBiDGAA\n4PUFR6zj+ttvwNdfu7JIgGevYWHA66/zoJiYyBu5Y4dnNvnZZ7w79qmngjN+WVQEZGR0/e7ZpE0o\nSJKg21a6DTEhMR6ZmFKmhN1hx7Fzx1DZWImVx1aCgYExhtjQWDw07iEMCBsAs82M6sZqhCpCncFv\nZ9lOOJgDWqXWeb8wZRjOG89jz9k9uGLQFe1qp0qmwhOTnsCXh7/Evgo+PjkmaQxuHX4rIlQRLd+g\nDfx1AQYq1daWrkr3RfziRBkx2zQYgIYGBr2pHlVVakCQwGEHdPU2CAyoqJCCMcEZJNXqwGXjAi3b\naCv/S1skAMT/bf2878uW8eCnVvPxyeayyZUrgbJcIMOra//0aT6lV6vl026TknjQFFksfKKQ+GbE\nxXlmkyUlPPoDfPcQ92Uk7VFWBrz4IvDww8CwYR27F+lUFCRJ0AmCAAbm97HjtcexrmgdUsNTnYv8\na5pq8Nqvr+GKgVdg+bHlsNqtYGAYlTAKd4y6A9WGar8TYxRSBWqaajrU1uiQaDww9gGYbCY4mMOn\nDmtn6qxSbeLnfHExoI6ox/rfDkFaMgYKtQ0mgxICBEBqhlQhh6lR4bxO7Dr1znorK/1nvRs2uCb9\nuDMaeWD1zlDbUv7OScwixW8OCQnAL7/4zyZ1Ol5i7kwcYI7j1XQAHgBPnADUSTx7rK8HFi3y3B3k\np594IBYLEISEANXVrmxy5UoepGUyPn759NMdyyZ//JF3MX/+OQ+WlE32WO0OkuXl5dixYweysrIw\ncuRIAEBJSQkqKiowbNgwaGhRbp9Tb67H9tLtOFF7AgnaBExOney3FNvk1Mn4/ODn0Cq0zmzSZDNB\nJpGh6HwRItWRHlVwYkJikF+RjxO1JzA0bihUMhUczIEDlQfwz73/xNikscg74zurxGQ3YWCkn22Q\n2sF7JmtbBaMwQHPEkm3u45GAa11kILPv3wbz0eVYcTwHYbH1qCmNgUxhg91hh9nmAKDwuaa1WW9l\nJW+X97niRszNKizkmdzw4Xys8fLL/Z+3fj0PXuLUXpmMBxR/2eTGjYDDgQTleRTvquIFzAHgTBWg\nj0RCgtHVtbpuHfD44/xvoxHYvPnCuV7Z5cqVfN1mfj7/LQjAyZMdyybLyvisrMZGHvALCvj7QHqk\ndgXJrVu34qqrroLxQkWLRx99FC+//DISEhKwb98+TJo0CXb3RVmk16turMYL216A3qSHRqHBoepD\nWFe4Dg+OexAjE0Z6nHtZ2mXYV7EPR84dgUqmgtVhBQDcefGdWHlspd+AdEZ/Btkx2c7HJIIEKWEp\nOHruKOZmz0VcaBzO6M8gUZsIxhgqDBVIDkv2WJ9otpmhM+kQrgrvcNBrq44UBmiN1qxLdCdmeWee\nGIkSfQQM50NhMSpgNfH/y9sdAgSpFMzauvWS7lmv+xcCcYssoA2ThxwOPr539ixw8cXA9u18Nql3\nA8xmYMsWPlnGPXjZ7TzDmzfPVdxWp+M1WRMTseSa7UDNSuDVV3lQe/QfwNgoV2YZG8uXfBQW8iUg\ncjlw772eC0lFcjnP+tRqV7an1XYsm/zxR/7azp3jvz/8kI+HSiR8zFOl8lzvQ7pVu4LkP/7xD3z6\n6aeYNWsWysrK8OKLL+LJJ5/EkiVLMGHCBI9iy6Rv+O7Id2i0NCItIs15zGAx4KP9H+HVWa96ZIZK\nmRKPTnwUh6sPO5eAXDLgEiRpk1BUV4StJVs9ujUdzAGjzehcoC8SBIHXYLWZ8b+X/i9WHFuBHWd2\nQBAETE2fimuHXAulTAkHc2DViVVYfWI1bA4bpBIprhh4Ba7Nvta5TMTbeeN5HK4+DKvdiqzoLCSH\nJXfbbNbOyELFSjjDh2hRW1wDidQOmcIGAIhOOQeTzYSU8BToqtve3St+IThwwHMSUavrtRYU8DE+\ni4UXIk9P57NK77zT8zyFglfEKS3l44VXX+16TCbjXaIicWcPi4UHTpuNH0tI4GsixYrwIoeDZ3NZ\nWfxeo0b5b2tJCbB3L6/Y417r9dix9mWTYhZZU8MDoUzGA35BAV+n+cYbPKv0rsRAuk27guTEiRNx\nww18oXZOTg4+//xzfPTRR/j4449xtft/yKRPcDAH9pTvwQDtAI/jGoUGpfpSlNWXISMyw+MxmUSG\nUQmjMCrB88PnykFXYtfZXThbfxaxobGw2C2oMlRheNxw2B2e3+QdzAE7syNeE49IdSTuGH0HFoxa\nwCcA1R7D7rO7EaWOwhn9GXx39DukhKdAIVXAardi5fGVAIDrc673eT27ynbhg/wPYHPYAIHP/rxi\n4BWYP3x+pwXK5jZibksW6u8+YgLkflxcqxiuDEdWVBaOSawwmwQ4bALq9RKEKmJhbQx1FhkIJo3G\ns2tW3MtSrQYW/A8DDtgAy/1AQwMSmk5hyZhCPug5e7ZnNikIfALNV1/xbPOKK1xdqACvuyqXu7JI\nlYpnnlOn8vv89BPw8svA22/7b2hrigWUlfGlIlar5/G4OB68mwuSx48Du3YBf/iD69iPP/L/cSor\n+VpQgGeUH37IvyQcP86z5unTecZKul27gmRYWBgA4NSpU8i8UC35zjvvxOrVq7F69ergtY70GFJB\nCgdzQArfpRrNLd/wFhcah79O/itWnViFA5UHoFVqccfoO5CgScBL21+CTCJDuDIcVocVZfVlmJw6\nGXGhcc7rDRYDXt/5Ok6fPw0Hc6DeUo995fswOHowtEotYkNiIZfKkRKWgrVFazF78GyPrtc6Yx0+\nyP8A0SHRzpJ1docdPxf+jKFxQzE0bijyy/Ox48wOMDBMTJ6IMQPGBMxIA3GfYeo9scU7Q/R+vDmt\nzSxd3bICcmJzcDjFAqh0aGyQ43dz1IgJiYJEEILSHSyWzLNYPLt+xdfp0UVcVQ2gGIgIAc6fRjGS\ngJKNfJzQXzYpzioND+fjg3/+Mz9+4AD/+69/5bt+1NfzGazV1bxA+qBBvOty926++0d7TZrEf9rK\n4QC+/JIHvSlT+Him3c4rC507x7tWxQK6KhXv/v3vf/maTYOBZ8GUTfYI7QqSkyZNwv/+7/9i6dKl\n2LFjB8aPHw8AmD17NrZs2UKTdvoYiSDB5LTJ2HR6k0d3a52xDrGhsX4r0zQnUZuIu3Pv9jn+2ITH\n8FXBVyjVl0IpU2Ju9lz8bvDvPM757uh3KD5fjLSINByvOY7C2kLoTXocPncY1Y3VSA5PRm5iLuRS\nOewOO/QmPVQaV5A8XHUYNmbzqOkqlUgRpgzDluIt2Fa6DbvKdjmXgOyv3I+x5WNx/yX3O78MMMZw\npv4MzDYzksOS/daHdV/P6J0lBmucsrUEQUB0hBIGQzysdqDpHFB64bH21G0ViYXNDQbeM+rO77IR\nxngwUKl4sBAE3t148iQfzLyQTT75RoLr2iONgP5efs1GAxKO6LHkHS3wzTf8uv37gQkTeEb5zjvA\nJZfwrtU//pEHnNjg76nZKkeO8KAdFgb88AMP7lIpcMstvKt20iT++s+d42+iycRfz7Bh/I396SfK\nJnuIdgXJcePGYfjw4Zg/fz5GjBjh8diUKVNwwN9KYtKrzcueh6LzRSg+XwyZVAabwwaNQoP7xtwH\niRCc6evD4ofh/+L+DyabCXKp3Cd7s9qtyCvNQ1JYEurN9ThacxQRqgjUNtXC5rAhRB6CM/ozSNYm\nIzokGjIJb2edsQ6RqkgIggCLw+L3uWUSGUr0JahpqkFmZKaz2zVKHYU95Xtw5NwRDI8fjoqGCryz\n+x0cqz0Go80ItVSN+y65D8B0v/ctL/edWGMw8HHIYMx6bS33ZSEtjUF6d+naHXZYHVYkJ8ng/pEh\n3nPFCteuI+7Jj8+XgXPneKYnkfDfggDYTEBtLc8MNRpg9WpUVt7Jv1jodID5OJAQAQhmQNaA4n3l\nwEETn/STnMwn0PzjHzzbTLqwxENc8tHeyjwd5XDwdoWH8zdm716eEael8d+RkXxmq8PBg7zBwMdX\nBwzg/dIhIa4xVcomu12LQfLUqVNYuXIlFixYgMhIV8mvkJAQnwApygy0YR3ptbRKLf46+a84XH0Y\nJfoSRKujMTpxNDSK4PYaCIIQcOcOB3PwiTmCFOcazwHgWWBMaAzO6M/A5rBBKVXitO40qhqroJAo\n8LdNfwNjDFnRWVgwagEGRw923ss9uOtMOqSEpUApU3qMSwqCALVMjf2V+5Edk42Xtr+EveV7neXx\nHMyBB39+ECNVP6O42DVe5r4Ewn1yiyhYi/MDaW4MtCVi8LY77Fh1YhV+OvkTbA4bDFI5fjw+G/Hx\ns1Fc7HrvxNfaYgeSWs0zPZPJtcZRFwFc+z/8TUpJ4WN9Hx4HIuJ5V6V7PVeNBiirAT76mgcasb7r\nDz/wzE1M2RMSfCvz1NXxfmGdrvPr94lZZHo6b7tK5comp01zVfHZt493CTc08C8KAC+Nd9llrjFV\nyia7XYtB8plnnsF///tfVFRU4KWXXgLAA+fLL7+MBQsWYNy4cZ3eSNIzyKVyjE4c3enbQgWilCkx\nNHYoTutOexQrCJWHIkHDP/0NFgOkEimkghTJkTyjBPgSk5e2v4R/XP4PTM+YjvVF66FVaiGTyKAz\n6ZAVlYWBUQNRcarC53ntDjuUMiWO1hzFb1W/QW/WOzNTAKhprEHNxLuw5vY1zsArjsP5W57hrSMB\nLZBgZKk/nviRT4gK4xOizDYzvjnyDW65U+JRtq/VtVq1WtcHfk4O/10M4Dm3/56OHuXp976zPHDI\nZKF94uYAACAASURBVJ7TZhtVPDO78kr+d2Qk8NZbfAmJGExlMs/KPPX1wN/+xn+rVMC4cZ0XeNyz\nSLE98fGe2STAxye//Za3//x5PglIEPjPwYP8uCDwLwrt2XyaBE2LQXLAgAHYtm0bUt1mlWVmZuKd\nd97B888/D4PBgOnT/Xc1ERJstwy7BS9sewE2uw0WuwV6kx52Zkd6RDrqzfWQSqQYFT8KJrsJMaGu\niizxmngU64qxv3I/fj/i9xgePxxbS7bCaDVi3kXzMD55PKoMVVhbtBZWu9W5pMVqt8LGbBibNBZn\nG86iwlDhESABIEwVhsrGSpToSnxm+bZGV3a7tpbZZsbPJ392BkiAf0lJ1iZj9cnVmDVwlseyn6Bg\njAcO9UygrowHPvdgxhiwtdSzUo5KxccgNRreVenu0CEetDZu5Esszp/n6zI3bQLmBNjFhTEeTMWZ\np2118iQfcwwJ8exOaGzkBQzuvjAWf/Ag7zLOyODbgYlLQoYO5dnvX//qGrMl3arF/wUiIiIgkUiQ\nnOw5OUMikeBvf/sbHnzwQQqSpNMwxnCw6iDWF61HrbEWw+KG4c/j/oyC6gLIpDIU1RWh3lKPoroi\nyKVyxITEYEvxFihkCkQoIxCuCncGNIVUgQpDBSSCxO/ylLSINNw89GZ8U/CNR6Z6Y86NSI9IBwOD\n1W71GYM12UyIUkXBbDc7jwWqkAO0oluyB6g318PGbM4AKVLKlDA3mtFgaWh1YflAmbL4mNOxY3yB\nv/J3gFzFg9XQoa6MrLaWj2eqVJ7FBXJz+drCv/zF8+aCwLsyV63iQcpq5UFn1Spe4cdfNrl/P/DF\nF3ycM9D6GLsdqKjgY6LekpL4gLM/4nCVexYJ8LYZDPy1aTQ84zx5kr920u1aDJL33HMPxo8fj6io\nKMyYMQOXX345Jk6cCNWFNUYWi/+JEISIjp47ipXHV6JEX4IB2gGYM3gORiT4H8/29tPJn/DV4a8Q\noYqAWq7G5uLN+LXsV/ztsr/hhpwb8MWhL/DB3g8QHRoNhVSBk7UnYbKbcLbhLCx2CwbHDMbI+JGQ\nCBJY7JYWZ+JelXUVLk68GAXnCgAAObE5zq7cjIgMjEwYiYOVBxGviYdUkMJgMYAxhuTwZKSEuYpq\nN1chB+j6Ga5tFaYMg0yQwWK3eARKs80MpUwJrcIVYFrqLm5VpixmkWFhPLiFhvIM8fx5PksV4L9z\nc4EXB/te714Rx93GjXwA2GLhQfHkSZ69bdrEx/uKivgGm4AreJWUANu2AbNm+W/r7t2umqveGadW\nG7gwgaiggHejhoUBej1vk8nE219czLtnxf0txS8IDgfVd+0mLQbJu+66CxMmTEBjYyM+/vhjPP/8\n81AoFBg5ciSUSiVN0iHN2lexD2/u5NtcRamiUN1YjVd+fQX3jLkHk1KaX39Wb67H8mPLPYqhh8hD\ncLb+LH48/iPuzr0b1Y3VGJk4ElqFFuuK1kEhVSBJm4QGSwOsditO151GlCrKmWWOTmh5PDVeE+9T\n/Qfgk3henvky7l99P0p0JZBIJIhURyI+JB4LRi1AqCK0fW9SD6SUKTF78GwsK1iG5LBknkHazCir\nL8Otw2/16GptV3cxY64AwJgri0xPR4LGgGJ9JGBSATvKgaEXxucgICFDDcS1sgJCfT3PGquredCV\ny3nQzcpyZZdr1/LyddHRri7QgQP5YPLkyb7ZpM3GA1htLQ/A113X9teemAg89hj/d20t8O67fA9L\n8ctBWBgPnEeO8GySMeC11/iEo5YCMAm6FoNkeno6Xn31Veffx48fxy+//IL169ejsLAQ7777bqc2\nkPReDubAl4e+RExIjHObqyh1FFQyFb45/A3GDRjX7CL9Un0pGGM+Y19xoXHYV7kPAJ91a7FbUNNU\nA5vD5gxU8aHxUMqUMNqMOFh1ELePvB23Db8t4MzZ1sqIzMCn8z7FxlMbcaj6EOJC4jBz4EzkxOb4\nPb8zJuV0ldlZsyEVpFh1YhXMdjNUMhXmD5/f7q3JnGpqgA8+4DtxmEzAe+/xLM5kAsrKsGTIx/w8\nxngpuP970bPSTmtt3MgDpMHguSPInj28q/STT/hs2rVrgZtvdnWBqtU8i/WXTe7ZwwPbwIG8ys/0\n6W0fv4yNda3f3LmTB0j3Up46Hb9nUREPkkeP8uetq+PdytLWF+8gHddikPQuVD5kyBAMGTIE9913\nH44dO4bnnnsOS3rizAPS7RrMDahpqvEoQADwbLC2qRZ1xjqPajreVDKV3zrAFrsFWjkPupNTJ2Nb\nyTZIIPF4XCVTYebAmWiyNEEpU2LR+EV+n8Nit+BE7QlY7BZkRma2ah/JuNA4zB8+H/Mxv8Vze/P/\nNaQSKWYPno2ZA2fCYDFAq9AGZ7LOzz/zeqWXXMIzu7w8npFdc43/8+Pi+KScEyeAkSP9n+PPvn08\n4Hn3dimVvCvzxAk+23TDBv6tRZxIA/AuT+9sUswio6N59QS7vf3ZpGj8eP4TiNgNHRfH23fwIJ98\nRLpMi0Hy9ttvxwMPPIClS5ciNNTVnXT48GEUFBTAIZZWIsSLSqZyLuh3zxjtDjsYGNQyNSoaKqAz\n6RAXGudcriHKiMhAbGgsappqEBPCZ6o6mAOVhkr8YSSvhzkkeghuHnoz/vPbf2CwGGBndsglclwy\n4BKoZCpUGaowPdP/xLKTtSfx1q63YLAYnJN7rr/oelyddXW3FTvvToELrSuwZEnrJum0qKaGjwcO\nGcJrstpswODBfJzv5ps9i5a7+/lnPg74wgt8kNdq5dtbTZ8eeKzu2Wddpd/cNTTwbbIGDeITeRgD\n3nzTFSAB/9mkmEW6r8dsbzbZWkeP8owyPZ1nkN9+y78o9KRs8ocfeIab0faZ3b1BiyPBubm5eOSR\nR/D444+j2K3f6LPPPsP8+fNRU9OxTW9J36WUKTElfQrO1J9xZoSMMZTVl2F0wmh8sO8DPLXxKbyy\n4xU8tu4xfHLgE1jtrkLSUokUD417CEqpEsW6YpToSlCqL8XktMm4PIPvPygIAmYPno3/d/X/w8LR\nC5EclowxSWMQIg9Bia4EcZo457nuGi2NeH3n65BJZEiLSENqeCoSNYn4uuBrHDl3pGveoB5GLLTu\n/RPUwgc//8zH3jQa1yaVWi3vat2yxf81jY28TuuJE3y9Y3U1D1jvv8+XeQQikfAg6P2zZQvPAsVa\nelotHxOtquKTdkpK+N9GIy9QDriyyPBwHqCtVv46LBaeTXYG78lMERGubLKnqKgAvv6a//TR3Z9a\ntQhHXBfp7tlnn8W4ceMwderUzmgX6UEMFgN2lO7AgaoDCFeGY0r6FAyJHtKqbOuGnBugM+mQX54P\nQRDgYA6MiB8Bi92CguoCpIanOo9vPLURkapIXJt9rfP6AWEDsGTGEhyrOYZGayOSw5IxQDsAgiDA\n5rBh0+lNWPP/2fvu8Djqc+szO9urVlr1bsm2ZFvuBTfsYMDY2HQwCRAuONyEhFBC+MhNSOEGQktu\nCJfkphBIQgIBY4htjDGuuHdJtopl9bqqq+11yvfHy+xqpZUsd5vseZ59LO/O7PxmZM+Z85bz1n0K\nZ8CJktQSPDrnUVT3VMMVdOGa/GuwKHdROB86EJU9lfCGvFHhXgWrgF6px47GHZiYcv7L7y/0YObL\nHpKKzMggUrTZqJiG4yi8uX49mYFrtUSEwSDlDnfton0lQnr8ceolNBqBNWtIxYy28tPppOOo1RTq\nBYiASkrIoODuu+lm/8ILFJaV2kp6yOEJoVBkP4AKberrz981Aqj6VRBILUoqUoLZHFGTHEe53a9/\nna7FpcDGjfT7qq6mYqNxMSqPr3CcdaeqRqPB7bcPHUMUx5cLzoATv9j9C3S6O2FSmdDAN2Bf6z7c\nPeluLBu77LT7q+VqPDL7EVhdVvR4e5CkSYJarsb3t3wf2absMNHKGBmyjFnYXL8ZK8atiJosomAV\nKEkdOrn97fK3sb1xO9L0aUjTp6GqpwoV3RX46aKfItOYOWT7gfCGvDHfV7Eq9Pv7Y34GUA7zUPsh\n7GvdBxkjw4LsBaOeEtJhFaBP6YUv5INWoUWSNgkyRnbadpAvDblKKlIupxYIliVF19xMhTBdXaTy\nbrgB+OtfqYDlBz8gFdnfT/v5fES0kydTLq+pidTkaHOVHg8R4uABy1otqdP776cbvvRLaW6msGx6\nOlXBDoYoEqGfL3Ac8NZbtL6cHCLltrbobWw2UtWdnVR0lJlJA6gvNqxWGmGWlUVr+vBD4Omnz24Q\n9WWMuJ1DHCNia8NWdLm7kJeQF34vxIewpmoN5mbPHbHQxRP0gJWxUMvVSDekI92QDoCqVmWQDWnK\nV7JK+EI+hITQacdvdbm78Hnz58g354e/J02fhg5XBz6p/STmlJGByDVRMZEoilGK2O63Y0l+7Bwm\nJ3B4/dDrKLOWIUFD5/3brt/iKutV+NbMb4245n5fP8o6GyELtAAiAAZIUCdgbtZcAKoR1zp43uTA\nMVwDyTNMmoJADfE33HDppmAMhtNJitDno/YLl4uIQBSpgV+hIEL49FM62YoK+uwvfyEV2ddHf1co\n6Of6eir8SUiIqMmWFlKYI7k1pKdTVe1AiCLw0kvkt9rYGAlx8jzd+J96avgbf20t5TN/+lMqrjlX\nHDlC5yuKNOJruKKgxESaelJQEPF4vdhqcuPGiAWgxfKlVZNxkoxjRBxsO4hkXfSNVsEqIIoi6m31\nmJExY8g+LY4WvHPiHdT01oBhGMzJnINVk1aFCTVFlwK5TB5uTJfgCDiQacyEih1KGu6gG8c7j8Pu\ntyPPnAdP0AOGYYYQbZImKWwEMBLyEvIwJ3MO9rXuQ7IuGQqZAj2eHiRqE7Ewd2HMfY53HUdZZxny\nzflhYjWrzTjUfgiL8xaPGKL9W/nf4AvNROaAhwqH34ET3SdgwZl5cw43hiusSKuqgI8+IrK8//4z\n+u4LBp2OVMamTaRAbr01UqUpl5MaklTmRx/R9gDw5ptURBMKETnyPL3a24kU8/PpxI8cocKe+fMp\nZHomqK2lG3xCAuU5OzoiF7aykgi5sHDofqJIJGq1ElGdyWDQWBhYPcswwJYtRJSKGBXFO3bQP4S8\nPHoA2bbt4qrJgSoSiOSZv4RqMm7hEMeIUMqV4AQu5mexQoy93l68sPsFtDhaYFab0eXuwqsHXsWN\n/7gRW+u3ghd4qOVq3Fp8K1qdrXAGnBBEAX3ePvT7+nFH8R3gRR4nuk5gZ9NOnOg6gZreGjy95Wn8\n8egf8UH1B3hpz0t4r/I98AI/5PjekDdcCTsSGIbBQzMewoPTHoRWoQUncFg6dimeWfgMTOrYlYql\nnaXQKrRDpoQoWSUquiuGPZYz4ERZZxm0iujKTYPKgHZn+7DX96wgGWynp1P15xmEAqWezsGv89LT\nybKkao8fJ3Jsa6P847JlRAQTJkRMyisraVudjs6nv59yiFKhDMMQae7aRYTW309hWZuNZHb/8OHy\nIZCITq8nJbhpE70vmY3rdPS5VJQSCESKeSRynTCB1iJd68ZGGqB8ppBUpMFA67HZqOp3MPx+WpOk\nXKWJIU7nmR/zbPHpp3SdW1sj/1DcbhpZdr5ztJcYcSUZx4i4Ju8avFn6JgxKQ5gc3EE3NAoNxlvG\nD9l+V/MuBPkgEtQJ+Lz5c4iiCIvWApvXhl8f+DU6PZ24d/K9WFqwFAnqBGyo2YAOVwc0rAY6pQ4v\n7X0JTfYmmDVmJGuTIULEqb5TmJY2DXnmPAAUIm3ob4Av5EOXuwspuhQwDIMQH4LNZ8O9k0c3R1Au\nk+Mr+V+JWf06EEE+iKqeKjT1N6HP24dUXWoUUQqiALVcPez+AS4AhmGGFDoxYCBChCCOro1KCrO2\ntESc1qQpI3r9F2Jn4Jim9na66Y9STV7w/Oa2baQCDQYigF27ItM8ACIiSUVKBJWXRzddj4eUXjBI\n3yGTAV4vVZt2dlI16oQJFM7dvHn0alIiurw8Iii3m278EgGp1URUkprcv5+KZZ57LkKucjmt55NP\n6Fq//z6FkOfNG+V4FESrSAnJyfTe7NnRanL/fgpXS9sO7Nm8WGryqqtiq2sgYiP4JUGcJOMYEQty\nFqCypxKH2w+Hb/IqVoVH5zwakxjqbfXQK/WotdVCEAUYVZQnUcqVMKqM2NawDUsLliJZl4yrsq7C\nVVlX4WjHUfzm4G+QqElEv68fnqAHnpAHZrUZSdok2Hw2VPdWo9nRDLvfDpPKFJ79mKxLRouzJWwm\nsGrSKszMiB2+5AQO1T3VaLI3weqywsf5kKpPxYKcBcN6una6O/HLfb9Er7cX7oAbZZ1l6PX2Yl72\nPChYBYJ8ELzIxww7S0jSJsGisUBh7IO9M3ITDHABKFgTsqeOrkFfCrN2dtK9G4iEXe12hFsGflBx\nLzrLk0mF7fQCn/gAjebSFvo4HETYkixNTaWCnKuvjvRG1teTAUB6OpEAQDdinqdtlEoiLK2WSNTt\npu8NBIhQrVagqIjClEuXRgzEh8NAFckwRMTp6VTJKhFwYyOpVauV5l1++CGp4j//mchUIsH0dCL9\noiJ6UElIoCraRx8d3fU5epTmXSYlRSvC3l465/lfWDjyPH1vMEhPSxKCQVJ3S5cO32t6PlFcfOGP\ncZkgTpJxjAgFq8B3Zn0H9YX1YQIsSS0Jk99gZBmzUNNXg25Pd1R4UYQIvVIPTuDQ6mwN5zlFUcT7\nle/DorVAxarQ5emCWWMGL/I42XsSMzNmIsgFcbjjMCwaC5K0SQhyQbS72jEuaRz+tPJPaHG0wBvy\nIsuYFbPdA6BCnyc+fQKHOg7B6rKCAYMETQJmZ87GZ/Wf4Zszvok5WdGzUUVRxO+P/B6eoAe5plz0\n+/ph99txynYKIT6EwqRCyBgZ7pt834jG6TJGhq9P+Tp67/kfKGQKGFQGOPwOiBDx1LynMN4ycv5m\n8EQRaaaAUjloQ7sdaGxEJ3cz8sxfzGCUO4FADVA89dKaqksqUqkk8pZGXA1Uk3Z7ZM7kQMyZQ843\nHR3UlpH9hZF8by9VttpsVDjS0BBRN6NRk42NQFkZkUpLC6nBsWOJeCdOBO67D/je9+iYajUpOKeT\niPHjjyNTOkSR9mUYqoCVbOeOHaNf3GjUpNkM3HNP7M8GKjOZDHjwQQo3DwbLxvhHEce5Ik6ScZwW\nDMOgMLEQhYnDhFcGYFHeImxrpOZqTuDAMiw8IQ80Cg1S9alod7ZDp4g4N3lDXnR7u5Fryo1qy5DL\n5GGitLqtYBgGfs6Pdmc7tU5ABlfABUEUwMpYlHeWY2vDVhQnF+OqrKugV0YqHDmBw8MbH8aR9iPo\n9/eDF3mwDAub14b9rfuxcvxKvFX2FqakTYlSx1a3Fc32ZmQYMnCg7QC6PF0AaMiz1WPFk/OexMLc\nhaPKgU5KnYSfLvoptjZsRYuzBROTJ+K6gutOO5UEGDpRRAq7ApF5xG43kGarApReUkTMFx+IIpHH\nuHEALrDC4HkKNa5YET2GyuejWYocR6RRVkaOOwpFpDJToaDhwsMNGO7rA/72N1JsUn5QEChcqtXS\n8TiO8pljx0ZU1UhqMjk50gfJcdGzG00mInaOo9Dru+/S00lKCv0ZClEbxsB9nE5qbSkqIsJUq0ev\nJseNG11VqNTTGcdFQ5wk4zivyDBk4HtXfQ/P734eB9oOQKfUwaK1YHr6dNh8NqTqU6PIViVXQc2q\nEeAC0MgpLxngA1CxKvhCPgQ4MtbmRA4MGLAyFp3uTuQl5CFJm4Ttjdvxzol3IJfJoZarccx6DJvr\nNuO/Fv5XeN5heWc5jncdBydwECFCxarCOUxPyIOq7iqMTRqLhv6GKKPyIB8EwzCo7atFp7sTCeoE\nMAwDURTR5e5CaWcpbim6ZdTXJjchF6unrz7na3zttUPfa2oCXnxCD3i/B/y8AEgf4JfLMLErJM83\nysuJJHW66KHGKhUZAPA8qbGWFmL7r3894oJzOtTW0nl0dETeKyuj91iWXkYjhUDHjSO12dMzMkka\nDDR6y+8Hfv5zUmjSQGeXi9pC0tNJne3fT+ucNYs+v+026qH86U/pXEQRePllCiNL/Z+pqSOrSZ4H\n/v534OabI3HzgaiooO86l9Cm9EDxJao2vdiIk2Qc5x0TUibgb7f+DX8p+wu2NW6DSq5Cn68P6fp0\nPDrn0ah+QrlMjhsKb8DaqrXITcjF1LSp2Nu6F32+PrBgIYoiWccZcuEOueEJeiCXyWHRWiBn5Hiv\n8j0k65LDod0kbRJaHa3YULMB90+lgpWa3hrwAg9BFKKKZ2SMDKIoRqnLgcgwZEAj1+CY9RiMKmN4\nX0/Ig5yEHLQ6WtHh6jitccHFwg/enYLOTmDPKaCsI/qzcGHPhYI0izE9fehQY5mM1JXfT2OhZs6k\nxKpUmDMaDDYCr64GfvQjMhUYSAA2G4VnV60a/dr37CEF+uGHNMKKYUi1BgJEkBxHoWFBoJYTyd0n\nGIwoxcZGKtbRaKiIqLKSDA58PsrFPvzw0OOWllKhkl4PDDZmCYWo/UUuJ7/a0TxIxMK//kWKdtnp\njT/iiI04ScZxQcDKWKyevhq3Fd+GVmcrtAotxpjHDOlrBIAbx90IV9CF7Y3bIWNkGGseC5VcBZvP\nBh/nQ5YpC3W2OvhCvrACPNF1AtpMLcyseUhrRZo+Dfta94VJMlmXDIPKAFfQBTWrhpfzQg45BFGA\nSq4CAwZ6pR5jzNHTIpSsEveW3IvN9ZvBMiyUrBJ+3g+WYTExeSIcAQcCfODCXcRBGG7slvSZZDpQ\nVjZUmEhh2QsGaRZjfj4pxR07otUkQGTk8VCYU6OhG/jjj5/d8ZKSgMcei/3ZmTT1+/20jnHjSLnV\n1xMxvvYakZwgEBmmp1MOVKmMjO0aMyZibJ6cDDz5JP380Ud0LaZMARYvjq0SpYeKrKyISfrA7aTR\nWKJIanT27NGfkwS7nR5Y5HLK6Y5kshDHsIiTZBynxWBXmjOBWWOGWTNylaFcJse9k+/FinEr0OPp\ngVljhkVrQXlnOX6171fQKrWo7K4MrwUgM4CQEILdZw+750gQRAFyNvJPe0bGDExInoBudze5+TAs\nAlwAIkQYWSMsOgsemfVIzDFQc3Pm4q6Jd2FPyx7IGBkyjZnIT8gHK2Oh4lTINFw8FXm6ytRz7WU/\na0g3fCm0mZY2VE36/UQeqV8Ms05NJSU12sKWwUhJOT8ON3v2UELXYiFl+9FHREyCQEVBGg2FqjMz\n6VVSAjzwwNDvMRgoFGu1Ukh4/nzKWX7zm7GdcEpLadv8fAoRb9sWUZOhUKQdRDI5nz79zNXkli20\nvzQxZcWKM748ccRJMo5hIIoidrXswsaajej2diPfnI/bi27HpNRJF+yYCeqEKJu7ktQSLMpbhL8f\n/zsMKgMUMgWCQhDjk8ZjRvoMdLg60OxohsPviDIAsLqtuHHsjeG/J2oS8aOFPwIDBntb98IT9ECh\nUiBNm4Y5WXPw7FeeRbYpe8h6QnwIn9V/hi53F7o93TCrzUjUJMIddMMT8uChGQ9FOQZdLtDrhypH\nt/sCDnoeqCKBSIhyoJocqCIBCmmeq5o8V0gqUiJuqSKV44C77iKyW7UqupfzdNiwgc5fraaHh+3b\ngVsG5a2lhwqpanXgyK2EhIiKlB4eGhvPXE3a7VS8lJ5OhL9hA6nauJo8Y8RJMo6Y+PjUx3i/8n2k\n6lORa8qFzWvDy/texvfnfh+T0yZflDXIGBkemPYAvCEvPqz+ECm6FKQb0mFSmcAwDIJ8EGaVGZ83\nfw45I0eWKQt6pR6FiYVYPnZ51HeVpJbgrVvewsnek6i31cOoMiI3IReFiYUxQ8CiKOKtsrewu3k3\nMgwZWFa4DOWd5TjccRi3F92OOyfeGdNM4XLAsIU9F6JHUlI6Hk90LPgLp4Mf7LwBnTYlcNQMeFcD\ne7/w2WW68GLePiKMrq4IUV1MDFSRABF3Xx85yUyYELuXMxaOHaOK2pMnSRFKVappaeRves010Wpy\noIoESKmKIu17001DTQWSks5cTUoqUirYiqvJs0acJOMYAm/Ii/U165FjygmHIM0aMxiGwftV76Mk\nteSMwq+8wKO+vx6eoAfZpuwRWyZsPht2Nu1EZXclUnQpuCb/GiwfuxxHrEeQY8wJF/04/U7saNoB\ntVwNGSODIArg7Ty+Mf0beGjGQzEt89RyNaamTcXUtKnh91odrSjvLIcIEZNSJiEvIQ8Mw6DD1YG9\nLXthUplwynYKHM9hbNJYcAKHDGNGFEGKoohaWy2OdRwDwzCYnj4dhYmF/z6Dm1esiDRvDoRMhs4/\nypAXqga+kh+5YYsimjbJKTz7/e+ffdhUmiAyZszpt42F7dtJZbW20t8DAVJtOh2Rp8EwtJcToHM9\neBBYsIAI9bXXqDBGMmMvKqLtJCecgWpSMjDw+WjtEkIhIlSjkR42LJaIoQJA3ztaNTlQRUpITY2r\nybNEnCQvc5xLPvBs0e3phiAKQ3J0JpUJzY5mhIQQlKwSHa4OVHZXQsbIMDFlItL0Q+N5VpcVrx54\nFd2e7vDcyBsKb8BdE+8aouC63F14fvfzcAfdSFAnoN3Vjn2t+7B62mosHbMUm+s3hwttdrfshp/z\nI8OQARWrQoAPwB10Y1PdJtw35b6oPslYEEURG2s34oOqD8LrWFu9FtcVXIflhcvR1N+EFkcLbH4b\n5IwcDMOgxdECi9YCnUKHnnE9MKqMULJK/OP4P7ClYQuUrBIiRHxS+wluGHsD7p54d/h3J4oijlmP\n4bP6z2Dz2TA5dTKWFi6Nmmd5rjhdYc8FAcOQ/dpweNUJnDxBJDBpEjXq+/1ENDodhWrHn6UiP3aM\nDMl/8Yszn3bi81EV7GOPRapj160jpx3pYrndtMZ//YsIUSKX/fuB//s/Ip6jR4lo//Y3ykEC5Lgj\nKUeeJwW3ciW1czAM5R4DMQq+pBD0V78ae82jnfKxd+/QETHS+Rw6RMo2jlEjTpKXIfycH5/UW0pn\n6AAAIABJREFUfoLtjdvh5/yYmTETtxbdilT9xQlJGVVGCBAgiEIUkfk5P/RKPTqcHXhu13PY0rAF\noigiVZ+KMeYxeGDaA7ihMPLEzQs8fnPwN3AH3chNyA2/t/HURmQZs7AgZ0HUcdfXrIcv5EOOKSe8\njgAXwD9O/AO/XvprTM+YjsPthxHgA9jWuA1jzGPCzf+Soqy31aOxvzHm/MmBaHW24oOqD5BlzIJc\nJocoimh2NOO5z5/D2qq1CPEhVPdWozCxMKxKBUFATW8NrC4rPCFqRSlJLcHBtoNRI7t4gcentZ9i\nZvpMjE0aGz63D6o+gFljhkauwefNn+Ng+0E8c/UzMR8uzgaX3WxJUSS1pNGQQtNoqHVDpQJUZlI6\nmzeTwfnpLOQGg+NoRJbTSfm8r3899nanTgG5uXTMgdi9m8aJFRdHwqMKxdBGfZ2O3n/tNcoZTptG\nSlCtph7HtjaqUC0ro/Bpdjad16OPRshXoSCClDBjeAtDAMDUqSN/fjrMm0fh31i4FGHtKxxxkrzM\nIIgC/vfg/+JE9wlkGjJhVptxrOMYKnsq8eziZ8MN8hcSiZpEzEyfiaPWo8g20mBkXuDR4erAorxF\neGTTI9jTsgcKmQIMGDT0N8Dut8PP+TEheUKY5Or769Hl6YqqPmVlLJJ1ydhcv3kISR5qPzTkQUAl\nVyEkhNDibEGRpQhFlqLwZBGWoT7KAB9AiA/R+C0+EHM6yGCUWkshgyxMgB2uDpRaS6FgFRBEATqF\nDgEugDZnG3JNuWAYBn2+PjgDTmQaM5FtykaQD+KfFf+EVqFFQWJB1DkqWAWOdR7D2KSxsPvtWFez\nDrkJueHjZSmy0O5sx8ZTG8+LwcBlibo6Cv1l6UlBHjxIxMlxgDk1kovbsoUKZc4EpaU0dWPcOFJq\ny5YNVZP9/dTgv2oVEbEEr5eqWA2G6NFOw5UHNzYCzzwTMUB3OIh4d+ygULF0HjYbEWB7O5H3pZqr\naDaf+UNHHMMiPirrMkNtXy0qeiqQn5APlVwFVsYiw5gBT9CDz5s+v2jr+I+p/4EpqVPQ4mhBq6MV\n7a52LCtchjZnG2r7aiGXyaFT6qBVaqFVaOEKulBnq8Ph9sPh7/CGvGAwNFSsYlVw+B1D3tcoNMOO\njVKyEU9KvVKPDH0GHAEH2pxtaLI3od3VjlpbLdxBd3i480jgRSLSNmcbdjTuwEfVH6HF2QKry4oO\nVwdkjAxp+jQ4A07U99ej1dGKTncnUnQp4QcVJatEoiYRrc7WEcddtTjIiHpwnjRZl4zSztLTrvWK\nhJR7Uygiispmo1Cr10tECUTU5HDjrYJBIqmBkFRkYiIpNLcbePXVoft+9hkd61//ovCqhD17aB1Z\nWZFBwSOdx7/+RaHO7m7gD38gMvb7ydGnt5eMA3S6iAWgXg+sXRtxu4njikZcSV5maHe2gxGHjlUy\nqUyo7KnErcUXZxSOTqnDY1c9hm5PNxx+B1J0KVCySnzz42/CG/JCIYvkK1kZi5AQgo/zodNNeRBR\nFKGRa+AJesDxXFTfYp+3D7MyZw055pL8JVhbvRb5CZGhxjafDRatJUqN6pQ6rJq0Ci/seQE2nw1K\nVhkewDzGPAbvVb6HR+eM7JdZklKC1w6+RurQ54Qr6ALLsPDDjz5vHwRRQK+3F6IoklmBCHg2/Ric\nLxcyfSqsXxgY+EM3oIsph39sbTgPKogCQnwI09KmAaBQsBjjhhngAjAoYxuyX/GoqwOqqpCWNA9N\nNiNg9QChTMBHHqlpjppIAtVup+KWwa4zAIVF16whRSjl5CQVKdnBdXbSe6tXR4p4+vuJJPPzSdnt\n2UNqUlKRqamjGxQsec3m5VHla2Ul5VCrqmj7piZag9lMucnKSqpGLS8n8r1UajKO84Y4SV5mMKqN\niCG+aKyT7uLnE1J0KeHikhAfgkKmgEahoSkWXxQViaIYfk1KmQSry4o/l/4Z9TYKt57oPoFZGbOQ\nYchAr7cXcpkcK8YNLUW/ofAG1NnqcLz7OCCSsbpRZcQjsx+JsrIDgLsm3oW3St+CXEbOOTLIMM4y\nDiUpJSi1lqLf1x82MZDmT1Z0V4CVsZiWNg1JmiTwIg9/yA9X0AWFjMKsSlYJlmFhdVmhkCnAizxU\nLCl6wZUCWXIL0lJNkDFUzekJetDdmI7jnWuRZkiDilUhyAdxfcH1GJtIeaECcwEsWgt6vb3hyl5B\nFNDt6caD0x68YL+7S4oPPwRcLrw47k0iNG8NkKykgpVZs6hy867vRIgvVmWRZEDgcERmJUoqUquN\nqDnJmeY3v6EXQAQptUCkpkaKbyQVKeXmLJaImszPpzzjXXdFlOG//kXHEgTKrwYCRJBeL5GhNNsy\nOzsyqDkpib5LcqGP44pGnCQvM0xKmQSTyoQ+bx+StNQr5ef88IV8px0OfKGhYBX4Sv5XUN1bDXfA\nDT/nh1wmR1AIAiJQnFyMGekz8JOdPwkX4OSYclDdW40T3SegkCkwN3sulo9dHjMkqpKr8MTcJ1Bv\nq0ebsw0GlQGTUibFnFspY2QYaxmLuZq58HN+aBVaaBSa8Gc+zgczzBBEAX8//ndsa9hGBToQ8UHV\nB5iTOQeFiYUwKAzw837oRB1NK5Fr4A65w8bqM9JnwKK1gBM59OpS4EEP/JwfGrkGXZ4udLm7oGaL\noFPq0OxoxuLcxfhaydcwLmlcWA2zMhaPXfUYfr3/12i2U9m/CBHX5F+Dq3OvvoC/sUuIRYsoP8dx\nwBtv0FgpDf1+kJFBYUqHA1i+fPjv2LuX+i/z8yPTQoJBKsLheaqYra4mItTpgAMHKBfI80SSUguE\nRkOtHNu2kROQpD4l+P1E6gsXEimmpAA33hitIkMhInKDgdZ9662RYhyDAfja10ZnIh4M0jW5GDMf\n4zgviJPkZQa1XI0n5z2J3x7+LZodzWDAQCFT4KEZD41qVNWFxm3Ft6GhvwEfVH0Am8/2xeBgBWZn\nzsZvbvgNKnsqYfPZkJeQF95nQvIEGJVGXFd4HVZNHNl4WsbIMDZpbLgqdDhoFVpkGbLgDDjDDxMA\n5UG1Ci2StVTEUdldia31W5FnzgtXn4b4ELY0bIFCpoBFZ0GSOwkmlQl2vx0dzg74eT8CfAAymQyJ\nmkQUJhaClbE4pUmCUmNGkA/CFXChx9ODDEMG5GIKpqRNgZ/zo9XZGu4pHYgsYxZevPZFnOo7BU/I\ng2xj9qhyp1csJDPyri4KTw7MCQKk4Aa3KAxEXx9N5pgxI9JvKKnJn/+ctqmsJLLNyyOCammhsG0g\nQMcLBCKtFno9qdKrr44YlA+EWk0KNScn0k+4fTuRWltbZM0WC33n/PnRVaijzT+uWUPK+vHH45M5\nrhDESfIyRI4pBy8seQHNdupJzDHlQMWq0NDfAGfAiXR9+kVrBxkMrUKLH1/9Y6yauAoH2g7AG/Ji\ngmUCAkIAb5S+gfLOctj9diRrk6FTRuZG6pQ6tDvbz9s6GIbBVyd9Fa/sewVBPogEdQLcQTccAQdu\nK74Nfy3/Kyp7KlFvq4dcJgcDCgtL6tegNMAX8kEpU0LGyBASQlCzavDgkaRNgp/zI0GVgJO9J+EK\nujArYxaCfBCZhkwszluMwx2HoVFoYFQZYXfRzU7KPZZ3luO6guuGrFnBKjAxZeKI5+UL+XCo/RBO\ndJ+AWW3G/Jz5UQ8cVxysVjIMONNqy9//nopgcnNJqUnuNfPnk9KTnH6MxgjZSNtMmRIZeSVBo6EQ\n63XXkZIdjL17KTeal0dh1Z07iZCH6ykc2KhfVQV8/jnwrW+NTHy9vZHh001NEcedOC5rxEnyMoWM\nkSHfTP+J+n39eGnPS2iyN4Ub8hfkLMD9U+6Pacp9ocEwDMZbxoddZ94ufxuf1X+GZF0yEjWJqO6p\nxufNn2NR7qIwUbqD7iFTNs4VE1Im4Jmrn8HG2o1o6G9Atikbt6Tfgver3ocoiEjUJsIVcKHd1Q5v\n0Atn0AlfyAcwgFauxf1T7kddfx0SNYkos5bBE/IAAHRyHWZnzEa3txu+kA/1/fXQKXQQxBswPX06\nWBkLBkxMVx+GYc56Mogr4MKLe1+kULPSgAAXwNaGrXhg2gNXZljW4aD+wsWLh+9jjIW+PuCdd6h6\ntaKCqknlcprQ8dRT5GxTXQ0cP05TODye6H2zs4FHHhn98UIhUniSPV1aWkRNDiYyv59UpwRBAP75\nTxq2fN11I88j27yZVKxSGfGsjavJyx5XLEl++umnePzxx8HzPL7xjW/g6aefvtRLuiAQRRF/OPoH\ntDnbkGPKCZPk502fI1WXipXjV17Q44f4EPp8fdApdDCohlZidro7sa1xW7iZXqfQIU2fhm5PN2pt\ntZiSOgU93h6o5CoszFl43tdXkFgQVcn620O/BUQgw0hqoTCxEO2udhzqOIQCcwFMahM4gUOnuxON\n9kY8OvtRPPnZk1iYtxCn+k6BAVXJOoNOLM5bDKvLijpbHeZkzUHG1KlwdGngAAB3Hvr6gggo9TAk\nUYGGIJIBQ7Hl7Ibkflb/Gdqd7chPiNyYA1wAb5e/jenp00/rInTZYevWiONMrD7G4bBhA5GiVks5\nxpYWUm79/VQwU1dH5PiNb8TeP3uoWf2IOHQooiIBynkGArTuGyNG+XC7gWefBb797Qh5VlaS8kxK\norzmU0/FJr6+PlKRGRmUyywvj6vJKwRXJEnyPI9HHnkEW7duRWZmJmbNmoWbbroJxecywfsyRZen\nCzV9Ncgx5oTzXNLIps31m7Fi3IoLYlsniiJ2Ne/Cmqo18IV8ECHiqqyrcO/ke6PmN7Y4WsLEAlCR\nyrzseSjtLEW9rR5mtRlFyUX42qSvReUOLxSOdx1Hsi5yM043pINlWPACDy/nhQgRIT6EyamTYXVb\n8WH1hzCoDMgyZsEX9NEDgVIHu98OV8AVJv/rC67H5F9pwt8b5M34n/17UdVTBbPajF4vD4ffgcV5\ni89IMTsDTjT2N0IlV2FPy54hFcwquQqcyKHeVo8paVPO/QJdLDgc5ISTlUV5yZFccQbC46ECnOXL\niay8XnotXkxklJEB/PrXwH/+JznLHD4c29F9tOB56mn0+YYatK9fT+FWqeBoxw6qgpVUoCiSAjWZ\nKJxcWUlqN5aalFSkZFCuVp+ZmjxxgjxhFRc/cvTvjiuSJA8dOoTCwkLkffHkd/fdd2PdunVfSpL0\nBD1gMLRvUsWq0BnshCAKYBl2mL3PHqXWUrxx7A1kGDJg0VrACzz2t+6HL+TDY1dFht1qFVqIiC5a\n0Cg0KLYUY37OfDw176khQ5EvJCQrO7mS/mnLGBlMahNCfAipulQYlESIFq0Frc5WVPVUwaiiNoQx\niWNgbbFCLaghQoQrSAbTiZpEFFmKoo6jZJV44qoncKDtAA60HYCSVWJhzkJMS58W9bvyc3409DeE\nezglUwRRFPFp3af4oPqDcA/lia4TmJo2FZmKQTMqRcScVHJZY+tWCkUqFBS+HK2a3LGDVJxkI6fV\n0siq116jnF5yMhmO+/1EjuvWUS+iNAj5TMEwwN13U8h1MFg2QmpuN1XGFhVRxWtTE73X3BwpHNLp\nSE0++mh0SLavj67HwFxoauro1WR7O/DLX9KDwfz5Z3eecZw1rkiSbG9vR/aAkEpWVhYOHjx4CVd0\n4ZBhyKA2Cz4Y5TrT5+vDuKRxQ/oHzxfWnVqHJG1SuK2ClbHIMeWgrLMMVpc1XJk5Pmk8lKwSh9oP\ngWEYJGmSkK5Ph81nG6I6LwaWFizFX8v/GuWlyjIsTBoTFuYsjDIcF0URY8xjUNdfB6PKiGRtMqak\nTUFFdwW8QS/sfjsyDBn47uzvRl17CSq5CovyFmFR3qKYaznScQRvHHsDQZ56KrUKLR6e+TAmpkxE\nZU8l3q14F9nG7HBeuc/Th90tu3F78e3h9zxBD9Ry9WmrfS8rSCpSKm6Ry0lFnU5N+v1UeBMMRk/I\naG2lHGRyMlnbMQwZi/f0UBHPunXAd797dmuVyUY3WWPrVlqXWk3E/eGHdJ4mU0QJJieT+XldHTkA\nSW0eFRWkWNsHFa4JApm0n44k162L5E1nz46ryYuMK5Ik/21GEIFU2W3Ft+Efx/+BRE0idEod+n39\nCPJB3DXxDP0uzwAdzo4hxtuSq43NZwuTZE1vDZwBJ1ocLeAEDqeEU1CySjw590nMzJgZ87t5gYcr\n6IJWoY1JPrHQ5+3DruZdqLPVIdOYiUW5i5BpjFZcgigg35yP4uRiVHZXQiVXQRRFTEyZCLvfDnfQ\nDYPKAF7g0e5sx3jLeKyatArPfv4sXAEXDCoD8hPyw25C/2/e/0OSLilmgc7p0O5sx+8O/w4WrSX8\noOAOuvGbg7/Bi9e+iG2N22BQGqIKr0rSStDubkd5VznS9GngBR5yVo7vzvpuzF7RyxZbtxKBaCLh\naSgU1Ls4kpqUy0ktcQMs/nw+4LnnqMLVbCayzM4mVenzUSXrkSOUtzxbNXk6HDxIa1iyhP5usZAT\nkCjSzwMLhxobKeQqjdeSPF1feYUIFSCyraqiFpLTEV57OxkcZGdT3vTQobiavMi4IkkyMzMTrdIM\nOACtra3Iysoast3Pfvaz8M+LFy/G4sWLL8Lqzj+WFixFsjYZG2s3osfTg+LkYqwctzJc/XohkJuQ\ni25Pd5ShuiAK4EU+nPPjBA5/OvYnZBoyMS5pHPq8feAEDt6QF7zID3mYEUURu1t2Y23V2rDLzfUF\n1+Om8TeNWKXb5mzDL3b/An7OD4PSgFN9p7CtcRuemPMEJqVOAkBjtl4/9DranG3kAgQRk1Mm44bC\nGzA2aSzKOsvwzol3wjnUOVlzcM/ke6BX6vHYnMfw1/K/kseqCIxNGotrx1yLdyreQYuTfFeLkopw\n/9T7Rz2xY1/rPsgYWZSS1iv16PP24Uj7Edh99iHEJ5fJUWwpxpIxS2BUGWFUGTE9ffpFMbU/JzQ1\nkYKSRjxpNJRDHAyZLPaIKAlyOU3ZGIgDByhcqVRSOwnPU/hVIlKrldTduajJkSAIwK9+RaTc30+k\ntns3hUvHjAHuvz+iJFtaaK0ZGZFhzW1tNG2E44A776TtDh4E/vQnGvF1uiKjt9+mY0u9mXE1ecbY\nuXMndu7cedb7M2IsU8nLHBzHYfz48di2bRsyMjIwe/ZsvPvuu1E5Scku7d8BDr8Dm+o2YU/LHrAM\ni0V5i7C0YGlUn+KZoqKrAi/vexnJ2mQYVAaE+BDanG2Ylz0P35z5TQBAY38jfr7r5+GpHxJ4gUeH\nuwN/WvmnqFza/tb9+N3h3yHdkA6tQosgH0Sbsw1LC5binsn3DLuWV/a+gob+hqjeUGfACQYMXr7u\nZQDAj7b/KOwxa/fb0epoRY+3B4/NeQy3TbgNMkYGXuDR6+1Fj6cHaoUaOaacsJLlBR5dni76uwg8\ns+MZKGSKMEF1ebqgVWjx3DXPjSqE/IcjfxhSRATQtJEl+UugYBX4+NTH4WvnDXnhC/lg89nw/JLn\nr5zeSFGkfNmRI8BLLwGZmZTLi9WwfzaoqQF+9jMK3e7YQeTQ0UGhzMREIqglSygk+/Ofn381WV5O\nbjqiSISZkwOcPElh3hkzgOefJzUpikSmDQ30WXMz2duVlZG6FAS6TlotVcD29VHh0be/Pfyx29vJ\nzzYYpP2LiylX+9BDcTV5DjhTbrgilaRcLsfrr7+OpUuXgud5rF69+ktZtDMaeENevLT3JXS6O5Gq\nS4UIEetq1qGyuxI/WPCDs+6jnJQ6CY/NeQzvVbyHFkcL5DI5lo9bjlvG3xLeZrhiEhEiZJBFTQAR\nRREfVX+EFF1KmGSUrBK5plxsb9yOleNXhgtoBsLP+VHVW4UcY/TNz6gyosXRgk53J1xBV3gk18ne\nkzjZexIyyBDgA3h+z/Ow++14YNoDaLI34XdHfod+H02c0Mg1WD19dbj3McNAhRXra9YjyAejVGOa\nPg3N9maUWksxPydygxJEIWxhN1A5F1mKsL9tP5IRTZIBLoBxSeOQl5CHXc270GBrgNVtRYe7AwEu\ngFRdKg63H0aOKefKKNapr6ecW0ICVWuq1VSoc8stp9/3dBBFUmQqFak0l4vUpsNBFa+iSLm6igp6\n/1zUpDT8eXAP5Jo1pAh1Ovp+ux24+WbKh37rW5HeyoYGqkCV2khSU2kQs0xG1a5tbTQSLDWV1j9m\nDCnKlSuHV5Nvv03HSU4mBV1RAcycObKa9PnomIPnZ8Zx1rgiSRIAli1bhmXLll3qZVxyHG4/jHZX\ndG9dnikP9bZ6VHRXYFr6tBH2HhkzMmZgWvo0uINuqOXqIfnDLGMWEjWJsPvtSFAnhN/vcHVgUe6i\nKNIICSH0eHvCw5fdQTdcARcUrAI2nw3vVbyHCckTMDVtapQCZhkWMsiGVPGKoggRIuQyOdxBNxgw\ncAacONl7EkaVETJGBk7gwAkcdrXsQlFyEd458Q6UrDKs3jxBD14/9Dr+e/F/I8sUCde3OFqoaveL\nY0hkJZfJYXVZAZDy3Fy/GRtPbUS3pxsJ6gTcN+W+cNP/7MzZ2Fy/GS2OlvDDi9VtRUFiASalTIKC\nVeCZq5/B9zZ/D+2udpjVZhSkFSDTmIn1NethUptwfcH1Z/27uygQRbJ60+noRr53LxFLYiK1ThiH\nPvScEUIhUqW5uZTX02pJVaWkUPh15kz6My2NyOpsZyh2dpIKvO++6LmTFRWkUCUXnkCAWkAWL6Zz\n3LIlYk0nXQfp37xKRQOf09PpvbQ08p9VqehayWREyBs2DK8my8vpnKTcLsfR+Wdk0ANDYoww/Ftv\n0fc++CU1zr8EuGJJMg7Cyd6T0Cuim8wZhoFSrsSpvlPnRJIAqcVYCg+giteHZz6MX+77JZrtzVCw\nCgT5ILKMWbilKFpJSKFLp9+Juv46tDhaIIgCutxdCAk0MHlv617olXp8f973w+FGBUum6Ptb9yPb\nRE/coiiiy9OF/IR8pOhSwk38EoFJpOYNeZFlzIJeqceHVR/CF/KFJ5oARNRl1jLc8+E9mJ05GyvG\nr8DVOVcjQ58RzptyAodkbTImpkwEJ3Bhk4K11WuxpnINOlwd8IQ8CPEh7GjagW/P/DaemPsENAoN\nnp7/dFQY/ObxN2NpwdKwumfAgGVY3DHhjijVmG5Ix8enPsZ1Y667vIvUJBUptUB0dtKN3GQi39Nz\nVZNKJfDkk+dlqSNi40Yid2lSiEZDf3//fVLI0gisYJAeDI4do3Cn1BdpMBAhchwpXoBMEOz2iDJV\nKKhf1OMBvvLFoILU1OHVZFsbEery5ZHQdSBADwsPP0zHHIy2NirsYRgyQUi9NNaVXzZcAfGcOEZC\noiYxpg1aiA/BrL7w08kLEgvw4rUv4t7J92JJ/hJ8e+a38eOrfwyT2hS1HcMwuLnoZpR2kcmASWVC\ngAsgKARhUBrQ5+tDrikXMkaG3x3+HQRRCO9754Q7kWHMQG1fLbY3bse7Fe9id/NusAyLLk8X0g3p\nWJCzAJ2eTvACD0EU4A66ySz9i3FV7pA7ql2m092Jfa37wIkcNAoNBFHAq/tfpVxi93F0uDogCAKM\nSiP6ff3YXLcZSrkS09KmocPZgbdK30JpZyl6PD3QK/VhS763yt7CobZDAACT2oS7J92NHy78YVgV\ntjnbwufmCDggY2RDwqoauQaugGvEQc6XHANVJMMQKTidFAZVq4l4nM7ofTZsoOrUywmdnTQ+Kz+f\nCGzPHnq/oYFIx+2mdpOODiJJpZLOweeL9EUmJ1M+9pVXIq/iYnoVFJAabWqi7+zoILK02+n6hEJ0\nXQZj/376rL2d9m9tJWN0j4dIOhbWr6f1yeV0/eM4L4grySsc87LnYVPdJvhCvnBPozvohoJVYGZm\n7BaM8w2T2oQlY5acdrsF2QtgVBphl9vhDDjR5+tDipbmVdp8NriCLiRqEtHiaEGrozUcmjWpTfjh\ngh/iyc+eRJenC/Oy5yHDkIFmRzN+sfsXeHbxs/iPqf8BNavGC3tegCvgQrohHUWWIuiVenR7u3Fj\n4Y3YVLcJACnRyu5KaBQa+Dk/dAodDnUcgt1vR/m+csgYGUqSS2AP2NHvp/ylSWXChOQJsPvt+OG2\nH4bHhclZOdz9buSYcmjMVtCNT+o+wZzsOQCAHY078Lfyv4UNIdbVrMP87PlYPW01UnQpYBiG5nQO\nyB07Ag5kGbPOqvXkoqG5mchDoyH1VF1NfY4yGX2WmhqtJnt7yZA8K4sKbEZb2ONwAH/9K7WGqAe1\nwXR3k8qLNYtytNi4kUiFZaPnTubnAy+8QMT43/9NxCbl+xwOygsuXkyFRVYrFSwNxLXXRiahAES2\nSiWpzfT0SM4wPZ3eH4wVK2jcmN9PId6SkshnCQlDt5dUZE4OPcDs3h1Xk+cJl/H/wjhGg0xjJh6e\n+TD+XPpn9Hh7IEKETqHDY3Meu+xaBxiGQaImESUpJfBzfmxp2AKT2gQGDPycH8c7j8OgNoABEcdA\n1Nnq4A15sSBnQfi9DEMGWhwt2NOyByvHr8Q9k++BVqnFupp1UMqU8AQ96PX2Yl7WPNxSdAtq+mrQ\naG9Eii4FjoADLMNCxarC6i5Jk4QAFwDDMKi312Ne9jwkqBPAgAEv8uh0deIfJ/4BMOR45JP5oJar\n4ef8aOxvhFljhpJVwuazAQB6vb14+/jbSDekh/O5gihgd/NuTEubhlmZs7B87HJ8VP0R0g3p0Mg1\ncAQcsPlseHDqg5d3qDUpCfje9+jnri56TZgQKRoxGomApNzkp59SyLGtjQpcpozSYm/rVnqVlETC\nlAARwZtvEon9+MfDW7v19pIiS48xlkxSkVL7mDR3cs8eyk2mp9N0D7+fiJPj6LgHDlBBzY030vsp\nKUO/e1EMg4lVI4+Ji4JGQ6/PPqMCnldeGflhQFKR0sOHpCbjuclzRpwkvwSYlTkLJaklMe3PLicw\nDIMJyRPQZG9Csi4Z2cZstLva4Qq4YPPboJFr0O3tRpALYl/rPhQkFoSJosXRErPa06ASPRVdAAAg\nAElEQVQ0oKavBiuxEgzD4NaiWzE5dTKOtB9BgA9gRsYMFFuKwcpYPDnvSWyo2YCdTTtpZBYjp7mQ\n3h5oFBroFXoIEKBVaKGWq9HQ34B52fMAAD2eHuSYclDZU4lcUy7ane30UBIU4eW84HgOAT4AnUIH\nR8ABQRRQ2V0JQRCifheSTd7e1r2YlTkLtxTdApPKhI9PfRw+xoNTH8TktMkX55dytjAYIk41a9ZE\n1I0gkOKS5jmWltLA5e3bIwUn779PpCeTkRrcto2s4QYTneTcU1BA/qpz50bUZG1tJHRbXU0EPRii\nSBWmdju1kQxWrxs3EgG63ZH31GoKoUq5yY6OiJ2cUknrDQSIsDZvpnFa56vdZTC8XgppS2tdvTr2\ndgNVpIS0tLiaPE+Ik+SXBGq5GhOSY9woLjPcMeEOPL/7eVhdVrKEs9VRXlGfTo4+kGFB7gJsa9qG\n+TnzUZBIcwETNYlReUoJ3pA3yhScYRgUJhbGHFCtV+rx1ZKvYlnhMtz34X2o7quGN+RFgA8gyAfh\n8DvCajDABcKjs9xBNzpcHbiu4DpU9VQBoOpVq8uKU7ZTkDNyMAwDs9ocnmtZ3lk+bE5RqryVfl4y\nZgmuyb8GvMhf3iHW4bByZbTKGwiTCXjvvYi5d0IC5eckNfnxx0QA06dTC8ZASP6vJlPEsOArXyHy\n+/BDGqQskxFJ/+QnQ0m2sZEqRAEqshkYsgRoPQMHJ0tQKok4NRoySJBMEgQB+OlP6RzMZvr+0lKq\nsr0Q2LOHSDwvj36+8cbYarK8nNY2wGAlvN7ycuD6y7xK+jLHFfg/Mo4rGfnmfPxk0U/w8amPUdNb\ng8KkQiRqE6FX6qFX6pFryoVJbUKroxXlXeVhkpySNgVGlRF93r7wNBFP0ANO4LA4b/EZrWFv614k\naZOQHcrGMeuxcJUpI2OQrE0GL/IQRer1PNpxFI32RuSYcrC+Zj2a7E0ICSGMSxqHaenT4Aq64A15\nwTIsiixFKLIUIcgHsbtlN+6YcAfAkDORRH6iKMLus2PVxOjQG8MwkDNX6H9HtXpovlBCb29ERQJE\nZAkJpCZTUkjtpKSQUvyv/4oQ3WD/V2mbuXMjOVCpJ7GhYaiaFEXKL2q1FOZds4YU7UDVd//9Z3ae\nFRV0bOm4iYmUZ502jXKa5xOSikxNjRitD6cmly0bfhJK3JnnnHGF/q+M40pGjikH355FvWF/KfsL\n9rfuD3vBDsRAMwKtQovvz/s+/u/I/5F9HACdQofvzvluuDUEIPOBXU27sLtlNxiGwcKchbg692qo\n5JHm6lN9p2BUG6HxapCfkA+73w5PyENFNEIInMCh0FyIx+Y8hjdK38D1BdeH22BYhsWh9kOQQQZ7\nwA4Fq0C+Ph/zs+eHK3r7vH0I8SFkGDJw0/ibsO7kOqjkqnBP5+S0yZiVOev8X9jLEVu3kp3bYIeT\n9nayZpPLiQBraqiNQlKTA6eIAER23d3Avn0UWtTrI4RqNA5Vk5KKlAitqSm2mhwtJGOBhITIMUym\nC6cmJRUphUrT0oZXk3HzgAuKOEnGcUkxO3M2tjduhyAK4ZyjZAIwuMczx5SD5695Hu3OdnAChyxj\nFjiBw4HWA+jydCFFl4ItDVtQ3lkOV8AFR8CBLfVbsCh3EZ5b8lxYzaXr01HZUwkZZFCwCuQk5KDf\n149Odyc4gUOiOhH3TL4HPb4eJKgTovpEM42ZmMRNwuyM2eBEDiE+hCmpU6BVkouQKIpwBBy4Kosq\nG28tuhUTkyfiQNsB+Dk/pqdPx9S0qWfthHTFYdasCFENhM1GBSmFhUQ6en1ETXq9VLDCcdEhxFCI\nKl0DASq2kXKJKhWRrKQmB6rIgYQWS02OFo2NtBaWjc5h8jzlVM8nSXq9FE5WKukBQ4I0JWW43GQc\nFwRxkozjkqLYUoxrx1yLbY3boJApIIoieJHHzUU3I9eUO2R7GSMLK8dOdyde3vsybD4b9Uy6u3Cy\n9yQ0Cg2UrBIquQoBLoAPqj/AzIyZuGPiHQCAhbkLsaVhCxK1iWh1tkKr0EKj0CDfnI9FuYvQ6+3F\nNfnX4J8V/wy31QyEmlUj35yPFeNWINuYjQ2nNkAb1IJlWLiCLpSklISVIsMwGG8Zj/GW8UO+598C\nBQX0Gow33yRilMKUFktETRYUAI88QuptMCorY/daFhRQxSlAhHb0KIVqpQkdKhUV+5ytmpRaQmJB\ne3ov3zOC10tkHwxSAVRFBfnEZmfHbheJ44IiTpJxXFIwDIP7Jt+HuVlzUdZZBlbGYlraNOQl5I3Y\nAiGKIt4sfRO+kC/sztPj6UG/vx+cwCHPTO8pWSWCfBB/Kf9L2Og805iJx+Y8hj8e/SMUMgXq++uh\nU+gwOXUyerw9WDVxVbjP8njX8ahWGonEpfXdMeEOTEyZiH2t+xDgApiZMRPT06dHKUU/50dVTxW8\nIS9yTDnINmZf3u0dFxo9PRROlcuj50a63aQAn356eCIbTetIT0/sGY0DibShgUhUM/QhKAxBiKhO\nmSx2G8mFgMVCg5sBUtdHj1IrzYUqEIpjRMRJMo5LDoZhMDZp7BkNFrb5bKjtq42aQCKTySBChI/z\ngRf4sMOOXCaHj/Oh39cfLvopTCpEpjETueZcJOuT4ef8YMDgyblPoiSVbtDzc+ZjS8MWtDnakGZI\nC083GZc4DsXJxeG1T0ieMGxlcWN/I/5n///AHXRDBOXl5mXPw4PTHrwyK1lHC1EcvndRq43tVyr1\nIZ4r5syh13DweKjvcPlyqsyNBVEEfv1rIqfB47sGQxq+fL5ht1PxUlbWhSsQiuO0iNvSxXFFIta8\nymwjhWEHtopwAgdBFJCsTY7qV1xbtRY1fTWYlDwJczLnYFHuIiRoEsKuPABNGvnhwh9ibvZcdLm7\n4Ag4sGLsCjx+1eOjIrgQH8JrB1+DjJEhNyEXeQl5yDHlYHfzbuxq3nWul+Dioa6OWjZGi8pK4LXX\nhic8nY76EAe/WlqAZ56hMVIXEjt2kCXcxx9H5xcH4uRJ4PBhal/h+eG/q7mZzAwkhXo+sW0bqVmL\nhVx9SkvP/zHiOC3iJBnHFQmL1oI0XRrsfnv4vSRtErKN2RAhwhV0we63wxvyItuUjQU5C2BQkSl0\niA9hV8suZBoyo4g2XZ+O6p5q9Hp7o46zevpq/HHlH/G7G3+HOyfeOeo5nXW2OtgDdpg10R66BpUB\nm2o3DbPXRYDbDbz+OuW7TgdBoMkSb7xBObLRbP/Pf1IVak3N6Nfk8dAxmpuBl18+P4pyuON8/DE1\n3geDRJiDIYoU5pTIqaxs+O9bv57WvOk8/z4lFSmFeKV2k5EIO44LgjhJxnFFQsbIsHL8SnS4OlDb\nVwubz4YWRwtmZMzAqomrkGXIQrYxG0WWIuSYchDgA3hpz0v4rO4z2P12cDw3RA0yDAMZI4Of8w85\n3tnkEAN8AIwY2a/V0YrNdZuxp3kPPqn9BH8p+wt8oVEQ1fnGzp3kFiOZeY+E8nJydLHbaWLF6SD1\nEiYn0019tGS3di2525jNRJYHDgy/bXs7VXoCRGK//33sIp9Y2LGDqmNVKmqliKUmT56kIp+kJCKn\nNWtik1NzMw2bnjSJrun5VJOSipRaYEymuJq8RPgSJ0Xi+LLCG/Liz8f+jKPWo1CwCnS4OhASQrhz\nwp24Jv8aJKgTUGurRa+3Fye6TmBv617U9dVBySpR3VuNHU07kGXMgs1nC+coATIn0Cq0UcOWQ3wI\n2xu3Y0vDFnhCHkxPm46V41dGbTMc8hLyAIa+o8/XhyMdR6BT6sDKWOSb8rGzaSdcARe+O+csBwWf\nDdxumjpRWBg9GioWBIGIzmymIpu1aynXN1yF5cBewoQEIpqaGqCoaOQ1SSpSr6f1BQLAs8+Skhr8\ncBIIUD7xmmuAm26ic9m8mUwGTlfUI6lIqc9QpYqoSSk3KalIg4GOLfVClpVRhelArF9PJgoKBRX2\nbNoEfP3rI69hNHC5qNUjEKD+TgleL61txozh871xnHfElWQcVxzeOfEOjlqPIteUi3FJ47AwdyHU\ncnJ8SdImgZWR+02xpRiHOw4j15SLVH0qzBoz8hLyYHVZkWXIgo/zocPZAU/Qgy53F7q93bhvyn1R\n7jhvHHsDfz/+dzBgkKhOxKH2Q3hu13Po8ZxeNSSoE3B78e1odbbimPUYZIwMvpAPKrkK4y3jkWvK\nxTHrsfAczIuCnTup39BkopvuSGpSUpEJCURgp1OTkoqUGu4NBrqpn05NSipSpSKSNBjIMCCWmty3\nj3Kk771H7SL79lFrxPvvx1aTbjeRHBDJRfI8nbvXS9dh3bqImhyoIiXEUpMtLaQiBzb7v/02ncu5\nQqkEHnqIipseeijyevxx4Pbb4wR5kREnyTiuKLgCLuxr3RfVRiFjZMgyZmFrw1YE+UjerL6/HqIo\nDmnct+gsaHI24WeLf4a52XOhYBWYmDIRzyx8BrMzZ4e3a3W24mD7QYwxj4FOqYOCVSDTmAlfyIet\nDVtHtd7lY5fjqXlPgWVYGFQGjE0ai0W5i6BVaMPhXWlqyAWHpCKlG3tKCqnJWLnJgSpSgsVCJBAr\nNxnLkSYpiYhspNzkQBXZ10eKTKkkQnr22WiCDQToGFYrUFUFvPoqbZuYSMOP9+4d+v0bNgC/+hWF\nZ202IDeXKkSll0ZDeb/eL/LQW7fSQ0RbW2SOo9NJId6B57FuHalIqUWE52nb3/6WyPdcoFKRMp4/\nf+gr3gZy0REPt8ZxRcET8pDXqiy6FF7JKhESQvBz/nAVq0KmAGI8dPMCD4PKgCxjFh6Y9sCwx2pz\ntoXnQA5EoiYRFd0Vo1ovwzAoSS3B8rHL0ePtidlzOTDke0EhqUjJwkyjIas3aTTUQLzyCqm5MWOi\nSbSnh9TkwoXR29fWkmKT1KCEYJDcc4YLuR47Rmvw+chdhmWJ0BiGlOyJE8DkLyai7NtH/Y08T9t8\n8gmNnxJFIqhnn6XQq9QmYbMR6QUCdI6jCYXecw+FcWNB8p91uYgwg0FSlACFRXmexm9t2zZ8a0kc\nVxziJBnHZQk/50ebsw1quTqqCjVRkwiVXAU/5w+HWAFSmBaNBXqlPvxekaUIKlYFd9Adfl8QBDT0\nN2C5ZTk6XB3IMGQMObYr4MLult3YVLsJVT1VUMvV4QHJAODjfDG9ZkfCzeNvxi/3/xJKVgm9Ug9O\n4NDqbMXsjNmjym+eMyRSGXhjB+jv69fTAGGpSMRqJVWm1VLOcrCNm9GIIcjLo3FUsWAwDL+uBQuo\n7WP7dlJgFkvkM6eT1lZSQutcs4ZIWqslQu3uJrLKziZi7uwkkly+nPbfvJn+zMyM5F+HM2KXkJhI\nr5FgMJA6lVSu00kGCDNn0nuffAIsWXL+nXjiuCSIk+QlgifoQZ2tLjzaSauI/4eSsLNxJ96teBch\nIQRRFMOG6Kn6VChZJe6ccCfeLH0TFq0FBpUBDr8D/f5+PDrn0aiZkxqFBo/MegT/e+h/0evtDTvf\n6BQ67G/bj/1t+zEvex4emPpAOCTrDDjx/O7n0eXuglFphJ/zY0fjDkxJm4Li5GKE+BCcfieuG3Pd\nkHVzAocOVwdYhkWGISNKgU5Om4zvzPoO3qt8Dy2OFrAMiyX5S3DXxLuGvxADHV/OFQoF8K1vUcN+\nrM8GNqlv2EA5tkCACCrWOKnBUKmoGOhM4XQSQVZWUlGQfMAtyWKh9Xo81LNYW0tkKZcTSXIcTRGR\n2jkA6s9ctow+37qVQqlyeWSY8nDTMs4UAw3FpQIjiRR7e2lY87Jl5+dYcVxSxEnyEmB/6368VfYW\nQnwIYAClTIn/nPGfmJEx4/Q7f8lR1VOFN8veRIYhA2q5GqIowuqy4sU9L+Ll616GglVgcd5i6JQ6\nrK9Zj3ZnO3IScrB62uqYg4onpU7CK9e/guOdx/GnY3/CxOSJGJc0DgzDQBRF7GnZgwxDBlaMWwEA\n2NawDd3u7rDV3ZIxS7C/dT+OWo+ClbHQKrT4aslXMSllUtRxyjvL8Wbpm3AFXQCADEMGvjnjm1ET\nSuZkzcHMjJlwBBzQyDUxfWHD6O2lG/5TT42sxEYLlo2ELUeC1UphzZwcIrA1a2i/CzVYeNs2+rO4\nmEKUg8O+Eurq6JooFESOcjnlMXmewsazvpiq0tNDoU+p6Eci3dTU0avJ/9/evcc3Xd57AP/8cm3a\nJm16S1N6Ly0FWgoIgsp1iIoXFEWPelT06NzmpsfpvJw5Hc4hQ9Ezdbo5AUWcnk0FRIUKQ0DAQQUK\nyEVsaUPbtKGl6SVN0ub2nD+eJW3aBlua9tek3/frlZfml+aXp7+UfPN9Lt+nP1pbeebYdWcOnY5n\nwLNn88DpdvMdTxYv9s+USUigIDnEjK1G/PXgX6GL1vm6C21OG9745g0sv3w5kqKSRGlXvbUetZZa\naJQaZMZm+mVkQ2lr+VaoFWpEyCLgdDtxvOE4qlqqYOmwwO6047+n/zfGJo7FxaMu9ptkcz4apQZZ\n2ixIBIkvQAJ8vFAfrccX5V/gmtxrIAgCSmpL/MYINUoN5ufMx/H647gu7zpcm3etryiBV01rDV7d\n/yq0Ki3SY9LBGEOjvRErv16J5Zcv9+slkEqkfuOSARUX8/G67duBG27o0+8ZFJ9+yifDSCR8Ek5l\nJXD0aN+yyUC+/poHi+7naGnpDDBu9/mXpOTn89qrOh3vLrZaeZCsqOAZt3e8UCIB/vY3nnVqtf7j\no42Nwc0mAd4t3dzcc2atxcLHbufO5e9jcTGvNHTnncF7bTIkKEgOsf3G/ZAIEr/xtEh5JM7hHEqM\nJb6MZqi4PC6sO7IOu87sgkSQgDGGjNgMPHjxg4M2ocTlceHUuVNo6WhBcnQysmKzfIHrrO0sIuWR\nYIyhxFiCBlsDNEoNPB4PzHYzXvz6Rfx29m+REdu5Q0ijrRGff/859hv3QyFVYHLKZKRr0hGliMLY\nhLGIUkTB5rRBEHpOwlHKlKi31vvuR8oj0ej0L4smESTQKDXIT8jvESABYJeBXzvvuKcgCEiITICh\n2YCjpqOYnja9fxfo3DkeHMeN6xzfCkY2+UO6ZpFeWu3AskmbjS+NUKn4NlVdNwH2Lpj3rrv0don2\nlk0qFMCVV/Iu4OPH+RhoRwfPCs1mfouK4oG9pIQXOO9+zUaP9t96KhimTOFjor3R63nw//BDfk13\n7OBdsJRNhhQKkkOsqb3Jr4aol1wiR0t7y5C3558V/8SOyh3I1HZmj3WWOvz5wJ/x1Myngr5bRYO1\nAS/vexkmiwmMMbQ6WpGiTsGPJ/8YhbpC5MfnY3fVbjjcDjTYGhCj/HfhaAFI0aTA7rRjS/kW/HTK\nTwHwMcTndz+P5vZmJEUl4dS5U/j0+08RGxGL8YnjESGLwE+n/BRjEsZAKkjhcDv8rv852zmMTxrv\n+z1/lPkj/OXAX6BRanzXw9JhgUquQn5C7zM069rqeh1TlggSnLOf6+UZP6C4mHePRkZ2BsyhyCa3\nbeOZl9Hof7y2li+5KCjo/Xnn49082G7n44qXXsqPd80ivXQ6XtKurAz4yU/8x0m9RcuLi3kAzMjg\nWaTdztv83Xc8CAM847zhBt7dOdgSE/ktkG++4cE/K4tnv1u2UDYZYihIDrHxCeN7FLdmjKHd1e7b\nWWIoFZcXQ6/W+wKC1WGFh3lwsPYgqlqq/DK2gWKM4a8H/wqzzYzk6GTsr9mPRnsjjpqO4tuz36JQ\nVwiVTIV9NfsgQIDT7US0IhqWDgtS1CmIUcZAKVWioqnCd849VXtgtpuREZuBBmsDTjedhj5aD4vD\nArVSDZVMhTe+eQMvXvEiFo9bjL99+zfERsQiUh4Js90MxhgWj1vsO9/01Ok4ee4k9lR1LrKPkEXg\noYsfCjiGmBefhxP1J3rUaPUwj6/oep95g+KoUfx+cvLQZZOzZwfeoipQtnQ+NhuwYQMPfk4nX3c5\ndSrPJvfs4d2U3QsNHDvGZ6xOnw5Mnuz/mMfDZ6x61yTK5Twwut0801y6dHB247hQ3izSW5hAr6ds\nMgRRkBxik/STkB2bjcqmSiRFJ4ExhnprPfLi81CYdAGbwQ4AYwwt7S1Ii0kDYwzH6o/hdNNpAIDN\nYcPvdv0Ov5v7O4zSjArK69Vb61HeVI50TToO1h1EU3sTtCotNEoNTFYTjOVGpKhTMDtjNvbV7IOh\nxQCpIEWBrgC58bkQBAEWh8UvoztefxwaJV+ScKblDORSuW8NZXN7MxLiEtBga8BR01FckXMFkqKS\nUFxejHpbPaakTMHVuVcjVZOK1o5WWB1WxEfG495J92J+9nwYmg2IkEVgfNJ4v6Ul3c1Mn4ltp7eh\nzlIHXbQOHuaBsdWIjNgMjE8a37+L5M0ivRNOFAo+UWUossmMDH4LFm8WqdPxblGDoTObnDrVv1sX\n4F2hL7/MA8iHH/Iyc95skjF+be6/339mqZdUOjRd0v1x6FBnFgnw91QQKJsMMRQkh5hSpsSvLv0V\ntldux+4zuyEIAm4efzPmZc3rURlmsAmCgPFJ41HZVAm7y44ycxliI2LBGINEkEAqkeKP+/6I5Zcv\nD8reh949G50eJ4ytRt/4ngABZpsZOdocWDos0Cg1uDbvWhSXF8PusiMvPg9SiRRWhxVWpxVXjb7K\nd86EyASUmcughRYOtwNSgX+oMjBft6oAAXaXHYIgYJJ+EibpO/cHtDqs+MuBv6DEWAIBAiJkEbh5\n3M2YnTm7z1m0VqXFr2f+Gh+e+BClplJIBSnmZM7BjWNv7N91s1p5YHG5eKbk5XbzZRLXXOM/ptdf\njAHvvsszxszM/j+/rY1PSOnL5sNds0iv+PjObDIpid+6WrWKj4GmpvIJQ0eOdGaTp0/z3Uhuuw24\n8cb+t10MGzfyLwld16W6XPy9vPZa/2pGZNiiICmCKEUUFo5ZiIVjAlT2GEI3jb0Jy3YvwxHTESil\nSjjcDticNhQkFSBFnYIzLWdQbi4POB7XH3q1HiqZCs32ZrR08LWN3mAsk8oQIY9Ah7vDt1fknMw5\n2GnYiYqmCihlSqgVavxi6i+QF5/nO+esjFnYdWYX2l3t0EfrcbbtLARBgEKiQHJ0MhhjYGAYHddz\nDR9jDG8efBPH6o8hVZPq2wFkTekaaJQaTE6Z3OM55/vdHpr2EJxup+938jLbzfi6+mvUtNYgIyYD\nl6RdgtiI2J4niYzkC+t723FCLvdfQ3ghKip44eyGBuDRR/tfA3T9ej42uWzZD2/+u3cvH8vsXvKu\nuZnXPL3kEv/jDQ3An//cmcl6JwwVFfEJQxs28K7ULVt41/Nw6lYN5PbbO3cr6Uoi4ZOMSEigIBmC\nbE4brA4rYiNiB5x9Zmmz8PSsp7Fk4xJYOiyIkkWhIKkAo9S8i1WAELTtnBRSBRaPXYyHvngIze3N\nkEvkYGBwup1QyVWwO+2IlEdCJeNjf3KpHBN0E/Dc3OfAwJAYldgjM8vWZuPmcTfjoxMfgYEBAp/M\nMz11OmxOGxptjZiRPgPZ2uwe7alrq8O3Z79Feky6b+JOhCwCcZFx2PT9pn4FSa/u74eh2YAVe1ag\nw90BlUyFkpoSfF72OZ6c8SRSNan+TxYEnkUNBsZ4oImP56XeKir4BJe+amjoLGt36FDnusRAcnKA\nRx7p/bHefsd33uFrDisrgdzczuUn69bxcdJjx3j2W13Nu55DIZsc38+u9oHq6OBZa27u0L5umKMg\nGUI6XB34x/F/YNeZXWCMQSVXYfHYxZidOXtAs1AzYjOwpGgJ9lbv9fvgdnvcvoo3weL0ODFaOxox\nyhiUNZZBJVchXZOOqtYq1FvrcWXOlb6F/jWtNfhR1o+QrO69bNuJ+hNYd3QdTFYT3MyNjJgM3D/5\nfpjtZhyoOwClVImbx92MaanTer0+ZrsZEkHS4zG1Qh2UnTkYY1hTugYyiQy66M5ux3prPdYdWYf/\nmfk/A36NPquo4MExM5MHvA0b+pdNbtnCM6DERJ7hTZ58/mwyO5vf+sJsBj74gJ+/rY2vL8zK4lnn\nypU8SGq1vK3JyaGVTQ6lr77i780LL/AvGSQoKEiGkHePvIs9VXuQFpMGmUQGu9OO1aWroZKrMC11\n2oDOfXXu1ThQdwA1LTVIiEpAu6sdjbZGXDvm2qCulzxQdwAZsRkoSi7ClJQpKDeXo6W9BZkxmciO\ny0a7ux1VLVXwMA8mJk/EzeNuBsCXjmw9vRVHzx5FTEQMChILsPHURmiUGqRr0uFhHtRaavGl4Uv8\nZtZvsDD/h7uyk6KS4GZueJjHr3hCc3tzUGb1mu1m1LTU+FXdAYDEyER83/g9LB2WXtddBp03i4yK\n4oEmMbF/2aQ3i0xJ4V2+lZV9yyb7ymjk5/YWFTCbeaHxPXt40DxwoHPSkneHkFDJJoeK3c7HQNva\n+LW56SaxWxQ2KEiGiEZbI76u+RoZsRm+D3SVXIXEqERs/G7jgIOkLlqHZ2Y9g+LyYhw+exjaCC3+\nY/x/DPi83UUpouBsdQLg+y1OSeFb/xiaDbh/8v1I0aTAbDcjMTIRqZpUCIKAems9ntv1HGxOG+Ij\n42FqM2HTd5ugVqpxWfplAACpIEVaTBoqmipQ1liGMQljfrAtSVFJuCT1Enxd/TVGaUZBIVWgtaMV\nrR2t+NnUnw34dxUEgXcBd8PAei1sMGi6ZpG8YTxg9jWb9GaR3jHR+Pi+ZZN9wRiv8pOR0bneUCLh\ngdg74cXl4oHSWxvW4+HPufzy3outDwdu98CvTX/s2cMnS2VldWbalE0GBQXJEGG2myGBpEe5OLVC\njTMtZ3pkQxdCF63DkolLsARL+vU8xhiOmI5gS/kWmKwm5MXl4Zq8a3z1T7uakzEHB40HEaeK801u\nsTqsUEgVKNAV+MridbWlbAtsTpsvI4uUR0ImlaG2rRZ2p73H+sVztnMYgx8OkgBwz6R7oFVpsb1i\nOxxuB3TROjw8/WGMSxzXr2vQG22EFqPjRqOmtcavu/Vs21kUJBWcd1lJUG3ezCMf7nAAACAASURB\nVD9Au86YZQw4eBA4c+b8M10bGnhmkpTEx7wAvgSjqio42aR3v8mubUhOBt57j6/NTEnhH/ZmM186\n4g2Kg1VLNhhKSnjQ+uUvh2aDZG8WmZTEJ3h5PJRNBhEFyRARHxkPD/P0CIatHa2+mZli2WnYibcP\nv43YiFhEyaPwbf23OFR3CE/OeBK58f6TCCboJuDaMddic9lmAHxikEKqwM+n/ty33rG7UlMpEqP8\nq5poVVo0WBvQ3N7cI0j2p3tYIVXglvG3YFH+InS4OxAljwpahicIAu6ZdA9W7FkBQ7OB73npdkKr\n0uKOCXcE5TX6ZMGCzko33Z2vWgzAS9UlJvLMqOusW28N1YEGycOH+X+7LpNob+czYzMzO9cY1tTw\nADDcP/hdLuAf/+BdyGVlQF7eDz9noLxZpPe91OspmwwigbHuJS/Cg3fyRzhZU7oGOw07kaZJg1wq\nh9VhxVnrWTx48YOYOipI40P91O5qx8PFDyM2ItavHm2jrRG6aB1+M+s3vT7P1GZCubkcCqkC4xLH\nnTerenrH07A6rH5BtLm9GZ9//zkuTbsUWdos3wL+tJg0PDP7GVG/NHRndVhxoPYA6trqkKpJxWT9\nZNoazcvj6VkcfN063p2alNSZibndPBD88Y9DW62GMb40ZcGCzoB9Pvv28Z+PjuazeJ98cnCzSbud\nZ6xyuf/uJrW1fMx2uH+pEEF/YwNlkiHkjgl3IFIWiS8NX8LlcUGj1OD+i+73jet15d31XipIB3Xs\ny9RmgsPt8AuQAN8cudxc3qNWqldydHKfNxuenz0fbx18C9GKaF/w8zAPLkm9BIlRiahq4VnIRfqL\ncMeEO4ZVgAT4OOzszCGoIxqKJJKeXacpKXyxfVcWCx/j676GlDHeZZuXNzjBaMsW3nVps/3w+K3L\nxYslJCTwIPndd4OfTZrNPHP0doV7ZWQEv5j7CEVBMoQopArcWngrFo1dBJvTBo1S47doHeDB8V81\n/8LGkxtRb6tHUlQSFuUvwvTU6YMSLL07djDG/M7vcDugkquCUqnnsrTLYGgy4EvDlxDAJ8NoI7T4\n/bzfI1WTiiY7Lxo/JDNFyeC78kr/+4zxZQ0SSc8qPd9/D6xYATz1VP/WffaF0cjPm5vbt9nABw7w\n2rve8dXoaODjjwc3mxw1Cvjtbwfn3AQABcmQpJQpoZT1Ur8SfNum1aWrkRSVhMzYTFg6LHjjmzfg\ncDsGJZtJjEzE2MSxKGss89V4ZYyh1lKL6/OvD0pWJ5VIcdfEu3DF6CtQ1VKFSHkkxsSP8S3cH6wt\nvYLJ2GpEibEEVqcVBUkFKEgqCMoXiBGhvJxX+gF4eTrvLFfGeBBqa+v/us++WLWKZ2NGI98B5Xyv\n4XIBb7zh33WckDA02SQZVPSvNIy4PC58fPJjpKhTfJNZ1Eo1ZBIZPjrxES5LvyzoH8yCIODHk3+M\nV/e/CkOzwdffPz11etD3xuxPF+1wsrtqN9aUroEEEsgkMmw7vQ0FSQV4aNpDAb/sjHiM8WDEGC+H\nFx3dud7zV7/ij3lnxo4de2FVhM7HaOSvlZjIg7DHc/7XOHqUF2+XSPj4oLcL2enktVopSIYsCpJh\npLm9GVantUdmpZKr0GBrQEt7y6BkXVqVFk/PfhqVTZW+jZRT1ClBf51Q1NLegncOv4PkqGRfQGSM\n4dv6b7Gnag/mZc8TuYXD0IEDPHO8667OLNLbhXnsGM8mc3J4Fhkd3f91n32xahUfh9Tr+VjoyZO8\nzFyg12hu7txv85pr+N6XXsNtdxLSL8NrhgMZkGhFNKSCFE630++40+2ETCJDlGLwiipLBAly4nIw\nWT+ZAmQXpxpPwe1x+2WMgiAgXhWP3VW7RWzZMOVy8Y2Xt23j2Zw3ixQE/2B46hS/eWe6dq0iNFC1\ntcBnn/HiCa2tfFLM2bN8OUxpqf96UwBwOIBNm3ggz8zkSzJ0Or7OMy2NlmGEOMokw0iELALzsuZh\nS/kWpMekQyqRwu1xo7q1GtfkXdNjBmo4YozBaDGiprUGUfIo5CfkX1AReLfHjVONp3DafBpqpRqT\nkichJiJ4tUKHrNpOqPFOflGpgNWreSBMTe3cTUOt5msrTSberdl1lw2pNDjZ5Gef8b0uu9aGbWvj\nrz1rVs+dTfbv55mkN9s1GPixmTMvvA1k2KAgGWZuHHcj2t3t+OrMV5BAAg88mJc1D4vyF4ndtEHn\n8rjwdunb2FO1xxeE4lRxeOSSR3ruuHEeHa4O/KnkTzhafxRSQQoP8+AD6Qd4aNpD/d5EeUz8GEgF\nKTpcHX7dreds53B17tX9Otew8s03fKnGqOBsyA2gcwlFfDzPGPfu5WsTu6+jTEzkQSkuzv+x+Hge\nNB2O3jdm7gvGgJaWnuOOCQk8s9y2jWeSTz3FA7HDwbt9uxZlSEzkx6ZN47VmSUijYgJhqrm9GWa7\nGXGqOL+9C880n8Gn33+KU+dOITEqEVePvhoXpVwUFpnNP0//E2uPrEWWNss3q/ac7Rwi5ZFYPm95\nj+UygWwp24IPjn2ArNgsCIKAdlc7TBYTGBjevPZNRMj7l5HvMuzCO4ffgUSQQC6Vw+60Y1ziODw8\n/eHQnLjT1sYXsI8ZE9wZpfv2AX/5S2dGVlsLXHQR8JOfBOf8A7VpE89UPR6+rGPsWN61unIlD9hd\nmc18gtGMGeK0lQRExQQIAF48vPvGvqfNp/H87uchl8oRp4pDo60Rr+x/BbcX3o4FuQtEamnwbK3Y\nCl20zm/ZSUJkAs40n0FFU0WPEnmB7DDsgC6K11o9Vn8Mp82nAQAWhwWPbXsMv5v7O2hVfd9Vfnbm\nbOTE5aDEWILWjlZM0E1AYVLhgPcCFc3OnTzrC+aM0q5ZpFdyMvCvfwHXXcezVjFZLLwbVq/n45Qf\nf8yzyeTkwEE8OfRmYpOeKEiOIB+d/AgRsghfHVSFSoEoRRTWn1yP2ZmzQ75UmtVh7XXcUBAEtLS3\noN3V3qdxWZfHBblEDkOzAd83fo/YiFhf4DW2GvH6N6/jqZlP9Sv7TtWk9qvLd9hqa+Ml45KTeZdn\nsGaUfvstr88aFcXXJnrPZ7PxJRR3DGGt297s2MEDuULBA3lZGV8DOXZs57pNEpYoSI4QHubByYaT\nyIjx3ydRIVX49mIcHRfa/9gn6Sdhf81+X1EDAGi2N+NEwwn8cf8fIZfKMVE3EbcW3Oq3K0d3l6Re\ngs1lm1FuLveVwnN5XBAEAWMSxqDcXA6jxRgeQa+/du7sHPNLSgpeNjl6NPDMM3ypxYEDPCh6A2X3\nrsyh5s0ivZmhIPBJPB9/DNxzD2C10jrIMEZLQEYIAQLUCjXaXe1+xxlj8DBPyGeRAHBd3nVQypSo\nbqmGzWmDyWLC1tNbEauMRbY2G2maNBxvOI4Ve1egzdEW8DxX5FwBXbQODbYGON1OWDossDgsKEwq\nhFKmhFSQwtJhGcLfTCTff8/XJXp1zSIBHiwiI3k2OdDxf7Waj3F+8w3fS1IuB8aN47fkZL70wmgc\n2Gv0l83G/7tzJ98yrL6eZ7s1NXyGa2kp8NJLvKC503neU5HQRUFyhBAEAVeNvgq1bbXwsM4ZgXVt\ndciNz4U+Wi9i64JDF63Db2f/FvOy5kEiSCBIBOTG52Ja6jRIBL4XZ4qab+r8jfGbgOeJiYjB07Oe\nxpzMOVDIFEjTpGFOxhxkabPg8rjAwMJ/LajbDaxZw5dheAOAN1g0NfElGCYTn8RSUhKc9YmHD/O1\niPHxfH2kN/DabHxCzwcfDDwY99WZM8BvfsNnuqal8Yxx4cLO2/XX802fq6r4JJ2SkqFpFxly1N06\nglyRcwVMbSbfEgkGhoyYDPx0yk/DYnYrACRGJeL2CbfjdtyOtUfW4l/V/+rxu6lkKlQ2V2Iu5gY8\nT5QiCk/OeBLLvloGpUwJjVIDS4cFZ61nccOYG4K6ZnJY8gYsgAeAyy7jyyACbb0kH+AkJLcb+PBD\n3rWq0fBuV2/N06++4gv6g1167nw++YRX9vnnP/nvPHGi/+OM8cLqOh1f0/nRR8DFFw/8OpBhh4Lk\nCCKXynHv5Htxbd61qGurg0apQWZs5rDbWipY9FF6dLg7ehzvcHX0KRPM1mbjqVlPYcN3G/Bdw3eI\nj4zH/RfdjxnpYT6tv2vAkko7A8D06fw2GLxB2btnY3Q0zyYffJAHrORkPqt0MAqZd2cwAIcO8TJ0\nW7bwjDGm25eisjIeyDMzeVsqKzu/TJCwQkFyBNJF6847cSVcXJx6MTae2ohGWyPiVHzyR1N7E5Qy\nJaaNmvYDz+aytdl49JJHB7OZw0/3gDXYAaBrUPZKSOBB6IMPeIEAnY5PFhqKbHLTJr6BsULBu5O9\n2aRX16Lr3mCdmEjZZJgKzxSCEPC1oo9f9jg0Sg2qWqpQ1VoFtUKNxy97/LzrHGsttVh9aDUe/eJR\nLN+9HIdqD42cwhS9BSxvABisySmnTvHJMK2tvJpNdTW/b7MBa9fyAAn4124drPfDm0V6X1Ov59lk\nS0vnz5SV8Uk7EgnQ2MhvHR28zTQ2GXao4g4Je4wx1FvrwcCgi9Kdd/y1uqUav//q92CMIS4yDjan\nDU32JtxWeFtol5Hrq0OHgGXLOguHezU08G7OwcgmOzp6n7m6axdfZpGW1nmMMT5R5vnnB2d94quv\n8l1HuhYCqKriO3t4s8kTJ4Dt23t//uTJ1OU6zFHFHUK6EQShz93LG77bAEEQoFfz2b4RsgioFWqs\nP7keszJmIVoRPZhNFV9kZODJORrN4LymUglkZ/c8bjIBixf3/hxp30oMntexY3yZy4038vvNzbyL\nt6PDf6cPj4fXkV20iGeP3qUpZESgIElIF0fPHu2xHEYulcPDPKhprUF+Qr5ILRsi+fn8Nhxceim/\nDQa3G3j/fR4MZ8zghRFiY4EXX+xZUB3gxc0lNDo1EtG7TkgXaoW6x4xYxhgYY1DJVCK1igTdkSO8\ni1epBIqLO49HR/OMufstMvSLbZALQ0GSkC6uHH0l6trq/Aou1FvrkRaThvSYdBFbRoLG7eYTkbRa\nPjFnxw5eTYeQXlCQJKSLy7Mvx6z0WahuqUZVSxXONJ9BTEQMfj7152FTcOGCmM18W6hw4M0iY2P5\n2KZU6p9NEtIFzW4lpBe1lloYW41QK9XIjcvt816UYeudd/h6wf/9X/8NhkON2w08/TRfXhIb23ms\npoZX0ElKErd9ZND1NzZQJklIL1LUKZg6airyE/KHLEC2u9phtpvh9riH5PX6rL6eL8eQy/mawWCz\n24HXXuMF1Afb8eN8nWNrK1/aUVXFs8qWFv4lgJBuaHYrISJzuB1Yf2I9tlduh5u5oVaosXj8YsxI\nmzE8ung3b+Zdkno9L3K+YEFws8ndu4GtW3mJt+uuC955e5OaCjzxRO+PdV8bSggoSBIiunePvIvd\nZ3YjVZMKuVQOm9OGtw6+hQhpBKaOmipu47xZZGoqD5QSCc8m77orOOe324GNG3lhgM8+A+bO5TNM\nB0tcnPj7U5KQQt2thIjIbDdjb9VeZMRmQC7lNT8j5ZGIV8Vj43cbRW4dOrNI7+J9bzbZ0BCc8+/e\nzccHY2L4Zs47dgTnvIQECQVJQkR0znbOt9dlVxqlBrWWWnEnn9XXA9u28Zqp3v0jGxr4+F0wxia9\nWaS3TmpyMs8mh2Js8oc4ncCbb/K9M8mIRt2thIgoXhUPDzzwMI9foLQ4LNCr9eKPSS5Y0Hsx8ZQg\nbDrtzSK9M0qVys5scrDHJn/IgQM8i9ZqgVtuEbctRFQUJAkRUXxkPC5NvRR7qvYgLSYNMokMdqcd\nDdYGPDjtQXEbl5QE3HHH4Jzb6eRZo9PJZ5h2Pf7558D8+Xy7KjE4nXwnlMxM4IsveFu0gXeNIeGN\ngiQhIrur6C5EyiOx07ATbuZGlDwK902+D1NTRJ60M5ikUuD++3vffksmE3dPxgMHePGEzEzAYuFd\nzpRNjlghWUxg6dKlWLVqFRL/PQ19+fLluOqqq/x+hooJkFBjd9phdVoRGxELmYS+v4rC6eRLRAQB\nUKv5fZMJWLmSsskwMSKKCQiCgEceeQSlpaUoLS3tESAJCUUquQoJkQkUIMXkzSLVan5fLudjstu2\nidsuIpqQDJIAKEskg6rJ3oRyczma7DS7ccRgjM+2bW/vrMZTVcWzyS++4F2vZMQJ2a+sr732Gt59\n911MmTIFL730EmK9dRgJGQCH24F1R9Zhb/VeSCCBBx7MSJ+BOybcAYVUIXbzyGD7z//kM2y7k0jE\nm0hERDVsxyTnz58Pk8nU4/iyZcswffp033jk008/jbq6Oqxevdrv52hMklyI9799H1+Uf4GM2AxI\nBAk8zANDswFXj74atxbeKnbzCCED1N/YMGwzyW19HAO47777cF2ANVVLly71/f+cOXMwZ86cILSM\nhCu7044dlTuQFpPmW7MoESRI06ThS8OXuGHsDYiQUTYhitpaPk7oHSskpI927tyJnTt3XvDzh22Q\nPJ+6ujro9XoAwIYNG1BYWNjrz3UNkoT8EKvTCjdz95g4I5fK4fK4YHPaKEiKweUCXnkFGDsWuPtu\nsVtDQkz3BOnZZ5/t1/NDMkg+8cQTOHz4MARBQFZWFt58802xm0TCQGxELKLkUbA77VDJVb7jNqcN\naoUaGqVGxNaNYKWlPJOsrweuvpr2fCRDatiOSQ4UjUmSC7HLsAurDq1CUlQS1Eo1Wjta0WBtwI8n\n/xizMmeJ3byRx+UCfv1r/t/WVmDmTGDJErFbRULYiFgnSchgmZUxCw9MfQByqRyGZgOUUiV+cfEv\nMDNjpthNG5lKS3kGqdF07kBSXy92q8gIQpkkCVntrnYcMR1BraUW+mg9ipKL/LpJB8rtcUMqkQbt\nfKSfumaRmn93ddfUUDZJBiRsZrcScj4N1ga8sPcFNNgaIJPI4PK4EB8Zj8cvfRy6aF1QXqN7gHS6\nnTjRcALnbOeQGJWIsQljfXtAkkFQWgoYjUBaGl/gD/DScNu3891JaGySDAEKkiQkvXf0PbR0tCAz\nNtN3zGQxYe2RtXj8sseD/npmuxkrv16JWkut79gozSj86pJfQauimp6DoqaG7zHZvQi6TgfU1VGQ\nJEOCgiQJOZYOC47WH0WaJs3vuC5ah5MNJ9HS3oKYiJigvuZ7R99Dg7XBLygbW4147+h74m9pFa4W\nLeI3QkREE3dIyPEwDxhjEND7hsRu5g7q61k6LCg1lUKv1vsd16v1KDWVos3RFtTXI4QMHxQkScjR\nKDXI1maj0d7od9xsNyMtJg3aiOB2fzo9TghM6BGUBQhgYHC6e9kTkRASFihIkpAjCALuKroLbo8b\nVS1VaLQ1orqlGk6PE3dPvBuC0HuGeaG0EVokq5PR3N7sd7y5vRmj1KMQG0HF9QkJV7QEhISsRlsj\ndlftxpnmM0iPScfMjJlIiEwYlNc6de4UXvz6RQgQoFaqYeng2yY9dtljyIvPG5TXJIQEX39jAwVJ\nQvqo1lKL7RXbUdVShYzYDPwo60dIUaeI3SxCSD9QkPw3CpKEEEK6o7J0hBBCSJBQkCSEEEICoCBJ\nCCGEBEBBkhBCCAmAgiQhhBASAAVJQgghJAAKkoSQ0GazAeXlYreChCkKkoSQ0LZtG7ByJdBGheZJ\n8FGQJISELosF+PxzHiB37BC7NSQMUZAkhISu7dsBlwtISwM++4yySRJ0FCQJIaHJYgE2bwaSkwGl\nEnA6KZskQUdBkhASmrxZpELB7+t0lE2SoKMgSQgJPRYL8OmnQHQ0D4ptbTyTtFgomyRBJRO7AYQQ\n0m9mM5CezjPJrnJygNZWcdpEwhJtlUUIIWTEoK2yCCGEkCChIEkIIYQEQEGSEEIICYCCJCGEEBIA\nBUlCCCEkAAqShBBCSAAUJAkhhJAAKEgSQgghAVCQJIQQQgKgIEkIIYQEQEGSEEIICYCCJCGEEBIA\nBUlCCBmO3G7A4RC7FSMeBUlCCBmOPvoIWLNG7FaMeBQkCSFkuGlqArZtA/btA4xGsVszolGQJISQ\n4WbrVoAxQKEAPv1U7NaMaBQkCSFkOPFmkcnJ/EbZpKgoSBJCyHDizSLlckAioWxSZBQkCSFkuOia\nRXpRNikqmdgNIIQQ8m+lpUBHB2Ay+R93uYD9+4EbbxSnXSOYwBhjYjdiMAiCgDD91Qgh4crlAtra\nen8sMpJ3vZIB6W9soCBJCCFkxOhvbKAxSUIIISQACpKEEEJIABQkCSGEkAAoSBJCCCEBUJAkhBBC\nAqAgSQghhARAQZIQQggJgIIkIYQQEgAFSUIIISQACpKEEEJIABQkCSGEkAAoSBJCCCEBUJAkhBBC\nAqAgSQghhARAQZIQQggJgIIkIYQQEgAFSUIIISQACpKEEEJIABQkCSGEkAAoSBJCCCEBUJAkhBBC\nAhi2QfLDDz/E+PHjIZVKcejQIb/Hli9fjtzcXOTn52Pr1q0itZAQQki4G7ZBsrCwEBs2bMCsWbP8\njp84cQJ///vfceLECRQXF+OBBx6Ax+MRqZXD386dO8VugujoGtA1AOgaAHQNLsSwDZL5+fnIy8vr\ncfyTTz7BbbfdBrlcjszMTIwePRolJSUitDA00D8KugYAXQOArgFA1+BCDNsgGUhtbS1SU1N991NT\nU2E0GkVsESGEkHAlE/PF58+fD5PJ1OP4888/j+uuu67P5xEEIZjNIoQQQjg2zM2ZM4cdPHjQd3/5\n8uVs+fLlvvtXXnkl27dvX4/n5eTkMAB0oxvd6EY3uvluOTk5/YpBomaSfcUY8/3/woULcfvtt+OR\nRx6B0WhEWVkZLr744h7PKS8vH8omEkIICUPDdkxyw4YNSEtLw759+3DNNddgwYIFAIBx48bhlltu\nwbhx47BgwQK88cYb1N1KCCFkUAisa5pGCCGEEJ9hm0leKCpC4G/p0qVITU3FpEmTMGnSJBQXF4vd\npCFTXFyM/Px85ObmYsWKFWI3RxSZmZmYMGECJk2a1OuwRDj6r//6L+h0OhQWFvqOmc1mzJ8/H3l5\nebjiiivQ3NwsYguHRm/XYSR9HlRXV2Pu3LkYP348CgoK8OqrrwK4gL+FC5xPM2ydPHmSnTp1qseE\nn+PHj7OioiLmcDhYZWUly8nJYW63W8SWDo2lS5eyl156SexmDDmXy8VycnJYZWUlczgcrKioiJ04\ncULsZg25zMxM1tjYKHYzhtRXX33FDh06xAoKCnzHHnvsMbZixQrGGGN/+MMf2BNPPCFW84ZMb9dh\nJH0e1NXVsdLSUsYYYxaLheXl5bETJ070+28h7DJJKkLQExuBPeolJSUYPXo0MjMzIZfLceutt+KT\nTz4Ru1miGGnv/8yZM6HVav2Obdq0CUuWLAEALFmyBBs3bhSjaUOqt+sAjJy/h+TkZEycOBEAEB0d\njbFjx8JoNPb7byHsgmQgI7kIwWuvvYaioiLce++9I6KbCQCMRiPS0tJ890fS+92VIAi4/PLLMWXK\nFLz11ltiN0c0Z8+ehU6nAwDodDqcPXtW5BaJZyR+HhgMBpSWlmLatGn9/lsIySA5f/58FBYW9rh9\n+umn/TpPuMyKDXQ9Nm3ahJ/97GeorKzE4cOHodfr8eijj4rd3CERLu/tQO3duxelpaXYsmULXn/9\ndezevVvsJolOEIQR+/cxEj8P2tracNNNN+GVV16BWq32e6wvfwshsU6yu23btvX7OaNGjUJ1dbXv\nfk1NDUaNGhXMZommr9fjvvvu61clo1DW/f2urq7260kYKfR6PQAgMTERixYtQklJCWbOnClyq4ae\nTqeDyWRCcnIy6urqkJSUJHaTRNH19x4JnwdOpxM33XQT7rzzTtxwww0A+v+3EJKZZF+xbkUI/u//\n/g8OhwOVlZUBixCEm7q6Ot//b9iwwW+mWzibMmUKysrKYDAY4HA48Pe//x0LFy4Uu1lDymazwWKx\nAACsViu2bt06Yt7/7hYuXIi1a9cCANauXev7wBxpRtLnAWMM9957L8aNG4eHH37Yd7zffwuDObtI\nDOvXr2epqaksIiKC6XQ6dtVVV/keW7ZsGcvJyWFjxoxhxcXFIrZy6Nx5552ssLCQTZgwgV1//fXM\nZDKJ3aQhs3nzZpaXl8dycnLY888/L3ZzhlxFRQUrKipiRUVFbPz48SPmGtx6661Mr9czuVzOUlNT\n2Zo1a1hjYyObN28ey83NZfPnz2dNTU1iN3PQdb8Oq1evHlGfB7t372aCILCioiI2ceJENnHiRLZl\ny5Z+/y1QMQFCCCEkgLDubiWEEEIGgoIkIYQQEgAFSUIIISQACpKEEEJIABQkCSGEkAAoSBJCCCEB\nUJAkhBBCAqAgSQghhAQQkrVbCSE9HTx4EOvWrYNUKoXBYMCqVavw5ptvorm5GUajEc8++yyys7PF\nbiYhIYWCJCFhoKKiAm+//Tb+9Kc/AQDuvvtuTJ8+HWvXroXH48HMmTMxefJk/PKXvxS5pYSEFgqS\nhISBl156CS+88ILvvtVqRVxcHKZPn46amho8+uijuPvuu8VrICEhimq3EhIGDAYDMjMzffdTU1Nx\nzz334LnnnhOvUYSEAZq4Q0gY6BogT506hdraWsydO1e8BhESJihIEhJmvvzySygUClx66aW+YxUV\nFX4/Y7FYsHjxYr+NqQkhPVGQJCTE2e12PP744zh27BgAYNu2bSgqKkJERAQAwOPx4MUXX/T9/OrV\nq/Hyyy9j/fr1oNEWQs6PJu4QEuI2b96MlStX4qKLLoJMJkN5eTliY2N9jy9btsxv0s69994LAHj2\n2WeHuqmEhByauENIiGtsbMRjjz2GhIQESCQSPPPMM3jggQcQEREBhUKB66+/HvPmzevxPIlEAoPB\ngPT0dBFaTUhooCBJyAhFQZKQH0ZjkoQQQkgAFCQJIYSQAChIEjKC0WgLIedHQZKQEeb999/HAw88\nAEEQ8OSTT+L1118Xu0mEDFs0cYcQQggJgDJJQgghJAAKkoQQQkgAFCQJKyNeEgAAADVJREFUIYSQ\nAChIEkIIIQFQkCSEEEICoCBJCCGEBEBBkhBCCAmAgiQhhBASAAVJQgghJID/B8yPLeZ5RdCsAAAA\nAElFTkSuQmCC\n", - "text": [ - "" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAHPCAYAAAA4ZiFsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl8VPW99z9n9slM9m0SEkjYQREQRBEXUNBWRAW8t3W5\nilZve7WP29Nb6dMFsIug1mp7a8tTfa715W2tgsaFsgtoEBAiQRDCnoQkZJ9JMpn9nPP88eM358yW\nTPbt+3698prkLL/zmzNwPvP9/r6LIMuyDIIgCIIgItAM9AQIgiAIYrBCIkkQBEEQMSCRJAiCIIgY\nkEgSBEEQRAxIJAmCIAgiBiSSBEEQBBEDEkmC6ACNRoMFCxb0eJz58+dDo6H/bgQx1KD/tcSgRqPR\ndOnnr3/9a6/PQRCEXhmjN8bpTXbv3h1x/ywWC3Jzc3HjjTfixz/+MUpLS3vteitWrIBGo0FlZWWv\njdlXDKW5En2LbqAnQBAdsWrVqhBxkWUZr7zyClpaWvDUU08hJSUl5PiZM2f26vXLysqQkJDQ43He\neustuN3uXphR71NQUIAVK1YAAHw+HxoaGlBSUoKXXnoJL730Eu69916sX78eFoulx9cabF8UOmIo\nzZXoO0gkiUHNqlWrIrb993//N1pbW/HUU09h9OjRfXr9iRMn9so4+fn5vTJOX1BQUIBf/OIXEduP\nHDmCBx54AH/729/Q3NyMf/7znz2+lizLGCpFvobSXIm+g9ytxLCBr/v5/X4899xzmDRpEkwmEx56\n6CEAQGtrK1588UXcdNNNyMvLg9FoRFZWFu68807s378/6pjR1iRXr14NjUaDPXv2YMOGDZgzZw4s\nFgvS09Nxzz33oKamJubc1HB355o1a1BaWorFixcjJSUFFosF8+fPx759+6LO6eLFi3jooYeQlZWF\nhIQEzJw5E2+99VbIeL3B9OnTsWPHDmRmZmLLli348MMPQ/YXFRXh/vvvx8SJE2G1WmG1WjF79mz8\n4Q9/iBAXjUaDt956CwBQWFgYdO8WFhYGjykpKcGTTz6J6dOnIz09HWazGRMnTsSPfvQjOByOiPn5\nfD78/ve/x5VXXom0tDRYLBYUFhbirrvuws6dOyOOLysrw4oVK5Cfnw+j0QibzYb77rsPp06d6vJc\niZEDWZLEsGPZsmU4dOgQbrvtNixbtgxZWVkAgOPHj+NnP/sZbrzxRixZsgSpqamoqKjARx99hM2b\nN+Pjjz/GrbfeGjFeLLfba6+9ho8++gh33nknFixYgP379+Mf//gHjhw5gtLSUhgMhrjGOXToEF54\n4QVce+21+Pd//3dUVFRg48aNuPnmm1FaWhpizdbX12Pu3LmorKzEjTfeiGuvvRYXL17EY489hkWL\nFnV4ne6QmZmJ73//+/jVr36F//mf/8Gdd94Z3PeTn/wEWq0Wc+fOxahRo9DS0oKdO3fiySefxMGD\nB4NCAzCPQFFREY4cORLiJle7y//yl7+gqKgI8+fPxy233AJJknDo0CG8/PLL2Lx5Mw4cOACr1Ro8\nfsWKFXjnnXcwbdo0PPjggzCbzaiursbevXuxdetW3HzzzcFjt2zZgmXLlkEURSxZsgTjx4/HhQsX\n8P7772PTpk3YtWtX0FUfz1yJEYRMEEOMMWPGyBqNRq6oqAjZfuONN8qCIMjTp0+Xm5qaIs5raWmJ\nur2qqkrOzc2Vp0yZErFPEAR5wYIFIdtWrVolC4IgJycny8eOHQvZd++998qCIMjvvvtuxNw0Gk3I\ntl27dsmCIMiCIMh//etfQ/atX79eFgRBfuyxx0K2P/zww7IgCPLKlStDth85ckQ2Go2yIAjymjVr\nIt5HNPj1w99fODt37pQFQZALCgpCtp87dy7iWEmS5AcffFAWBEE+cOBAyD6+Pfxz41RUVMiSJEVs\nf+ONN2RBEOR169YFtzkcDlkQBPmqq66Keo76c25ubpZTUlLkzMxM+cSJEyHHHTt2TLZarfKVV17Z\npbkSIwdytxLDjl/+8pdIS0uL2J6UlBR1+6hRo7B8+XKUlZWhqqoq7us88cQTuOyyy0K2PfroowCA\ngwcPxj3OddddhwceeCBk28MPPwytVhsyjs/nw9///nekpKTgZz/7WcjxV1xxRcQYvUVubi4AoKGh\nIWR7NPejIAh44oknAADbtm3r0nVGjx4d1Qp+6KGHkJiYGDIeP85oNEY9R/05v/XWW2hpacGaNWsw\nefLkkOMuu+wyPPLIIzh8+DBOnDjRpfkSIwNytxLDCkEQMGfOnJj79+7di1dffRX79u1DQ0MDfD5f\nyP7q6mrk5eXFda3Zs2dHbOPn2u32uOccbRydTofs7OyQcU6ePAmPxxNcAw1n3rx5eP311+O+brzI\nl9YXw8WoqakJL774Iv75z3/i3LlzcLlcIfurq6u7dB2/34/169fjnXfewfHjx9Ha2gpJkqKOl5SU\nhCVLluDjjz/GjBkzsHz5clx//fWYM2dORDQyX9stLS3F6tWrI67L1yRPnDiBKVOmdGnOxPCHRJIY\ndmRnZ0fd/sEHH+Duu+9GQkICFi1ahHHjxsFisUCj0WDXrl3Ys2cPvF5v3NeJtkal07H/UqIo9mgc\nPpZ6nJaWFgCx31+s7T2FByJlZmYGtzkcDlx11VUoLy/H1VdfjRUrViAtLQ06nQ52ux2vvvpql+4l\nAHznO99BUVERxo0bh6VLl8Jms8FoNAbTfsLH+8c//oF169bhb3/7WzAK2mQy4e6778ZLL70UXItu\namoCwNY8YyEIAtrb27s0X2JkQCJJjBh+/vOfw2Qy4dChQ5g0aVLIvurqauzZs2eAZhYfSUlJAIC6\nurqo+2Nt7ym7du0CAFx99dXBba+//jrKy8uxevXqiPSRffv24dVXX+3SNQ4dOoSioiIsWrQImzdv\nDokElmUZ69atizjHZDJh1apVWLVqFaqqqvDZZ5/hzTffxNtvv43y8nJ89tlnAIDk5GQAwNdff43L\nL7+8S/MiCFqTJEYMZ86cwdSpUyMEUpIkFBcXD9Cs4mfKlCkwmUz4+uuv4XQ6I/b3xXuor6/H+vXr\nIQgC7rvvvuD2M2fOAACWL18ecU6sLxtarRZAdCubj3fHHXdEpMocOHAAHo+nw3nm5eXh3nvvxdat\nWzFu3DgUFxcHXdVz584FgKBoxkNHcyVGFiSSxIihsLAQp06dwsWLF4PbZFnG6tWrceLEiUFfYUWv\n1+O73/0uHA4HfvWrX4XsO3LkSEjKRW9w5MgRLFq0CE1NTbjttttw++23B/fxoB1uZXIOHz6M559/\nPup46enpAICKioqIfbHGq6+vx+OPPx5xfGNjI44ePRqx3el0wul0Qq/XB1NwHnroIaSkpGDNmjVR\nA6okScLu3bvjnisxsiB3KzEkkWNUQom1HQCefvpp/OAHP8DMmTOxbNky6PV67N27FydOnAgGgfQl\nHc0tXtauXYtPP/0UL7zwAg4cOIC5c+fi4sWLeO+997B48WIUFRV1uZD6+fPngwEtfr8fjY2NKCkp\nwVdffQVBEPBv//Zv+POf/xxyzgMPPIAXX3wRTz31FHbt2oXx48fj9OnT2LRpE5YvX4533nkn4joL\nFy7ESy+9hEcffRTLli1DYmIiUlNT8fjjj+Oqq67CvHnz8P7772PevHmYN28e6urqsGXLFkyePBm5\nubkh96+qqgpXXnklpk2bhmnTpiE/Px+tra345JNPUFdXhyeffDIY3JSWloYNGzZg6dKluOaaa3Dz\nzTdj6tSpEAQBFy5cwL59+2C320MCjzqaKzHCGLjsE4LoHgUFBVHzJOfPnx+RixjOm2++Kc+YMUO2\nWCxyZmamvGzZMvnYsWPy6tWrZY1GI+/Zsyfk+Gh5hLGOlWVZPn/+vCwIgvzQQw91Ojeepxgrr7Gg\noEAuLCyM2F5dXS0/+OCDcmZmpmw2m+WZM2fKb731lrxhwwZZEAT51Vdf7fAecHbv3i0LgiBrNJpg\nvqbZbJZzc3PlG2+8Uf7xj38sHzlyJOb5x48fl++44w45KytLtlgs8uzZs+U33nhDLi8vj3oPZFmW\nX375ZXnKlCnBnE71+2tubpYfe+wxuaCgQDaZTPL48ePln/70p7LL5Yq4Fw6HQ37uuefkm266SR41\napRsNBrl3NxcecGCBfI777wTdb7l5eXyD3/4Q3nChAmyyWSSk5OT5SlTpsgPPPCA/OGHH3ZprsTI\nQZDlwV2c8OGHH8amTZuQlZUVdK+sXr0ar7/+ejDa7vnnn8e3vvWtgZwmQQw4P/3pT/H8889j69at\nweo7BEH0jEEvkp9//jmsViseeOCBoEiuWbMGiYmJeOaZZwZ4dgTR/9TU1AQT/DlHjx7FtddeC5PJ\nhOrq6oiSeARBdI9BvyZ5/fXXo7y8PGL7INd2gugzZs+ejQkTJuCyyy6DxWIJrgUCLBeQBJIgeo8h\nG936hz/8AdOnT8f3vve9qB0CCGK48oMf/ABtbW1455138Morr+CLL77At7/9bezcuRPf/e53B3p6\nBDGsGPTuVgAoLy/HkiVLgu7W+vr64Hrkz3/+c1y8eBFvvPHGQE6RIAiCGIYMendrNHi5KQB45JFH\nsGTJkohjxo8fj7Nnz/bntAiCIIhBzrhx44LFK+JhSLpb1cngH3zwAaZNmxZxzNmzZ4OdxUfyz6pV\nqwZ8DgP9Q/eA7gHdA7oH/KerxtOgtyTvuece7NmzB42NjcjPz8eaNWuwe/dulJaWQhAEFBYWYv36\n9QM9TYIgCGIYMuhF8u9//3vEtocffngAZkIQBEGMNIaku5WIn/nz5w/0FAYcugd0DwC6BwDdg+4w\nJKJbu4MgCBimb40gCILoJl3VhkHvbiUIgiB6n7S0tGA7seFIamoqmpubezwOWZIEQRAjkOH+jIz1\n/rr6vmlNkiAIgiBiQCJJEARBEDEgkSQIgiCIGJBIEgRBEEQMSCQJgiAIIgaUAkIQBEHEzZnmM9h6\nZiuq2qowLnUcbh13K/KT8wd6Wn0GpYAQBEGMQKI9IwNSAAerD6K4shgBKYC5+XMxN28ujDojAKCk\npgR/+PIPMOvMsBqsaPW2IiAH8Oy8ZzExfWJwHJ/oQ1VrFQxaA0YljoIgCP363oDeSwEhkSQIghiB\nhD8jJVnC+kPr8UXVF0g1pUKAALvHjssyL8Mzc5+BIAj40bYfQafRwWqwBs9rdjcj1ZSK1fNXQxAE\n7K/aj7eOvAVPwAPIwKikUfiPq/4DuYm5cc+tpaUFxcXFWLx4ccj2OXPm4MMPP0ROTk6X319n22NB\na5IEQRAETjWdwv7q/RibMhZp5jSkmlNRmFKIbxq+weGLh9HQ3oA2b1uIQAJAqikVlS2VaPe342zz\nWfz50J+RaEjE6OTRyE/OR7O7GS998RK8AW/cc9m5cyduu+02AEBJSUlw+9KlS6HR9K9skUgSBEEQ\nON5wHHqNPsQ1KggCrAYrDtcehklnggQpwgoTZRFajRZ6jR6fnv8URq0RZr05eH6mJRPN7mZ80/BN\n3HMRBCE4j3Xr1gW3p6WlwWQy4f3338fzzz/fk7cbNySSBEEQBIxaI0RJjNgekAJI0Ccg1ZyKaVnT\nUNNWE9wnyzKqW6tx3ejrYNQZUeushcVgiRhDlmW0elvjnsvhw4cBANu3b0diYiIA4L333kNubi6S\nk5Mxa9Ys+Hy+rr7FbkEiSRAEQWBW7iwIghDiFvWLfngDXlyTdw0A4KEZDyEnMQfljnJUOCpQ0VKB\nSRmT8C9T/wUAMDljMlo8LSHjyrIMQRCQY+18HZGj0WhQUFCA7du3w+PxYOzYsaipqcGSJUt64Z12\nDQrcIQiCGIFEe0Z+VvEZ3ix9E5IkBY9ZPnU5Fk9YHHR/ipKI082nYXfbkWnJxLjUccF9ja5GrNq1\nCqIsIsuShYAUQE1rDaZkTsF/zvtPaITescsqKirw5ptvYtWqVV16fx1tjwXlSRIEQRAAgBvG3IDL\nsy7HiYYTkGQJkzImIcuSFXKMVqPF5IzJUc/PSMjA/7n+/2DjiY04fPEwDFoDvj3x27hj4h29JpAA\n+tUAIkuSIAhiBNLXz0hREqERNL2eI+l0OrF+/Xrs2bMHv/nNb3D55ZdHPY7yJDuBRJIgCCI2w/0Z\nSXmSBEEQBNHHkEgSBEEQRAxIJAmCIAgiBiSSBEEQBBEDEkmCIAiCiAGJJEEQBEHEgESSIAiCIGJA\nIkkQBEEQMSCRJAiCIIgYkEgSBEEQRAxIJAmCIIiu4XYD774LBAIDPZM+h0SSIAiCCOXkSaCkJPb+\nzz8H/v534FJz5Ki43cCllltDGRJJgiAIQkEUgTffBP77vwGPJ3K/2w0UFQE5OcB770W3JmUZ+N3v\ngG3bujWFlpYWbNq0KWL7nDlzcPHixW6N2V1IJAmCIAiFI0eAmhrA6QT27Yvc//nngMsFZGUB9fXR\nrckTJ4BvvgE+/JAd20V27tyJ2267DQBQorJoly5dCo2mf2WLRJIgCIJgiCKzDlNTmQhu3BhqTXIr\nMjub/Z2WFmlNyjI7Ly2NnfvZZ12ehiAIwT6U69atC25PS0tDW1sbPvjgA6xZswZfffVVt95mVyCR\nJAiCIBjcikxJARISIq1JbkWazezvpKRIa/LECeDMGSaS2dndsiYPXxpv+/btSExMBAC89957yMnJ\nwccff4xRo0bhmWeewUsvvdSjtxsPJJIEQRBEqBXJUVuTHg/w/vuA1wtUVCg/Lhc7T5IUKzIpCRAE\nwGTqljWp0WhQUFCA7du3w+PxYOzYsaipqcEdd9yBp59+GnPmzMGFCxdQWFjYyzchEkEepq2ph3vX\nbYIgiJ4Q8Yz86ivgV79iFqCaxkbgySeBefOA4uLogToGA3DDDUBZGbBuHVBQwEQSYCLZ0gL89rfM\nOu0lfv3rX+Ppp59GQowxY2lAV7VB1+0ZEgRBEMOH5GTg/vuj78vKYkJ4000dj7FvH7MoL1wI3S5J\nzA07a1avTPWjjz7CE088gerqakyYMKFXxowFWZIEQRAjkD55Rvp8zB0bDYsF6IXI1A8++AC/+c1v\nkJKSgvnz5+OnP/1p1ON6y5IkkSQIghiBDPdnJLlbCYIYNKxcCdTWRm632YC1a/t/PgTRW5BIEgTR\nY2prWaxGOOXl/T0TguhdKAWEIAiCIGJAIkkQBEEQMSCRJAiCIIgYkEgSBEEQRAxIJAmCIAgiBhTd\nShBEj7HZokey2mz9PhWC6FWomABBEMQIZLg/I3urmAC5WwmCIAgiBiSSBEEQBBEDWpMkCIIg4iJW\n+UFg+JYgJJEkCIIgAHRegzdW+UFACdzqjTq+LS0tKC4uxuLFi0O2z5kzBx9++CFycnLiG6gXIJEk\nCIIgAPRODd7eGGPnzp1YunQpAKCkpASzLvWhXLp0KTS90G6rK9CaJEEQBDGoEAQBgiAAANatWxfc\nnpaWBo/Hg/feew/PP/88SkpK+nwuJJIEQRDEoOLw4cMAgO3btyMxMREA8N577yEnJwd79+5Feno6\nJkyYgFOnTvX5XEgkCYIgiEGFRqNBQUEBtm/fDo/Hg7Fjx6KmpgZ33HEH7r33XhQWFuLQoUNYvnx5\nn8+F1iQJgiCIuIhVWYnv6y1Wr16N1atXx9xfWFiIu+66C6tXr8ZvfvOb3rtwFEgkCYIgCACdlxcc\nDCkezz77LB588EEYjUacPHmyz69HIkkQBEEA6B0R7Os6vnfddRfOnDmDb775Bs8991zvDNoBVLuV\nIAhiBDLcn5FUu5UgCIIg+hgSSYIgCIKIAYkkQRAEQcSARJIgCIIgYkAiSRAEQRAxIJEkCIIgiBiQ\nSBIEQRBEDAa9SD788MPIzs7GtGnTgtuam5uxaNEiTJw4EbfccgscDscAzpAgCGLokZqaGuy2MRx/\nUlNTe+U+DXqRfOihh7Bly5aQbWvXrsWiRYtw6tQp3HzzzVg7GGolEQRBDCGam5shy/Kw/Wlubu6V\n+zQkKu6Ul5djyZIlOHr0KABg8uTJ2LNnD7Kzs1FbW4v58+ejrKws5JzhXk2CIAiC6DojouJOXV0d\nsrOzAQDZ2dmoq6sb4BkRBEEQw5EhKZJq1B2sCYIgCKI3GZJdQLib1Waz4eLFi8jKyop6nLof2fz5\n8zF//vz+mSBBEAQxKNi9ezd2797d7fOH5Jrkj3/8Y6Snp+PZZ5/F2rVr4XA4IoJ3aE2SIAiCCKer\n2jDoRfKee+7Bnj170NjYiOzsbDz33HO488478a//+q+orKxEQUEB3n33XaSkpIScRyJJEARBhDPs\nRLK7kEgSRO+wciVQWxt9n802OLrVE0S8dFUbhuSaJEEQ/UdtLVBQEH1ftA70BDGcIJEkiDDIciII\ngkMiSRBhkOVEEASHRJIghigrVwKbNgFud+S+jAxg//7+n080Czya9U3WOjFUIJEkiCFKbS2g1QJ5\neZH7qqoGZj7RLPBo1jdZ68RQgUSSIIY5PbXabLbYwmWzKeMXFwOlpco+qxVYuLBbUyaIQQOJJEH0\nI11xSfYWPbXaOpvXihVs/NJSQJ2uTB3siOEAiSRBhNGZ5dQTuuKSJAhi4CGRJIgwKGiEIAgOiSRB\nDFFsNkAUowfpZGT0/3ys1lAXq9PJLORo1ndfWusE0ZuQSBLEEGXt2sFl9YYH6ZSXA2++Gf3YwTRv\ngugIEkmCIHpELKuQLEJiOEAiSRC9RHcjV3fsYOetWNG18+Klr12bZBUSwxkSSYLoJeKJXI0mWLW1\nbHv4ub0V8UoiRhDdh0SSIPqRaOXZABbkUlQUuk8Ue+eaVAKOILoPiSRBDCC1tSwqNKxnOICulZbr\nSAhLSoDly6Pvo/xMgugYEkmCGKQ0NkauUwLRrb+OquoUF4f+vWMHs1wB9sqvQVYlQURCIkkQgxRR\n7Hl1nh07gLq6UFduZSVgMLCftDTlGkPBqhyIsn7EyIZEkiB6ie6mQoQn4XO02o7PUwtGrOLiTieg\n14e6c2trAZMJ8Hg6Hn8wQmX9iP6GRJIgeonuWjKxOmW8/XbH56kFo7QUaG4GfD72t8/HBLKyEnC5\nujcvINJyKylh/SvNZmDWLGV7dy05CioiBjskkgQxgMSyPktKgKamyIhXqxUYPz76WD4fsxA5KSlM\ngFyuUEtVLaRWa8fzC7fcSktZ/0qHI3R7dy056itJDHZIJAliAIllKa1Ywdyt4VGvsdpPWa2K+AHs\nd4eDvSYlAXfdpewrKmLjOhyhVmxJSWSgUHExcOYM9YUkRi4kkgQxSIm2Vul0Rl/j5OuPKSnAuXOh\nghkIKBZpR5aj2x1p1ZWWKpGwBDESIZEkiAEk1ppcrNzG8vLO1+l8Pha5yt2tgGKROhyK+PIuHRyz\nuTvvoH+hOrFEf0MiSRADSKw1ufDcxmiECwa3+NRrjQYD284tUqcTmDFDOV8tuNFyMgcbFMhD9Dck\nkgQxQKxcGZm6wWls7PzccAvUbGa5lWlpirWYlgaMHq2sKXbUvioaVitw7JgSaVtXx1JKdDqWg9nT\ntUrqK0kMdkgkCWKA6KgkXWd1W6NZoAUFiuDEihjtKgsXsmvdfz/7W12tp7ZWuV53BY0sQ2KwQyJJ\nEIMQrXZwrr2pLceuWqVqqHIOMVQgkSSIQUhGRvcFqLvEcn32RUAPVc4hhgokkgTRAwajRdTddb5o\nbbxqa1lqSFeKGhDEcIJEkiB6QE8tolh1W3tivfWWOPP3Vloaf1EDghhukEgSw5bBaOWFEys6tKud\nPqK1viopYa/qGqtAz94/L1TAa8P2dputaFV/OIPpcyNGDiSSxLBlsK979ST9QX0uj5Ll29VFz4HI\ne9DV96+2dp1OlnsZfq3euqfRqv5wBsvnRowsSCQJoo/pi04X4UUAeivlIxpqa/e115TfnU5lrbKz\nlBWCGKqQSBJEL7NjBxNF7jYsLmbWGO/xqGaoWUeBACuYDoSuU1ZVKb/H4+buz0hagugJJJIE0QOi\nPexrayPdnrzrxlAi2nvz+4GGBvZ7WZmyvb2dfSmw2eJzc3fU/YQgBhMkkgTRA6I97Pva/dlV1IE9\ngBJw05mrN9q+4mJ2vrpvJcACedQVfwhiuEAiSQxbutsxYihExaqJ9j5LStg2s5m5SHmwjcHA6rl2\nV9DMZqC5OXK7jp4kxDCF/mkTw5buClpvRsXu2AFUVrIxfT4W+BIIMFHJzY3fqusI9XnqAgBcIJ1O\nQJbZNUUR8HhYwI3TyY7n58fz5WDWrK41g+4qVPCcGGyQSBLDmoG0CnfsAI4fB7xeJlo8AlSvD51H\nb7op1QUA8vLYtrIyoKUFyM5mAjl5cujx4eeG09Hc1HmTXHgBdv1ogUqdMRgtdWJkQyJJDGsGIleS\nW0Ph4qzXA5LERNPvZxamTseEpTcsyq5SUxNaEODDDwFBUKxcjtritNki1zcNhtBuJlYr267uEgKQ\nJUgMTUgkCaIX6CgXEmBWHMD6RPr9TFiSkphlx8XlzBkWGLNpE7M8OWazUjUnlojy6/P+lNzFy9ci\nOW1tSlSqw8HcsdzqE4TIOXH4e+PX5n87nUohA4cj1HrsSZcQghgskEgSRA9w+V1odDWistqGieNC\nFam0lImIWvA6Qi043FUKMPHprLJNeJ3V2loWgerxhB4nSUpkqlbLRLSr6SlrHznDOjkbDP0SydsX\nxRgIIl5IJAkCoQ9ibo0BsdfVJFnCJ6c+wSenPkFACuDL6ofRajZhevZ06LX6yBPioKaGWXZAqChI\nUtfHMhiYQPp8zH3q9wOtrSyAhwunRtONSdrtwLp1wL33AgsWdGOArhPLZQ5QygnR95BIEgRCH8Rn\nzijrbup1NfWa2p7yPXjvm/cwOnk09Fo9LHoLqlorAACzc2cHjzMYlIhSgL2KIluXbGxkv5eVMSFU\np2pwa89uD21VFe/a5dix7NXhAO66C3j7beD++9k43JVaVqa4X30+wOVSAoyOH1fWJbl1CwDYto1V\nDti4EZg7F0BYwmQ3GGopN8TIgkSSGNZ0J1dSbTlGW1eTZRkfn/oYNqstaDUKgoBkYzKqWqswNXMq\nEvQJQXGx25Xrcbem0Rjf/EUxMuWio2jYxka2Hsnx+5lAulzsHHXQjc/HXrkgGwyKi9ZmY+Kqvg+w\n24Ht24FOHMFbAAAgAElEQVTCQqC6Gti3Dzbbgh6nbAz2QvTEyIZEkhjW9IUlIsoimt3NGJM8JmS7\nIAgQIMAb8CJBnxAU2z/+UREnnv7BBUqnUyJG6+qY1cb3AczilCQl2EadaqHOceRkZIQKKrckudir\n1xCLioDTpxWLFmDjimIMF++2bcxfq9cDWVnAxo1Y+9LcyPI7BDGMIJEkiC6iFbTIS8pDq7cVyaZk\nAIA1zYnmi0lw+/Vo1FvRolWOt9mA5cvZ72p3JxAqYsXFLGBHXRNVllnUqVqHUlLY+uWGDYqbsqSE\nnd/YGGqVhbhKVezYwcZwu9naJL+O38+sXLc7LH0jxc2sSJsNK3csRK2T5XmUbArArXqv8UTijihq\natiN6NYCMDEYIJEkiC4iCAKWTVmGV/e/CkEQkGhIxHUPf4Lq1mosmbQE/3pZaOBOvEW7zWYmmpLE\ngmwA9rtGo6xp8jXLQIAJIBdE/vrKK6Fj8nZW3PJU53Dm5rLrGQzMpZuaqhQbqKoKczP/4yPgYw/g\n96PWYUJBcgNg8KP0nAN5UxOCIhBPJO6IwW4HfvlL4NFHgSuvHOjZEN2ERJIgusGVOVfiiaufwIbj\nG1DZUgmLwYJ7pt2DW8fd2u0xFy9mOZK8FRXAxNJoZELGg3E6QhRDLVV1RZwNG4DrrlP28fZd6uvF\nxOEA8vPZ74LAfgwGJXQ23kXWDohViF1tWYczqAsUbN/OTPsNG4Dp09k3EWLIQSJJEOhegM+s3Fm4\nMudKeEUvDFoDNELnLjWrNTQn0elk1+WuyfAgltdeY0aa0xl6XrwFxX0+xVWrtjx5DqdOF5pL6fOx\n6/C+jkrk6feDxxS7gVLtJVeuDYBKH2tqIiNxOZ25X53OyCIGfL5dKUowKKJl7XZg61Zg4kRmlh85\nQtbkEIVEkiDQ/YenIAgw6eIPXInWdDmWAOzYEZoWEg86XaiY8iAg9Ri86LrLxdy5Wi0zBmWZ7a+p\nYdblihVsrZOvp/Jzm5uBixfZOYBiIGk0zJKdOlU5Xi34HUXBhkfeArHXUztjUETLbt+uBDmlppI1\nOYQhkSSIHhCP1dKdzha8OLrbzYROFFkkKgAkJiol5bjVxosepKeHpm6oA4W4ePJ6q2634jEVRSZy\ngQB75VZncXHovPi5Pp8ivNyqDQS6V/iA36fB1oez23ArMieH/Z2SApw/T9bkEIVEkiB6QDxWS1es\n1JISpfaq282Eh1ts6u4hGk2oy5UXPeBu0nDOnVOCeCorWWqJ18sMG1EMTfvw+Tq24niBBD4Pr5f9\nzrdxMe6uJTjk2b5d+dbBb0pyMlmTQxQSSYLoJ+KpQep2szQQ3n+Sx8N4vew5C7DoU546wuFu25Ur\nQwWauzDr69mzmfea1GqVjh+ZmcraJS8kEG+Lq8RE5XdJYm5a9bxGJKdOsW8SdXWh27VaFsjDq90T\nQwISSYLoBuFdNzgd9VDsjxqk4VYrn+fZs4DFErpPo2HPbXXxgnjw+RRjSJ2/ydNWukt3gqcGJT/7\n2UDPgOhFSCQJohuEd93gROumEUtQgUhR5bmSPl9kB4+WFvZ67hyQlhaaMuF0AtOmMStRndDP8fkU\nkfT72Q93s3KPoN3OhJNX9QGApiZW1o6P6XQqa6TRAorM5q6vv3Ii3NKyrEQWdYFhI7bEoIBEkiC6\nyMqVkX0bOdECV2IJKhApqrNmsWOLioCTJxV3K+8OAiiWX7SUiby80IR+jigqVh9Pc5QkpkN8+Yy7\nd9VrnZddxkRc7c7dsIFZjYGAYj3ySNlwepR28fnnwNdfA48/ziYcJyO+yg/Rq5BIEkQXqa1lFmBK\nCkuHULsreTm3nlotVisTMHVQDK9s1t7O/lb3qbRaI1MoYqEWQq8XmDSJrSO++iowRlWOlrfuOnWK\nvcfx49n2ujpmMY4erVjC3PIMX4/sthvZ62Vq3NzMqiwUFnZzIILoGSSSRL/jE31weBxINCTCrI8R\njjlECK+CE1HO7RI8NzE8cMfnY/u4AHFX4fjxihgDoW7ZaMXKAUWoosFL27W1sVe1YVZZqeRkqi3T\n2loWiOPxsPN5I2guxl1t1twl9u1jZqrVyt7YU091yZokiN6CRJLoNyRZwtYzW/HRyY/gE33QCBos\nHLsQy6Ys63aj4sEOd802NzOBkiTFLckLi3/5JVtv5H0iucj2Zt5gQgIb2+dTelfKMvtpa2Nz8PuB\nAwfYvBIT2Xqk0aisW/LycG1tbD9PK3ntNUUsKyuZlZqby/SNi3+X8HqB999nnUbMZpZfWF4etCYH\nRUUdYsRAIkn0G7vO78Lfjv4NeUl5MOqM8It+bDq9CQEpgPuuuG+gp9cncGvQ6VTcnC4X25eQoFTU\n4VVtuuOe3LGDuUR5cXRJYoUINBp2De5avesuZpTV1iol6dRrnaLI5hgIsPVLSQpdn+Rrmm1tSj1Y\ngB2v1bL3wS3PHlmZ3IpMS1MufMmaXPkTARs2ROZgjticTKLPIZEk+gVJlvDRyY+Qk5gDo45Fo+i1\neoxOHo1d5btw5+Q7YTUMnSddeA1WTqxk/t6kpIRZmergIbdb8UZqNErCP6+Oo6atjRlrGo1SqIDD\nA3Ds9tjXT0yMXHOtrY2/rWSHluAalRXJyc4OWpO1tYXB9WA1feb2JUY8JJJEv+AJeNDma0OqOTVk\nu06jgyzLsLvt/S6S8ST3x9oXi2j7eCNlnmrB3a3cAutorFiWZUEBcOZMaLCORqMIpLrtlcPBrs3r\no4qikl2hXubjtVsBxS3rdCq9JhsbleN6EpjUYZWio0eZb9poxMot81HrvlRBIRAA/k1EcS0zMsNF\nkiD6ChJJol8w6UxINiaj3dcOi0HJag9IAQiCgDRzWr/PKdrDmuceOp2hAqoWza6uey1cqIxnMili\nk5HBXmMl4ce6Du+swQN5uAuV43aza/B1RIcjtKRdQoJSt1UUFfdvNEwmRdw5fn9kNK3BoAQG+f0s\nc4PnYvK11rju2xVXBA+sfToVBfmqixuNKN3MNJQg+gsSSaJf0Aga3DXlLrxe8jpyE3Nh1pvhE32o\naq3C7RNvDxHOgUSdexhPB4t44dYkoIgOLxYQb9ureBFFZUyTiVmBFguzWrm4qS1bQLEo1QE9fCxe\nmSchgW1rb2cBOcXFTPycTiXKlwf3hJfOi/v+GQxKGK0FQDy9LgmiDyGRJPqNG0bfAEmS8EHZB2hw\nNcCgNWD5lOVYPHHxQE+tz1CndLS0MAuOiyMPNlFXqenrqjBcrGVZWY/kgsiFUqtVeinzerHqqFi1\ni9jpZPmUNTUsopV/EXA4mDUbrbdkSUn3onbVLb6+/jp0nyQB3/pW18ckiM4gkST6DUEQsKBwAa4f\ncz2cPicS9AkwaLvQLHEI0h8pCWorVacLLWlXV8eCdHhE6ujRbF9SknIOL3guyywohxc69/mYRQgo\ngTE8alW9Jpqby15nzGCvvEC6uk0XoAhjePuteOFtugwGZV6cqirVvZYkpqgLFoT6mQmiG5BIEv2O\nTqNDiim+yItmdzMqWyqRoE/AuNRx0GpGdpuhlSuZJRYuNJLE9OC229i+qqrQaFdBYGLY3MyO5WuH\nvBwdP1YUmbBFi4oNR11zNlaBg2iYzcDGjaEVg/j2lSs7/mJhMDCxDI9mDYkqPnYM+MtfmH/4uus6\nngxBdMKQFsmCggIkJSVBq9VCr9fjyy+/HOgpEb2ELMvYeHwjNp3eBAECZMjItGTiyaufxKikUb1y\njWjRozwYJTzvjqddRBsjXmuxu0nwK1cCmzYxUamriwzCeeQR9rtaqD76iFmLAHN78jVKLnxeL7Mc\necssLpKSxIRo7FiWa6lu1MzpaU4iL77eWR/O8M/H6WSpk6NHR3ZaCR4nScC777I3v2EDcPXVZE0S\nPWJIi6QgCNi9ezfS0vo/MpLoWw5WH0TRySIUpBRAp2H/TBtdjXhl/yt4fuHzwW09IZowxbKE3G5g\nVD5bxFNXB+pKQE+0aNot2wLYtUdGZbUc4npWC2dtLROzvDwmFJ21p7LZmJXIXa78VRDY7+qAHZ4O\nwtM8AMVSmzhRESO15cebNwORXUzUwtYVYVVHFau/jKjvQ1wViA4cYAuXhYVARQX7m6xJogcMaZEE\nmMVBDD+2nN2CjISMEDHMSMhARUsFTjedxpTMKX1yXf6QLylRRCEgBVBXH8Cf3q4HACQnanH37Snd\nisjl1XH8fhk+0QdXmw6ABlVVAVgS3SjMN0EQBIhidBFva2Pl4vg/e0lix4XnPHJcrsgUDjU8r5J3\npEpMZEbYjBlsv/pLQEdJ/NEs7aYmJuJ8zZILqyhGtvLqlahinw/40Y+AnBx2MzIyyJokesyQFklB\nELBw4UJotVp8//vfx6OPPjrQUyJ6iRZPC0y6KCVcZKDd395n1w23WrwBL3aV70Lb3stgTWJq09oq\noLiyGAsKFwDoWuCR03kppcLcDvjdQHsaNIIMjVaGT/IiYHCirS4TdrsiOrz2K19PFAQlwjQQYK5U\nXu6OC4xezyzOlhYlWhVQIltjkZvLBDK8SPuKFSxQJ3wt0OlUhCzcytPrQ8ve9Tnvvqu0Lpkyhal6\neTlZk0SPGNIiuXfvXuTk5KChoQGLFi3C5MmTcf311w/0tIhe4IrsK/B5xefIS84LbpNkCTJkjE4e\n3W/zqGmrgSfggV6rhyAwkdRr9XAH3KhpqwFQENc46kLnLpeMAHQQkARIAiQB0AoCtIIWze46SN4M\n6PVCUHRKS5XcxmhIsgRPwIeApMXOc59hQvoE6HT58HiEkOo6QKRA8u088KcjwtcBAaUtmNsd2YUk\n3DXMcbu7lwbSUQUiW0YA+K//YsVnHQ6WI5KTw94YWZNEDxjSIpmTkwMAyMzMxNKlS/Hll1+GiOTq\n1auDv8+fPx/z58/v5xkS3eVb47+FL6u/RHVrNTISMuAVvWhob8At425BliWr8wF6CbvHHnX9U6fR\nocXTguQOznV4HNh5bicOXTyEraXfhWAYD70+ARqtDA0kaAQNAl4AwTxFFqAkQwYQvS2ULMuQZBmy\nJLPjZYF1VNFKEKBDQArgUM0hpOdZYJTS0d7OgnQMBn4+s0TDa7YCTE8qKzt2z0ZD3V9TDS/eHq2E\nnCiGrnPygCSdjrmkowlyhwFSew8Ah0zMgnS72c9VV7EBeSsTEskRye7du7F79+5unz9kRdLlckEU\nRSQmJqK9vR3btm3DqlWrQo5RiyQxtMi2ZuPnN/4cm05twpG6I0gyJuHRWY9iXv68fp1HoiERoiTC\nYPbB42Rmkc9tgKM2BWneTEyaEP08h8eBX372S9jddqSb0+EJeNDoaoQUyIIANo56PT3g10ISjZCq\ncyG5BUiSYpk1NjIBc7kk+AISZFFzSUNlQBChkTSAoIGgkWHUGaHT6NA+aS9uHXcr/vRfxpB5qa1K\nIFQseQBPVVXHqRg8yAZQXrk7OLy/ZizCI1zVOZVdLlYeCAAffMAGTUxk28rLgYkTsXLT9SyieAvY\nGz9/HhgzBrY8HbXVGiGEG0hr1qzp0vlDViTr6uqwdOlSAEAgEMB9992HW265ZYBnRfQmNqsN37vy\newM6h7ykPJxsOgnbFcdg1rFkvLpqMxJSXcgwZaC2NjJgxWYDrn5wF5pdzRiTMgYAYNQZYbUCdY0i\nBFGGRmNAQFQW7GRRgChpEHBZIAYECIKSLiJJwGOPAZu+PIEWbwtaK8bCZPVAlmXUt9dDbJiABLMG\n3nYmiFqNFrIsw+lzQhSNIQaUOriHl5vTapUekgYDS7MIT1VRuzrVzaB5WbqO3MHdpq0NOFMHyOM6\nbrh86BD7JqH232ZkABs3orbpWhSMu7SAe6EaaDgIFADlteN6ebLEcGXIimRhYSFKS0sHehrEMEUR\nBTMKMB+nGk+h2c8qgWdn+5EjXIuJ46IH7ZSXAyUXS5CekB6yfdzs8/CKXvjrCwBJj4AkwyUFIEka\nQNLAaASSkzRobWVixdfzWltZAJHdY0d2tgzHeQGtDSwJUvLpEPBp4fIZIUkafL39CsiyjIAUgD0h\nGV4vG4fXXeXiVlcHjBrFhE29bsjTRcJRW13hqRhFRbGT/CUpclu0dBB167FgMNDJGtiavgHK/MyN\nGov9+7Hy0N2oLQ7z6woCir0izpzXYuECkSV+JiWxArOTxmAIP/6IfoT+lRBDiob2BhysOQi7246J\n6RMx3Ta9T0rbhbrirJDlmWhwNQAAMhMy8dBDHVg2YG7azX+6EWJbJgCg8uho1J6xISD6kGkLICvV\ngIUL9ZBlGefOS/hir4D8fA0A4Ny50NJyTifwzt90sAfGwKJvRO7Ei2xWaU4ULP8z9lXvw7LJy7D9\n5fuQnG1nLclMqbhu9HX405+YNzK8Jix3jZadkNmaqMpSq6mJzFcEQnMW1S7XykplzRNQciedTuD+\n+6Pfn/AAHL4GGRzX5QIaGlCrzcGKe32w3SJj7boY9/zxx1F7SEDBmMiw3dJPdGy8mhq2Tsnr6tXV\nAeidohTE8IZEkhgyfF37NX7/5e8hSRL0Wj22nd2Gsalj8aNrf9TnXUQEQQgJGCopYVGn4TQ2XmqH\n1f49nPw8AIuFBdh4XQYkpDdDI0uwpZlQdoIXBxfgdmvhdrPnuNrtydf3SkqAB/5Ngzc2iqg5nRUs\nzedzG9BY/0P4/Q9jS7obHl874G1BmjkNs3NnQxAE5OayMXg3Ds7Zs+y1rUWE034ptPVSfiYP3AmP\nPg2vfsPXENUNl7kGAaGF28Ox2aJXH3I6mcgWuI4DyfZLJmYtyk+OARCjlKFez55k0eJyBDBz9vhx\nxZy2WC5VSk9VthFEDEgkiSGBN+DFn0v+jFRTaoggnnOcw9azW7FsyrJ+nY/brXR0UlNZyZbDZk1N\nx9GvHfDq6wAAHlcqGs7lwKQz4cvTGni9TEx4Vw0eUKPVKgXG1QiCACtsEBMqALB1R59oQEJmPW4Z\nfR0aqi1w6V0YW6BBkjEJQkdreGDXcTRL8PtkGDRSMOyVB/I4HKEpHVYr62QSDd5L0udj53F36eLF\nHUekRivzB4BFE1VVsRYkgsCiUysqADm547XJWLjdgMatqLpez74JFBcDFMdAdAKJJDEkOGs/C0/A\nE5H+YbPY8FnFZ/0ukp0hCAJSzalISLTAE/DAZdZixnQ9NIIGZWUsyT87W2nA7PF0nOQPAM31JsgY\nD5/ogyiLkAN6eI99G5+d0F+y/ozYtys0gZ+7RBsblRqvABPyu2ZdQGVZOpKMXkDrgV1KhiyzoCFR\nVCw9Q5g3u6yMWaJ+f2ikrLovZjw1bWPVzrXJjYBJqwii2Qw0tbILd7Q2GQWrRUbteRfKU1MApzJB\nm74JeH8zcMMN0ZM5hzPqGoREp5BIEkOHKCLCcgV7XprQL/pxuvk0vAEvClIKkGpO7fB4szl6qoLf\nHxqYYtAaYNAaoNMAmg6eS4LABEcUQ60yILS6TlKSFhawKNuGBqCpgQWBer3sGFlmLlujURlXo2Gi\nrC63V1Mt4bdvZ6M9YIDdH91V3dSkpBjW1zNhLC5mgsur6QiCkn7IhdXnY/n7QMdCGbV27nfcKDj+\nBRDQhN7gQDKr2t5FkVy4EChPlvHmswIAdQJoCqC9P7Q55khAFIFXXgGWLo0/X2eEQyJJDAnGpo6F\nQWeAy+9Cgl5ZR6pz1uG2Cbf1aOzz9vN49cCraPG0BN2Ud066E3dMuiOm23LWrOgVY95+WwlCkSQJ\n3oD/0hpix//VEhKYuJjNSloFr58aK7lfkpgR5HQyodJolO4eHI0GyMxk1qC6lVXR2y40X/QiIGvh\nFZlQyBAAVSEDUWSiz72TFgtzMTc3K620/P7QNlXcKLNao685dopeD1xzTaRZfdEI3B67iETsajwC\nbFdkATf2XwGKQc2RI8Devez+/u//TRZlHJBIEkMCk86ER698FH88+EcIEGDQGuD2u5GfnI9vje9+\nS3pPwIPf7f8dBAjBnMaAFMCG4xswJmUMZthmdHlMWZZxsukk6vxa+KuZSefy2NBs10EjaODzMfFS\nk5rKLEibjQXZ8LZXAEvsLy8P7ewBsDHsdsVVazAogupysf2yzCxOv59pz+TJYAc5HPDJSQjIgkoc\nw99HdBewy8XE2ONhQq3u9uHxRLpnu4ItT4fy2sioU9s0AJdlsgs2NTHlV0GFAeJAFJmJP3o0cPQo\nC6MeR/minUEiOcyRZAknG0+isqUSScYkXJF9RZ9HgvYVs3Jn4dc3/Rr7q/ajydWEKZlTMCt3VvRC\n6HFyouEE2rxtQYEEWMm5ZFMydp7bGVMkY1kuGRnAF0drcNZej+x8KzSadkiyhEpRwNi5TZhhm4Gi\nImaNcXHz+1kupN/PnmO8Hmo4Wm1owr7fr7hZeWEAQVCWnHQ6pinc9crXP9HQoPTICq4pRrcouAtY\nFBXxkyQ2v8ZG9h64e9nrvSTC6EbVnEt0Knalpezbw69/rVTXAZQIqHDLiFeAJ5gVWV3N2oj5fKxK\nEVmTnUL/eoYxbr8bvz/wexxvPA4NNJAhw2qw4pm5z2Bs6tBcj8hJzMHSKUvhCXhwvOE4DtUcwpjk\nMchLyus0ojMalS2VaHQ1wmKwIM2cBo3ATDyTzgS7xx7zvPCHOW+M7HLJOFFhgCBMhUPQQGf0Y+I1\npzF13nl8c0qLhHYfRNEAg4GJjtXK3JWzZsUOduF9KAsKlADNc+fY2qIoKsIYT/APACArC8gVgXoN\njIIA0cPWS8VLgslvoywz76fZzHSGL2GJoiKQosgsSyA0iCcW4Y2n+RopvwdqIu6HKALvvQdcvAjs\n2gXccYcy0T/9CZg2DVDXZz5+nHUG+dnPBodQ7tjBInavuqr/r82tyNRLa+2ZmWRNxskg+JdD9BVb\nzmzB8YbjKEgpCAqIw+PAH7/8I15Y9EIw324w0uZtw6bTm/B55ecAgOvyr8PiiYuRZEzCOfs5/G7f\n7+D0OVnQjsD2r5i5Iu5mzAEpgL+W/hVbzmzBiYYTqGyphNVgxdz8ubAarGh2N8e11skf+rzDh04v\nw+dlIpiUa4fHaYKz2Yq7VhbhQssFrJ4/GvnJ+T26NwAzBLjhxF23PCoVYILFrcy2trD4FI0G0GsA\nLQDu9hWUMfh4sszEa+rUUJcqt365KPJoWllmzTd0OtawORrhjadLS9k6p8PRcV4mAGYJ1dQAEyYA\nn3wCLFjArMnz51k7rFOngLlzAaMRK5+VUbvVBzTfABy0B92z8UTd9gltbcA//sEWdqdP75lPujuo\nrUiAfdAWC1mTcUAiOYzZVb4LOYk5IRZWiikFFY4KnHecx/i0GIlvA4w34MULX7yAqpYq2KzM77jt\n7DYcaziGlfNW4tX9r0Kr0QZdpJIsYU/FHoxPH4/5BfPjusau87uwu3w3JmdMhlf0otxRDqfPib0X\n9mJKxhQkGZNwU+FNANhaXtBVqSIjg7kXCwqUdlZGowAPRPh9of+1/KIfGkETUaquK6hLt/G+kJKk\nRLTyYBqO2vUqiiyHs6yM7eO1VrnXlY+h1bJxtFpm4aWlsfzIkhKWugiwY9XXUVuvo0ezscePj+4y\n7jbcikxNZRMMBLByRS1qrVbguBtofZwdc6oZtpk5qC1zoEA+D4xKAOyHgVkLAY2ma02ce5Ndu4Jr\nwThwAIinpV9zM6tL2xu5nFu2KPmnHEli32qqqoD8nn9xG66QSA5jvAEvEg2JEdsFCAhI/dkNt2uU\n1pbiQssFFKQUBLeNSRmDckc5Piz7EG3eNoxOUXpKagQNMi2Z2HFuR9wiufXsVtisNmg1WsywzcD5\n976PujoNvAEvAukTMC5tHJ55xxRce4tWOED9vOEIgoAEfQIcXg9EiZl1oiSisqUSS6csRYI+IcLl\nyOnIylGXgeMkJrLnblaWIlrtqn7UXLzUATiTJ7MlPe4eLi9XAnwANh5vcZWQANx9d+ScEhPZ8eEe\nTJcrMuio1+BWJLeEbDbUFjeg4OYkwHcKsKWwidsPo7w6ixUfMBrZj93Ozo32IfYHbW3M8rXZ2Ae1\ncSPrb9mZNblpE/uZMqXnIvbgg4pfPJxe/TYz/CCRHMZcnXc19lbuDXHv8QbCY5LHdHDmwHKy6WTU\nYByzzozT9tNRY0wMWgPa/e2RO2LQ5m1DpoW54DSCBlrXKEyZ4ECLx4c5+VnItLDrqy0PXlOV097O\n3KxnzoSObdQakaDXQEYjfKIPftGPe6fdi1vGMYsg3OXI6cjKUZeB42PwdIu0NGV7XV2oBQkoIqkW\ntbVr2U94sXJAEWSnEyFdTriI63TRC6FrNOzcWJ1Ruu3m5FZkcrKi5no9s4T27w+W1INezz6Uc+eY\nMOVdyk1JSGDrk7m5UPzL/ciuXco3D4OBfdCdWZONjcCnnzKX6EcfAY8/3rM5jKI6td2FRHIYc8ek\nO3C07igqHBVINiXD5XfBJ/rwyJWPwKw3dz7AAJFuTodPjOy75BN9mJQ2CaebTqPCUQG9Vo+MhAwY\ntAbUt9djYWGUTr0xuCL7Cnxd9zVyEnOC20RJhCAISDImRT0nvGOGz8dcoGoLz24HRFGAKBqgrxsH\nySfDX56PPW8I+HYcIsGtTB7QArCMh/Z2JYpUp1PWAZOSlLqsO3aw14QEJmLha5UmExP1FSuU8Zua\nmO5kZChz4F2nbDb2umMHW+5zu1nsR1ubIsJaLXCp9zlaW1W1VwtC31f5KR8g6xErirbD+3HOCxy+\nnUXlpqYCWi1s5hbmPrx4EZg0STkhIQE4eRJITweESwu0amsS/WxNqq1IzqU2Xh1ak5s3s5ubmwsc\nPAhcuBDdmmxoYOPRmmKfQSI5jMlIyMDq+avxeeXnON5wHJkJmbix4MZBH9l6dd7VKCorgtPnhNXA\nlKHdx6xEURZR316Pcns59Fo99Fo9ClMKMTZ1LG4df2vc17hr8l04Wn8U1a3VSE9IhzfgheRtweVZ\nl8OoM3Y+QBhWKzNs3G72bGOJ+AIMegE5OfEn1nMrkwe0AOz166+BK65gf/N1SXUxcYAJlDr1I9zd\n6iqYOY8AACAASURBVHazZa4zZ9gc8/KUoBl1AfS33w792+lkgsuLCVy8yIKCNBom1g0NyvUqK5lX\n7/e/Z/PIzQUgSXBWtmLFnRpsO5QWUlO8sVER8HBLmhdBP1OTAKdvKiDZATEFSE6D0wmYxWYUZDYz\nIeJ4vYBXwybREhZtdO4cMLqfRfLzz9kNCoQtbzgc7JvK3LmR53ArctQopXxSNGuyvh547jng6acp\nQrUPIZEc5iSbknH7xNtx+8TbB3oqcZORkIEnrn4C60vWo9ndDIC5WpdMXIIPyj7AnNw5GJ82Huft\n59HmbUO7vx1PXv1kh0Exbd427LuwD2VNZci2ZuO6/Ouw6sZV2HxmM76p/wYmvQlX5V2DHGtOzDGi\nwSvLzJjBglWKi9k23i6K09sBIzyIJ9h7EYqYBQKR5Tm51WcwMKswEFCE2+djxczD5xyLxEQmgKLI\nzjUaQ4OGtFpm4Xo8l1zEzQ5AbkOB4zwSzAtw//2RVk+sdcwVKwCnI4AUbx2QYgB89YAlEYAeTikl\nMqhFloEzAdhGaVHepGoLcimhM67lN7uduXeXLWPfCKZNi+OkGEybxszhaIwZw+oFynKoL51bkdw/\nnp0d3ZrcvJlFrFKEap9CIkkMSqZlT8PLt76M8/bzAIDC1EK8WfomzHozDDoDbFZbMPK13F6OipYK\nFKQWRB3raN1RrNq9Ck6fE3mJedBoNNh6Ziv+15z/hYdnPgwAWPF3IDcyxgkA82ZVVTGXp3pNMiHh\nUm3QcuUBH22Nry/gYhZ+7dZWJXgnPG/R62Xrl05naFNngD2jjx9n++rqQjuA8BZeHLWHsL2djcm/\nGPB1zCA8qdJoxY6yPNQ5JRQVhaYeddRhBIBiKWo0TAiamwFjttJXLJw0YO2fVH9XVADr1gE/+Ul8\nATDbtrGAmepq9vO730W/Tjzk58e+piyzOqoA8NRT7L01NrJIVIOBXZvT1gZ8/DHw2GPs7/p6YPdu\n4LLLKN+xjyGRJAYtBq0BkzKU9Sanzxm1wbIgCHAH3BHbZVnGhyc/xAt7X0BDewMsBgvq2+txWeZl\nyE3Mxf87/P/wctbL0Gv1MSvo2Gy9L4Dqa6nXHs1m9ntpKRMmtXERL7m5TKS42xVgVqMoMk3x+ZiQ\nabXKWip3ywYC7Jp6fei1w5sqh9PYeClH9NJaqdvNxpZlMEtJkgCNBs5AAvSSFynJ5hCrp8PqPF4v\nEwjrpQkYDMzSy0iH2ayL+ZmF8NFHzCJUi0ws7HZg+3YWMrxxIzBzJnN93nln7HNOn2YX7UxIZZl9\nE5kyhX0Y5eUsahdgvxcWsg/m7rujV4VIV3lK1NZmPPmOVHmo29BdI4YMM20zcaT2CNLMSjinLMuQ\nZClqzudZ+1m8f/x9uPwu5CTmQCNoIEoijjUcQ5YlC+3+dlS2VGJc2ri4Ii87EjcezVlS0rmQqq8V\nLrxFRUygKitDz9HpFDFRu1jDBcFqVfIfOVwgeUF0SVLKzfH9Bw8yj2RZGRuf51MCbHlPLZLqACZu\nWXP3Kne76nSA1yMrLUP8YA91SQqNQuqMmhoA2tAoJEEAWlsx66a0zlNNKipYruHll7OI0iVLOrYm\nt21jAtXUpCy8btoE3HRTdBF0uYCXX2Ytt+65p+O5lJcDL74IPPMMc8MWFSk3sqiIWZOpqaxDR0dw\nK5IvWndWPaehgc3x2We7981rhEMiSQwZrsm7Bp+Wf4rz9vPISMiAKItocjXh2vxrMS418uHwZfWX\nMGgN0AraYGUerUYLDTSoaauBxWDpUtWhjsSNU1wc31jqSj2lpcr2uvoA2rxuuL0m1DfJ0Gv0EAQB\nEydGd7Gq4YJZW6t06gAU4WppYX/zdBC1scKFky+RtVwKHuUFCxoa2PO8rExpoQUoIsmLG6Snq8Q3\nIMHhMQEGA6wGH5w+AxO4hnpm/XS2hub1wtZ2Gk7/dKDVq9phhlVuBgJJ6PQR9tFHbOK8m3VH1iS3\nIhMTga++Yn7k06dZ9Gwsa/Kzz5ilu307cOutofk4amSZCaHHw9Y7LRZmRY65lIp15IhiTXYGtyJ5\nGaXOquds3gwcO8bm+C//0vn4RAgkksSQwaw3Y+W8ldhdvhv7q/bDoDPg7ql345q8a6LWbfWJPui0\nOoxJGYNz9nNIMbFv0YIgoNXTivzkfOQnRVoV3Un2D87RHNttq0Ydxcq/3NvddniNbcie/hWM7bPg\ny6xAZuKoYFnBWNYjh89txQoWwapOTampUQqpA0oPSIA9vxMTmeGUna1sb2xkYup0slejkYmh2nNn\nMimi6PcDaVYfPO1aBGQt9AEfZqRWBB/axfYJSNB64XDqgAZ/UMWdzhjvyWjE2q0zgdUm1DaEWXGC\nANuoTr7glJczK5ILUXZ2x9YktyIrKtjfvGmoJEW3Jl0u4MMPmUXX0ABs3RrbmiwvB778kpncFRXA\nn//Mbh7/d2syKdZkR18eRBH45hv2IYT/Q6usZB9wcrKyraFBWbvcsgVYtIisyS5CIkkMKSwGCxZP\nXIzFExd3euxM20zsOr8Lk9InodndDLvHDg00aPO2YVL6JPzH7P+Iakl2J9m/p/hEH+ra66DTJCHF\nlIKCqU1Y8uOtqGipwH9e+2O8/uJ4bNusg9ejhSAIwabGZjOweHGkeEeLUn37beD++4HXXgsNxPH5\n2E+sZ7Nez4wpnhby29+GFiMvK2PP+NYWGXelfw5k64AbbkD5eSPeXD87eNyKR/UoGCMDSAxR6fJy\n1fxlOfRBn5mJtX/s9PZF4vcDP/whEzV1dQWjMbo12drKRLK1leXb6PVKBfdjx5gbM9ya/Owzdkx2\nNksWjWVNciuyoQE4cYIVw92yBbj9djZPgJ1z+HDn1qRWy4KQYlWyD+/Btnkz22YysXPImuwyJJJE\nv2N327Ht3DYcqj4Ei8GChWMXYm7e3KBgybKMipYK2N12ZFmykJuY260OH5dnXY7ZubNxoPoAsi3Z\nkCUZbf423D7xdqxZsAbJpuTOB+kibnfXBdYb8KK6rRouvwta0RwsZ6fVMDfxL3b/Al9/9QyaXaOR\nnCwj25odrEjkcERavbGCkHhz5NzcUGOCr3WWlYVW0uEWYvhzNyaiqJiqjY2AJjOkI7MtDyivjjwt\nxIo8fRr44x9Z/l9yDz6f4mL2hlJTmTCq//2cPcuKotfWKnmKJhMr3bZnDytAqw4N5gmf6irx3Irk\nprdOx64RzZrkFXZ45YaqKvat5Ny50GCcxES2rTOXK1+X7QxuRebmsr9zcsia7AYkkkS/4vA48MvP\nfgmH24EMSwZaPC1Yf2g9TjedxgPTH8DJxpN488ibqHXWQqfRQZIlzM6djUevfDSuJH+f6MOJhhNo\n8bYgNzEX9027D0frjqK0qRQCBIxKHBWMhk1G74tkV3H5XKh1VLKasVIA/oCHVUiSUuANeHGk7giS\njcmw6C1o0+jhFdtwoeUCClMLY3Y8ieUS5s2bw2vAhlcNAtgym9q6rKxUcinDMRgAj1uG3xNAuX8U\nE5gvamC7JQPqCjudBkfJMvD++8wduWMHsHx5JyfEwO9n1uKddzKx/sUvlD5fnFdeYeuAU6cyMTYY\nmIgdO8Ystc6irz77jK1hms3KwqzVyiy3/Hxg3jzFgi0qYv7uQIDlDdntwJw57Bpr1nThW0gX4VYk\n943r9WRNdgMSSaJf+fT8p7C77UqTYz2QaEzEplObcLDmIL66+BWa3E1IM6VhVs4sZFoycbD6IDIt\nmfjOZd/pcOyLbRfx232/RaOrEaLEKvNUtVVBJ+gwwzYDo5NHQ6vRos5Zh/9b8n/x8xt+3i0LNV78\noh9n7WdR0VKBltpUbDx+AbeOvzVYRSggBdCKGkjuJGhlCZLPCfgscDZkwJRZwaxLnwtzRs3BIUGA\nIAgwaA3wBDxo9baGRPnGg3rNMlq9VnVwj88Xaky53czw8vnY2mWwFCoueRfdHojeRrz5r/9kD+Ly\ncmDFSgBT4p/g6dOKO3LzZuYz7o41efAgi1wqKGAW3wcfsIhS/lnv2MHWGPPygJ07WdGA1lbgn/9k\nATB8bbAjXC62zheOILC8ysxM5qMWRfYNhLuQNRp2A10uJqr8tbdxuVhd20CAFSHgSBIT+DvuUKKv\niA4hkST6ldLa0pCHuyiJON10GrvKdyHJkAQJEkYljoIMGfur9+OmwpuQl5SHT899imWTl0Gv1Ucd\nV5Zl/OnQn+Dyu5CflI99VftQ56xDdWs1MswZKK0txUXnRVyTdw2yLFk4bz+P+vZ6ZFuzo47XGZ25\nNEVJxL4L+9DkboLVYIVG0ODjUx+j9P+z9+ZxctR1/v+zqvrunj7m7JlJ5sjkTjhCgCQECEg4vRDx\n2oe67BddVl113V0Ed3H5uQsYD9RFxWMFRF1ZURHkFkRIArmTIZnck2Qmc9/d03dXV9Xvj/d090xm\ncipezOvx6MckfVR9qnqmXvV6H693XzP/fsm/Ew67aDkQxxfuxefwYVkWI+kR0s42ZtzwLXRT59Cw\nnwpvxSQXIFWRaSVniqnWPns2bN5sESqXHFl02E4upxQqXMcjGBSCLChQy4KREVKWi5sev56wL86a\nJT8To9c77ji10GBeRfp8oupM87TUZKHYyjRhqw2UT0CznbA3xprkDyS8OmuWvP6lL4k0XrxYiPGK\nKyTfaBiiApub5QSdSE3ecIM8jj2Gu+4SN4Zf/lLMC2w2OblLlxaLhXRd3nPLLW8MQYL8In7hC5Pt\n8EAU5TRBnjKmSXIaf1QEnAGGU8OUUIJlWWzv2c7ewb2YlonH4aE33svR0aM0BBuwchYd0Q7ml88n\na2bJGtnjkmRXrIuOaAd1gTq6Y90MJAYIuoL0JfpI5pLUlNTQl+hjIDFAla8KRVH4wufdJEcmb2t8\nj+B4hMMwmBwkqSf5wl1VU4Z/8+1vST3DQKIehzYHRVEwTYWGYANtI21s697GmjUr2T/Yx5defZC6\ngIz9siyLvkQfh4bLSBtp3r/w/Wzq3jSpuMi0zDPyl81jqrBnS18LP/15IyMxuahmdXDYNFRDw7JE\nGM2aJfnLvBVf3sycdBqyWcLeNA2uXtqGQqKYdu+Wk7ngFNRkXkXmiam6+rTUZKHYqqMLHEUnhrZI\nUEKceTX57LOS9/P7JTdYUiKh2VdekS9YUSZWmp4O9u6VsuK5c8Vk/cABOXHPPisnani4+N5828gb\nFfZUlMKg6Wn8fjhjkuzu7ua1115jzpw5nHPOOQC0t7fT09PD4sWL8b1Rd0jT+IvGWxrfwtc2fI2g\nK0gsE6Mr1oWmaNhUGyF3iEg6QtbIEklH8Ng9xLIxopkotSW1eOye4243a2RRxkKSfYk+7JodTdUk\nl5eNoSgKNsVGf6Ifr8OL3+lneNjHrOPUSBzbhxhJR3hwx4Pc+ptdKIqCU3PyvkXvY1XDqilDtplc\nBlVRi6+NqTGPw8OegT2srFvJrNAsfA4fo5lR/E4/iqJQ5a0ipad4x7x3cFXTVRwYPkBfvA9vKEYm\nORPd0FEUH5YaIJL5wwiRkdQIH/x4B5iz0VRZqIKCbuqgKDjs6oSUXt6KD/LENAhH8xU5JdCfkfze\neecdf4bheIxXkfnzlR+Fdbq5ydbWYsMnQMIu4c2WFiHFb3xDVJTXKwU8q1bJlx0OFxtLPR4hyXe+\nU5r0L7tMSPVkx/DLX8r7FEWO5Ze/hA9/GC64YKK7A8gdx8nmSU7jzwJnRJJr167l2muvJTVmOfIv\n//IvfOUrXyEcDrN9+3ZWrlyJcewvxTSmAZwbPpd3LXgXTx14ip5YD7FMDJfNRbm7HJtqo9JbSedo\nJyOpERRFQVM0oukoHz3voyfMH9aW1OLUnKT0FA7NgTmWUPM5fJL7y4ySNbPEMjGGU8N8etmn+fr/\nnVrBhGVZfGvTt2iLtFEXqENRFNK5NA82P0jIHeKc8DmTPqOpGhbFOOXogJ/7/+5jBBpb2eOv5b5D\nkErZUexfRqnZjmmZKChYWFSHFa59eAkeu4fbLr6NH7/+YzLvf4jRzLuxp2bSFGrC6yiqy993Zu6O\n3h3ER0rQbBY2hyhJVXOQy2lYOQXLLKrrbBZ+8IOiUYwYIcwce4DPlWO2tkne8NGPSnXpyTA8LMU6\n6XSxRxGE7DZvlrDmqYRs89ZCy5cL0eVy8HoU/u7vpAq1uVkUXr6E1zCk7eLIEdmX1yvP795ddMfp\n75ftHBtaPRZ5FZlXwuXlsq9EAj75yZOv/Q+BoSF4+GGZFjIdTv2D4YxI8q677uLhhx/mqquuorOz\nky9+8YvcfvvtrFmzhhUrVoi7yTTetMiZOZp7mtnSvQWbZmPFjBUsrFhYUFY3LLiBVfWreOrAUzy2\n9zEWVSxi/dH1jKRGcNgceO1eErkEI6kRGgINXDfnOuaUzZlyX4Zp0DHagWVZvP+s9/Pg9gdx2pxk\njAwjqRGcNidvnfPWQhh3VcMq3rPoPcwtm3vKx3MkcoRDI4cKBAngsrkIuoI8c/CZCSSZSo31lrd6\nScUt0oqCqqjoaTujgyXgquAdy8r4bVt+TJWLa1acR3esm7SeptRTSrK/Eo9dCLympIbbLr6NaDrK\nneucjAw4j3uzcKYmCLFMDIVyVJtBLiuXBNNQsEwVsFBVZYIZejJZnD95bCdB5EgM7GOzuX7zG3hf\nsdhqwvrG8piEQoSry1jzjW9M3funaac+3aKzUyqKVFUGGh85IqT77e/Dhz4k4c2KClmEaUoYeGhI\nehurqyVMOjgo25g9WwqAliyRcOkVVxw/7JtXkZpWdJcHWUc+N/nHmNDx/PMy4Pm880T9TuMPgjMi\nyYsuuogbb7wRgIULF/LjH/+YBx54gIceeojrrrvuD7rAafxlIWfmuH/L/Wzp3kKJowTTMlnXvo4r\nZ13JB8/+YOECX+Yp472L3suW7i2MZkep9FWyb3AfMT2GYRp47V4aA43U+mt58sCTHBo5xGeWf2ZC\nLu7g0EG+u/W7jKQlseh3+nnvovfSHm3Hpthoj7RT5asinUujmzqNwUYOjRziq699ldWzVmOaN3Iq\nk+oj6UghlDsePoeP3vjUgyKNnEaoxE0sExNFqTpQNJ2AUkuJ0zvhvS6ba8KMz7bBydsLuAJEBqdu\nocuHPs/UBGFO2RxMa4jS2iH0tJxfy4RU3AmKhqYV2x9tNqk7mapthFxOcm0zPMLML7zA7RveQW9E\nqpnyY8QAfMYoq3sfgXe8g7bemQXlc/u/6PT2qxN7EjkFtyPDgF07ZA27d0tyeO9eyNmE9B56SO5g\nBgakqCU/T6ysTEgyH9K9/36prrXZpKfQ7ZZjylfBToV0WpTzsS4+Xm/RpuiNVnZDQxKanjNHiHnF\niuI+X3lFQr6e46crpnF8nBFJ+sfi84cPH2bWWLLi5ptv5umnn+bpp5/+w61uGn9xeL33dbZ2b2VW\ncFaBVEzL5MUjLxbycHm47W4+ccEnuPmJm9k/tB/d1HEoDgzNoMxdRsbIMJgcZFHFIvYM7GFj50Zm\nhWbxXOtztPS3sKVrC3PK5tAYEuaIZWL8fPfPubrpakKuEGpIpcpbRaWnkk3dm2gINuC2u9ENnacO\nPMXhyHnM4kQzmgRhXxjTMrEsawJRjqRGWFBx/KIUh+ag1F2Kburoig2/04/X8YdXFKZpYloAKj/4\nweQ0oK6L8fpUzjwA88rmEXLvRV+0Ha/DiyeWJqLpHG1eQdgbnsQNP/mJ5CXHj9MCioUpqlroyevd\n0UvD5fL9NDdDMCBqMdI8zIupC4j/Ike83OKmm6SncP1TcRm7NTN0WvM4w0YXbR0a0ACJLDzVAqaP\nsHGoaKpeWVl03Zk3Txj7Ix+RUt1oVB6bNomZwGuvCUHu3y/K7ERq0u2GW2898QJPhmxWiPjqq8+s\nb/L55+XY/H45WRs2iJpsa4PvfEfuaN56cpeqaUzGGZHkypUr+dznPseXvvQlXnvtNZYvXw7AW9/6\nVl555ZXpop03MbZ0bcHn8E0gE1VRsSk2dvXtmkCSACPpESq8FRwcPohNsWFiYpgGw+lhgu4gR0aO\nsKB8ASFXiKcOPMVIegRN0RhODTOcHqa5txmbamNmYCYOzcHWnq283P4yCgrRTBTdkJaG86rPK0wK\nsWt26gP1vBbvJZ2bUXCvOR6qfdVcWHshmzo3Ueuvxa7aGUmPkDEyk4ZZ5+0+i3MnFcBRMGQBueE/\nerTYd5gnm1MdepzHUHKIlv4WOjo1PvnMIxyN3kYiMZNAYCIRp9MizKYKxYLkT1PtC0mZdfRmYpQM\nxlG9XrLpML2x41+w84OfAVFyvWnilpewb2yESTgMa7shFZYTo+vQ1ilEk0oRt4cIZvtBraShwQsj\nEZrNUYKZFJFICSe9PA0PS5P+3Lmscd4J4c0SB47HJcy6bJnMZHR4hAB375Zq1vwsMMOQtZSXw513\nynMul4SBBwelAbS3V+46DOPEavL3xYYN8MADUFsLZ599ep/Nq8h842p+zNeKFfLL5XZLBe9llxXz\nrtM4ZZwRSS5btoyzzjqLD3zgA5x9zBe6atUqmsePNZjGmwo2TVxyjoVlWVM6xGzq3MThkcNYlkWJ\ns4SMkSGbyZLSU0TTUbwOL6YlxNky1EJTaRPlnnIGkgN47V5cNhc7+3ZSU1JDW6SNweRgYX8euwfF\nrtCf6GfPwB5cNlfBDF1TNWz+QZ7fuh8Li4AzQNgXxm13TyqEURSFm5fcTKWnkhePvEgml6Eh2MDH\nz//4JNJfulRCno8/Dj5/DsM0sGt2Duwvks2xQ4/zeb0TzlU8BiOpEdYdXYdDc+C1V+N3+mmPtJMx\nKoETkz5Mzl92d6soih+b6cSn5SBjop6ktGACobceAauZtkw1a+Y9BPn+9VxOcoU1NXCkC5SokJvi\nKdqr9feD1SDhUXUsZBmLAccp+tmxQ35u3y7K793vlupV99icylxOKlqbm4UUnU4h0+FhYXaPR/a1\ndCk8+qiQ0r59MnPynHMkFxmJCDlms9KUP3euEM3q1cVK17wf7O+LbFaqe0MhWc/ixaenJvMqMu+s\n4/HIOf3Vr+Qc1NfLXdnLL0+ryTPASUny8OHDPPHEE9x0002ExlWqeTyeSQSZx6xjLaCm8VeBdC7N\ngaEDGKZBU2kTfufksvgVM1awtn0thmkU+vt0Q8fC4tzwuZPeH8vGyOQyOG1OTMuU0VAo6IZOT6yH\nCm8FndFO0kYaTdEoc4vXZamrlMPWYeyanaSeJJ6N0zHaQTqXxmVzYVNt2FQblmWhqRq6qdM52klP\nvIeeeA+tQ630rfhvVtSuYH75fKKZKA7Nwb9d8m/MDEyeEOG0Oblx0Y28a8G70E0dpzZ1AU04DK2H\nc3QNJjDG2hBMyySTKkVRFHKDBh67h2xWyv/PtAtg/9B+7KpdtqUoeCwbIctFW0qlf8BEVYoXWcOQ\niOO5407/sfnL+noI+k32bMlAiR1yOWxmhlTKzU9+IvyTNzUvL58i/GnVw/ww4QoDPndn8floKdQ7\nJN6b9oI2ZuXjHJumYbdLrnDPHmmwtzUKqcVikHJN8H4FhFAefljCp5kxQ4Wvf12UXzAoKrCrSw56\nYKDodpNICHn29gqZJJPSL1lVJT/z7jnXXCMHmh8WCqK+GhuFiPLkZVmSv1y1SkjteNB12d/Pfy7F\nRNXVk9+zYYMo3fp6ObEtLaeuJkdHxQjhWGcdXZdJI/PmybrD4Wk1eYY4KUneeeed/PSnP6Wnp4cv\nf/nLgBDnV77yFW666SaWLVv2hi9yGn96tPS1cP/W+0npqUIRywcWf4DVsybGBxdWLOTqpqv5zaHf\noClCkiYm71v0Pmr9tZO22xRqwsSk3FNOX7wPAMMyyJEDQ1Tc+s71LKlaQqWvkpyZw67ZCZeEKRkq\nIZKOSK4QhUQ2gaZoKCgFglYUBbfNTdbMks6lWX90PXbNTl+8j6ArSGesE6/Dy6LKRfTF+/jFnl/w\nmRWfmbROy7LIGBkcmuOE4dk1a+D+Ld/n9Xg9aqKGjJGhL96HrTJHuaecYHmK0WEvM2PnouhCFMcO\nUx6vZMcrvvGzJztHZ+DyhJl9fhsAjVsPMb93L9vMJYXZmWMLx+FQpjRemYRolJxhJ+iR4ZDBTDuR\n8tlcf6PtuDMsi7CPPYDxnrg+QE/Ajh341CVEcpKKietOiQEbBj5zBF7ZLrnA8ebdra1SgDMeGzfK\nCTt4UMKhixcLwc6aJaHTXE7uPPr7JQyZJ1mvV9g9HBYStNmErM8/XypCS0pkGx0d8NnPnlwhHjoE\n69aJQv2v/5pa+UUi8gvxzncKSQ4Pwz/8w8T35FVkRYXsMxg8PTXp9coMSfOY6E1Xl+Qi8wbsTqfc\nVEyrydPGSUmytraWdevWUVdXV3hu1qxZfPvb3+buu+8mHo9zxRVXvKGLnMafFtF0lPs234ff6afS\nWwlI8/6Pd/6Y+kD9hPYMRVH4m7P+hotmXkRLfws21cbZVWdPSZAAF9ZeyMzATIaTw3gcHrpj3eiG\njl2x43P48Nl9XDTzIhJ6gtmh2RwYPkB9oB4FhRUzV7CpcxOpXIrR7ChXNl3JC4deoC/eh2EaqJqK\nYRrYVBvlnnKGU8M4cg4cmgOPw8MM/wwURaF1uJXGUCMV3gp29u8kZ+YmhIa3dW/jF3t+QW9cLOSu\nm3MdVzVdNeWYrcHkIFu6tvCuT/aioPBy28sEcunCe6+cdSW/uOdtuOau5+rZV09QfFMR0XjFN35G\npE21ERtyEukN4i+JMP+1A5xds5NHD99IWbkDm4qoqWgU/AFGEyeZvWiaMDQIam3+i5Sfo6PA6XnE\nTsLOnRCNstr9WqFFos1sBJuDBqUdFB2iamE4cyTtIm7ZadvZAY4MOJ1y45AnFI+nOBX63HOF3C67\nTFTd+BN3331Sqbp7t5y8Cy6Q48qX6g4MCNnlVVtFhRBua6tUiR4PefOD0lIJJe/aJWHaY/HCC2Ki\n/tRT0kqycaPMsqytFQJNp6UwKBotfsnB4OmpSU2b2tHohRdEpQ+OK5VWVckDTKvJ08JJSTIY27eY\nPgAAIABJREFUDKKqKjNmzJjwvKqqfP7zn+dTn/rUNEn+laO5t5mskS0Yc4NUbro0F+uOrpvUw6go\nCo2hxkLV6Ykwu3Q21zRdw9burbT0t0hVay6DXbPTEGwglUsxlBqi3FNOyB2iPlDPs63PFswG5pfP\n5+FrHqYuWIdpmZS5y/je1u8xkBrArtpRFZVydznVvmoimQgBZwALi2giSn+in7AvjIXFaGYUm2rD\noTomENf2nu3896b/ptxTTl2gjv5EP19+9cu8evRVPr3801R4J1p/RdIRVEVFVVSyRpZoJkrAKcoq\nmoliYWHX7GSNLIlsgpJ82PEUMD4H2B0zeXH7Aa7912c575UDeF6Kc7TSjtPKoWfc5BQglYWMAtEM\nNtdJyv8TieJsw7zstNkk7Jl0AWfWPhAuSdD2eB/bcu8kZXik48Y0cStpUmYJze5l+JwJVttehkSC\n1aXbAWiLl/PD5d8TQ4JLL5WNrR1TkcPDohazWSGppiYh4iVLhFi8XjHxrqoSBdXQIOHTt7xFCCqP\nV14R67j8bEtFkc8+9tiJ1eShQ0K8DQ2yjkcfFcU7XvlFIpIr1DTp1wyHhcyffFLU5E9/KmuPxeRm\npqen+Nls9sxyk+NRVze1S5DNNrWf6zSOi5OS5C233MLy5cspLS1l9erVXH755Vx00UW4xqoOssUy\nvmn8lSKejU8gjjycNieR9GlUm0wBRVH45LJP8p0t32Fn/05xy8Gkzl+H0+ZEUzXaom0EXAHsqp3h\n1DBNoSbclW6cmpN0Ls1DzQ9xx6V3YNfsfHblZ7mq6Sq+s/U7bOrchN/pp8pXxUBigDp/nRCh5iCR\nTTCYHMRrlztqm2qje7Sba2ZfUzhWy7J4bO9jlLnLcNvcrG1fS8tAC5lchg2dG3ik5RE+dv7H+MyK\nzxSUYoWnAgtLlOwYWVpYZI0sfqcfVVEZaC9jtLmayGYP2rjTGo3KtXb8QOP160XYHFv1Wu2rZnYp\nxEf6OPuX63GmdIKzl1DnjWAvGRuy2z0AARvkYsQ9NYTDJ/hzNwxRaLFxBSCZDBjqWH7uzEhyzdwH\nQfkPbrJ/hwZbpzyp62AYvGhcQdyopNcWpq3kLPBUSUg0GCRcaULo5WK4dLyK3LatOER4xw4ZS9XT\nI2bqn/60tGzkWzlAFN+cOZLz/PCHiyOsfvMb2c7Ro8UFW5ZUxg4PT5z1OP71xx4TMs2HR48ckSKi\nQEByjrt3S3g1mRTydjqFjBcvFjW5dKk4Cem6EHt+puV4uN3HH6x8KnijqnDfhDgpSX7kIx9hxYoV\nJBIJHnroIe6++24cDgfnnHMOTqdzukjnLxyGaZAzczg0x3GdXGaXzsawjEl9gqOZUc6pmiLMdJrw\n2D28fd7b2dW/C7/Tz9r2tTg0qWhRUMgZOXKm3P0m9ATzyudN+HzbSBu7B3ZzbvhcFEVhSfUSvv/2\n70srSWqYvYN7eXDHgygobOvZhl2zMyMwgyMjR+gY7SDsCzOaGWVRxSLeMf8dhe3mzBxdo13UBerY\n3rOdloEWUtmUmANY0Bvv5a61d5HOpblj1R2ANP2vnrWa5w4+R62/lrpAHQeHDqKpWuFceaqPsvgi\nlRUzJ04gybeCjC+oeeYZuV5PngGpMHt2DfcmVqKkXwJfOQ25MBfU9tHg2z3mRdohamJ0lDZ3hjVr\nior/2EkgRkmQzlQQ0wmRYIOEX3t68DnjoKps2yYjtqbCcRv943FpmygpAd1WVGy6DqrKaser4PXR\nVnEBP7zs55Ljm7daNrZvP9zVIqHRJUuE9NraZBterxCIwyFEpGnyc3hYQpvt7XLHMb6QxbJg69bi\nNBBFgbvvnuypahiyvuMNJR6vIvMIheC//1vWc8kl8MgjEratqiq6wCeT8rnGRvja1+ScBAKiOP/5\nn9+4mZLT+L1xUpJsaGjg3nvvLfx///79vPTSS7zwwgu0trZy//33v6ELnMapIZaJsXtgN5lchsZQ\nIzP9M0/odZo1sjy5/0lePPwiqVyKWaFZvH/x+6e0a5tTNocl4SVs69lGpacSTdUYSAxQXVLN8hnL\n/yDrrw/UY5gGewf2ks1lOZQ4hN/pxzANwr4w71v0PvYO7i2EfC3LoifWUzAA/9bmb/G5iz9HU2kT\nIJW4zT3NHIkcYSAxQNbIMqd0DrFsjNbhVhQUQq4QDs3BnZfdyaLKRcwunT1BMdtUG0FXkGgmyqGR\nQ2RzWSmIsSBn5VAtlbSR5t7X7mVu+Vzes/A9KIrCexe9F7/TzzMHn6HEUUK5pxy/w49u6LRH2vE4\nPCypPrU5i/k6lEn2bxFA13E88EPw+eVCvHcv4ZI4bT0u6ByEshkQUcH0Ex49wO3/WE1vfHIPczgs\naTUYVyjUNwDJI6BptL2WAytIQ8PUv0/HbfT3eiUvODAAd9ZDTVYKavbskfCuaQp5xWJyQPG4tGZs\n3SrN+5WV8v4dO0Sh3XLL1Pvx+cSf1eeTPJ+qSt7N45k887F0XH7Vbi8Sdx7PPit5xNtuk39feGHR\ngw8k15fJSKg0D8OQtpG6OkkqHzkiynffPtl+Nitf5Pbt8mXu2QPXX19s/D+datZp/NFxUpI81qh8\n3rx5zJs3j4997GPs27eP//zP/2TNSUeOT+ONREtfC9/c/E0yuQwWovYuq7+MD5/7YXRDZ0fPDnYP\n7ibkCrF8xnJqSmp4YPsDbOzcSK2/lkq1ksHkIGvWr+Hzl35+Ui5RVVQ+fsHHWdu+lt8d+R0ZI8Pb\n572d1bNW43X8YQoAjkaPMpoZ5Wj0aMEXNZqOMq9sHt99+3eZWzaXaDrKnoE9lLpLOTRyiJ19O/HY\nPdhVO0PJIe5adxefu/hzVHgq+PJrX6Yn1oNDcxBNR2nubca0TFw2F2dVnoXT5mQ4NcxN59w0QT2O\nh6IovH3u2/n6xq+TyCbIGlmZ5WhksKt2HDaHmBUo8OPXf8zS6qU0lTZxx7/Z6O19G6Z1HZZl0qBo\nxLIx+nIZaqpVzq0qRVX0QuvLGWNoSAozvF65ECcSrKn+KnhSoobG1wp0dXHTjrk0XDm5IGU8ya1Z\ng2zrs1+ERTbZdns7N8W+CZx6/hQQtVZXJ49yQOmRsGNJSbF4Jn8cmzcLgYyMwPe+J8TT2Fhsn7jn\nHvFTnQr/8i+iInVdCGzrViHfQEDCq6dqCZdIwBNPCFm/9JK0mgwMwN/+bfE973rXxPMKQpD5qSP7\n9gnp67rcBLjdRS++REJeO/tsCfOeSTXrNP7oOClJfuhDH+If//Ef+dKXvoR3XEVUS0sLu3fvLkxb\nmMafBolsgm9t+RYlzhKqS6QHy7RMfnvktzQEG/hd++9oi7ThsXnIGlmeOvAUN8y/gc1dm2kINhTU\nZqm7VOzaDj7FJy+cPLXAoTlYPWv1pJaPPwQsy+Jnu39GXaCOptImjkaOktAT+Cv9lDhLqA/UA3BJ\n/SW8cPgFRlIj7B3Yi9/hJ2tmcTvcLKxYyGhmlEd3P0q1r5r+eD8NwQYAyj3lbO/ZznOtzxH2hlFV\nFcuyeEvjW7i88fLjrsu0TLrj3cT1OCOpEdJGGhUVTdUkd2qZoEi42KE52NS1iabSpnEVqSo50ySa\nHiagKGxbX8aebRaxbBTTLiTh1JyUOEuwuzIk0youmwvLKoa+bTbhrGONBuJxCFs9Et7LO62k0zA8\nPFa0k8J27ET6oSHQGyarp2OxaZPsMB9SdLlg91FYvPD0m+f37JF1medKP2B3tzi75xWdrkNak/zf\nBRfIAb/4IsyfP9FmbccOeT2dFqW3bJkQYUeHDHfWtGK1aChUJJyNGydWvZ4Ia9cKyQaD0nsZDkvL\nxLXXiqoFeW58j042K/2SM2bAq6/K5wMB+YJsNiHJBQuKUv3gQbjxRvk+UilZ9wsviLI8//zTO7fT\n+KPgpCS5dOlSQqEQn/3sZ7n11ltpGPvD+dGPfsRXv/pVbjpeomIafxTsHdxLJpch7Cv+4aqKSsgd\n4oHtD6BqKo3BojJM6SkebH5wknUcQNAVpHWo9Y+29jyyRpbW4VZp7VAUFlcVm7OPRo/Sl+ijLlBH\nrb+Wf1r+T3xtw9eIZWMYloHf6Wdp9VLsmp1Sdykt/S1s7d5Kja8G05Km+v2D+/HYPVR6K6nyVaEq\nKl6HF5fdNaUStiyLweQgr3a8ypP7n8SpOanwVpAZzZA1s1imFOYYloHb7qbMU0bIFSKTy0zYTnes\nmx09Owr51I6epTISy65Q4pcITUIfoDPbjiNRiaqoRNIRmnuHOSd8DqqiFvjv+usnrrFtT5I1tq+A\nPSTkh4SYuw5v55mlfvZeWs2iilncsOCGws0Tn/CenCCzWbE0Gx9irKoShReJnNroqzxyOQk/plIw\n+HlRh5WV8pg1q1h405cTJRUKSXhV16XgxesVFVpaKmpyyRIhsocfFhu5n/1M+gEjESEjw5DinOFh\nIbrFi6XIZsWKk7s25FVkVZWsd+9e2Xc2K2HX8WpyPPJ9m6mU5B0tS8i6vl6ea2qSc3n22dLkahhC\njHlx0d5etJWbJsk/S5ySLV2+L3I8vvCFL7Bs2TIumx7J8idF1shOOZrMrto5OHKQS+svnfC82+5G\nVVSi6eikQpyEnqDaN9ERJGfmaIu0YVomDcGGQkHNHxI21YbL5hKDc01CmPFsHLtqx7RM3Lai68pZ\nVWdx9xV386lnP0Wdv44SZwmKomBZFnsG9rCrfxe6odM61EqJs4RlM5bROtxKOpdmJDVCwBlgQcUC\n6gP1dMW66BrtmuCw0x5p54EdD9AR7WBrz1ai6SglzhJm+Gfgd/jZP7yfVC6Fbur4XX5CzhDnV5+P\nbuqcV31eYTujmVG2dG3BY/cUiPiIkSOVS1ERcpNJuDEtk0Qmi2X5yehCXs6AqOS27bNR9JJC4eV4\nM3GfD2ZXGXDJikIFpG7oPN/6LMlGByVl1ZRVN7Ehspe1m/4/bl95u4zzsp9COK+lRUK4TqcQYx6G\nIYrudEhy+3YhLSB8ZANtSj24bNCRgnClkEiPkzCdUp2q66I8k0lZQyYjKlBVhXB37pQToWlSKHPk\niJCZxyMP0xTC0nVRovk+wQ0bTq4m8yrS5RKl6nZL6PSiiyaryTzyNxR2u4R4R0aKLkA9PXIOe3pE\n3S5YIKo4k4Err5SG/mRSQsXXXScKO5OZngP5Z4gz8m4FcLvdvPt0JoZP4w1BU6gJRVEm2MABDKWG\nqCmpmfIzJY4SPHZp3K8pqSkMEY6kI9y85ObC+/YN7uP+LfcTz0pppdvm5u+X/v2UQ4Z/H2iqxhWN\nV/DkgScxTIN9g/uEQLIJ5pbPnUTMXruXptImuka7Cn2GvfFetnRvodRdykB2gEg6wmBqUH6O+bna\nNTs21UZzbzNDqSEqPZXopl7YbiQd4UuvfglVUakL1LGtZxuJbIKcmSPkChFwBzi/5nxa+lvI5rI4\nNbmgretYx+pZq1lYsbCwrY5oB4qiYNcmKrdctIKEPYHTJjcglmWRs3KgjlK5ZAuZaIjeLhdWR5Km\nsBybzzexcCcSAWaXTBjm29y1hV9t2UVDsIGcmWNb91Z64j0k9AS3vnArq+pXkTVuA05yk7NokVR9\nHoOwI0hbxAVtkz8y5dDnXE7CoGVl3P785fR2ZqFBE8KzLLatS5JKmLiNBSwN2rlp10Jp0/DkCJcf\nZE3DXaIk3/EOGaIMEgbeskX6Jp96SnKUw8OyAI9HiHx4WIimulpOnKKcXE2OV5GRiBBWaalsKxIR\nUp5KTUYi8r5MRsKteTULsu+zzhKlG4uJYsxXs37nO5LXfOUVUZ1VVRMnd0zjzwpnTJLT+PNAla+K\n6+Zcx5P7n6TEWYJDczCSHqGmpIZrZ1/LM63P0BAo5h6TehKnzckdl97B/+76X3b370ZRFByag/93\n7v/j7CqpshtJjfD1DV/H6/BSF5B+s0Q2wX2b7+Put9w9Ibz7+yKTy7AkvISX217mudbn8Dq8qIpK\ndUk1QWeQb2/5Np+7+HOYlskv9v6C51qfYyg5ROtwKwcGDzCvbB7berYxmh4lqScJOANibWfmaI+0\nY9fs0vbhn4HT5sShOWiPtFPmLmOmv6giN3duJqWnqA9KDjTgDNBFF6ZlEsvECLlD4gWraJR6StF+\n+xXi0RBum5vnsbjxR3FC7hDbtsHM5YlJhu6qqmKZNmyeOC6HhaWnQIuCmUON1TH3fQ8WzvPhh/6D\n1Zdfzsa1PuLxiTnJeHwyMXWMdmBXhZD3D+6nO9ZN0BXEoTkKszX7eB1H2wWTzv+EbTmdUF/P7f+a\no7dDn+id6jyFuY555FVkfb3kaPWDQgi1tVBi0LxzhBnOFHvSdTRnFwrRtIfA6STe5oKGW1mz8Omi\njZphwP/8j6i1bdtkH/39os4qK4UwOzuL6jcWK/Y/RqOSY3zrW6f2Wc3nTfOVt/nwqWmKqmxqEmOA\n664TV548Kivh3/9dQr/vepeMuRqPoSFp7xjrC8Uwigr1mWckF5m3jQuF4AtfkPWND3VP40+OaZL8\nK8CNC29kbtlcXm57mXg2zlVNV3FJ/SWoisrB4YMcHDpYCGcqKHziwk9QXVLNv170rwwmB0nqSaq8\nVRMqLbd0bSFrZKl2FsOvXoeX4dQwr3W8xg0LJjYrDyQG2Nq9lVg2xvzy+SysWFggiXg2zp6BPWSN\nLLNLZxcI1rIsXjryEj/f83OyRpatXVup8FYwv2y+hDJdEto7MHSAjtEOdvfv5pFdj0ywrhtMDuK2\nu8kaYmrhUB2ifBVp7E/oCQKuAGWeMnRDJ62k5WcuzcV1F09Qep2xTlw2F6ZlYlomC8oXsGdwD7mx\nMKk752YkNYJdszOndA6D+lxCTVHAIKknSbn2smTmRWzbBsbwTIZHsmTHuRRZGS+KahSO3a7ZMUwD\nBQXTMmkdbqX/G7/GTJZixSu4b7sLxiLpqip8UFMj19ljiarCU4Fu6piWyZHIEfxOP4oiRvEBV4Ba\nfy3Gu+/nq1d9lTLPFE3y45HN0vvs6zSUDElocNwA5JPNdQQmqEj6+oq5us5OWbyqCilqOXKWRtCV\nBlsO0r1g84EtTW+XIeHUqqrJfq27dwtx9fQIuQwOypSO2tpi0c7b3ibPgZDkD34gBHr33ZMGOrN0\nKXzzm/LvjRsnhpkdDgpzzqbK5+7YIescHpYiqvGDjYeHRdHu3CkqUtNkGz6f9FL6fEWSHBkR14jv\nfU+I90zwwx9KcdOxbS9/LvjVr+R34tJLT/7ePyNMk+RfARRF4ZzwOVOGQW9beRu7+nexd2AvAVeA\nC2svLPivglR+ToXh9PCkUCGAy+ZiIDEw4blt3dv4ztbvFHxSnz7wNIsrF/OpZZ9i/+B+vrXlW4VJ\nIADXzbmO9yx8D9t7tvPD5h8WFN7rva+TzqXpjHWyMriyoH41RWMkNcIT+5+gPdKO0+Yk4BKrN5fd\nxY7eHcwtnctQakhUseogY2TImTn8Dj9eh5erZl1Fe7SdweQgPoePRrWRpdVLJxzHDP8MfrLzJ2zp\n3iKfdfqZHZzN4chhsKTCt9xTzmBykO5YN32jHWRKkpR7yrGrdhJZ8SVduhS+/X0/X3jl1wwmB6n2\nVWNaJk/dfzEdG5ahZcuIpbKAhpqVocxWysfQT+9F75uD4khhGRqYSqFAMpeTa38wOLFFL4/zqs/j\nF3t+QV+8j5yZQ1VU0rk0iqIwMyA9s6qiksqlJn/4WLz8MrSPQnlcdlZff/LPjMeOHUJoZWVy8c/b\nvWUyQgw1NdBqk8hvwizapCWT8jC9oCFKUFGkQOfQIXlPNCq5wOFhaSWZMUO2d/HFx3c7+OlPZb8H\nDggJffzj8nxvr2zD65WfIDcFp4pcTgqKwmE5zvXr4aqriq/PmSOk1d5erEDOH+fLL0s4tr1dFObW\nrfJFP/KIrO90cr8g5+o3vxGi/c///PNrJxkZEUs+j0d6T/Nz4v4CME2Sf+Wwa3bOqz5vQlHJ8ZAv\nAEroCfwOP0k9Oek9CT3B/PL5hf8n9STf3/Z9St2leOyewnZ29e/i6YNP83zr8wScgULximEaPLX/\nKeaVzeOpA09R5ikrKNgyTxmDiUF6472MpEbwOrz0xHroHO1kIDHA4ZHDGKYxYQqHYRlYWAwkB0jm\nkqRz6UIh0FBqiPpAvQx9Vm2FdUfSEQzTYFHlxDvu1uFWemI9OFVnwfh8NC2erkk9SW+sF93U8Tl8\nVHgqGFbtRNIR0rk0IVeoEKYFUd2fWf4ZHn79YZp7mgm4AtzxX3F+vSbA7Fk20rk0Fhbbu4+yuXsz\nyW034K7oI6uZ2BwG2YyBop66M5nX4UX/zX+xcc8hOkbfimEaODUnpZ5SNlbmWPl3T+K2uyfcIE2J\nfEuD9rcSgty9W4hobGIHbR2QqT5xgUlpqTT3g/QbBoNQOlZ8k0wKAfjt4EoXjM0BeT2Vkv16LAlX\n9vYWWluorxfy9XhEWdbXy/ZyOXjtNQl5BgIT15KvHK2uliKf+++H97xH3veNb0h484MfnHwMyST8\n+MfSZ3nsuK48duyQEG3ew/VXvxKyHq8mk0kpIhoPn09yj9deK+Hb7dtFDVdXS1/mK69MLmc+GZ54\nQoi+o+P4hut/SuRnXsbj0irzF+T3PU2S02A4Ncyv9v6K9R3rOTJ8BEuxqPXVsn9oP73xXi6ouQBV\nUemJ91Dlq+KC2mJe68DQAbJmtkCQIMq2wlPBE/ueQFGUCW0WmqpR4izhlfZX6I33FkJ/ea/T9tF2\nDNPgmdZnAOlV9Dl8fOq5T9ET60FBQVVVAs4AiqJgmia6oaObOmFvmKHUEBkjQ1JPUuIowabYKPWU\n8vj+x6nwVFBbUkuFt4LPrPjMBLLNT++4ds61rGtfR+tIK4olYVCH5iDkDuG1exlIDhBwBsSs3LJw\naU5imRgeu4emUFNhe5s6N/FQ80NkjSwehwe33c2S8BKe1ewoilQZA+imToW3gg5FLeQU9YQPck4M\nS8FA+u4tS/gjFhORcNNNk/ODyRE/1y8/l45oGZu6N+HW7LjscQa7ffTEe/jo0o+evDr55ZeFTPIk\nODhYVJPd3TJ7cWP7iatFm5rkkR/8W14OpWP7jUTkYCorIWBBZMxwID+/cXAQBnQh0qxNQp0ul1SH\nzp0r6sswpCDmmmvEtByExEumMDvIX5yjUSGsdFps4QYH5YLd3y/bOTYPuHYtPP20EODixXJeVq6U\n/ycScn5+/vNiv6fLJaHlY9Xkhz5U/HciIaS9c6eEg0HU9SOPyD48Hgm/PvOMkMhUx3Ms8ibpW7fK\ndxSNyrqONVz/U2JkRPKv4bDc0PzqV3Iu/0LU5DRJvsmRyCa4Z909RNIR+uP9DKWGxJTbtLik/hK2\ndm1lz8Aewr4wl9VfxtvnvX0CIZqWicLkBvP8FIypHGXsmp14Nk5TaRNHRo5Q4a2gpb+FnlgPDYEG\nOkc7GUoOYWHRFGoia2QJOAMk9ST98X46RzsxfSY+p49YNoamaPgcPtw2N4PJQQxT1GUsG6NloIWL\n6y5mdcNq2qJtuGwu/uPS/6DUM3H8U1+8D1VR8Tl8aKrGvNJ59Cf7Sely8fY7/bRH26n2VRdyq12Y\nZIwMLpuLeWXzCpW2iWyC7277LpWeygIZjmZG+dqGr5E17gMcWJZVGN5c6ipl0OYm7AszompYph1T\nsxhrryz07yuK1JJ4vXKtnio/qCgKdcE6dm6spGcoxvCACzPrINH6P7xmc04YnjypCCevIm02ucDa\n7UXP0epqKWpx++Gx/zu13sPnnoNcjrAnStvg2AU/bYMXDmLYy+hsT2JZpUSGTOgaEHU3Cj7/mKl6\nKi7ktW2btGJ0dMh6IhF5fscOIaHjqdrxKnLDBllvaakoRJtNxmx5vbLO8WoymRRl1tgIDz4oJz6T\nkZuEj35UCmxWrSqqyDyqqqZWkyDE/uUvy5qGhsSEvaZG1jU6WiRbh0OI5He/k8reE0HXhfCHhoRw\n8vH4trY/LzX5/PPyM28D2Nf3F6Ump0nyTY5NXZsYTA4S9oXZ2r2VUncpiqIQSUdIZBOsmLkCwzK4\n96p7p/SCzfudHmux1p/o58pZV7L26NpCU38eI6kRrpt9HQ2hBu5Zdw9G3KAt0obX4SWRTbCwYiHD\n6WE8Ng9HIkdoCjVh1+zU+GrI6BlyVo7OWCezbLMod4sCKHGUSDjWMmR6iKJhmAY+h4+W/hbxn61e\nQlukjS3dW7h69sRKxKAriGEZpPU0mVyGgCtAOpcuhGrtmr1gSacpGpXeSuY3BIkN1ZLQE+jDtbSl\nZVtpVxsBRSsQJIizTme0E8vdwSOPzmQgGkc3dEyrkZw5E1Je+ratwMw6UVQTzaGjYsMw5LpimnL9\n9PmmaLnYvHnM+7N4Z55Lu5hT62JfTJ5uapDnxxvpTCLZvIosLyc8OkRbtkaIs0ODlw7DoJdweGxG\nZb738JlnhGxqpmg3GhqC6mrWVD9bfG7XLiG7hQuhuZnbL3yJ3s4cxNvlou8Vcg737AO3JvtyOGT7\nt9wC//u/chDve5+o1ROZI7z0krx3ZERydl6v7GNoSJRnR4eo05demqgm164VxVlZKa8lk0KYLS3w\nk5+Imu7oECI89iTabPL6sVW0zc3FXO2KFdLCcvPNQsaZzMRJJNmsqNjVqyeT7Xhs3iz737mzGJ7N\nW939uajJ8Soyj/zNxF+ImpwmyTc5Dg4dxGv3SpEHyqRimVp/Le2R9kKj/7HwO/18+OwP82Dzg9hU\nG07NSTwbpzHUyHsXvRdN1Xjx8IuE3CFsqo3BxCBVviqWzVhGwBXg1otu5fvbvk88G0dTNeaXzyfk\nCrGpa1NBjeb7PzVVo8Zfw5yyOezs28niisUsKF9Ac18zpe5SumPdYq6AVSAzp+YkoSc4Gj1Kuaec\ngDPA632vTyLJmpIaFlcuZlffLjJGhr54H7qhY1gGDcEGTMuUilGUgkK+4qMvMJAcwGVzcc8V9+Aa\n+2u6b9NvOTgkBGmYBi39LbRF20hmk4RX/D9ie/6dWedm8dq9WJZFV6yL7i0XgtPCskrZjNs+AAAg\nAElEQVSxTAWn5kJHwbJEWCiKiJFstmgFCki47b77xnr4JhedWJaFZVkcbLXI6Sq6rhSMCeJxMTRf\nswZuv9Wg9zE39N8DPfmboRRhtZ81gW+ApwauP092nqiQ3sOGBlFlhw5N6Nks4DOfmfj//n4xDne7\nJYfocrEm+SloDMDKGiGRxYvlwv/KKxAsF4KaOVPURyIhOcpMRhTeL395YhI4/3zJ+T38sBC53y+k\nZ1myjZEROX8eT1FN5lVkVZXsM5MRoh0YkAv9j34kCqi7W07eyIhY5I3HsdWzhiGkFY3K3U4+h3rd\ndRI313UmQdNOrNR1XbaZSBQLf8ZPZOrrk1aThQuPv40/BtaunejTm0csJhGClSv/+Gs6TUyT5Jsc\nFd4K0rk0fqcfFAqqz7RMPA4PsUyMSm9lIV82FS5tuJT6YD0bOjYQzURZXLmYpTVLcdlcfOicD7Gg\nfAEvt73M7oHdRNIRLCzueOmOgkn6navulCIbfz12mx3d0CcYiefXFM/GaQg20BRqosRRwn3X3ofT\n5uSetfewrVca/03LRFM1aavAJJqJ4tAc5AyJXaZzaULuyZWDiqJw85KbueXJWxhKDkkVqAUmJjkj\nRzQdLajm7lg3o5lRouko9cF6/n7p30/Iby6sWMj2nu2Uecpo6W/hcOQwfocfy7KwKTZi2RiZHAVr\nwJmBmYz6wJmrwuPRwFSx2xVcTrlm540E8tHCCbMlf/3r4sT53OWM/5NO59LEs9IWQhacLgu7rYRg\nsHgR7+0d+9mn0HBZA5h1E85LW48Trkcu6nl29nqFNL75TXlu61ap0jxZFewzz8ha29rkwlldLS0X\n550nnz3rLMkV7tsnB+p2Syg1EhFV97Wvyf7yynDduhPnRhsbJd+3ZYvEmNvb5YCzWTmZw8MSQl61\nStTONdfIseRVZEtL0UEnkRAVODws//Z44FvfkrXU1EwMux6L5mb5bN58YP9+uRl45hn4+78/8Tk7\nHjZvlu0tWiTnrr9fiqXGu07U1R3/838srFhxfGP6qaIPf4aYJsk3OS6aeRHPHHwG3dRpCjZxcPgg\nDs2Bpmr4nX4GkgN84oJPnHDsFkB9sH5CdWcehmkQdAelT9HUWVCxALfdTUpP8cPmH/JK2ysMpYZo\nj7SzqWsTVZ4qfE4fZe4yWodbmRGYwUB8AEWVIp2UnuL1vtf5wKIPFMKZn17+aT734ufkPYaJQ3FQ\n4i4hlomRzqXx2r3UlNSQNbKkc2lW1U99Yd0zsAenzckHz/ogO/t30p/oJ5KJ0B5tZ0H5AvwOP/PK\n5/Hdt32XTC6DXbNT5a2adG6Wz1jO84ee59DwIQ6PHMbr8BLLxAp5UIfmYCjVUwhtA9Seu5fFlRq2\nUSHw/DX38cencNvJI5GQi2VDAxw9SljvoK1NfHqjowYd0QFyeilOj4GhaxhmlqyeIGd6JhkdoKqi\n2CZ/gXJRz2YLIcHbt7yb3uiloozq64VU3puEBScwG+jvF3XocIh6y9veJRISnjzvPCHFvj6RzYsX\nF5Ox+dzf3r2ixBRFwnRf/7r0Jh5PTT71lBBkTY305n33u7L//HSO/Alta5ML+aOPCmnncqJqOzpE\n8WiayO6REenF3LtX2hgee0wqVx9/HP7pn6ZeQ15FDg5KaNjpFKLNZuXG421vO32yyKvI8nK5afD7\nZT8dHXI+/pyQ9+r9C8Y0Sb7JEfaF+fSyT/M/2/+HElcJFd4K+hP9zCmbg0Nz8A/n/wMX1l54Rtve\nP7ifezfcy96BvewZ2INds3NhzYUsqV6C2+5mKDnE1u6tXD/vekrdpRweOcyu+K5C3+HyGctZ1bCK\nR3Y9woHhA3jtXtoibZR7y+lJ9IihgGanxFlCQ6iB6+ddzyvtrxBNRwuv5awcbrsb3dTpT/TzoXM+\nNOXMTICX214mY2TY0LWBoeQQdlVMA9yamw+e80Eurru4YON3IvgcPv7t4n/jR6//iC3dW3CaTuaW\nz2VO6Rz2Du7FwioYFmhKUdV57B6yx27LN9ltJ58GC0f3Q8ghJFFVxZr4V+GrXwW3m9U39DDk2E7P\n1mW4fGkGj5ajqRo5yyq4B50Ktm2Hm2puLRpyA+sHQ/j0EXxqlNXBMVKL7OPFlkbWr3cV1Gke4TCs\nmT+mIrdtkwu6zydq1GYTU4DWViGgoaGifLaNXZ48HvlcQ4MUEeUVbUuLmBa8/e2T2zSGhmS8lqZJ\nvvbVV4WcbDapGnW7pYI2lxPFddtt4o5TVgbvfz98//vyb0URYs2Pv8qHTPfvl5/JpBBqW9vUajKv\nIgcGhCRHRuRG4He/kxDw009LMdDpYPNmuXGYObNYFRwMSp/k1VfLun9fZLMyMPvqq//0ec0/MaZJ\nchqcVXUW9151Lx2jHSgoBdWVt4c7E0TTUb64/ou83vs6qVyqYCSw7ug6skaWxVWL6Uv04bV7iaQj\ntEfaaSptIpEVh5yVM1fSHm1npn8mjaFGzq85XwjP5sahOdjZt5PNXZtZWSc5jUpPJTkzx7Wzr6Vr\ntIueRA921Y7P7uNvzvobKn2VRNNRYpkYh0cO0xhsnEB2ST3Jb4/8lp19OwvVsQoKiVwCj81Duaec\nWn/tKR9/yB3ilvNvYc/AHso8ZYV8bj6/CVIBbFkW+zfPxMjMYWNJmGRCrt/r1zOhEjWPglLr7IQ7\n7oPwWEgtr8LWr4crrySRTWBzTf3nnXcnOhWk0ioNF01UOs09OsGhOBGtFNQxYwmbjXhPDF+Fq8gV\nmQzs3ElbfAEc/Y2QzOHDkhNMJORCbFlyEW5pEbIKBqXKdf78YkP90JCot7Y2uUvIN48ahpCbzQY3\nTHSA4tFHhZg8Hnl940bJT7pccq66u+XkxmISv37hhWJoN18lOmdOcY0tLUJyLpeo55YWUdCdnRI2\nPp6a3LBBPpcPRScSsi5FkT7JY/OZ45F3FDq2uCU/bmx8E62myS9HX98fhiQ3bYIHHpBtLlny+2/v\nLxjTJDkNQNoyZoWKif/faxgwsK1nm9isJfrJmTnSOakatak29gzuodJXKT6oqsZodhQUIQ2P3VMo\n4nFoDh7c8SDJXJJKbyU+e7FixWP38KPXf8Su/l147V62dG9hc/dmXJoLu2ZnbtlcqXxV5Fge3f0o\nqqKioPD4vse5Zs41vH/R+wtE+ezBZwuDlYGC0uuL9eGwOeiJ9Zz2OXDZXLxt7tt4dPej1JTUoKka\n+wb3oRsrUHIZDo0cIuAKoOgLmVMbwqGpqEqxUPGXv5y8zd7esR7J7n7WlKYnyky7XUKAF19MXa2d\nbQcDmKbC6ICfbNqOoWtYahY96SWSO6YA6HQwOioKzNQn7j+RGGvmHys4aWsbU4hV8PEbZPE9PUUT\ncBBiKisTQvriF+Guu4RAKiqkgtXpFFKpqxNruSVLioUx3d2i6P73f4Xo/H55fmhIXHa83qJ61XUJ\nF5eXi6KMxSQUe/bZ0iYSj4uSHR6WYpOvfW3i7Mx0uugMtG6dEMi+fbLPujpRjFOpyVtuKRorWJYY\nGMybJ9sLh8eqkqdANitRgYsvFpOE8XjPe+TxRiE/3SQUEqV+zjlvajU5TZLTeEMQSUc4PHKYnCnq\nz8QkmU2SyWVIZBMk9SRxPc554fNQUMjkMmRymYJ5QNtIGxs7N0qFq5mlJ9bD2VVn0xhqJKWn2NS5\nCZtqQ1M0Xu14laHkEHNK5zCaHSVn5tjSvYXlM5bzsaUf4wc7fsAM/4xCHs4wDZ7e/zRuzU24JExj\nsJGX2l4qWPTppo5NsaEqKoZl4LF5+PWBX3P17Ktx2934HKfOLm+d+1ZcNhdP7H+CV4++im7qNM50\no8YvIR6Lk41ruMxykjGNJBOJK5U6fj1I26FAcTrGeDgckErx/f8u447ffZ2ckaPSW8nja67HVtqJ\nQ3NweePlOMZ4phC6DY/rZtB1CRHOmYPbPUXBltsNoRqI26TYJo/R0uLFNJMRG7hQSMjsbW8TRfTR\nj05tI6RpQjqtrUKkpinkc9llQpizZokayxNsJiNqrrxc8n0vvQTvfKcQ26OPCiHn2w4OHBBlqI0N\nd47F5HPptFQF79ol+7bZZF8tLVKxe/So5EqDwaKay2Sk4GZwUI5jeFjOlaJMrSbzvYEgx3bwoHyp\nui4VtatXT3YJAlFyvb1FY4H8DcAfA+OHbh85Iibvb2I1OU2S03hDUOYuk95JTSzePDYPWBDLSjGN\nYRpcUH0BR6NHORI9wkhqBFVRcdvcXN5wOTt6d2DTbJxffT6v972O2+bm9b7XKXWXcmj4ELFsjEvr\nLmVHzw72D+3Hsix6E724bW6aQk2cXXk2M/0z6U/2oynahEKVSDrCjt4dtEfbmV06GwuLo5GjBF1B\nbKoNt01ymHnl6dAcbOjYwD8//884NAfLZizjb876m1MiS1VRubLpSiq9lUTSERlttnBr4fWj0aO0\n/7COS86ZomjmRGhqOn6xCBAAbl95Oz/Z9RMZPebtRok2Uhdqoruj2FqQ55EJxTZP/0aKXD74cW76\n2bWTN+7xQNADKtA07uK9a9x72tqE0EpKRIFt2ACXX378xn/LEtXidgtJ+nyiZvKmBRdcII887rlH\nFF1Tkyid//s/Ccl+5CPSwuH1FtsjvF4hmXPOkSKSsjJRjZ2dQsZ79xaLZ/I+sw89JER5/fWSo8xj\nYEC2lUrJNjIZIczrrptYYTXV8T32mGw7n+c0DMn7HRsqziu56moh4d/+drKafKNw7NDtaTU5TZLT\nmIxENsHa9rVs7NqIQ3WwqmEVy2csn1wReQLMDMykwlNBX6JPWjIUBZtqI+AMoKkaZ1WeRedoJ3sH\n96IoCm7NTTKXJJVLsf7oekqcJZxVdRb1wXoMy2BX/y5Seorm3mZah1up8lbRNtJGy2ALQCHnmTWy\nHBo5hG7qZI0s51WfNyH3qBs6G7tEoZZ5ymT7YzMslYyCgqzTbXdjmAYpPUU0HaXKV0Wtvxa7amdD\nxwYi6Qi3XnTrSYt48ugcFRV37PtLHCVEM1GgSJK5vNXO7/nnWeuv5baVtxHPxlGunWgPOBVuvx0Z\nj7W1FLTPwz8ZrNdNWlvVCW0n+WKi8UVEMG6EV15F5mWxywW/HHPpOV7zeF5FWpYovmRSSOyRRyS8\n+8lPFsOf+XBqdbW8Z84cIbT2diG99nZRnjNmSKO9zyeq9O67xfVmzhwha5sNvv3tyX2NliWk3tQk\nodirry7mR196SQp1Fi0qtlgcOSL2eCdyuDl0SIqOxocGwmGZU3nFFRPV5Hgl53D8cdXk+H2DEP+b\nXE1Ok+SbFJZlcTR6lHg2Tk1JTaHaMaWn+PKrX6Yt2ka5uxzDMvje1u+xq28X/3D+P5wyKQRd/z97\n7x0fV31mjZ/bpldJMxp1yZIsS8bdFNvYGHAwEFrIUjbhTVtI5U02v31TSHZTdrO7kOxmsxsC2RRe\nkpAAxphijG2KsY0LstxkbMnqZTTSaHqvt/z+eHxnJFsuEPNuAB0++lieuXPv994x99zzlPPY0GBv\nQEbKIJQKgeM4mAQTMlIGdo0doXQI2/q3gQGDclM5rFq6ScSzcYzHx7GsdBkWOBcgJ+XIrJvXIpKm\nAh+1h/LAxAEoilIYN8UyLPVEyiKyUhahdAitZa14qfelQq9lIBUo9GGqQ6k5lsMljkvQHeiGw+BA\nIB1ARsrQOCtWgF1vR4W5oqCKa6216PJ3YTQ6OmPby+nwxDwYiY7Am/DCaXRO66lM5VPQ8/rCuZ/w\nn4A3QeWhkcxaJHPCecntfLjQ8LDXC9QrQ4B+km6OkQj6uQi83pICGR46VCyonFpQ6nIBf/VXtI/h\n9kkgagckOq7LliAGVdXk6ZiqIg8fJrWVy5FC+8UvKMy6fj3l8gCa5JFKEbHkcpRbTCSIRN94o2gU\nsHo1ERPDEEHv20fvaTT0p9lM6mjtWvKGVaH61dbWUjXr9u2kJn0+IrWeHlKkiQQRrN1OId5zOdx0\ndNB5ut3TX5ckCu+qTfWnK7mpivO9VpP5PB1bkkjNT339Q6wmZ0nyQ4hQOoSHDzyMofAQGIaBoii4\nvvl63NF2B9o97RiODKPB3lDY3qq1ot3Tjo80fgRNJWdpDJ6CSCaCh/Y+BFEWoeE0qLRUQlEUmAUz\nQtkQrm64Gna9vWCMHk6HUaIrgcAJ0PE6JHKJQo5yj3sP4rk4dKwOsVwMVo0VDqOD1JZSnFyiVqOq\nRgjJXBJz7HOg4TS4tuFavD70OgyCAZPJScRzcbSVtcFhKA7QteltWFmzEs2lzfjN4d9AURTUWmvR\nHeiGltNiYfnCwgMCwzDgGI4MEM5Bkoqi4OkTT2N7/3bk5TyGwkMYiYxgVe0qVJorkcwlIcoiWuqs\n2HbwJIVFFRmyZzE4yYx0TMDjT0XgMukKrkMm02lmAhcT+fx0BWgyYV1mH4aXrMfjj1Ne7TOfmTlP\nOjwg4fHP7CQy+v/+BahMTHeMyeQoZ7d6dbG1Q8XJkxTylCQiP4uF8niqu05VFd28H3iAGPr114vD\njw0GUmmlpUTs/f2kJtVKWtUQXZaLdnNHj1IecsECIub2dlKdd95J+3zkETIisFjofVVNbttGa2JZ\nIj3VfL2tjUj1xInpOdqpuOMOypnOhKnqur2dlHJNDREmQOe2Zct7ryYliQqFVAOFqdDrL3wkzQcM\nsyT5IYOiKPjFgV9gLDaGWmstGIYpjK8qN5bj8MThwqxGFQxDYcjeQO8FkeQLJ19AIBnAypqVqLPV\noSfQg0gmgonkBNbNWYdyUzlkRab+RYksudJiGgInQJblwnivdk87QukQLFoLIpkI9LweNbYahNNh\nGDTUEJ8W09P6DdWByxpOg6HwEB7c8yC+dvnXsLxyeWF/ChQsdC6cpoqDqSBubrkZt7fejltbbsXu\nkd0YiY7ApDVBlmX4kj50jHcAAGosNRA44ayzOFUcmzyGl3tfRp2trmDOsGd0D14dfBUrqlegVF+K\nLy3/EjZb/xOesYOoTXhg19lx/Ff/B7oyL8xDH0EqydJEk1Pm6V4vhTjP8G+9GPB6KX+okhjP098n\nJwFUn/uzXV3AP/wDVaB+4QvTK1hVCMLMSqS/n0KqXi+RWSJBr0ejFBYdHycS7e2l0F9tbbGlIhQi\n5VdXR2Ta20vHiUaJ3O6+m87j4EHg4x8nx5vHHiOyTSaBr3yFlOnWrfT0kUpRH6IaShUEIodnniEl\n3NZGYdieHro2JSVEfi7XuU0BeP7Mh4OZMDREZB+PT3/dZKLJJ+8lSep0FA6YxTTMkuSHDO6YG4Ph\nwQJBAhRuLDeV4+W+l9Fc2jxjH50CBQbNOcyW1e0UBXvde+EyucAwDKot1ai20A12U/cmhNIh6Hgd\nSg2lWOhciP1j+8kzFgxyYg6+lA/LK5bjR9f+CF/Y/IWCT2qFqQKD4UGkcikEUgFYJAsqzBUYiY5A\nUqTCUGERIgRGQF7Oo7m0GWWGMjzc8TAeXPcgPrfkcwDIQEGdcxlKhzAYGQTHcHht4DVs69sGh9GB\nanM17Do7VlWtwsMHHyaHHVZATsphJDKCNkcbnIZzO4nsHtkNs9YMlmHRHehGb6AXHMNBkRWk8ik8\ntO4h7Bndg01dm+BNepEVs7BpqfhDUiQ42g7BxWtRZa7CkgrKBw0P0wD6i45slm7CGpkIRoUkkUrK\nOgCtFocOkRCbhnweUq8A1PupgOaHP5zePnE+qK42999f9B8dGKBhyy5X0cd040YKo4oirUntX2RZ\nIlj1NVGkc1AUqlBtaiLFOTFBIdvxcSKd0VEi1eFhItnt24vJ1snJ6Wv83e9obQ5H8biqynW73/n8\nRxWKMv1afepT9DOLvxjMkuSHDIlcgqo2T7uJ6Xk9vAkvVteuxp6RPRBlsVCok8qnILACFpUvouHD\nCS+MghFOo3PGHOVMo7OGI8MIpUOIZCJwR93gWA6LyhehtawVvaFeRDIRaHktVlSvwE/X/xQaToP5\nzvkwaUyw6WxI5VPo8ndhPD0OWSG1qeW0MGvMSOVSAANkpSw0rAZmjRmyIqPCVAGjxohgKogDngO4\nsflGAMAnFnwCddY6/HDXDwuDnBO5BDxxD9ocbXjL8xaSuSQWli+EKIsIpULIytlC7tOgMcAT9+DN\n0TfxkcazT7JP5VPgWR7j8XF0+7th09kKBgKyIuM7r38HfaE+jMfHAYUKdoKZIKRcHNZTRUM8yxdU\n5DmRyZDqeifkNBWCQARSUX/mexPaQhtDOk2RyWnoGcSYeEol7txJbQ5zZ3Y1moZ4nPKEr71G4cX+\n/iJBvPIKrUctmFEUKpi59lpSPF/6EpHdgw9SaDQUIrXIskTsmQwR49GjtGCnkwwFenuJHKNRyn3+\n+Me0v0CAjnnzzWdWm8ZidE5qVavPV1S7fj+5+dx66zv3SpVlyrl+9KPTzcln8ReFWZL8kKHKXAUF\nyjQSVBQFg+FBAMCe0T1Y4lqCI5NHwIJCYwIn4IvLv4i3xt7CcyefgyRLkBUZbY423LfsPth0xdJ3\nhmGwum41dgztQK2VbhrRTBQdng6UG8vhNDoxHh9HVsriTfebuKLqCnx/7fdRqi+FTWeDXW9Hp7cT\nyVwStZZabO7ZjHguDlmWMZmcpCkfigJvwlvIR1ZaKvGxeR/DAc8BDEeHYeAN4DkeoUwIjWiEKIt4\nufdl8oY1lmPdnHXIilmE02EYBSMCqQAETkAql8Le0b2ot9XDZXJhPD6OcmM5MlIGWlaL+rJ6sAwL\njuUwmZjEH4/98ZwkubxyOX558JcYjY5Cw2kKBAkGaLA14LXB1yCDCoqMWiPEtEhzJhUZiVwCFq0F\nHMuhynwep598nprw77jj3c8QZFm4Wu0Y9p75lqsVwOlRUlkmJcVxpxxkKilU6fPROKkLUZOvvgr8\n+78TudTUFOcgarX0u1ZLIVH1eCdO0M/ChaT4Fi2iVhBFIbPx7u5i64csU07P56PQaFkZEdybbxJB\nZjL0uViMlGYsRq9ns8AnPjF9ncePFytnFYX2p9WSuu3sJHX5xBPAd77zzq75iRP0UJHNAn/3d+/+\nAWcW7ylmSfJDBqvOihubbsQLPS/AaaShwAfHD2IgNIBlFctwaPwQkvkkmkuasbZ+LXS8Dq2OVpzw\nncAf3/4jaq210HA0NLgn0INHOh7BA1c+ME1R3tJyC074TqB9rB05KYdwJgxRFrGihvJwoXSo8HNL\nyy24rpEmub89+TYe2vsQYtkY/Ck/RiIjiGVjsOtozJasyBBlERaNpZDPTOfScMfcGIoMwZv0IpKO\nIMmRcw7P8ohmomj3tGOeYx60vBa+hA97Rvcgmo4imU+iVF9aGHclyRIi2QhyYg6CXkBKTCEn5+i4\nCrVl5OU8xmJjiKQjeGP4Dbw++Dquqr/qjPaYSCaC/e796Av1YTgyDJ7hYdPZYNAY0GhvhI7XIStR\ngYSW0yIjZsAxHBJb/x7S8BWQxpMI6WzQmFzY3kW9hSbTWQYqdHRQ8cv5KizPgxmNyU+DXn/KZCca\nJ2JRFEC2QM/liJQMhulqsr29GKacimiUZgpOTtJOW1qKcxC/+13gBz+Yvv2xY5SvGxqi7TdsoG3U\nite6OjIdn+rGoI7E+slPiIS//33aTzJJIdnMqQGgfj9VI6lqcv364hBkgMzW//Vfi+sYGyN1OjBA\n12BwkEaGrVtHa7gQyDKda1UVPRgMDlKu8y8dGzeSwcKHSPnOkuRfEMbj43hr7C2EUiG0OloL46Yu\nNm5vux1OkxNb+7ZiJDKCUDqE6xqvg8NINzJFUdAX7MO6OetwaRU1cG/p2wKHwVHwIGUYBlWWKvQF\n++COuQuqEQAm4hPo8HTgZPAk8nK+kGvjWR4Mw6DUUFooDoplY3jL/Rb2j+3Hiz0vwmF0YDA8iLyU\nRzQThSiLyEk5zCubh0AqAB2nAxgU2jiMWiP8ST+29W1DlbUKGk6DeC4OSZHQG+yFJ+aBy+TCQudC\nZMQM+kJ9mExMYjg8DK1A4VoGVOGrFiilxBRC6RCC6SB0LJEnx3CIZCIYjgxDUiQKmWZl/Ouef8VA\neAD3Lb2v8KCgKAoe7XgUw5Fh3Nh0I3YM78BIeASRbAQ6Xod0nnpBx+PjND6L5SHKIlUaJ8oB0yQ0\nUgkqzBXTZnh6vVR8OA1qeX5dHd283+OJ9MuWAfWVOeCVNwFtgm7uWg7DqKcNIhEiyyeeILODRx4B\nVq6kYp6peP11CnuyLIVEW1uJmIaHKSQ69RxEkcwNkklq2xgdpVaRm24qGgzcfjvwkRlUfSZD+/V6\nqX9lYoKIc+qgzmiUfsJhIuDdu8+eY/R6iXDzeSJJlqX9qKHfZ545s+9yJpw4Qeq0vp4+/9xzf/lq\ncmyMqoz7+qip9i95rRcR71uS3LZtG/72b/8WkiTh3nvvxbe+9a3/6SX9WTg4fhCPdDwCBgy0vBZv\njr6J2oFafHPlNy8sJ/UOwDIs1tStwZq6NXh98HX8ofMPBYIEiACtOiv2ufdhRc0KAIAv6TujmlMt\nlolmomTxAiK9b776TYzFx8hdhmEQTAUxGhvFruFd+GjzRzEcHUa3vxuRbARHvUdh09tQridzgBP+\nE7BoLHCanOBYDlpei6yURTgThlFjRCKXQCKXgEljQlbMIi/noeW1kBQJ3rgXCsgPVsfqSJnlEzBq\njJAVGXvde5HMJQvXIC2m4Y66YdaaEcvGaEQYwyGSjSCWi8GmtSEv5yFDRkbMFIqEeJaHjtfBorUg\nkArg1YFXcV3jdai31QOgh52eYA/qrHVgGAYra1ZiIj6BdDYNX8oHb8KLSDYCLacFGCCRT4BneJTo\nSyCxPHStB6DjdVjbWgqnqVgcNDw8g9rr6KB8XH095eI2bMC3/7QA3skz1eRMY6y+/fUsvB6JFOB5\ntp22EFWJyTLl9ESGyEerpX1lsxROZRiqCr355mL1ZzRK7SDBIJFqJkMKbuVKCtlu2jSdJI8coRBn\nNkuE19tL+/3Zz4iMGWZmFaYowEMP0TGuv556NPfupfwkw5CCNBrJXKCxkV6zWNNLdUYAACAASURB\nVMjur72dhjZPJbzxcVrXdddRS0Y4THlUjiOF29dHhK+60m/fTtL/9LWpKtJqLfrUXqiaTKeLDaqK\nQkStrv29xksvkVI/efLC884fALwvO0MlScL999+Pbdu2oaurC08++SS6u7v/p5f1rpHOp/HrQ7+G\nw+BAjbUGTqMTDfYGuKNubB/Y/p4em2VYzFBnUyAbFc2lzQilQ9O2UU3AXaZiP8JR71EMR4Zh19kL\nysqut8PAU7HLoYlDODxxGFkxW9hmMjGJtzxvIZKNIJ6NYyIxgYyYoQIgBWDBIp6No95KOcG8lEcs\nGytUnKpuPhzLoVRfigXOBVhQvgCNJY0wCSZEs1H0BHvgT/kxmZyEL+mj9csyYrkYclIOAicgkU9A\nx+ugKAoMvAE2vQ2iIqLeWg+9oAcLFkbBCKNghI7XUQUvGPhSPoxERgrXIJaNgWO4wvlnxSyMGiPK\n9GXIilkkcgnYtLbCfjiGg6iICGfC4BgOZq0Z5cZyeJMzJAinQlWR6tQHmw0YG4O3O4L6epzxc/oI\nKwDwto+g3rMX9bXyebcFAFdJDsOHghjOV2E4XophzVwMa1vgMieJcBobiezuvZeIr6qKcnebNxd3\n8vrr9GdTExFFQwOR4/r1wNe/TipOFMlVJxajKlc1LJvLEVFks0R4Bw/OvFCAbubHj5NNXTxON3lR\npP1wXLH3Ty16UnOgR44A//VfFFpVIcs0Puuxx6hoRz2fWIw+w/MUrv31r+lhJRQi4/U//enM/kJV\nRapFSaoV3nPPnbsXsaeHQsapFP19aIieZPr7z/6ZiwWPhwqfKiqKloEfkr7J96WSPHDgAJqamlB/\nqqv57rvvxgsvvIDWqa4Z7yMMhgeRl/OFIcIqXCYX3hx5E3/V9t71Ls13zgfDMMhJuUJoT1EURLNR\nrKpZVdjutpbb8KPdP0IwFUSJvgRZKQtP3INrG66dpkLDaco/TiVYlmFRZa5CLBuDO+qGRWtBc0kz\nPHFPgfAkWQLLsGQqLksYi42hzFCGifgEyo3lAGjM1GB4EAInwKKhohZJkWBiTUjkEsiIGcyxz4HA\nnarEFNOoMFVgPD4OURLhS/hg0VogKRKseitMggmjsVGIsohWRytMGhN4lodRMIJhGMSyMZg1ZlSa\nK7FjaAfG4+NgGRZWnRUGwYBQOoRAMgAuzmHH0A4sci2CTWdDhbkCCsgJiGM5TCQmoOW0SItpCqky\nCjJSBizI+IBneLA45RPLa1Blrip4x54TU1WkCrsdODIMLLGfX114vVTYYohTGLLq/KPAHrz2VSC8\nkbbt66MbviSRwrMtpo1uuIFCm6rFnNVaVJMmE/Dii0ScbjcRlWoRt2sX8OijtI/9+4kcAwHqwVTd\nbUIhIrp4nMjtV7+a7un61FMUul24kG7kNhuR2L//OxGTwUDEVlNDxTwTE6SIvvlNek9RaMIHx5Ha\nU11murroXH0+OtdgkEgqnydFqdUSce/bR2pS7dfs76eCora24hq3bqVtx8aKrykKfc7tnrlKVlGK\noc7du+mB4rnnSJVv2kTrfy/V5ObN9J2xLF23D5GafF+SpMfjQc2UKerV1dVob2//H1zRn4ezWb0p\nivKO5jnmpTy6/F0IZ8JwGp1oKW2ZRlYzwWl04hOXfAJ/fPuPBZLKS3msrF6JpRVLC9s1ljTigdUP\n4JkTz6Av1Aezxoy759+N9U3rp+2vwd6AEkMJ4pk4bPpi1WtWzqLSXIkKcwVayqjYwpf0IZAKIJVP\nQZIlCBz1NwKkvtL5NDScBt6kFybBhKSYxD0L78HjRx9HSkxBw1C7h8PggDvmRiQTKbRNpPIppPPp\nU4OGRfiSPqTyKShQYNFYUGWugpbXQpRF1Nnq8Pdr/h7znfPxxLEn0B/qPyO07DQ6wbM84tk4gi9+\nAwMBXSE3qeN1eOLlMmwvP4ptjy9Gf6gfleZKdHo70VzaDAYMvAkv0mIaRsGIdD4NFhTu5VkePMcX\nHhLyUh7DkQk4jc6Cbd5ZsWsXKZypVmeyXMyvTS0+mQlbtgDMPFIxXV2kEs5V9JNMkiozm+kmb7HQ\n8QIBCqVeeimFYg0G2ndFBa2tt5fmQ27eTA39PE9kJwi0DUBquL+/2Jqh9kT+8Y9kG9fcTMffu5c+\np9UWZ2gmT6lYr5eOe/gwkZw6cSOdBv7zP2ld5eWkxHQ6OrbXSwQ8bx6to6uLyLShgc6ls5OIcuNG\nIsixMVLIc+ZQqDOfp/VoNPSTSAA//zkRVlUVnc+zzxJxq/+f3303PTDMhPLymV/v7SUlOXcufQc1\nNaR0W1tpzf39dI3eC6gqUiVvhimqyQ9BbvJ9SZIX6h/6fsEc+xxoOS2SueQ0n87JxCRunXcWK6vT\n4E/68ZN9P6FQogKAof1+/Yqvnzen+ZHGj6DV0YrDE4eRETNY4FyAlrKWMwh6bulcfHfNd0kpTgkn\nTkWbow2ra1fj+e7nEUqFoBN08MQ9SOaSsOvs6Av1QYGCeWXzUG4sx+70brCgtgqbzoZULoVoLgpZ\nkRFMB8GAIbs6QQdf0oc7W+/ESMMI3DE3gqkgEaKYQq21Fm2ONkwmJ5HOp+EyuTAaHQXP8VjgXACb\nzoY3ht6AAgUOIxUgpfIp6AQd5jvmIyNmsL1/O+w6O8LpMOw6OwKpAIbCQ0jkEtDyWlxZeyU6PB0Y\nDOohWftpbSyP5tIWGDUiBgYl3L3xbpToS8CzPLJSFu2edli0FsRyMeg4HfJyHpIiISWmqB3kVDg5\nJaVgEAzIyyIimQhsOtu0+Zkz4qtfhZLJwBP3IJaJwWVyoaSzB9jNn91IXIXXe2qy8xJAe0oNnU9N\nhkJEhqJIymZwkMhIVXYAkd3DDxfddQ4eJFIqKaGq11WraPvBQcr9TSUFt5tCsRUVRFSBAJHMlVcS\nqfzqV0RMJ09SVWsuR9vt2EHvb9lC5z02RhWy6oP0rl20vlQKWLyYfvd6Sd0tWUJEPzZG575hAz0E\nMAypcrUQ5/jxomJ86y3glltom+3b6Rym/r9w5AiRbF0dnffpavKd9lOqKtJkKj4Y/OxnRPosS6+/\nl2py61ZS36f7zh45Qt/HjCXXHxy8L0myqqoK7ilfmNvtRvUZHc7AD6aUka9duxZr1679f7C6dw4d\nr8MXl38RPz/wc7rxczyyYhaNJY2F9ohzQVEU/PbIbxHNRAvFIwAwHB7GM13PFJxmzoWpzjjnw7mm\ngfAsj79f8/eYY5+Dx448hv5QP3iWx+VVl8OoMSKSjuCtMZouIioidJwOSTEJPaOntg2OR7WpGqEM\nOfO4jC5YdBYoUDCZmMQfjv0BTaVNsGqt4DkeyVwSel6PcCZcMAl44u0ncHD8IDJiBk6ts2B6Xm4q\nRyqfgj/pB0Am7DatDf3hfjx1/CloOA0yYgbxXBy7RnbBE/NA4ATwLI86XR2yUhb3X34/7v+tCSle\nBxYseI6HO+6GLMuIpqjH02VyYW7pXFxedTlGYiMwC2YcnjhcqKA1aUyIZ+NQoBRIs0RXgnJzOSZL\nk8hH5yEj2tB+YhI11mLE5HQrugiXx0NH/g0n/Ceg5bSwMDr83fOTkOXv0M3rbD6iABEKzxeVo8Fw\nfjVZU1NszRgYIGJRQ6VqX6LZTOpqyRIKw3IcFaZkMlSBqhqQh0JEHKf7hHZ2kloMBEghJhLAf/wH\nFcPs30+fSaXofa2W3t+wgd7fs4daM/bsITX5qU+RCvJ4iGhyOSI7u52Oe/gwjbjyeknlXnUV+bPO\nm0chRZuNyPwXv6AiH9XuLhqloqSvf53OfWpuLp0m0lYfUtRioNPV5DuBqiLVsLpOR9fx4x+nv5eV\nvbdqcvVqaoOZCWXntmb8S8DOnTuxc+fOd/359yVJLl++HH19fRgeHkZlZSWefvppPPnkk2dsN5Uk\n/9KxyLUID657EAc8BxBOh9FS2oJFrkWF/Nq5EEwH0RPoQY2lBuOx8UIVZpm+DE8ffxr+lB8OgwOr\na1ejufQ9CslMQSwbw8nASdRZ6zARn0Ail8CxyWNwmVw0jQMsjk0eg1lrhsPkgFk0Q2AF6Hk9jBpq\n7pcVGc0lzeC54j/REn0JeoI9+M6a7+DJt59EOBMGAORzeVxefTnWzVkHgRPwz9f8M/7Q+Qc8tO8h\npMU0RFmEpEiFtpEKSwUWli9EKpfCQHgA86zzYNfZqR2EYZAL5OBNeHF59eXQsBqUm8qhF/QYjY5C\nlmXUWevQI52EQTCAYziEM+FT00osKNWXwqw1ozvQDZPGhCpzFV7qfQkOvQM6QYeMSL15PMtjIDwA\nlmHhMDhQYa4Ay7Aw3fFraDgNLqu6DDpeh3++9p9nvMZ5KY/Pb/48jniPwChQ9GHliIzJsRj0tiiG\nO3lAk502v7FAsl4vqSunEy5dGMMBMwATkdLhEFBWdm5vWEWhfBjDUMUngG8P3gfv4w0U9pSuAcaN\nQD4PV7gZD9Y9SgcvLaV8mloBazIRAU6dw7h/P/Bv/0aklMkQIRw/Top0yRIiB6eTjrNiBRGW1Uqk\nPzlJ5Dc4SKS9YweRqGpwDhBhqgboHg+dg8tF6vDZZ4n402laG8vS/vfvLw5PTiZpTa++SuYB//Iv\n06/NU0/R8XW64hwxRaFj9fQUw7oXiqkqkmGKCl6WiRTVfkVBOFNNquT956pLtRf1fYrTBdIPf/jD\nd/T59yVJ8jyPhx9+GOvXr4ckSfibv/mb923RzlSUGcoK1mnvBDkpBwYMOic7MRQZgo7XQVZkdHo7\nISkS6mx1GAwNYufwTnxq0aewbs57NUaCVO1/H/xvJHNJlBpKISlUvKJAQUbMoNxUXpj08Y2V38Cz\n3c/CrrfjhO8E/Ck/REVEmaEMWSkL9jRFo1aBVpgq8NBHHkKXvwuJXALVlupCuwVA4fhEniaJaDVa\n+FN+ZMUseJZyf9c0XIMKUwXyUh5HvEdwdILMSE0aE5ZVLoNe0COaiaK5pHlaSLnMUIaO8Q6kxMZC\nrleUxYLBeg4KVcEyLAyCAX2hPlRZqpCX8pjvmI/eUC8sWgsETkBWzMKitcAsmBHLxxDPUriSZVhc\nXn35GdXFp2Nj90YcGj+EKnMVWJYFL8pYdeAkJvQCbqv+F1yvnQ/mI27gr//6zA9PTlLYVJbx4Jqt\n099bFTn7tAoVg4PUslBbSypJUeDdvgD1mnHgyoV0w56cBA53YzhfSgoum6UwrDoOq7SUSGTr1uIa\nJYnmR+7bRyFZWSallkoRcbJssXjE7y+agff20o/XS39aLKReAwEiirIyUq4sS+QI0PssS9s4HHTs\nw4eJ3FRlHA4TwWhP2fKp4VZVUW7ePL0gB6D8pZpnPR3nyxHPBNXRPp+n/tBEgnKtej2FmtUImsVC\nDxXpdLGdZ+dO2uYzn3nnx51FAe9LkgSAG264ATfcMMPU9A8hyo3lAAP0hfrgMDjAMAz8ST8UKNBw\nGuSlPOpsdchJOTx1/ClcVnUZLNr3ZpqAN+HFcHQYtZZaJHNJyrMKRoAhFxqnkfr+eJZHU0kTyoxl\niGViWFGzApIskS+sxogDYwcQSAZg09kQz8WRyqeQl/OF4h+e5bHYtbhwXFmRp3nGngycRLW5Gkcm\nj4BRqJ8zw2TAgUNrWSuua7wOX9361UJPaDwTx1BkCD3BHlRbqgtuOCri2Ti6A91QFAXB1EdQVVmF\nQCqArESerjzLg2d5MofPAaJCJghj0THU2eogKiIucVyCwcggkplkoV+zpawFHeMd8Ca9aCtrI5Lm\n9RgMD+KmuTed9Tq/MvAKDIKh8CDROhhDSYbBiF4Cn4sD9RWkdk53jwHoRv7nGA7s20ck4vHQ31US\n1J0yGr/kEuozTCYBzk6qr6+PiIXjKL9ls9HvTzxB1bA2GxGSzUb74zgiAIYhYhgZoTWr+a9olLb9\nm7+hvOCWLfRaIEDhVI6j33me1iYIRDSyTGtUyW/zZioM6u6m4zqdRHz5PJGozUZh0lyOcpmq6uV5\nOu7/+T/TeylbW6fPpvxz4XKRY5CqCh9/nNb2wx8WjdtnQiZDxUaJBP0bOBtxz+K8eN+S5CyK4FgO\nyyuW482RN5HIJaDhNPAn/eAYDuXGcozHx1Fnq4OG00CWZQyEBgpTJS4msmIWBzwHqGdQoRYWg8aA\nrJSFltVCVESMRMlqzqQxYVv/Ntx/6f3Y0rcFhycOA6DcaDQThY7XoSfYg+HocGHYMQCYNWYMhAbQ\nUtYCRVFwaOIQnut+Du6YGwbegKsbrsYtLbcAoKZ+VT1KigSBEaAX9Hhl4BXoeB0MggFGgQzQfUkf\nOQKBQSAZQF7Ooz/Uj+bSZnjjXrR72hHPxrHQtRCpfApjsTFqFTk1w9KkMUHhNHDH3GDAQFZkKIqC\nQCqAJa4l6An0QFZkLHUthQwZHeMduLL2SswrmwenyYn2sXaMRkfhMrnAczyWVizFlbWn2+sQFEWB\nKImFc9PKDK7qCCCj48FnMijVG8CIIt1Mt2+fWU3+ObjzTnK7UfH008BbAuVAjx2jvGQkcirfKBFZ\nTk4Wexz1eiKq8nIKGe7dSybfau+jIBS9VVmWiGBoiEjKZKIKz6oqUlhmM53f22+TmmIYUpuNjRQ6\njceL+5Gk6aFHh4Nyq9XV1E5TXk7b9/cXCdJup2Kjt9+moh+jkd5jGGoDeeop4K67LmwM1rsBw1A4\nGaDQ9tGjtO5du4D580khz6RQ9+yh667R0APEvfe+N+v7EGCWJD8gaHW0YrFrMXJSjvxO9fZCVeu0\nvCZz7sKbd4twOowf7/sxPDEPvAkvJhOT4FgOJsEEX86HTD5D1mtg4DK6YNQYcWjiEI5NHsNV9Vfh\nrvl3odZai3/c9Y+QZAktZS0IpUIYiY1AgQKX0YX5zvmoMlXht0d+iwfXPYi3xt7Cox2PQuAE9If6\nEcvG8OrQq3ji7SfQbG+GN+mFVWsthkYlEal8CvFcHIPhQRg1RixwLsDG7o0FNQiQ+cHSiqU44T8B\nlmHRMd4BjuHQ5mzDJc5LcNwhYnDMhhSngUlTDiafgl/MQLB4UG2uRiwXQzqfhsAKMPAGVFmq0FLW\ngp5AD04ETqDaUo3lFcvRUkq5nkpzJdY3rcdR71E0lzbjzvl3nrN9h2EYLK5YjGA6iLHYGKrTAuJ6\nFkw2C0WScYljPhFDRQXdyC821MZ7gNRaezsgt9ENnGWpR1KWKZeVclIlaDRKoVVRJDKKxSg/p4ZQ\nAbqxW630o9cTOdbUUJgzEKA+RbW3UKulc+zooHCqTkfnajZTeHZykojy2DEiGnU2pmpH5/eTArTb\nSU2qrRyRCClkNWS8ahWdD0Ak3NlJ66+ooP3+279RXnDFiot/nU/HSy/RtXK5KEe7cSOt7Uc/Om3A\ndYbykzxP26oPIbNq8l1hliQ/IFhYvhAWrQUOowM6Xof+UD86JzvBKEzBVzWejUPP6zG39OI3AG84\nsQH+pL/QzvLq4KsIp8MQOAGKoiArZmHQGFBhqgDHcmgqaUK7px2BVADtnnbUWmvhjrmRzqdh1Vlp\n0kfKi6aSJownxiHKIgZCA5hMTNIkkdg4njnxDEr1pdg3tg8MGJQZyiDKIsaiY4hlYuDAIStlwcmU\nE2XAwGl0IpgKYl7ZPLztexuD4cFTrRxCwcS80d6IuaVzwbM81s9Zj2A6iJbSlkKIuvSWn4DLROBP\n+VF5qiI4I2bgS/jAc/WYVzoPAi9gLDYGnuExGB7EFdVXYEnFEpQZyiArMowa47R8p0EwoNpcjcsq\nL0Obo+3MC3waPt76cXT7u6FhNfBr/Pjp9VZoeA2+uOyLKF9230X/fs+KrVuJbNSZjk1NVGkJEHFl\njJRLCwbp/ZKSIiGdPEkh1M2byRh80ybKc1qtRGThMPDZz5KKW7iwOM3juuuKw4GzWSpWcTio+lNR\naP+pFPUjjo8Tca5cScT9wgvkgmM0Ul9nTQ3w+9/T38NhIpZgsDAaDEeP0hpvvLGY2ywpoaKdJ56g\n7TZuJAs74fxFdu8a4+MU5q6tLT5YPPIIEV97O1Wgqtizhx4m3G6y4uP5WTX5Z2CWJD8gKDWU4r5l\n9+HXh38NSZYAhWZEGgQDUvkUTaJgefzt5X8LLa89/w7fAXJSDgc8B1BhqkA0E0U4HYaiKCjRlSAt\npbG4cjG8cS+8SS+cRidaHa144eQLhdCwrMjoCfYgmArCrDHDqrVCgQJPzIO+UB8EVoCgFWDRWpAW\n0wVyi2ajNKxZyhXGdalqkGVYlJnKwIABz/AQOAEmjQmBdAD1tnpc3XA1fnP4N/AlfdDyWmg4TWHY\ndOdkJ0Zjo4ACXFV7FZxGZ8GQPZ1PIy2mUWYoI3/V+rXQcBr4kj68OfImllUsg6RIGImM0LFZvlDR\nCpCqL9GVYCw+hlJ9aYEoZUWGBAnzHNOrH0VZRCKXgFEwTosI1Nvq8b2rvoeXel9Ct78bZYYy3NB0\nQ8GQfiZEMhFIsoQSfcn5e42PH6efu+8++zaBAFWQVlSQMmTZogpjWSrO0TdRK8Zjj1Guz2ot5tEC\nAQp1LltGbRyqK4+a93O7iVh7eqgn76qriMx27CDSstupWtbvp89MDTtGo3S8++8vvpZKkYm400n7\njkSIOI1UiQuLhcgnmSwW/Ki5wN276Xi1tXSuHR1UwNTaSg8BBw++t2pSVZFqMZs6JLulhapfL7+c\n3ldVpM9H4e2eHpraMasm3zVmSfIDhCuqr0BLaQu6/F3IS3k0lTYhkU1gS98WdHg6wLIsHu98HLfO\nuxVX1lx50UwZVA/XE/4TGIoMIZaNIZ6LU++exoL5jvkwCkbk5Bw4lsN4bBzxXBxmjZkUpmCgYdBg\nkRJThVmXekGPaCIKrU4LnaAjSzdFgUljKpBnNBuFoihI5pKFVgwGDObY5yCSjcBldGEiMQEGTMEz\n9d6l98KitaDGUoOUmEJvoBfxbBwcw9HsSoUMzRc6F+KN4TcQTAdh1Vph19sLectYNobGksYCeep5\nPSJZ6gHlWA6pfIqcj/ROLHBRv6KiKEjlU/hfC/8X3hx9E13+Lth0NsiKjFgmhmsarkGDraGw7etD\nr+OFky8glU9By2txY/ONuKHphkIYttZaiy9f+uXzfj+TiUk8fvRx9AR7AIXmb3528WfRaJ9DN3w1\n56VCkkhtud1ETGe7saoqMhCAC14MK3WAPw5YK+kGPQy4PmYtFpicXtBisVCO8fbbSfEEg1Rhqvaf\niCJVu3Ic5QojESJDRaGipDvuIPX4v/83KaepvXz5/JlN+7/7HZ0vz9PPwAAdd/VqqgRdvJgKXdJp\nUoxaLZHowYNE+EYjkZFORyqupaX4MDBVTUoStch89KNFM/JEolg5+06gKPSgsGMHkeDwMO1f9awd\nGyPSV9Xk4cNE3oEAKejeXvoTIKK/6653dvxZzJLkBw12vR2raoueq7uGd+Go9yiqLFUwa81I5BL4\n1cFfISfmcO2cay/KMXW8DqX6Uux174XL5CqQAcMwiGQj1Ixvq0OXvws5MQdvzgue4ZGX8pS31Jgw\nFhujitB8Dm9Pvl1otBcVEclcEuIpJxotp8WSiiXkGzvnWjxx7AnEs3Ek80lwDIe8nIdBMKDL34WV\n1SuRk3NwmV3IiTnkpByWVy4vTDYxaU1Y6lqKxc7FePL4k5hMTkIG9dPFMjEMRYawuGIx0mIasWyM\njMtZDgaNAYlsAnNLKGytKApOBk7CrKGbkargw+kwJlOTWKtfi0QuAX/Sj5bSFlxadSmWVy5Hu6cd\n7WPt0HAarK5bjcWuxYUHlx1DO/C7o79DpbkSpYZSZMUsnj7xNPJyHh+b97EL/m7S+TR+vO/HSGaT\nqLHUQJRF9AZ68YWXvoBvl9yK1du7of2Xh4o3UoDybh4P3dRPD9Nt3UpkwDBkz2a1Au3teNCxl4gs\nFwFKKumGrtMBK/4OqL2LHGJmMsQWBCrKcTiITCUJ+OpX6fPxOE3xGB0lFdfdTcqzooIKkhoayLau\nqYmU3Zo1pBbnzqX+xfXri44+qRSZj5tM5Cyktn8cO0br5DhSn8uX03s9PZTTrKsjAp2YIEJlGHoA\n8HiK7RdmM5GXqiaPHKF1Wa00vktR6PwXLTq7Hd3ZsH07Heu++4rXr7OT8qUuF63dai2qyQUL6LpU\nVNBDyOQkFfh88pN0DX2+Yo/qLC4IsyT5AYYoi9jUvQkV5goYBApxmTQm8BYez518Dmvq1lyQWcGF\nwKKzQMtpEc/GCx6kqhH5UGQIc0vnotHWCJPOhKHwEM2EVPKwaWyYSEyQ16qYBgMGcflUz+Cp/ziW\ng6zIWFi+EE6DE7FsDHXWOtw27zYEU0Hsc+8reL/adDYYNUbkpTxaHa1YW78We917kZNyuKL6ClxW\ndVnByH1N3RpsOLEBOTGHtJgGy7CFNhKe5TERn8Dekb1wmV2w6qwFu7tPLPgEDo8fxnH/cbAMC1mW\nkZEyuG3ebQikAjjuO460mC7kFjmWg4bT4O5L7i6EZ9Xjr6lbc8a1lGQJL/S8gEpzZcH0XstrUWup\nxda+rbi+8fozzPDPhk5vJ4LJIOrt9Ujn09jr3otELoF0LoXR536KrkkGVS8ugfOTp/KYkkSqyG6n\nm//UMN3YGKmx8XEijEsuIdVVXk5KKRKhEKVGQ6QnCHSTv+664sSL06EoNDbL5SLymZggtbd6NYUN\n83kKf2q1RJqHDtFawmHyYw2FiDTq6sjEPJOhzz77LK1nyRLKeR49Sts6nUWXmGSSwpZ2O4VmNRoi\npKEhOnefj5RqKkWfVd2BurtJYb7+OinDZJJCvRs30vE2bKDzef55stQbHKT8q5ojVAkqmyWFuH79\nzC5HySTtI5ej3tWyMvrMiy+S6p3a/jE8TGrSZKL1NlBEAlYrKWaNhn7//vfpvc+d34VrFoRZkvwA\nQw172nS2aX6rOl4Hf9KPSCYybYLHnwMtp8UV1VcgkAogno1Dy2sxEBqAL+nD3tG9eHvybdzZdice\nWP0A3hh+A9/b8T0MhAcQSoeQETNIiTT+R0FRbShQYNfZoUDBSHgEiqIUU/1ODAAAIABJREFUej8/\nvfjT0HAaXN1wNdaNrEM0E4U34QXDUHGOhtVgQ9cGlBpKcXPLzZhjP3OS+rUN1+LY5DH8vvP3yEm5\nQnGPltcWeh6P+4/Dl/LBqDHCaXRiJDqCN4bfwLdWfgvhTBiBVAB2vR0/2PkD8CyPkcgIZMjQ8TpE\ns1FIsoRPLvwkLq+6/IKvZTKfRCKXQIl+emm/wAmQZAmRTOSCSdKb9BZci4InOiDyCdhMNrT4ZFQH\nEvBVVyD/p0fguPkuMGr1psdTvMlOLfp48UW6Ce/ZQ8Q5dYbrCy8QOZzuGZvJkMKaaSAyQDfw48dJ\nlb36KpHAU09R5evLL1PlqBp+zWSIMO67j8j0T38quv60tZHKXbSIVKQoUm/mtm20rqNHifhEsViZ\ny3H0+9e+VnSVefllynGazURc+/cTWckyPTDIMq03k6EHikOHaB9tbUSUb71VJNeREeDNN2kfdjvt\n54036NzmzKFCnN/+loqHZrJ927mTrgfH0Xnccw/tM5OhB4nTcfAgrV2nK47TAuhBZPNmKl4aGaGH\nnY9+9Oxm6rOYhlmS/ABDy2nhiXtwbPIYRFmERWtBm6MNZYayQm/fxYJRY8Sbo29Cz+shKVLBOCCV\nT+ES5yVwGGlShz/lx9KKpbDoLKg0VyIjZjAWo7J+gSlWmLIMS/lHwYRoLoqMnEFWzMJlcqHB3oA/\nHPsDmkuboeW00At6zCujgpdkLondI7uRzCchsAL2j+3H7pHd+PyyzxfCrCr0gh7fWPkNdPu74Y65\nYRJMlDdlKOenKBTytevtBfcdm86GocgQ9rr3Yn3T+oK36mLXYmzs2ohUPgW7jlSTKIsIpoJ4ffD1\nc5KkL+nDtv5teHvybdj1dlzbcC10HFnY6fgi6ai2emoe9EJQaaqkB6RECus3HUPJUhcOLFKwpsMP\n2WiCVm9CJjiO8JaNKLnz00UVqUJtIViyhJRKTQ2F8LZsoUZ+FevXE7G+9BKplKkN9lNznskkEZs6\nluq55yjX5/EQATIM5dEee4xu6CxbDGsKAt38ZZnCoWYz9TTq9cU2jaEhIoGmJgqnfuMbpDzr6qgi\nds5pD0sMQ20eagvFzTdT2BKgNf3mNxTClE71ey5YQKotFqMwZmcnVd4uWEBeqg88ULx+Tifwf/8v\nnUNjIz1gbNhAx/ziF0kp22xkot7WNl1NJpNEbC4XXcsdO2hw9Ny5wC9/OfOXHYvRHMypNn/qdxiL\n0bHtdrqGW7bMqskLxCxJfoDx/Mnnkc6nkclnYNfbkZNy2De6D3W2OnxywScvWI2cDz2BHux370eZ\noQzxXByiLCKWiSEjZrCqZhUWli8EwzDwxDzYObwTtdZa1FhrsLxyOcKZMDZ1bwKyFOKUJAkcOLAs\nhWyT+SSZCYDB2oa1qDJXgWEYjEXHsGtkF+5ouwPlxnIEUgGUGcpwMnASOSkHlmExzzEPleZKpPNp\n/K7zd1hasfSMyl6BE3Dfsvvwcv/L4BkeGtB0EEVWIMoitJwWi8oXTStyKtWXot3TPm1M2I1NN+LR\ng4/CwBuQk3KFUV+LXYvRF+qjySL6M0OO3oQX/7T7n5AVsyjVl8Kb8OLhAw+j3l6P4fAwaqw1Bdck\nd8yNm+beVAidXwgWuRZRde7OwzCkJaw8GsSESUFtIAeukdyZYjY9NNtfBxraSNkZjdOVinrzDYVI\nwV12WVFNqipPp6PXOjroZr506ZmLURQardTcTHnH8XEKXUoSfU4tahkZodBkdTUV89x0ExGjSnDZ\nLIUvw+FiO0RvLxFRVxeRaTZLIWCPh9TjypWU2/zc54pk5HbT/MpLLy2SpDp1WlHofGpri4orFiP1\nKgjFSSayTNtu307hUFVFqteku5v2cegQPUQMDtLx/+u/SIHW1xPpdnVNV5OqilRVL8sW1eTZDOht\nNuB735v5vc5O4Kc/peNZLKRwZ9XkBeHChxXO4n2FSCaC14Zew5U1V6K5tBmJXAI5KVeoHL297faL\ndqxtA9tg1VlxVd1VWFy+GFpOC5PGBLvOjkpzZYFgjBojJhITAEil6QU9Ks2VKDeWF8KsPMNDhgxZ\nlsEw5GaTFtNwGp2oMtMYJ1ESkRbT2Na3DQfGDuDepfdCy2kxHBnGyeBJSIqEKnMVmuxkYaYXaMLI\naHR0xvWvrFmJ9Y3rkZWyVEzEcOBYDnXWOlRaKlFlmT4+SpTFaQoPAFxmF5a4lqDOWodENgF/yg+F\nUdAd6MbJwElEMpEZj72ldwtyYg7VlmroBT1K9CWos9VhLDqGG5tvRDAVhDvqhi/pw81zb8btre/s\ne9PyWnxr4Zdx9YkU/A4dpEwS97wegNVRDYGnqScagwkGRkME+e1vU7Xo1J/77qN8oM9HJBmNFsOw\nKsbGgAMHiBA2biTiOx1795I6euEFIsiKCmqEv+kmUmXr1tHP4sXkqCPLRDzPP09KqrWV3nvjDSKK\noSFSZV4vKa/BQcphqsOZ/f6iDV17O5HRiRPF9Xzve3QOp0+ISCZp3wcOFGdfBoO0f5+PyJnjiMyt\nViJoSaLinFSKyHh0lIqColG6rkNDVHkajRJ5Hz5M5Ko66jzzTPGaTVWRhX9gLroGgcA7+v4B0DV4\n5pmi9R/Hnfn9zeKsmFWSH1D4kj5w4KDhNVjkWoSWshak82noeJrLKLAXr/F5PDYOk8YEgRPQYG+A\nQTBg/9h+MGCmeaDGsjFcVXcVWh2tBaUocAKWVSzDSGQEoiJCL+jJnUchdx51tNTVDVfjqPcohiPD\n8CV9UKCguaQZvzz0S9h0Nnzt8q8hlo0hmonCZXLBaXRCVmT0h/oxGB5EKB3Cxq6N+NySz6HcVA5J\nltAf6kcyn0S1pRo/v+HnmExMonOyk+zreD1qrDWwa0mBq/2XsiIjnA7jngX3TLsGZo0ZbY42nPCd\nAMMwqLHUQOAEpPNpJHIJbDixAd9c9c0z2m6OeI+ckRfmWR4Mw2C+cz5ub70dkUwEFq3lvMo/mUsi\nlA7BprNNmyFa2n4MpfYWVDsvxdGuHWg+OgqPLo1cMgUzw2C+4xKwnEJq5pOfpA/l81T8ctttlGfz\n+4kseJ5ybPPnA6+9RgRXXk75So2GwnlDQ6RcpqpJRSElo9USQW7cSGpSnQzS0FAsRKmvp9DgqlVF\nlbZ8OeXwFi4kAkqlppsOAERAqsrL5WgbQSgWBCUSRBbz5xNZ7tlD69mwgQpqjEZ6GPj+9ymHunJl\ncf2HD5MVnNFYLCJSTdhVCz1RpJCuWin86qu0JrebSF0NDQsCfW5ggM7VbicCf/hhyldqtfQ5UZz+\nBadStObbbjvnv4Mz8Pbb9J3U1tK1ACh/umvXrJq8AMyS5AcUVq0VkiIVZhjqeB10vA7xbBwOo+Oi\nDq5uKmlCx3hHIQzoMDpg1VoxHh+HltNCVmT4kj4YBAOuqr8KJfoS3D3/bjx5/ElwDActr0VjSSOZ\nmwtGSBoJeTkPh9GBdXPWIZgOYt/oPnAsh3Q+jbyUhwIFoiKixlKDUDqEx48+jh+s/QHuWXgPXux5\nEYqi4PDEYYzFxsCyLGw6GwZCA/in3f+ELy3/Ev5w7A+YTEwWei8FVoDL7EKdtQ7hTBgCK0BhFFxT\nfw0Oew8TMZ+6ltc2XIvlVcunXQOGYXDPwntw1zN3IS/RjMh0Ng0AWFO7Bt2BbozFxqbNhwRQ6BVV\nK15VKFCg43XQ8lqUm859E5NkCZu6N2H7wHYa5MwAV9dfjbvm3wUhlSHF4HLBrtVi5aKbEOA7EFzZ\nCHH9OqyoXgGbStJTw3gHDpAna3l5sSjF4aAbuM9HBFZ5qtVj/37KvV1/PX3WbicSXLSomJvcu5eI\ns6qKwpYvvECEcuAAKbmlS4vHDwRIuUWjRM48TwS3aRMR19R2kq4u4AtfIBU2OEjqNJcjIlbnZarb\n7t1L7508SYSthmoHBkid3nQT/Tk4SCpQHTuVzVJrRyZDeUVFKRLz4CCRdVcXXQ+GIcP2dJrO8557\nyKC8pIQeKsrKaD/5PJHn1q107okEmZdfdhnwj/8I/PPMI9Le1SSR4WE67tRiHvV7crtnSfI8mCXJ\nDyjKTeVY7FqMzslOVFuqwTIsclIOvqQPn1/2+Yt6rPVN69HuaUcwFUSJvgSSLKHaXI0KUwWyUhbu\nqBsLXQtxZ9udhYrN9U3rMa9sHg6OH0RaTOMrl34FWSmLzT2bsWt0F+xaO+rt9UjkEhgODyMvU9FK\nMB2EUTCiwlyBdD4NX9IHl8mF0dgovAkvbmy+EX2hPhwcP4ieYA+MGiMEVsAV1VfAprNhNDqK7+74\nLirNlaiz1QGgXsJnu5/FiuoVqLXVoha1hde7A9348bofo8vfhYyYQb2tHmaNGRkxA4NggKIoODZ5\nDDuHd2I8TrMVrVprQU02lTTBrDUjHU0jlA6dQZLXNV6Hx448BqPGCJYhkgikAnAYHGi0N17Q9d/S\ntwUv9ryIOlsdeJaHKIt4ZeAVcAyHvx4y0g3YagVSKWgBVNXOR1V/BvjyjaSMTkc+T4qrspKI6dZb\n6Yaq5tpKSogk7jvVNvKTnxCZBQJ0w7XZpqvJqSqSZYloVDWZydD2q1YVC2T++7+JlASBFKDJRDlL\ng4HU5DXXFNfq8dDnqqqI7OrqqKo1laIc38AAqTeGoTVZraSI9+yhtbIsncuGDaRWX3qpaK2nDjHe\nvJmIRqul9S5bRtdGxV13FR8Y1Nf37CEjhMpKCvd2d9PnIxE6rsFAJDo+Dnz603Qs1RT+4EFSeBcL\nt956/vFnszgrZknyA4x7l96Lx48+joMTBwv9hndfcvdZp0u8W9Raa/GtVd/Ck8efxFB4CDzH44a5\nN+DjrR8v2M7N1I9ZZ6srEBUAeGIeBFNB5MU8zBYz9Ly+YDunKAquabgGrw69CrvWDpYl0vfEPLDq\nrGDAQJQpXPvZxZ9FJp/BWHQMNbYapHIpdHg6YNQYYdJQn+bUMVs5KQcdr8NQZAiNJUVi0gt6+JI+\n6HgdVtasxB73HvzsrZ8hlacn8jV1a8CzPLb2b4U37oUn7oE75kZeysOkMSFiikDDaTCvbB4URSmM\nCZuKNXVrMBIdwc7hnYUezRJ9Cb52+dfOOU9SRV7KY2vfVlRbqgshYZ7lUWutxY6hHbjdtxza051n\nDAYii0BgZpI8cIBu2PX1RDKPPjq9KrSsrEgi4TC1VzAMEdiyZbRNNkuEo1qiqSoSIIWnhjkrK4mc\nTp4kn9YTJ4jgjMZiq4XfT3m6sbGimtTpiPxfeolIh+OI0Nrbae0mE61Plom8IpFiqFgdg8VxxdcH\nBoBf/IJI+eRJCslu2kTtIY88Qus0m+n9NWtIIQJ03mVl06eLpNOUR9XrqZdSp6NzqKqih4BcjoqS\nTCa6DrEYncuyZXRdn3+exnfN9N3M4v85ZknyAwyjxoivXPYVhNIhxLNxOI3Oi1bRejqaS5vxD2v+\nAWmRwqFHvUfx+87fw2F0YEX1ClSYz+0Z2entxH+2/yf2j+2HgTegc7ITu4Z3waazIZFPIJQO4bj/\nOCpMFQilQ5BkCe6YG/EczYE0CAbsHt6N7mA3BsIDSOaSmEhMoD/cD4fBgRJ9CSKZCHqDvWcU3RgE\nA3iWL5CfikQugVJDKbS8FocnDuPXh34Nl8mFUkMpRFnElr4tGI2OorWsFb6UDwC13YiyCEmREEqF\n0OXvQjAVxMfbPj7jNeBYDp9Z/Bmsb1wPd8wNo2BES1nLBU1qkWQJHZ4O9If6UWutRbmpvBC25Vke\nsiIjcvdt5w3XToOqItWGe5Yl4rJYiiFGdbs33qDXWltJvVkspIDmnjLQNxgobPqTn1B+zestfl6W\nSUUZDBTOHR4mtdjUROHTn/+clGR9Pakwl4sISjX6vuYaOn4+X6wAlSRSlqWlFPp94gkitxUrqJrT\n6aQ1vPYatbJMTBB5OZ1Els88Qw8PiQTtt6uLXHpGR2k/6visZ5+lvlGLhUg5myXSC4Vo3zYbkbo6\nvcRkIoLV6ejaqIOR162jfbzyCoWJMxm6jpJEIeiLqSZn8a4xS5IfApToS85oTH8vwDCk+h7c8yC8\nCS8MggFZMYstvVtw/2X3n3WGZV7K4zeHf4MSfQmsWitYsAikAshIGeSkHCpMFYhlYxgMD2JZxTJM\nJCYwGhmFwAkwCAaE0iGMx8fx5Ze/DFmRoRN0uKLqikLFbCQTIbLjtNDzeqTF9LQeRIETqH0lGy+8\nnswlMRgeRJO9CT/Y+QMc9R6F0+gs5F15lodJMCGQCqA/1A8tp4U/6SdHI4antcs55OU8GIbBpxd9\n+pzXrsJccd4HialI5pL42Vs/Q0+wB564BxOJCRgEA1ZUr4Bdb0dWzBYciN4RpqpIgIo90mm6Ya9a\nNX1bv59GRalElUpRq8PHPlbML/72t0QYDzwwXRmFw0RKi08petX/9KGHiKSSSSIOWS6ainu9lBdV\n84y7dhGhuN20D6+X1hqPE7EpCuVPOzqKg5fVPGVtLVWlqsOfXa6iajUYii0ZP/tZcYYkQCTq8ZAK\nvusuItF588g4fft2yuPq9bR/jYbUrMlEuUa/H/jMZ2hNmzbRMYNBCgNrNHRNVIU/qyb/YjBLkrO4\nqHip9yX4Ej7U2+oLryVzSfzm8G/wH9f/xxkFKgAwFhtDMp9EqaEUDfYGHJ04Wsj5xXI0G7PKXAWW\nYXEycBICKxRe41gOvoQPGk6DlJiCXtBDYAXsde+FRWuBjtMhJaYwmZiEWWvGssplGI+Po9vfjQZ7\nA/S8HsFUEHPsc3BlzZVo97TDl/QhL+eRyWeoshQW9AR64I66oef1KDWUAiAVyIAp+NQqoMIejuNg\n5szQ8Bq0lrWS45EinnHeALWT9If6kcqnUGutRZmh7MKuc99L6A31osHWAAYMjniPQJREdIx3YGXN\nSkwmJvHXC/76nU18EUUirnSa2htUsCwpm1tuKfYTKgr1DEoS3fRLSohcO/9/9s47vK363v/vc7S3\n5C0v2XFiJ3GchOw9SAKklFzK7YVenpRCecqPlgsFSrmFtowO2jIuUDpYty30llIoKyE0ATJIQvZ2\nluPEK57ykCVZW+ec3x+fHMmypcRObCeB7+t5/ARrnHOkEL31/n4/n/fnIC2TTpxIovXhh7SfmZ5O\ngeQyL79MDlSuaJXzTzdupGKWmTMpMIDngVmzyKHJiTb/8z+0vPnooyTQAImgHLlmMNDjSkup+Mfr\nJeHW6Uh0T5+mY5nNJGb19XS8fftIqLxeeg9EMd5GEoxPcolF92Vk0HtWWUnP/eQT+v34cTp3ayud\nQxDiU0VOnKCl3cwzxVI7dtD7VllJTtNqpS8JJ0/SF5bFiwf+98cYFphIMoaUz09T1mlvDGoDOgOd\nqHXVoiyjrN9zFLwi5vpKbCWod9WjzdcGKUoN/aIk4sriK6FVanGi8wSsWisy9BkwqA34+NTHECQh\nNhJMkiSoFCqEoiH4wj6UppeiK9CF0WmjUZFdQWO3eBW+Nu5r2N+yH13BLkzPm45rS69FrikXN0+8\nGf6IH49vehyZ+szYDEm7yY7uQDcOth5EWUYZTnSdgDvgpkkjxhx4Qh7wHI+oEIU35KXl26gfVZ1V\n0Kl08AQ9/Vxdk6cJz+14Dh3+DnAcB1EScc3oa3Bj+Y2xIp5kSJKETbWbYsEKRdYi+gLReRzt/nZ0\n+DvwrcnfwpXFV6Y8RlI4jsREFp7eKJWJ+26NjRTkXV1NAsJx8Qb7VatIJD/4gO7PyKBG+GXLSAQ6\nO2lvUJLiLhCg8770ErkptZqWQxUKEhmepz9PnaIUnO9/PzGUfc+eeHxcSwtdnzxbMhCg65CnmajV\nVPG7aBE54MxMEkc5b1aSKJggNxf49a+TuzmNhvYw7XYS4meeiV9zdze51+pqem40StWyixdTEZDc\n/9nSQq7RbKZrLC2lIiS/n55TXj64vz/GsMBEkjEgWrwt2NeyDyEhhPLMcoxJH5P0g1yOk0tGqg/+\nfHM+svRZ6Ap0IU2XhnmF89AV7EI4GkahtRCz82ejpacF606to8hzjodJY8KVxVciGAnG2lmUCmXs\n3EpeCY7n4A17Y+OtNtZthCfkwdj0sZhXMA8rylb0uxZ5/qMr6IoNqwaA0rRS7GzaiQZ3A7qCXbQk\nG/HBprWhwd0QGy7tCroAjkIRbHob1Ao1HGYHXtz7In5x5S9i70FUjOK5Hc8hEA3EipcEUcCaE2tQ\naCnEnII5/a6tN3K1L0DL3A6rA4WWQtR21+KheQ8l/TJyThQKGo01ELKzqSrz97+PTwUBaCly0iRy\nUR98EK8edbvj460sFgotEMXEY3q95BJzckjwgkF6blMTiU1XF13jiy/SnMje0XcTJlCknMNBbtjt\nJodYVETn8XiAJUvoOTU15G7lMVZmMy2VhsMkjJJEe59GIznd6UlmdK5aRY/XaOgad+6kLwHjx5NI\n+ny0TymnCNXV0RcDu50C2OfOpaXZaJQee+wYiaK8F1xXR046q3+xF2NkYYk7jHOyqXYTHl7/MN45\n+g7WnFiDJ7Y8gVf3vUrDnfuwwLEglqoj4w15YVQbE5Zge8NzPL47/bsQJRF13XXoCnYh25ANo8aI\niqwKtHpbsb5mPZw+Ko4RJAFH2o/g3WPvItuQDX/Yj65AF9ScGhqFBoFwABExghxDDjQKDTwhD460\nH4E35IVZbYZGqcETW5+AN+RNej0aBS1R+sI+VLZV4qPqj7C7eTdUvAqukAtRIYoGd0OsKlaj1EDF\nqVCRVQGNkvY9LToL0nXpmGqfikk5k9DibUlI/DnZdTIWpSej4BXI0Gdg3al1Z/374DgOM/NmorWn\nNeH2QDQAo9qIYltx0udFhAhae1pTvu5BoVLREqHJREKhVtNPRgYVybz3Hu0LGo10e0cHuUm5mrSs\njJZbe/80NpIoqdUkikuXkmilpVGhTW4uua1IhEQJIAGVK1qfeIL2QGtryaXJQ4fHjSMHO3kyFdwI\nAlXChkK0VHzqFP3Z3ExC7feT8LW1UdBBX7zeWO8pvF5q9wiF6LyjRlFFb34+FSy99x7wq1/RFwmH\nA3jyScptTUuj85WVkbNWKEgo6+roJxCgAqG+gQKMEYc5ScZZ6fB34PVDr8Nussf2EyVJwpb6Lbgi\n5wpMz0v8ln3tmGtxtP0o6lx1UCvViApRKBVK3Dvz3rOO5SqyFuHXS3+N/S370RnoRKGlkKL1aj7F\nZ/WfISpGMco2KhbKblAbcLLrJHrCPRAhUtaqFEVUjELFqWBUGzGvcB5m5c3Cu8ffhVVrpbmX+nTw\nHI/67npsbdiK5WOW97sWURLRHejGhyc+RFSMwqAyIMeYg85AJ7QKLfQqPYwaI4xqIyRJQrOnGY2+\nRhTbimE32cFzPDL0GZiVPwv17np8fOpjuIIuvFH5Br4z5TvINGTG9jH7olGSqJ+L68dejyPtR1Df\nXQ+zxgx/hIZVf2/69/oHE0gSNtdvxttH30YgEoAECXMK5uDmipsHlQPb56C0h9Z3kHJmJonMW2+R\nmEUi8cHBWm3cTfZFFElsBIHEFSChaGsjQa6piceq8Tw5zvx8Os/x4/E90e3bSaRMpvgoLI4jlyen\n8UyZkrjH6PXSXqhaTUU4xcV0br8/McRdZtMm2qsE4tFzAImc0UjOtKeH3OnUqbTHarXSdW7aBNxy\nCy27ynMsJ06k6+zupmIgeXlXpUpc4h5JJCk+s/JLDhNJxlk54jyCUDSErkAXAKqUVSvUsGgt2Nqw\ntZ9IGtVG/Hj+j3Go9RCqu6qRrkvHtLxpKatrI0IER9qPoK2nDZmGTMzMn5nwIb+4aDH2tewDBy5h\naolRbYRGoYFVY8VN5TdhZ9NOnHKdgiRJSNOl4eXrXsbcwrlYe3ItzBpzvyZ+s8aMw87D/UQyKkbx\nzPZnwPM0W1LJKRGIBlDjqsEo2ygIkoB2f3usnzIQDcAddkOv0qMj0IEiaxFavC3oCnRhY+1GBKIU\nBahT6nCi4wR+sfkXeGzRYyi0FEKCBEEUEvohO/wdA+pjzTRk4vFFj2Nrw1Yc6ziGbEM2FhYtTFgi\nltnXsg//u+9/YTfZkaHPgCAK+Lzhc/gjftwz855znispPA9873v9b49Gab/Q66WiGHl0ltdLy5u9\nJ4L0Pd7Pfpa4H1pTQ0u28vgueQ6jwUDVp/fcQ2IYDpNLldswDh8mhxYMkmAdO0YtJfLyrBy9J/PU\nUySQJhOJnkZDbtftpmPNn5/4+MxMSgtyuej+SZPosSUl9AVATrAxGkkYT56kczc3U8DAFVeQQ7Va\nyWHLLjwQoGte3ueL2/HjtOe6cmU873W4qaqiEPbHH48XGX1JYSLJOCuVbZXY3bwbBpUBEiQoOAWm\n2KdAp9IhKiZfClIr1JiWN61fdFtfugJdeHrb02j2NMfi4bKMWXhw7oOxZUiO45CmS8OJzhPgOR46\nlQ5qhRq+sC8WGv5Z/WcosZVgfuF8SJDQ6mtFvpnGK5nUJkiQYnuVsnsLRAOxc8ipOetr1uN4x3FU\ndVbBYXHAbrJDxasQESPUinIm5afeXR/Lwe0J9SAqRGE32REVoxibMRZOnxOegAdOnxN5pjwEhSAm\nZ09Gka0IDe4GbKzbiBvG3YCrS67GmhNrkKHPgEapQYe/AxqlBstH93e3ybBoLbi29FpcW3r2frpV\nVauQpk+L9cgqeAUKLYXY37IfrT2tyDEOoVvYt48+1N1uanvoHXXX3k7C2RuPJ55najQm3udy0b7n\nz39O4irv74VCJKA7d1IPZGsrHUepJEfa0ECO1GQicWpooCrbZKkzckzdggV0Hc3NFFYw7cz/uwUF\n/Z8zaxb9vPQS7SPqdPS6rVbqz5RHZUkSBbjr9VTkZDbTPumnn1JLTbK9+4w+1c2iSFXEp05Rxe8/\n/wnccQdVCw8XkkTnaW0lF3zLLcN3rssAJpKMlDR7m7GlYQs0Cg1MGlMs2m5X0y6UZpTixvIbL+j4\nfzv0Nzh9ThTZiuLn9DTjtQOv4QdzfgAAqO6shjvoRruvHd6QFwrQU1hYAAAgAElEQVReAYPKAFfQ\nBZ7nkWXIgkapwdGOo/BGvJieOx0cuJg7K88qh7PHiQMtBwAOSNenY4xtDELREBY4FgAA/nHkH3jj\n0BtI16ejJ9SDJm8TXEEXJEmKVaR6Qh7sa9kHrVILQRJwovMEDGoD1LwaBo0BaoUauaZcmDQmLCpa\nhPW16xESQsg0ZGKUbVQsxNyqteKw8zBuGHcDbiy/EYWWQnx86mO4Q27MK5yH5aOXD675fwA0eZuQ\na8pNuE2esNIV6Bo6kYxGafkzM5OWOrVaCgfoTe9iHVGkPsSKCqqq7U1jI+0vLltGk0h6C8rHH9NS\nYG0tiU5NDYlsVxctcwYC9Pyiovjy7HPPUWFP3zFTO3aQoJacSVqyWskd3npr/wHSvWlupqXdggIS\na3lQ8yefADee+XfR20UGAiSe4TBd/9/+NrAc1iNH6DUaDOTs6upob/Pmm8/93POlqooqc8ePp+Xh\n5cu/1G6SiSQjJTsad8CoNqI8sxyHnIfgDXkRiAYQFsKxAc7niy/sw/7W/THHJ2M32XGk/QjcQTc0\nSg2e2/EcxqSNgS/sw+H2w4iKUTR5myi/1WiHBAlKXgmb1oYmTxOyDdnIMmTFROG9Y+9BrVBDwSsg\niALtH7ob8fjix+GwOvDS3pfw9OdPQ6/So8HTAJ1SB51SBwUU8Ak+9IR7oFfq0eRpgk6lg16lx5Ki\nJTjpot7GImsRGr2N4DkeZelUUapRamA32eGwODApZ1LC6wtEAhidRsLBczzmFMw5ZyXrheKwONDh\n70iYZylKIkRJRKZ+gB9+oph6jqHMvn20fDh2LC19RqNUKKNWJ3/80aPUN3j6NFWems3x+1avJoe2\nbh31Z8oOy+UiVyVJJDL19bSUq9WS8zEa4+0o2dnxQHJ5GXbixPg5wmEqjuktAHo9FfFs3372HsUP\nP6QvAidPknDpdHQtq1aRsNtstEwsSSTEHEd7joJAj6+sPHclce8RV3o9FQEtWEBO9Oqrh8dNyi7S\nZIoHL3zJ3SSrbmWkxB10Q6VQocBSACWvhIJXwKa1IceQAwkSfrfrd0krXAdCVIzSVA0k31+JiBEc\naz8Gf8QPq86KhUULccO4GzA5ezJ0Kh0kSYJepUe7vx2nuk7BHXLDF/bBG/Lizml3gud4tPvasbl+\nMybmTMRXxnwF8xzzsLh4MeY75qO1pxXrTq7DqqpVMKgMsOlssGgsCEQD8EV8ECHCoDLAoDKguacZ\ngWgAJrUJk7InYUruFCwZtQRj0sfAH/VjZcVKjM0ci05/J+q669DkacKtk25Fvjk/tpcLAKFoCP6I\nf/D9ixfI9WOvhyvoilW1RoQI6rvrMadgTr8xXUmRA8orK1M/RnaRsjsyGkkU5CrUvogifRinpZFw\nrF8fv6+xkZ6nUtEe4Vtvxe9bt46WVlta6HkeD12fPItRoyGxlWPgzGZaqs3Pp4Se3tWip0/HU3bk\nqtK6Orpv//6zvycFBTQ1RJLo2KNGkTA6HHG3/I1vUMTe9Om0V3n99bSXOXNm//aXZMgu0mqN9302\nNcUHMA8HsouUBdhuTyxU+hLCnCQjJeWZ5dhUtwmugAsKToEiaxEkSUJ3sBvlmeWocdXgWMcxTMia\ncO6D9cGsMaPIWoQOf0cswQYA3CGaB5muS0d1Z3Xsdo7jkGvKRSASgMqpgoKjdgmb1obWnlaoeBVK\n0krw8PyHYdaYse7kOhxoPYAOfwfyzflQ8Aqk69LhDXsRiASwo3EHDjsPozvQjXp3PZx+J9J16bBq\nrRBEAUa1Ed6wF6Oso5BnzkOHvwPTc6dDpVBBEGkEmcPigCiJeGTRI+gKdOFY+zEIkoDS9FLkGHMw\nI28Gfrvzt6h319MSMKfAtyZ9C2Mzxg7J389AqciuwD0z78Gbh99EvbseKl6Fr5R+BdeXDXAu4dGj\n8bi68vLkjlJ2kXKcHUDu7513SBT6usmjR2m5tKiIhO2pp2ifz24nF6lWU8GNJAFvvklLmAoFiaTN\nRsu4gUA8t7W4mBzsrbdSxS3P9w8ef/NN+pHDyUtKaF/xfFi+nBzthg1U2MNx5Cx7euIhB9FofNJJ\n7wSjYJDel7lzU7vs3i5STvFJTyeRLC4Gnn+eCoYmDP7fXkpkF2kw0H/LRUIc96V2k0wkGSmZbJ+M\nkrQSvH/8/dh+pC9M8XFZhiw0ehrR5Gk6L5GU5y8++fmTaHQ3wqgxoifcAwD43vTvgeM4FNuKEypA\nJUnCic4TMGvMiIrU7qHklcgx5sDpc2Jx8WIoeSV+9OmPEBWjCERp1JUn5MGs/Fk47DyMJm8TIkIE\noiSiwd0ABadARIxQlWrQjQx9BqxaK7IMWXho3kOYXTAbGoUG9627DxLoC8KOxh0IRoMIRALINGTi\ng+MfYEXZCswtTMw2dVgdeHLZk6hx1SAshOGwONAZ6MSnNZ9Co9CgIrti8Nmq58m03GmYYp+CnnAP\ntEpt0njApMgfnNnZ5LwqK+nDuS/btsWLZnrD8yQmvVtFZBdpsdAHcHMzOaXf/Q747nfJRcqDh+VQ\n8rfeouXJtDQSTzkggOPItfr9JE7jx/ffBwVoD3P7dnr8Ndf0L5BJRWMjCVzf3FpJouVPvT4uxAYD\nOa7t2+laOY6KheRBx71J1d6xfj29v+3t5OoMBvpTnmwSDtPUlbY2cvd/+tPAXsdAcLupZ1OexynD\ncXQNA1ly/wLCRJKRErVCjQfmPABXwIUNtRug43QozypHsbU4JloDDU6XJCkmanKFaUlaCX62+GfY\nVL8Jta5aOCwOLCpaFAv6zjHm4OqSq/FR9Uew6WyxQpMMfQaKrEWo7qymHklJgkljwo3jb8TLe1+G\nSW2CSWOCJElo8jShuqsaJ7tOIiJGkK5Lp8xViYMgCeA5Hmm6NHhCHkTESGy48pKpS3DNmGti0zhu\nmnAT/rz/z6h0VkLBUWarRWvBtNxpeOfYO3BYHQnjt2QUvAJj0sdAlES8fuB1bKrfBEigVB5eie9O\n+y6m5tJ4KVESUeOqgdPnRJouDWPSxgxoXNZA4Tk+FrMH0HL6KdcpKHklStNL+01HAUCOr6aGHB/P\nk7upqOj/YXnXXYntG4cOkahee2082ab3MWUXGYnQB3B2NoV+m0wkfrW15KB66IsT/vY3cpM//jHw\nwx/SY9rayA263eRivV4Srgce6C9Aa9bQHpsk0VKl7CbPhuxijxwhx9a7fUWeEdk3Wk8QqHhn4UJy\nvosWnfs8Mi0tVKy0ZAm91oceouP1HhAtivR+6fXUV3r8ODnoocBqBZ59dmiO9QWCiSTjrOhVetw3\n+z50B7tjeamSJKHd1w6rzoqK7AoAwKmuU1h9YjVqXDWwm+z46pivxu473HYYbx99G/XuehjVRiwf\nvRxXj74aSl6JbGM2biq/KeX5b5pwE0anjcb6mvXwhDwozypHvjkfGfoMlNhKYu6zJ9wDJa+MBaUD\ngAQJPChP1R120/6itxnp+nSEo2EYlAb4BT8EUYBNa0MwGoQv4sOiokW4a/pdCc3+S4qXwB1y42TX\nSWhVWmTps1BsK4ZepYcgCvik5pOkIimzt3kv1tetR7G1OBYn54/48eLeF/FM+jNQcAq8sOsFVHVU\nxZ5TaCnEvbPuTSi4GSo+OfUJ3jz8Zqw9RqfS4a7pd6E8q1deqOwizWYSHauV9uwOHqRev96oVPQD\nxJcZOzvpA1/fJ7Bg3z76s76enJrskuTsV6WSxFLuNxRFKthxuWjKCEAFMy0ttDfo8ZAgHT1KzuvU\nqUQ32dZGKUD5+fSaNmwYmJusqSHnzPPk8G64IX5fdja1piRr4zhbVezZWLOGvlBs3UpfLiZPjreR\nyG70wAES7rw8+mKwfv3QiSQjKUwkGeek0FKIu2fejdcOvIZOdyckSUK+OR93TrsTWqUWR51H8dS2\np6BT6WDVWtHsacaT257EHVPvQKY+E09vfxoWjQUOiwPBaBD/OPIPuIIurJwY/zYvSiJOdp2E0+eE\nVWvF2IyxUPJK8ByP6XnTY6EFOxp34Pe7fh9rS9GpdGjyNOH6sddDq0r8cHL6nHAFXRidNhqHnYfB\ng4dKqUJXoAthIQydUgejygglr0RYDEOj1ECtUGPJqCX90nA4joPdaMe4zHH94vU0Sg06/Z3Y37If\nlc5KGNVGzMibkVC5+1n9Z7BqrAn5tXqVHk6fE0fbj+Jo+1FUdVSh0FIIjuPgC/uwpX4LdjbtxA3j\nbsCS4iUJA6EvhBOdJ/B/h/4Peea82LJrT7gHv935Wzx11VNxt9nbRdKbQMuaP/4xVXemWnqT9yfl\nPcT//M/E+1eupBYGv59c4ZQpJCyhEIlATQ251bJe+bNNTSQIu3fTY7u7SVRbWkhINBr670CAXGhv\nkZRdpBwmIBe+nM1N9l5OtdloT27Jkrib5HmKyRsqWlpIHAsKyKWuWUNpPxxHe5AAvd5XXqEiIZOJ\nlp5376YvGvn5Zz8+47xhIskYEFPsUzAxeyKaPE1QKVSwG+2xAIC/H/47zBpzzPGk69OhU+rwyp5X\nIEKEN+RFhj4DHMdBp9LBYXFgfc16XDvmWth0NvjCPryw6wUc7zgeO1+OMQcPzHmg3+iomXkzgRnA\nO0ffQYO7AXqVHjdX3IyrSq5CVIxCq9TCG/JCq9Si3dcOJa9Ed6gbCl4BlUIFjVIDBaeAKInoCffA\norWg2EbLx56gBxzHYXFx8tJ/h4WCyEVJTBC7dl97LLBcq9QiKkaxumo1brvitlgvZiASSDpIWZIk\n+MI+bDu9DXlmmurhCXmwpX4LImIEESGC7ae3Y9vpbbhz2p2YlT/rwv4iQYLdd1/SqKbZmIdaD2Ge\n40zizyef0HJoUxP9LggknH4/VYoma5HoXeWq18fbFXr3BPI8/Xz+OTkk2WkqFPH2jpMn47MjARLG\n9evJ1XZ3xyPqfD5yVRxHApmVRS0YMr1dpExOzrndpOwi5V5LuQK3t5scCJ98QiI77ezBGlizhpZT\n5dmWspvsHQu3Z09icZS8BLt6Ne3lMoYFJpKMAaPklbGJFTKBaACnPadjAgLQB39Ndw0Oth5EVIzC\nrDGjwd2AiuwKjLKNgoJXgOd4tPnaYNPZ8M6xd1DVQSk3soNr9jbj1X2v4r/n/neCq+M4DrPyZ2FG\n3gwEo0FoFJrYvl0gGkCWIQtvVL4Re3w4Sg4xx5iD7mA3QtEQREmERWNBp9gJURTRGehERIxAySnx\n6MJHk0a7AUCuKRcLHAuwsXYjMg2ZUCvUFHIQ9kLFqTA6bXTsWkPREF47+BomZU+CRWvBjLwZ+MPu\nP0CQBESECA1ZPvNFw2FxUHESR6/jqPMoJFCQgTvojuXN/vXgXzHFPmXgRTcpcAfdSfcfOXDoifTE\nb1i5ktoWZHbupKVNjYYEJJlIJqtyTeYmw2EShkgkvqcnD0pOS6MlxFtuiRfMdHWR67TbyRWOGUMF\nMnV1wFVXkdBKEi3h1tXFz797N52jdyEKQLft2UNC2ZdkRTk5Of3d5LnweOgLg8FAxTiqFNnFvV0k\nQEKpVMbdpEzf9wugpeidO4F//3c2MWSYYCLJuCBUvAoahYaCxc+Mi6rtrkVlWyW0Si0MagNloPJK\nHGo7hCxDFgwqQ0yoIkIEWxq2xFyUjN1oR1VHFTr8HUl7+XiOTwjnFiURz+94HvXd9Vg+ZjlaPC1o\n9DbitPs0MvQZCAthWLVWtPvb4Ql5UGQtQkVWBRwWB5QKJfLN+fj6+K8nLGmGhTAOth7Eic4TyNBn\nYIp9Cm4YewMKzYXYVL8JPeEeLCpahEpnJaJiNOH6NUoNBFFAVWcVZuTNQFegC7XdtTRMWqlHXXcd\ntEotHpz7IErSSmKB7hatBa2+Vlg0FoQFEni9Sg+e49Hh70CTpynllI+BMil7Eg47DyfsdUqSBFES\nMco2Kv7AjIy40wqHqYJ11CjaN9u7l0Std8xc315JgEQtmZtUKmkahty3GAjQTMaFC0mEdTrgN7+h\nQpKSEmpBCQZJUABys9VnWoT27YsLjNtNzuruu+n3q67qX5kq0zcGT6amhgIAbLa4iwZoj3UwbnLD\nBnKgLhddf6rrWLOGBLW111QXQaD37atfje/N3n57YjC7DMfFo/AYQw4TScYFoVKosLh4Mf5V/S9k\nGbKwp3kPqruq4Q15YdKYYDfZ0epthUVrAQcOLd4WaJVaTMiagBxjDkJCCFEhGnNRMhzHgeM4hITQ\ngK6jurMa1V3VMTdq09owPms89rfsR4O7Ad6wFya1CWaNGQscC1BgLkCduw53zbwLY9LG4FDbIRxp\nP4JOfycm5kxERIjg6W1Po95dD41Cg2ZvM+rd9SixlSDbmI2rSq7CdaXXQaVQ4bFNj511ckdrTys+\nPvUxlo9ejtaeVjR5m2LDn7MN2eA4DjdX3Iwntz1JUzokCZ6QBxIkzMibEZvRKUnSBbtIAJhTMAfr\na9ejvrsemYZMCKIAp8+J6XnTY2lA/dixgwRIdmhaLYnRXXfFH3PoELk4eUlUprubBOPrX4/fxvOJ\nPX4ffkj7bLLoer3kVp99lsLJFy2iQhYZr5eWfgESO7lfEkh0enJ4+GDQaikIIFlRTrIs17643VR1\nKo/TCoepKnjGjORusqwseUQdx8XzaoFEd84YMZhIMi6Yr439Gtp97Xh136skahLtcRWYC9Da04pc\ncy7afe3wRXxo62nDdWXX4dtXfBscx0Gj0GB02mi09LQk7D/6wj6Y1KZz5oqGhTDW16zHK/tewf6W\n/RTkrdBBq9LCYXGgJK0EpemlcIfcaPY2o8RWAiWvRK2rFhNzJiJTn4mfbvwpnD4nFJwCgiQgU5+J\nMeljUOOqgU1ng8vvQn13PVQKFZq8TShNL8X7x9+HJ+TBrZNvxfzC+XjtwGswqU0Jy60KXoGy9DIc\najsUqyAtthXHnKA76MaOph1YWrIUZRlleHTho1h3ch3a/G1o9bZiRt6MWKVuu78dBZaCfhms54NB\nbcDD8x/GpzWfYtvpbdAqtbh18q1Y4FiQfDB2svi27GxyR9ddFxc2h4OGKfelp4fcVCoCARLcUCie\neFNVRUK6cSPtT44Zk7g/l5NDtw0HeXmJgj5YVq8GXnuNrlEW6dra1G6y75QRxiUFE0nGBaNRanB1\nydXY0rAFNq0N3cFuHOs4BrVCDVESERbCuKrkKpzoPIGH5j+EabnxIgaO4/CfFf+Jn274KQ62HoQv\n4gPPUXD544seT1rsAlA1Zigawit7X8GbR95Eu68dnf5ONHubY+k7Tp8TZo0Z35z0TaysWIn1tevx\necPnUPJKrJy4EguLFuIPu/8AV8CVULHa7GnGczueg1qhjrlflUKFQksh/BF/LLN1c/1mrChbgXmF\n87CneQ+Oth+NFe6IkojbrrgNFq2FXkOSvvGoGI0NeAaoivg7U7+DlRNX4vmdz+N4x3F4Qp5YL+d3\np3036QzK88GsMeOGcTfghnEDWDo8dIj2GbVa2huUCYXi8xEBSoRJlif65pvkFOfOTb5vplQCt90W\nj5br6KAknLFjyZV98AHwgx9cvNmKg0EeLl1Xl+hoMzPP7iYZlyxMJBlDgjfshVFthN1kR5YhC66g\nC609rVDyStpL8zbh38b+G6bap/Z7rlapBc/xUPAKaJVaaJVaqBQqNLgb+s2r7A5242+H/oa9LXtR\n76rHruZd4DiKfItKtGwbFaNo6WnBKOsotPa0YrRtNAxqA1aUrcCKshXxaw55cch5CAXmxCU0CRIa\n3Y1UUCMJCEaDECURjZ5G2HQ26r/kaN5kh78DaelpuH/2/TjsPIxDbYdg0pgSWkDGZ46HklciEAnE\nxlWJkojuYDe+OfGb/d4PnUqHB+c+iOrOarT2tMKsMaM8q3xIllrPi/Jy6tVLxrmKWFwu2ltTKoGP\nPqLYOJlAID4ma1avqt2XXqJq1NxcWvKsrCQnNmpUv8MPOTU15JLlwccyXm88bu5srF1LAekcR9et\n1cZF0eOh/dOZM4f+uhnDBhNJxpCQa8qNTZZQ8ArMzJuJFm8LjrYfRVFGER6Y8wAmZE1I6oRWV62G\nTqXDoqJFsduiYhRrqtfgyuIrYwUmgijg2e3PosnThHRdOrVJCBHwPA9ewUOj0CAiUuqLN+xFSAyh\nPLM85X6hIJFz6RuyXt1ZDXDAae9p6JQ6RKQIwpEwTT/RmmHT2mKv1aala1MpVLjCfgWusF/R7zwW\nrQV3TL0DL+95OXZOESIWFS2Kpe30hed4lGWUoSyDegUDkQB2te6CK+BCvjkfYzPGDmkaz1nR6eK9\neoNl3ToSuoICahv5ylfITfp8NND3jjuopzEYJCfpdlPVqryEy3FUZfr++8B9953dTcqie774/VQ8\ndOWVVC0q09BAtz/yyNknb3R00N5rWRldf2sr7btOnRqfcML2FS87mEgyYrT1tOFg20GEo2GMzxqP\nYmvxgJf37CY75hbMxeb6zcg15VJjvlKN8qxyPLLwERRYUhc8HGo71K8fUl5mPe05HRPJqs4qNLgb\n4LA6UNddFyvu4cHHqkvl5Uuj2ohZ+bMQjAQTqmB7Y9FYUGTpH7Le6G2EWqEmgRQj0Cl18Ia88It+\nFFmKAAAN3eRyBzRFA8CMvBkYnTYah9oOIRgNojS9dMDv72n3aTy97Wm4g25wHAcRIkrTSnHvrHth\nUBvO+fwLQpLow95uH/xzZReZkxNva5Dd5KZNNCZLjpF7801yWnp9YtGPfA1bt9JS7733Ju9tbGyk\nIp+f/OT8Kz23biWRlls9rGdydVevpuXTdevOPsdx7VoScZ2OxDQzk0Szqwv41a/iYQapaGyM93wy\nLhmYSDIAAJtqN+G1Q68BEjmrt4+9jcWOxbhl8i3JizmScOvkW5FrysW6U+vg9DlRnlWOr4//+lkF\nEiCnFYqG+i0nSpASBK7TT2k/ALlKeVk2KkahgIIi1iABEg031ig0CEVDSd0dQPuht0y6Bb/5/Dc4\n7T4Ng9oAX9iHqBBFmi4N2YZseMNe+CN+GFQGdAW7EIwG0eRtwnzHfNxcMbjBt2m6tAS3PBBEScSL\ne16EIAmx4dSSJKG6qxqrq1bjGxXfGNTxBk11NYnPo48mFs4MBNlFysuNOTnkJhcuJOEZO5ZmPO7a\nRbeLIonQ/ff3P9b+/SRCqZJyVq+ma121iipdb7xxcGHcfj8Jdn4+hYuvX09usqGBrm/ChLPPcezo\noNcbjVL/5ezZJHYnT9Le7cGDlCyUiqYmirl74IHhK0hinBdMJBlw+px4/dDrsBvtMaESJREbajdg\nsn3yWTNJe6NSqHBt6bW4tvRamhU5wG/EV5dcjVf3vQq1Qg1X0IWIEEFEjCDPlJfQt5euT48dM12f\nDh48iq3FqOqsAgcOKl4Ff9QPo9qITEMmvCEvvn3Ft5FlSN1kXWwrxs8X/xxbGragvrseDqsDWqUW\nn9V/hmA0CIvGQmOzQl7YjXb814z/wpXFV8KkGcD+1BDQ5GlCs7c5IcRBHhu2sW4jbppw05AV8/RD\nkih0vK2tf2P7uXC5yDVqtbRHJ9PTQ2OeQiG6z2CgAG+TicStqgq4557EY4VClAU7blzypBx5/uSE\nCVRV6vWS0ExNvpSdlK1back3OzsxOGD16vi+Is+ndpN+P+XZrl1L71sgEB/XZTbT9U+alNpNrl5N\n4vzuu8CDDzI3eQnBRJKByrbKfj14PMfDqDHi84bPByySvRnMB/e8wnnY37ofL+99GREhAgkSdEod\nKrIqEiLgytLLUGgpxGn3aeSacmE32bG/dT9UvCo2XWRcxjisnLgSswtmozyzfEDh4JmGzIQqT5vW\nhuaeZniCHnQGOqFWqFGaXgq9So+5hXNHTCABGj6d7L2U82YlpB5cfcFUV9Oki/Ly5DFpZyMapUSe\nvsOFQyGqdJXHben1wMcfk0PLyKDClt6JOQDtUXo8dJvH099NyvMnJYmWcMNh4MUXqQBoIG5SdpFy\n075KFZ8AsmsXtbYA9NpTucnCQgouOHiQhiw3NtJrX7o03gKSyk02NVEfank59X7KLS+MS4Iv33Aw\nRj/kYpK+KDgFwkKSWXhDjAQJp92nMSd/Dq4svhLLRy/H9WOvx6G2Q9hUtyn2uJAQwtJRS5Gpz8QR\n5xFUtlUiEAnApDahwFKAGXkzMLtgNuxGO9ZUr8FLe17C7qbdsSXagTKnYA5m5s1EnjkPs/NnY1L2\nJOhVenxjwjf67Z0ON/nmfOiUOvgj/oTbW3taMc0+bcBL4YNGdpFGY2JM2kDJzKS2jttvT/xxOEiM\n5Ob/kydJlE6coN+1WloylQmF6Drk1hE5d7Wjg36XXWRODh0rECBx2raNlmgHwtattA8qCFRQ5POR\ns/3LX8jRyUKrVMbdZF96z8hUqUj4Tp+OBxnYbHS/kOTfmizyCgU563ffTR5kwLgoMJFkYFzGuNhw\nYxlJkuAOuTEzf/jL1WtcNegKdCHfkg+7yY50Pc18zDZm45NTnwAA9rXsw31r78Of9v8Jjd5G7Gvd\nB0ESUJFVgSJbEcJCGLWuWvzzyD/x5OdPojvQjeaeZvx252/x1tG3BnU9GqUGP5j9A9w9425cYb8C\ni4oW4ZGFj2D5mOXD8fLPilqhxq2Tb4XT50SztxndwW40uBugUWgG1uN4vsguUl7WlEO3e0ennQ+b\nN8eHM1dV0axGtZqKW/x+ElDZTQJxFymHoMtCtXYt/S4LTCRCE0RkQe/uJjfZ18kmo7OTou80mviP\nSkWC5vVSHqz8E41SHqwcpycjz8i02UjYOzvpNckxclYrCefBg4nPk12k7NAzM+NuknFJwJZbGcg3\n5+Oa0dfgo+qPoFfpoeAU8Ia8qMiuSGj8Hy6C0WBSR6RWqOEJedDh78Afdv0Bafo06FV6nOg8gagQ\nRUSIICpFERbCcAVc8Ef84DgO7pAbu5p2YV7hPBRZi7C2ei0WFy1OujeZbBg0QPurvUd09cUddOPT\nmk+xu3k3dCodlhQvwez82cPSljE9bzoeMzyGjbUb0eZrw59N3HYAACAASURBVELHQiwsWjjggdeD\nRnaRcmi4JMUd1WD3JvvyyCPx2YibN9OfHEc/7e3x8x88SEuYq1f3D/WORqk6duFCCjqIRMhNOp1x\nhyoIdNv+/efem+wbvi4ju9K+yEIs09tFchztx3Ic7b/u2JE4auzQocQl19Wr6XiSFHeZWi3bm7yE\nYCLJAMdxuKn8JlRkVWBb4zaEoiFMz52OKfYpUCmGPx1ETruJCJGE8zl7nJhTOAd7m/dCkIRYpavT\n54RRbUQgGkB3sBvekBdqhRresBdqXg2z1gye43HYeRjzHRT5VdddlyCSkiRh6+mt+OD4B+jwdyBL\nn4Xrx12P2fmzz7mf6gl58Istv0CHrwMZ+gx0B7rx0t6XcLzjOG6/4vZhKaQpshbhtituG/LjJsXr\nJcHqOz1DrtYUhHO3M6TCYIg36q9YQX2TyYhEgOeeoyKZZEOMeZ7aUr77XXJ9d91Fbk3uR5Qkaud4\n8UXg5ZfPT2wG2nPZ2UnvV08PuV4AmDgx3h+aKoghEiFHrVQmFjcB5EJ9vtQh7IwRg4kkAwAJZXlW\neeJk+l4Eo0HsaNyBXU27oFFoMN8xH5NzJg/JnpgckfaPI/+AWWOGVqlFV6ALBrUBXy39KjbXbU5w\naFqlFlqVFjzPwxf2QZCEmLhyHAez2gwlr0RnoBNRMQoJUr/RUBtqN+AvB/6CbGM2iqxF8Ia8+OPu\nPyIiRLDAsYAEV6FOOlJqc91mdPg6EipOTRoTtjZsxbJRy/qNE7vsMJupeX644bjUEW2ffUa5rQ5H\nYmN/b4JBGkJcXk5iMmZMYpi53598D7AvDQ0kuuc7uDgzE/jd7wb/PJUKeOKJ8zsnY8RgIsk4J6Fo\nCM9sewZVnVWwaW0QJAF7mvdg6ailuGXSLf2cU7O3GSe7TkLFq1CeVR6fdH8WvjLmKyiwFODTU5+i\nK9iFq0dfjaXFS5GuT0dZRhlWn1gdayspshbhtPs00rRpsbmUgihAp9QhXZ8OJa+k5B9OAU/IA7PG\njLEZY2PniggRvHvsXeSacmMxcSaNCQpegVf2voK1p9airacNHDjMKZiDmybcBKM6/o1+X+u+flWz\n8qSOenf95S+SF5tgkBJ2xozp39jfm+3baWlz2zbgP/4jvm/Zm3O5QVGkKli1mpaCUznOjo7UA5oB\ntiz6BYaJJOOc7GrahROdJxISYtJ0adhYtxELHAtiUy0kScJbR9/Cv6r/FXuuSqHCnVPvTBm/JsNx\nHCZmT8TE7In97hufOR4Tsiag0lmJLEMWdEodso3ZaPe3Y0LGBBxoO4CwEMbSUUvR0tOCGlcNfGEf\n7CZKibl31r0J7S3dwW4Eo8FYWo4kSXD6nDjafhSHnYcxPXc6JudMhkqhwtaGrWjzteFH834Uc80W\njQVtPW2AJvE6OXBJnecljSgOruk+GevWUcHKjBlDc01bt9LSZVERLZnKjf29CQZpMkluLi13Aqkd\n59morKQKWYAKZsqTrKS0tNCS6YMPxttBGF8aWHUr45zsad4Ds8ac4BjlgO+qzqrYbZXOSnxY9SEK\nzAUoshahyFoEm9aGP+75I7qD3ckOPSAUvAL3zLwHKytWQqPQgOd4/NeM/8K/bv4Xfjjvh3jxqy9i\nRdkK+CN+WDQWlKWXYVnJMjy57Ek8teypxEHCoMg6nqMoOwCo6qjC56c/R213LUSIaOlpweaGzYiI\nERRaClHdWY0aV03s+YuLF8Mb8saeD9A+pU6lQ3lm8uXqSxJJojSdysrzP4bHQ9Mt3ngjXpBzIcgu\nUu5ZlBv7+0bVbd9OQqrX097kxo3xtpCBIoo0JNpmizf8J2u9WL2aqlB7t6YwvjQwJ8nohyRJqOuu\nQ2sPDUtWK9QJgtCb3g7ts7rPYNaYE/YP9So9nD4nDrcdxjzHvPO+Jo1Sg6tGX4WrRl+VcHuOiUrn\nZ+bPxPGO4+gOdiPbkI2StJKU+6U6lQ5XFl+JtSfXIkOfgeOdx2HWmNHa04pMfSZsOhr3VeuqxdiM\nsRBEgaaJnBlIXJFVgRvG34APjn9AB+QAvVKP78/8/vBnqQ4lx45Rs7zLRQ7qfBzl+vUkNt3dVE2a\nbDZiKEStHmeLZZORXaS8tCk39stu8qOPqBjmnXfivZNKJS13/utfwDf7T1VJiewii4vpHDU1/d1k\nSwst506YQHFz9fXMTX7JYCLJSCAYDeKPu/+Ig20HKcmFo1ABT9CDDH1GTADlto3ey6P+iD/l/Meg\nEBzW61bySkzImnDuB57h38f/O8JCGP889k/4Ij5w4GA32mPXr1fpUdVZhUZPI5w+JwRJgCfkwdUl\nV0PBK3D92Osxv3A+TrlOQaPQoCyj7PJaapUkcoBZWdReUVkZT8EZKB4PiVZODlVqvvMOjYFS9xnp\ntXkz8PrrwK9/TQHeqRAESuOJRhNbPiIRSuWZNo1ScAAS3oICElSAmv8/+QRYvvzse4cyvV0kQCIr\nu8nx4+N7jHIfplJJ+5urVgF33z2w94fxhYCJJCOBVVWrcKD1AIqsRbHl1RZvC3ieR4O7IRaBpuSV\nuH3K7QkJNNNyp+H1g68nFLWIEvWZlaaXjuCrODdqhRrfmvwtlKSV4Lkdz2F02mj4I35srt+MUDQE\nb9gLZ48TWcYs5JnzkG/Ox98r/46ecA9uLL8RAOXH9p4ecllx7Bg5p6IicpBvvw1UVAzOTa5fT8Km\nVtNPXV1/N7lnD/DjH9M4rNWrgTvvTH08nqf7I5H+9ykUVPGqVgOnTlE4et/2iLQ02p8ciEhWVlJg\ngt1OTlo+/9GjcTcpu0h5bFdWFnOTX0KYSDJiiJKI9bXrkWfOS9h/zDHmICyEcc/Me9Ad7IaSV6I8\nq7xfM/ucgjnY3LAZta5apOnSEBWj6A52Y+mopf0GG58vkiShO9gNBa8YUNWsTCgawr6WfTjYehAm\njQmzC2ZjlG0UpuVOQ7YhG2EhjDRdGmbmzcSB1gNo8jbBqrGiwFyASTmToFVq4bA68PGpj7F89PIR\nzW8dcmQXaTaTY7JaSeAG4yZ7u0iZzMxENymK1OvodJIA79gBXHddajfJcSR+yairo/DyGTNoH9Jq\npWrU8y06CgSSDz8uLKT7gLiLlM/B8xfmJoNBWpbu/Z6tWkXB6AVD8++DMfQwkWTEEEQBoWgIKj6x\nd02e22jT2VKOnQJor++/5/43Pm/4HDubdkKn1GGhYyGm5E4Zkgb7Wlct/nLgL2hwNwAAJmRNwC2T\nbjnnTMdAJIBntj2D6q5qGNVGhIUwPj71MVZOXIllJctw94y78fzO59EV6IIkSRiTPgaiREORe+8x\nKnklJElCh7/j8hbJ3i4SiAvlYNzk5s3k2vrGs3k8FCs3axawdy85r4wMOuf48ed2k8kQReDb3yaH\nV1RE/Yx1dbTPWVExuGPJzJpFP6kIh4Hjx+lPOSJP5uRJavQ3DHL/ee1aYMsWWnaW813feIP+Lu69\nd9AvgTEyMJFkxFApVBiXOQ4N3Q0JwhOIBKBVapFryj3nMfQqPZaVLMOykmVDem0d/g48+fmTUPJK\nFJgL4PQ7sapqFT459QmeWPrEWYMNNtdvxvHO47BqrQgL4Vgx0t8P/x3TcqdhbOZYPHP1MzjiPIJA\nNACHxYFntz/b7ziiJCIUDaGuuw6uoAul6aUJ/ZOXDR9/TEuaTU3x2ySJUl6qq4GysnMfY/Jk4KGH\nkt/ncJCwPf88CbDRSEuaknRuN5mMzz4jwVWraf5kbi5FwL399vkXHJ0LtRp4+unk99XWDjyNR8bj\noUg/v5+KpebOpS8MJhNF5/WdfMK4ZOCkwY5IuEzgOG7Q0x8YFN/2xJYnIEkSbDobesI96An34I6p\nd2Be4flXp14o7x17Dx+e+BD55nzsa9mHBk8DVLwKnpAHo9NG4xsTvoFvTvxmUsd6/7r7saVhCyLR\nCARJAM/xKLIVwaqx4nvTv5c0xH1DzQb8+cCfUWApgFqhhiiJ2NO8B56QB2PSaIyRklfi21d8G7ML\nZg/76x9SOjriBS99yc3tX3hzPuzeTZWmej0dLxQiMRs9mkZoDdRNiiKFCezeTcfR6WhJOCuL4vN+\n9rPkvY3DRWsr8JOf0HLrYAqd3n+fllbT0sh933sv8NhjtLzrdNIyM3OTI8JgtYE5SUYCRdYiPLbo\nMaw7uQ4nOk+gLKMMV5dcnZBYMxgEUYA37IVepU9oFxks9e56GNQGtPvb0eBpgFVjBcdxECURRrUR\n62vWY1b+rH4FQqIkYnfzbrj8LoSEUGw+Y3ewG6XppSnd56LiReiJ9ODDEx9CEAX4Ij64Q27MypsV\nW2oNRoN4Zd8rcFgdA3LZlwwZGQMrbjlfRJGqUHuPxALIqWZnJ89iTcXBg1Tp6nCQyAaD5Exvu40q\nTuV+ypFizZp4b+hAl6ZlF5mTE58t+bvfxfc7s7MH5ibloHnGiMJEktGPXFPuBYdpywHi7xx9B56Q\nBypehWWjluHfxv7beYWmOywOVLZVojPQCSUXn9ghSmKsgGd/6/5+IlnXXYeoEEVnoBMGlQFapRai\nJKIn3IOqjqqU4s9zPFaUrcCyUcvQ4e/A5rrN2FC3IWEvUqvUggOHXU27cP3Y6wf9mr6w1NaSII4e\nnXh7djY51VtvHdhxRJHERKWioiCACl88HhKY2X0cfDRK96UN03SU1lbq4ywro7zXgRY6bdgQrwIG\n6EvCRx8BX/sa/c5x5JDffz+1m4xGgf/5H5pYwop8RhQmkoxhYWfTTry852XkGHNQaClEWAhj1YlV\nCEQD+OakQTR8n2G+Yz7WnloLX9gHSZIgSRJ6wj3Qq/TIMeag1dsKBfpPpghEAvBFfDBrzQhGghAk\nARIkKDgFOI5LOXBaRqfSocBSgIgUSSruKoUK7pB70K/nC01xMRWnJGMwe3mHDlGyjkIRn64hCFTo\n8uabwPTpiSOr3noL+OAD4K9/HZol476sWUPnUygGXujk8VDvZ3p6vLWloYFu378/HoggSdRu8rWv\nJW8v2bOHin4aGoAXXmCOcgRhIskYciRJwvvH3keWIStWHapWqOGwOLCxbiNWlK2ARWsZ1DEz9Bn4\n0dwf4Zntz2DtybUQJAHZxmxMyp4EDhyiUhRTcvsnuuSachGIBFBgKkBICMEf8UPBKQCO4uk6/B2w\napOEZ/dhQuYEbKzdGAtZl1+nP+JHecZlFEU3EshLiBfK1q0kIn0FQZJoSHLvfaVAAPjtb8ntffpp\n6hFc54vsIuVJIQNtm2lqouVhv59+ACo6mj4dGDcOuOaaxMebk7Q1RaMUcqBSkeD+x3/QLE3GiMBE\nkjHkCJKAVl9rbE6kjIJXgAOHDn/HoEUSAIptxfjtNb/Fn/b/CRvqNkCn1KEr0IWoFMWK0hUothb3\ne45Va8WE7Ak43k7RczadjYYzg0O+OR82rS3JmfozKWcSStNLUdVZFZtL6fQ5MTZ9LCblDDKphjEw\nbr+d5kkmw2pNdHD/+AfNdDQayWktXTq0bnLNGhLlaDTe9qLXn9tNjhtHvaIXwu7d5CAbGmip9pln\ngAULmJscIZhIMoYcBadAhj4DPeGehBYJURIhQeoXQjAYeJ7H7VNux+LixbHovMk5kxMSgnrDcRzu\nn3U/frXlV+iJ9CAiRJBnyovltw40MUelUOH+2fdjY91GbG3YCgD4xoRvYHHR4hEZTD0S1Lpqsalu\nE9p8bRiXMQ4LHAv6jQQbUXS6gS3PBgI0XNliod7FkyeH1k1KEtDWRgLsdMbdnlyA5HbH4+2GmmiU\nXtu+fSTKWVnUH7p5M3OTIwRrAWEMC1sbtuKlPS8hz5wHrVKLqBjFafdpLHAswO1Tbh/Ra5EkCetO\nrcMHxz9AWAhDgoS5BXNxc8XNsXmSX3Z2NO7AS3tegkqhgl6lhyfogUljwsPzH0a2cYQrSAfLX/4C\n/PzntBTKcdTiUlBA+5ND6SbffZemjTz11OAqdC+EbduA//f/KIg9N5cKmNrbabn5gw+YmzwPBqsN\nTCQZw4IkSVhfux7vHnsXoWgIHMdhoWMhbiy/ERql5twHGAZC0RA6A50wqU2XZGKOJEmo7qpGZVsl\nlLwSV9ivQKGlcNjPG4qG8P2134dFY0n40tDkacL0vOm4Y+odF3aCSIRaN0zD8J4HAtR3GQ7HHZ4g\n0B7i888PnZt0u4Ef/IBex6230nLuSHDnnVT1GgpRwVBeHi3tejxUoDRnzshcxxcI1ifJuCTgOA5L\nRy3FAscCdAe7YVQboVclmRw/gmiUmku2n1GURLx+4HVsrNsIlUIFSZLw3vH3cGP5jfjKmCEuQulD\ng7sBYSHcz1XnGHOws2knvjPlOxcWK7h6NcXSPfzw0DufTZtoKZTnSchkwmEqdhkqkZRHguXlAe+9\nB8ybN/xuUhRJGE0mWs4NBqm9JSeHXuumTUwkRwAmkoxhRa1QxwpdGKk57DyMDbUbUGQrigUcRIQI\n3j7yNiZlT0KeeRAxboNEpVBBQv9v1lExCo1Cc2EC6XbTnMdgkLJQx427gCtNwpQpwMsvJ7+vd5D4\n2RBFcruaFCscbnc8zF2tJlHeunX43eSRIxTnV1FB+6KRCDlnuSip7xQUxrBwWYrkY489hldffRWZ\nZxqMf/WrX+GavqXUDMZlxPbG7TCoDQkJQHJB0KG2Q8MqkoWWQmTqM9EV6IoVVUmShGZvM64rve7C\nDi6P07Jaydn95CdD6yazs4FlF5gTvHYtCfh99yW/NtlFyvub2dmDc5Pvv0/P6Rt+cDZEkSpnMzIS\nwxHq6mi/9aqrUj6VMbQMQzLw8MNxHO6//37s378f+/fvZwLJuOwRRCFlRJ48k3O44Dked02/C5Ik\noa67DvXd9ah312Nc5jhcW3rt+R9YdpE5OfRBf/IkidGlhM9Hmar791NIQV/cbupNtFjivY6SRMk/\nW7ee+/hdXXT8N9+kJeCB0txM+6peL82vlH/k0AHGiHFZOkkArCiH8YViRu4MbG/cjgx9Rmx5UxAp\nHWhC1oRhP7/D6sCTy55EpbMSroALhZZClGWUpRTuAdF7KDNAhTXD4SYvhE2bqCjGZCJ3+IMfJF5b\nezsNZu47Eiw/n5Zdz8W6dXQ8t5smoCxYMLDrys+n/spkn3OqL0bL0eXCZSuSL7zwAl5//XVMmzYN\nzzzzDKzWc6emMBiXKpPtkzEjdwZ2N++GQWWAINFsz2tLrx2RCleAIvhm5M0YmoP1dpEyvd3kUO9N\nng8+HxUVyUHslZXkJktK4o8ZPRr45S/P7/hdXdSvabeTEL/zDs2wHGhbiv7iFroxiEu2BWTZsmVo\nbW3td/svf/lLzJo1K7Yf+dOf/hQtLS343//934THsRYQxuWGIAqodFZiT/MeqBVqzMibgbL0siEZ\nWD3i7NpFTfB9/w2KIu0hrlx5ca6rN2vWkLOVs1KdTmDUqP5u8nz5+99JJOVA8ro6Gh49UDfJGBa+\ndH2SdXV1uO6661BZWZlwO8dxePTRR2O/L1q0CIsWLRrhq2MwvqTIEW7JUCiGZ1DyYPD5SAyt1njx\njSSRkD3ySKKbPB+6uoAf/pBcpBzC7vPRvuRTTw1PADsjKZs2bcKmTZtivz/++ONffJFsaWmB3W4H\nADz77LPYvXs33njjjYTHMCfJYDBSsnMn8Pvf99/fC4WAq6+mgdEXwvvvA//3f1Tw0xuPh8R51qwL\nOz7jvPlSOMlbbrkFBw4cAMdxKC4uxksvvYTsPlMHmEgyGIyUCEJ8/FZf9PrUPZMDpaWFin6SkZ8/\nfDMvGefkSyGSA4GJJIPBYDD6MlhtuCz7JBkMBoPBGAmYSDIYg0QQBbT1tMEddJ/7wQwG47Lmsu2T\nZDAuBvta9uGvB/8Kd4gEcnLOZNwy6RZYtaxPl8H4IsL2JBmMAXKy6yR+sfkXyNBnwKg2QpRENHua\nUWApwE8X/jQhncYb8uKw8zCC0SBG2Uah0FJ4efY7fpkJhahVg/29faFgo7IYjGFi7cm10Cl1MKpp\n+gLP8ci35KOuuw7VndUoyygDABxuO4wXdr2AUDQEnPl8nVc4D7dNvg0KXnGxLp8xGAQB+M1vqB1k\n5syLfTWMiwgTSQZjgJz2nE45rLkr0AUA8Ef8+N3u38GkMcFuol5eURLxWd1nGJcxDnML547Y9TIu\ngIMHaVSVxwNMnRoPBGB86WCFOwzGABllHdWvWEdetsk0UEzisfZjCEaDMbcJkONM06VhU92mEbtW\nxgUgCBRXZ7cDHR3Anj0X+4oYFxEmkgzGALlm9DWIiBG4Ai5IkoSoGMVpz2mUZZShxEYxZhExAg79\n97BUChX8Uf9IXzLjfDh4EGhqosi6tDQSzFQRe4wvPEwkGYwB4rA68MM5P4RJY0KDuwGtPa2YVzgP\nd8+4O1aUI4tlVEz8UO30d2JmHtvbuuSRXaTNRr+bzcxNfslh1a2My5oGdwP2Nu9FWAijIrsCYzPG\nXtgMxAEgSRK8YS/UCjW0yv6T6d899i7eP/Y+TBoT1Ao1XEEX7CY7Hp73cMo9TcYlwr59wPPPA8XF\n8ds8Hgpk//Wv2d7kFwAWS3cGJpJffNaeXIs3D78JBacAz/EIC2HMyp+FO6becVGrSCVJwmHnYWyq\n2wRPyINpudMwt3Buwj4l4xLlueeAvXv7B59LEvDgg5fGHEzGBcFE8gxMJL/YtPa04qFPH0KuKRcq\nBX2gSZKEGlcN7pl5D6bnTR/xaxJEAcc7jqPd3w6b1obxmeNj18a4TPD7gUAg+X0228Uf8cW4YFif\nJONLwRHnEQBIECGO42DRWrDt9LYRF0lPyINntz+L2u5a4My/vxxTDh6Y8wAy9Bkjei2MC0Cvpx8G\n4wzsaxHjskSUREhI/m0w1e3DyT8O/wMN7gYUWYtQZKOfrkAX/rz/zyN+LQwGY+hgIsm4LCnPKgeQ\nWEUqSRLcITdm588e0WsJRoPY0bgDuabchNvtRjuOth+NBQ0wGIzLD7bcyrgsyTXl4mtjv4b3jr8H\nFa+CglfAH/Fjeu50TM2dOqLXEhWjECWxX1Utx3HgOA5hITyi18NgMIYOJpKMy5YVZSswIWsCdjbt\nRCgawhT7FJRnlUPJj+z/1gaVAcW2YrT72pGuT4/d7gl5kKZLQ5Yha0Svh8FgDB2supXBGAJqXDX4\n9dZfQ5REmDVm9IR6EJWiuG/WfajIrrjYl8dgMM7AWkDOwESSMdK09rRifc161LhqkG/Ox5JRS1Bo\nKbzYl8VgMHrBRPIMTCQZDAaD0ZfBagOrbmUwGAwGIwVMJBkMBoPBSAETSQaDwWAwUsBEksFgMBiM\nFDCRZDAYDAYjBUwkGQwGg8FIARNJBoPBYDBSwESSwWAwGIwUMJFkMBgMBiMFTCQZDAaDwUgBE0kG\ng8FgMFLARJLBYFw82tqAt94CWM4y4xKFiSSDwbh4rF4NvP02cOrUxb4SBiMpTCQZDMbFoaUF2LoV\nSE8H3nuPuUnGJQkTSQaDcXFYswZQq4HsbODwYeYmGZckTCQZDMbII7vI7GyA4wCDgblJxiUJE0kG\ngzHyyC5SoaDfMzOZm2RckjCRZDAYI0tbG7B+PRAMAnV19FNfD3i9wAcfXOyrYzASUF7sC2AwGF8y\n9Hrge99Lfp/JNLLXwmCcA06SvpibABzH4Qv60hgMBoNxngxWG9hyK4PBYDAYKWAiyWAwGAxGCphI\nMhgMBoORAiaSDAaDwWCkgIkkg8FgMBgpYCLJYDAYDEYKmEgyGAwGg5ECJpIMBoPBYKSAiSSDwWAw\nGClgIslgMBgMRgqYSDIYDAaDkQImkgwGg8FgpICJJIPBYDAYKWAiyWAwGAxGCphIMhgMBoORAiaS\nDAaDwWCkgIkkg8FgMBgpYCLJYDAYDEYKmEgyGAwGg5ECJpIMBoPBYKSAiSSDwWAwGClgIslgMBj/\nv737C2mqDcAA/kxTvCioqKY4YzRdps6jJSWBkdgqibQwwgLRspu8qsTqKpRQszLoj0GUhQSRBJoG\nOhQikkAEtYtaiOIGOv9cWIJZsMr3u/hgNNf5Pu372rvtPD844Dlz9vTueB7OOW8nIhUsSSIiIhUs\nSSIiIhUsSSIiIhUsSSIiIhUsSSIiIhUsSSIiIhUsSSIiIhUBW5LPnj1DcnIywsPDMTAw4PVabW0t\nEhISkJiYiK6uLkkJiYgo1AVsSVosFrS2tmLXrl1e2+12O5qbm2G322Gz2VBWVoaFhQVJKQPfq1ev\nZEeQjmPAMQA4BgDH4HcEbEkmJibCbDb7bG9ra8OxY8cQEREBo9GI+Ph49PX1SUgYHPhLwTEAOAYA\nxwDgGPyOgC1JNRMTEzAYDJ51g8EAl8slMREREYWqFTL/cKvViqmpKZ/tNTU1OHjw4JJ/jk6n+z9j\nERER/U0EuN27d4v+/n7Pem1traitrfWs79u3T/T29vq8z2QyCQBcuHDhwoWLZzGZTMvqIKlnkksl\nhPB8nZeXh+PHj+PcuXNwuVwYHh7G9u3bfd4zMjLiz4hERBSCAvaeZGtrK+Li4tDb24sDBw4gNzcX\nAJCUlISjR48iKSkJubm5uHv3Li+3EhHRH6ETP5+mERERkUfAnkn+Lj6EwFtlZSUMBgPS09ORnp4O\nm80mO5Lf2Gw2JCYmIiEhAXV1dbLjSGE0GpGamor09PRf3pYIRSdPnoRer4fFYvFs+/jxI6xWK8xm\nM/bu3YvZ2VmJCf3jV+OgpePB2NgYsrOzkZycjJSUFNy6dQvAb+wLvzmfJmB9+PBBDA0N+Uz4ef/+\nvVAURbjdbuFwOITJZBI/fvyQmNQ/KisrRX19vewYfvf9+3dhMpmEw+EQbrdbKIoi7Ha77Fh+ZzQa\nxczMjOwYfvX69WsxMDAgUlJSPNsqKipEXV2dEEKIK1euiAsXLsiK5ze/GgctHQ8mJyfF4OCgEEKI\nubk5YTabhd1uX/a+EHJnknwIgS+hwSvqfX19iI+Ph9FoREREBAoLC9HW1iY7lhRa+/yzsrKwZs0a\nr23t7e0oLi4GABQXF+P58+cyovnVr8YB0M7+EB0dKN/+XgAABIdJREFUjbS0NADAypUrsWXLFrhc\nrmXvCyFXkmq0/BCC27dvQ1EUlJaWauIyEwC4XC7ExcV51rX0ef9Mp9Nhz549yMjIwP3792XHkWZ6\nehp6vR4AoNfrMT09LTmRPFo8HjidTgwODmLHjh3L3heCsiStVissFovP8uLFi2X9nFCZFas2Hu3t\n7Th9+jQcDgfevn2LmJgYlJeXy47rF6Hy2f5Xb968weDgIDo7O9HQ0ICenh7ZkaTT6XSa3T+0eDz4\n/PkzCgoKcPPmTaxatcrrtaXsC0Hx7yQX6+7uXvZ7YmNjMTY25lkfHx9HbGzs/xlLmqWOx6lTp5b1\nJKNgtvjzHhsb87qSoBUxMTEAgPXr1+Pw4cPo6+tDVlaW5FT+p9frMTU1hejoaExOTmLDhg2yI0nx\n899bC8eDb9++oaCgAEVFRTh06BCA5e8LQXkmuVRi0UMInj59CrfbDYfDofoQglAzOTnp+bq1tdVr\nplsoy8jIwPDwMJxOJ9xuN5qbm5GXlyc7ll99+fIFc3NzAID5+Xl0dXVp5vNfLC8vD01NTQCApqYm\nzwFTa7R0PBBCoLS0FElJSThz5oxn+7L3hT85u0iGlpYWYTAYRFRUlNDr9WL//v2e16qrq4XJZBKb\nN28WNptNYkr/KSoqEhaLRaSmpor8/HwxNTUlO5LfdHR0CLPZLEwmk6ipqZEdx+9GR0eFoihCURSR\nnJysmTEoLCwUMTExIiIiQhgMBvHw4UMxMzMjcnJyREJCgrBareLTp0+yY/5xi8ehsbFRU8eDnp4e\nodPphKIoIi0tTaSlpYnOzs5l7wt8mAAREZGKkL7cSkRE9F+wJImIiFSwJImIiFSwJImIiFSwJImI\niFSwJImIiFSwJImIiFSwJImIiFQE5bNbichXf38/Hj9+jPDwcDidTjx48AD37t3D7OwsXC4Xqqqq\nsGnTJtkxiYIKS5IoBIyOjuLRo0e4c+cOAKCkpASZmZloamrCwsICsrKysHXrVpw9e1ZyUqLgwpIk\nCgH19fW4evWqZ31+fh5r165FZmYmxsfHUV5ejpKSEnkBiYIUn91KFAKcTieMRqNn3WAw4MSJE7h8\n+bK8UEQhgBN3iELAzwU5NDSEiYkJZGdnywtEFCJYkkQh5uXLl4iMjMTOnTs920ZHR72+Z25uDkeO\nHPH6j6mJyBdLkijIff36FefPn8e7d+8AAN3d3VAUBVFRUQCAhYUFXLt2zfP9jY2NuHHjBlpaWsC7\nLUT/jBN3iIJcR0cHrl+/jm3btmHFihUYGRnB6tWrPa9XV1d7TdopLS0FAFRVVfk7KlHQ4cQdoiA3\nMzODiooKrFu3DmFhYbh06RLKysoQFRWFyMhI5OfnIycnx+d9YWFhcDqd2Lhxo4TURMGBJUmkUSxJ\non/He5JEREQqWJJEREQqWJJEGsa7LUT/jCVJpDFPnjxBWVkZdDodLl68iIaGBtmRiAIWJ+4QERGp\n4JkkERGRCpYkERGRCpYkERGRCpYkERGRCpYkERGRCpYkERGRCpYkERGRCpYkERGRCpYkERGRir8A\nl0Nmt+9RudAAAAAASUVORK5CYII=\n", - "text": [ - "" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# 1a)\n", - "\n", - "\n", - "\n", - "\n", - "Let \n", - "\n", - "$p([x_1, x_2]^t |\\omega_1) \u223c N([0,0]^t,4I), \\\\\n", - "p([x_1, x_2]^t |\\omega_2) \u223c N([10,0]^t,4I), \\\\\n", - "p([x_1, x_2]^t |\\omega_3) \u223c N([5,5]^t,5I),$\n", - "\n", - "where $I$ is the $2 \\times 2$ identity matrix. What is the error rate on the test set when the Bayesian decision rule is employed for classification?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Bayes' Rule:\n", - "\n", - "\n", - "$ P(\\omega_j|x) = \\frac{p(x|\\omega_j) * P(\\omega_j)}{p(x)}$ \n", - "\n", - "with **prior probabilities**: $P(\\omega_1) \\; = P(\\omega_2) \\; = P(\\omega_3)\\; = \\frac{1}{3}$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### Discriminant Functions:\n", - "\n", - "The **objective function** is to maximize the discriminant function, which we define as the posterior probability here to perform a **minimum-error classification** (Bayes classifier).\n", - "\n", - "$ g_1(\\pmb x) = P(\\omega_1 | \\; \\pmb{x}), \\quad g_2(\\pmb{x}) = P(\\omega_2 | \\; \\pmb{x}), \\quad g_3(\\pmb{x}) = P(\\omega_2 | \\; \\pmb{x})$\n", - "\n", - "$ \\Rightarrow g_1(\\pmb{x}) = P(\\pmb{x}\\;|\\;\\omega_1) \\;\\cdot\\; P(\\omega_1) \\quad | \\; ln \\\\\n", - "\\quad g_2(\\pmb x) = P(\\pmb{x}\\;|\\;\\omega_2) \\;\\cdot\\; P(\\omega_2) \\quad | \\; ln \\\\\n", - "\\quad g_3(\\pmb x) = P(\\pmb{x}\\;|\\;\\omega_3) \\;\\cdot\\; P(\\omega_3) \\quad | \\; ln$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can drop the prior probabilities (since we have equal priors in this case): \n", - "\n", - "$ \\Rightarrow g_1(\\pmb{x}) = ln(P(\\pmb{x}\\;|\\;\\omega_1)) \\\\\n", - "\\quad g_2(\\pmb{x}) = ln(P(\\pmb{x}\\;|\\;\\omega_2)) \\\\\n", - "\\quad g_3(\\pmb{x}) = ln(P(\\pmb{x}\\;|\\;\\omega_3))$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The equations for the general multivariate normal case with arbitrary covariance matrices (i.e., different covariance matrices for each case):" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$ \\Rightarrow g_1(\\pmb{x}) = \\pmb{x}^{\\,t} \\bigg( - \\frac{1}{2} \\Sigma_1^{-1} \\bigg) \\pmb{x} + \\bigg( \\Sigma_1^{-1} \\pmb{\\mu}_{\\,1}\\bigg)^t \\pmb x + \\bigg( -\\frac{1}{2} \\pmb{\\mu}_{\\,1}^{\\,t} \\Sigma_{1}^{-1} \\pmb{\\mu}_{\\,1} -\\frac{1}{2} ln(|\\Sigma_1|)\\bigg) \\\\\n", - "\\quad g_2(\\pmb{x}) = \\pmb{x}^{\\,t} \\bigg( - \\frac{1}{2} \\Sigma_2^{-1} \\bigg) \\pmb{x} + \\bigg( \\Sigma_2^{-1} \\pmb{\\mu}_{\\,2}\\bigg)^t \\pmb x + \\bigg( -\\frac{1}{2} \\pmb{\\mu}_{\\,2}^{\\,t} \\Sigma_{2}^{-1} \\pmb{\\mu}_{\\,2} -\\frac{1}{2} ln(|\\Sigma_2|)\\bigg) \\\\\n", - "\\quad g_3(\\pmb{x}) = \\pmb{x}^{\\,t} \\bigg( - \\frac{1}{2} \\Sigma_3^{-1} \\bigg) \\pmb{x} + \\bigg( \\Sigma_3^{-1} \\pmb{\\mu}_{\\,3}\\bigg)^t \\pmb x + \\bigg( -\\frac{1}{2} \\pmb{\\mu}_{\\,3}^{\\,t} \\Sigma_{3}^{-1} \\pmb{\\mu}_{\\,3} -\\frac{1}{2} ln(|\\Sigma_3|)\\bigg)$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "**Let:**\n", - "\n", - "$\\pmb{W}_{i} = - \\frac{1}{2} \\Sigma_i^{-1}\\\\\n", - "\\pmb{w}_i = \\Sigma_i^{-1} \\pmb{\\mu}_{\\,i}\\\\\n", - "\\omega_{i0} = \\bigg( -\\frac{1}{2} \\pmb{\\mu}_{\\,i}^{\\,t}\\; \\Sigma_{i}^{-1} \\pmb{\\mu}_{\\,i} -\\frac{1}{2} ln(|\\Sigma_i|)\\bigg)$\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$ \\pmb{W}_{1} = \\bigg[ \n", - "\\begin{array}{cc}\n", - "-(1/8) & 0\\\\\n", - "0 & -(1/8) \\\\\n", - "\\end{array} \\bigg] $" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$ \\pmb{w}_{1} = \\bigg[ \n", - "\\begin{array}{cc}\n", - "(1/4) & 0\\\\\n", - "0 & (1/4) \\\\\n", - "\\end{array} \\bigg] \\cdot \\bigg[ \n", - "\\begin{array}{c}\n", - "0 \\\\\n", - "0 \\\\\n", - "\\end{array} \\bigg] = \\bigg[ \n", - "\\begin{array}{c}\n", - "0 \\\\\n", - "0 \\\\\n", - "\\end{array} \\bigg]$ " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$ \\omega_{10} = -\\frac{1}{2} [0 \\quad 0 ] \\bigg[ \n", - "\\begin{array}{cc}\n", - "(1/4) & 0\\\\\n", - "0 & (1/4) \\\\\n", - "\\end{array} \\bigg] \\cdot \\bigg[ \n", - "\\begin{array}{c}\n", - "0 \\\\\n", - "0 \\\\\n", - "\\end{array} \\bigg] \n", - "- ln(4) = -ln(4)$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "with $ \\quad g_1(\\pmb{x}) = \\pmb{x}^{\\,t} \\bigg( - \\frac{1}{2} \\Sigma_1^{-1} \\bigg) \\pmb{x} + \\bigg( \\Sigma_1^{-1} \\pmb{\\mu}_{\\,1}\\bigg)^t \\pmb x + \\bigg( -\\frac{1}{2} \\pmb{\\mu}_{\\,1}^{\\,t} \\Sigma_{1}^{-1} \\pmb{\\mu}_{\\,1} -\\frac{1}{2} ln(|\\Sigma_1|)\\bigg) $" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$ \\Rightarrow g_1(\\pmb{x}) = \\pmb{x}^{t} \\bigg[ \n", - "\\begin{array}{cc}\n", - "-(1/8) & 0\\\\\n", - "0 & -(1/8) \\\\\n", - "\\end{array} \\bigg] \\pmb{x} + [0 \\quad 0 ] \\; \\pmb x - ln(4) \n", - "= \\pmb{x}^{t} (-\\frac{1}{8} \\; \\pmb{x}) - 2ln(2) $\n", - "\n", - "$ \\Rightarrow g_1(\\pmb{x}) = - \\frac{1}{8} (x^{2}_1 + x^{2}_2 ) - 2ln(2)$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$ \\pmb{W}_{2} = \\bigg[ \n", - "\\begin{array}{cc}\n", - "-(1/8) & 0\\\\\n", - "0 & -(1/8) \\\\\n", - "\\end{array} \\bigg] $" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$ \\pmb{w}_{2} = \\bigg[ \n", - "\\begin{array}{cc}\n", - "(1/4) & 0\\\\\n", - "0 & (1/4) \\\\\n", - "\\end{array} \\bigg] \\cdot \\bigg[ \n", - "\\begin{array}{c}\n", - "10 \\\\\n", - "0 \\\\\n", - "\\end{array} \\bigg] = \\bigg[ \n", - "\\begin{array}{c}\n", - "2.5 \\\\\n", - "0 \\\\\n", - "\\end{array} \\bigg]$ " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$ \\omega_{20} = -\\frac{1}{2} [10 \\quad 0 ] \\bigg[ \n", - "\\begin{array}{cc}\n", - "(1/4) & 0\\\\\n", - "0 & (1/4) \\\\\n", - "\\end{array} \\bigg] \\cdot \\bigg[ \n", - "\\begin{array}{c}\n", - "10 \\\\\n", - "0 \\\\\n", - "\\end{array} \\bigg] \n", - "- ln(4) = -12.5-ln(4)$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "with $ \\quad g_2(\\pmb{x}) = \\pmb{x}^{\\,t} \\bigg( - \\frac{1}{2} \\Sigma_2^{-1} \\bigg) \\pmb{x} + \\bigg( \\Sigma_2^{-1} \\pmb{\\mu}_{\\,2}\\bigg)^t \\pmb x + \\bigg( -\\frac{1}{2} \\pmb{\\mu}_{\\,2}^{\\,t} \\Sigma_{2}^{-1} \\pmb{\\mu}_{\\,2} -\\frac{1}{2} ln(|\\Sigma_2|)\\bigg) $" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$ \\Rightarrow g_2(\\pmb{x}) = \\pmb{x}^{t} \\bigg[ \n", - "\\begin{array}{cc}\n", - "-(1/8) & 0\\\\\n", - "0 & -(1/8) \\\\\n", - "\\end{array} \\bigg] \\pmb{x} + [2.5 \\quad 0 ]\\;\\pmb x - 12.5 - ln(4) \n", - "= \\pmb{x}^{t} \\cdot( -\\frac{1}{8} \\; \\pmb{x}) + 2.5 x_1 - 12.5 - 2ln(2) $\n", - "\n", - "$ \\Rightarrow g_2(\\pmb{x}) = - \\frac{1}{8} (x^{2}_1 + x^{2}_2) +2.5 x_1 - 12.5 - 2ln(2)$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$ \\pmb{W}_{3} = \\bigg[ \n", - "\\begin{array}{cc}\n", - "-(1/10) & 0\\\\\n", - "0 & -(1/10) \\\\\n", - "\\end{array} \\bigg] $" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$ \\pmb{w}_{3} = \\bigg[ \n", - "\\begin{array}{cc}\n", - "(1/5) & 0\\\\\n", - "0 & (1/5) \\\\\n", - "\\end{array} \\bigg] \\cdot \\bigg[ \n", - "\\begin{array}{c}\n", - "5 \\\\\n", - "5 \\\\\n", - "\\end{array} \\bigg] = \\bigg[ \n", - "\\begin{array}{c}\n", - "1 \\\\\n", - "1 \\\\\n", - "\\end{array} \\bigg]$ " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "$ \\omega_{30} = -\\frac{1}{2} [5 \\quad 5 ] \\bigg[ \n", - "\\begin{array}{cc}\n", - "(1/5) & 0\\\\\n", - "0 & (1/5) \\\\\n", - "\\end{array} \\bigg] \\cdot \\bigg[ \n", - "\\begin{array}{c}\n", - "5 \\\\\n", - "5 \\\\\n", - "\\end{array} \\bigg] \n", - "- ln(5) = 5 -ln(5)$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "with $ \\quad g_3(\\pmb{x}) = \\pmb{x}^{\\,t} \\bigg( - \\frac{1}{2} \\Sigma_3^{-1} \\bigg) \\pmb{x} + \\bigg( \\Sigma_3^{-1} \\pmb{\\mu}_{\\,3}\\bigg)^t \\pmb x + \\bigg( -\\frac{1}{2} \\pmb{\\mu}_{\\,3}^{\\,t} \\Sigma_{3}^{-1} \\pmb{\\mu}_{\\,3} -\\frac{1}{2} ln(|\\Sigma_3|)\\bigg)$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$ \\Rightarrow g_3(\\pmb{x}) = \\pmb{x}^{t} \\bigg[ \n", - "\\begin{array}{cc}\n", - "-(1/10) & 0\\\\\n", - "0 & -(1/10) \\\\\n", - "\\end{array} \\bigg] \\pmb{x} + [1 \\quad 1 ]\\; \\pmb x + 5 - ln(5) \n", - "= \\pmb{x}^{t} \\cdot ( - \\frac{1}{10})\\; \\pmb x )+ \\; {x_1} + {x_2} + 5 - ln(5) $\n", - "\n", - "$ \\Rightarrow g_3(\\pmb{x}) = - \\frac{1}{10} (x^{2}_1 + x^{2}_2)+ \\; {x_1} + {x_2} + 5 - ln(5)$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### Decision Boundaries" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$ g_1(\\pmb x) = g_2(\\pmb x) \\\\\n", - "\\Rightarrow g_1(\\pmb x) - g_2(\\pmb x) = 0 \\\\\n", - "\\Rightarrow 12.5 - 2.5x_1 = 0 \\\\\n", - "\\Rightarrow x_1 = 5$\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### Implementing the Discriminant Function for arbitrary covariance matrices" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def discriminant_function(x_vec, cov_mat, mu_vec):\n", - " \"\"\"\n", - " Calculates the value of the discriminant function for a dx1 dimensional\n", - " sample given the covariance matrix and mean vector.\n", - " \n", - " Keyword arguments:\n", - " x_vec: A dx1 dimensional numpy array representing the sample.\n", - " cov_mat: numpy array of the covariance matrix.\n", - " mu_vec: dx1 dimensional numpy array of the sample mean.\n", - " \n", - " Returns a float value as result of the discriminant function.\n", - " \n", - " \"\"\"\n", - " W_i = (-1/2) * np.linalg.inv(cov_mat)\n", - " assert(W_i.shape[0] > 1 and W_i.shape[1] > 1), 'W_i must be a matrix'\n", - " \n", - " w_i = np.linalg.inv(cov_mat).dot(mu_vec)\n", - " assert(w_i.shape[0] > 1 and w_i.shape[1] == 1), 'w_i must be a column vector'\n", - " \n", - " omega_i_p1 = (((-1/2) * (mu_vec).T).dot(np.linalg.inv(cov_mat))).dot(mu_vec)\n", - " omega_i_p2 = (-1/2) * np.log(np.linalg.det(cov_mat))\n", - " omega_i = omega_i_p1 - omega_i_p2\n", - " assert(omega_i.shape == (1, 1)), 'omega_i must be a scalar'\n", - " \n", - " g = ((x_vec.T).dot(W_i)).dot(x_vec) + (w_i.T).dot(x_vec) + omega_i\n", - " return float(g)" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 56 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### Implementing the decision rule" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import operator\n", - "\n", - "def classify_data(x_vec, g, mu_vecs, cov_mats):\n", - " \"\"\"\n", - " Classifies an input sample into 1 out of 3 classes determined by\n", - " maximizing the discriminant function g_i().\n", - " \n", - " Keyword arguments:\n", - " x_vec: A dx1 dimensional numpy array representing the sample.\n", - " g: The discriminant function.\n", - " mu_vecs: A list of mean vectors as input for g.\n", - " cov_mats: A list of covariance matrices as input for g.\n", - " \n", - " Returns a tuple (g_i()_value, class label).\n", - " \n", - " \"\"\"\n", - " assert(len(mu_vecs) == len(cov_mats)), 'Number of mu_vecs and cov_mats must be equal.'\n", - " \n", - " g_vals = []\n", - " for m,c in zip(mu_vecs, cov_mats): \n", - " g_vals.append(g(x_vec, mu_vec=m, cov_mat=c))\n", - " \n", - " max_index, max_value = max(enumerate(g_vals), key=operator.itemgetter(1))\n", - " return (max_value, max_index + 1)" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 55 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### Classifying data and calculating the empirical error" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Known parameters\n", - "cov_mat_1 = 4 * np.eye(2,2)\n", - "mu_vec_1 = np.array([[0],[0]])\n", - "\n", - "cov_mat_2 = 4 * np.eye(2,2)\n", - "mu_vec_2 = np.array([[10],[0]])\n", - "\n", - "cov_mat_3 = 5 * np.eye(2,2)\n", - "mu_vec_3 = np.array([[5],[5]])" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 11 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### Empirical error of the training dataset" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Empirical Error of the training set\n", - "\n", - "import prettytable\n", - "\n", - "class1_as_1 = 0\n", - "class1_as_2 = 0\n", - "class1_as_3 = 0\n", - "for row in train_set[train_set[:,2] == 1]:\n", - " g = classify_data(\n", - " row[0:2], \n", - " discriminant_function,\n", - " [mu_vec_1, mu_vec_2, mu_vec_3],\n", - " [cov_mat_1, cov_mat_2, cov_mat_3]\n", - " )\n", - " if g[1] == 2:\n", - " class1_as_2 += 1\n", - " elif g[1] == 3:\n", - " class1_as_3 += 1\n", - " else:\n", - " class1_as_1 += 1\n", - "\n", - "class2_as_1 = 0\n", - "class2_as_2 = 0\n", - "class2_as_3 = 0\n", - "for row in train_set[train_set[:,2] == 2]:\n", - " g = classify_data(\n", - " row[0:2], \n", - " discriminant_function,\n", - " [mu_vec_1, mu_vec_2, mu_vec_3],\n", - " [cov_mat_1, cov_mat_2, cov_mat_3]\n", - " )\n", - " if g[1] == 2:\n", - " class2_as_2 += 1\n", - " elif g[1] == 3:\n", - " class2_as_3 += 1\n", - " else:\n", - " class2_as_1 += 1\n", - "\n", - "class3_as_1 = 0\n", - "class3_as_2 = 0\n", - "class3_as_3 = 0\n", - "for row in train_set[train_set[:,2] == 3]:\n", - " g = classify_data(\n", - " row[0:2], \n", - " discriminant_function,\n", - " [mu_vec_1, mu_vec_2, mu_vec_3],\n", - " [cov_mat_1, cov_mat_2, cov_mat_3]\n", - " )\n", - " if g[1] == 2:\n", - " class3_as_2 += 1\n", - " elif g[1] == 3:\n", - " class3_as_3 += 1\n", - " else:\n", - " class3_as_1 += 1" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 63 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import prettytable\n", - "\n", - "train_conf_mat = prettytable.PrettyTable([\"test dataset\", \"w1 (predicted)\", \"w2 (predicted)\", \"w3 (predicted)\"])\n", - "train_conf_mat.add_row([\"w1 (actual)\",class1_as_1, class1_as_2, class1_as_3])\n", - "train_conf_mat.add_row([\"w2 (actual)\",class2_as_1, class2_as_2, class2_as_3])\n", - "train_conf_mat.add_row([\"w3 (actual)\",class3_as_1, class3_as_2, class3_as_3])\n", - "print(train_conf_mat)\n", - "misclass = train_set.shape[0] - class1_as_1 - class2_as_2 - class3_as_3\n", - "print('Empirical Error: {:.2f} ({:.2f}%)'.format(misclass / train_set.shape[0], misclass / train_set.shape[0] * 100))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "+--------------+----------------+----------------+----------------+\n", - "| test dataset | w1 (predicted) | w2 (predicted) | w3 (predicted) |\n", - "+--------------+----------------+----------------+----------------+\n", - "| w1 (actual) | 327 | 3 | 20 |\n", - "| w2 (actual) | 0 | 323 | 27 |\n", - "| w3 (actual) | 7 | 10 | 333 |\n", - "+--------------+----------------+----------------+----------------+\n", - "Empirical Error: 0.06 (6.38%)\n" - ] - } - ], - "prompt_number": 37 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### Empirical error of the test dataset" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Empirical Error of the test dataset\n", - "\n", - "import prettytable\n", - "\n", - "class1_as_1 = 0\n", - "class1_as_2 = 0\n", - "class1_as_3 = 0\n", - "for row in test_set[test_set[:,2] == 1]:\n", - " g = classify_data(\n", - " row[0:2], \n", - " discriminant_function,\n", - " [mu_vec_1, mu_vec_2, mu_vec_3],\n", - " [cov_mat_1, cov_mat_2, cov_mat_3]\n", - " )\n", - " if g[1] == 2:\n", - " class1_as_2 += 1\n", - " elif g[1] == 3:\n", - " class1_as_3 += 1\n", - " else:\n", - " class1_as_1 += 1\n", - "\n", - "class2_as_1 = 0\n", - "class2_as_2 = 0\n", - "class2_as_3 = 0\n", - "for row in test_set[test_set[:,2] == 2]:\n", - " g = classify_data(\n", - " row[0:2], \n", - " discriminant_function,\n", - " [mu_vec_1, mu_vec_2, mu_vec_3],\n", - " [cov_mat_1, cov_mat_2, cov_mat_3]\n", - " )\n", - " if g[1] == 2:\n", - " class2_as_2 += 1\n", - " elif g[1] == 3:\n", - " class2_as_3 += 1\n", - " else:\n", - " class2_as_1 += 1\n", - "\n", - "class3_as_1 = 0\n", - "class3_as_2 = 0\n", - "class3_as_3 = 0\n", - "for row in test_set[test_set[:,2] == 3]:\n", - " g = classify_data(\n", - " row[0:2], \n", - " discriminant_function,\n", - " [mu_vec_1, mu_vec_2, mu_vec_3],\n", - " [cov_mat_1, cov_mat_2, cov_mat_3]\n", - " )\n", - " if g[1] == 2:\n", - " class3_as_2 += 1\n", - " elif g[1] == 3:\n", - " class3_as_3 += 1\n", - " else:\n", - " class3_as_1 += 1" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 64 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import prettytable\n", - "\n", - "test_conf_mat = prettytable.PrettyTable([\"test dataset\", \"w1 (predicted)\", \"w2 (predicted)\", \"w3 (predicted)\"])\n", - "test_conf_mat.add_row([\"w1 (actual)\",class1_as_1, class1_as_2, class1_as_3])\n", - "test_conf_mat.add_row([\"w2 (actual)\",class2_as_1, class2_as_2, class2_as_3])\n", - "test_conf_mat.add_row([\"w3 (actual)\",class3_as_1, class3_as_2, class3_as_3])\n", - "print(test_conf_mat)\n", - "misclass = test_set.shape[0] - class1_as_1 - class2_as_2 - class3_as_3\n", - "print('Empirical Error: {:.2f} ({:.2f}%)'.format(misclass / test_set.shape[0], misclass / test_set.shape[0] * 100))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "+--------------+----------------+----------------+----------------+\n", - "| test dataset | w1 (predicted) | w2 (predicted) | w3 (predicted) |\n", - "+--------------+----------------+----------------+----------------+\n", - "| w1 (actual) | 136 | 2 | 12 |\n", - "| w2 (actual) | 1 | 136 | 13 |\n", - "| w3 (actual) | 2 | 6 | 142 |\n", - "+--------------+----------------+----------------+----------------+\n", - "Empirical Error: 0.08 (8.00%)\n" - ] - } - ], - "prompt_number": 40 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "
\n", - "
\n", - "\n", - "# 1b)\n", - "\n", - "Suppose $p([x_1,x_2]^t\\;|\\;\\omega_i) \\;\u223c \\; N(\\pmb \\mu_i,\\pmb \\Sigma_i), \\; i = 1,2,3$, where the $\\pmb \\mu_i$\u2019s and $\\pmb \\Sigma_i$\u2019s are unknown. Use the training set to compute the MLE of the \u03bci\u2019s and the $\\pmb \\Sigma_i$\u2019s. What is the error rate on the test set when the Bayes decision rule using the estimated parameters is employed for classification?\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## About the Maximum Likelihood Estimate (MLE)\n", - "\n", - "In contrast to task one, now we only know the number of parameters for the class conditional densities $p (\\; \\pmb x \\; | \\; \\omega_i)$ and we want to use a Maximum Likelihood Estimatation (MLE) to estimate the quantities of these parameters from the training data.\n", - "\n", - "\n", - "Given the information about the form of the model - the data is normal distributed - the 2 parameters to be estimated are $\\mu_i$ and $\\Sigma_i$, which are summarized by the \n", - "parameter vector $\\pmb \\theta_i = \\bigg[ \\begin{array}{c}\n", - "\\ \\theta_{i1} \\\\\n", - "\\ \\theta_{i2} \\\\\n", - "\\end{array} \\bigg]=\n", - "\\bigg[ \\begin{array}{c}\n", - "\\pmb \\mu_i \\\\\n", - "\\pmb \\Sigma_i \\\\\n", - "\\end{array} \\bigg]$ " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For the Maximum Likelihood Estimate (MLE), we assume that we have a set of samles $D = \\left\\{ \\pmb x_1, \\pmb x_2,..., \\pmb x_n \\right\\} $ that are *i.i.d.* (independent and identically distributed, drawn with probability $p(\\pmb x \\; | \\; \\omega_i, \\; \\pmb \\theta_i) $). \n", - "Thus, we can **work with each class separately** and omit the class labels, so that we write the probability density as $p(\\pmb x \\; | \\; \\pmb \\theta)$ " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "##### Likelihood of $ \\pmb \\theta $" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Thus, the probability of observing $D = \\left\\{ \\pmb x_1, \\pmb x_2,..., \\pmb x_n \\right\\} $ is: \n", - "
\n", - "
\n", - "$p(D\\; | \\; \\pmb \\theta\\;) = p(\\pmb x_1 \\; | \\; \\pmb \\theta\\;)\\; \\cdot \\; p(\\pmb x_2 \\; | \\;\\pmb \\theta\\;) \\; \\cdot \\;... \\; p(\\pmb x_n \\; | \\; \\pmb \\theta\\;) = \\prod_{k=1}^{n} \\; p(\\pmb x_k \\pmb \\; | \\; \\pmb \\theta \\;)$ \n", - "
\n", - "Where $p(D\\; | \\; \\pmb \\theta\\;)$ is also called the ***likelihood of $\\pmb\\ \\theta$***." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We are given the information that $p([x_1,x_2]^t) \\;\u223c \\; N(\\pmb \\mu,\\pmb \\Sigma) $ (remember that we dropped the class labels, since we are working with every class separately)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And the mutlivariate normal density is given as:\n", - "$\\quad \\quad p(\\pmb x) = \\frac{1}{(2\\pi)^{d/2} \\; |\\Sigma|^{1/2}} exp \\bigg[ -\\frac{1}{2}(\\pmb x - \\pmb \\mu)^t \\Sigma^{-1}(\\pmb x - \\pmb \\mu) \\bigg]$\n", - "\n", - "So that \n", - "$p(D\\; | \\; \\pmb \\theta\\;) = \\prod_{k=1}^{n} \\; p(\\pmb x_k \\pmb \\; | \\; \\pmb \\theta \\;) = \\prod_{k=1}^{n} \\; \\frac{1}{(2\\pi)^{d/2} \\; |\\Sigma|^{1/2}} exp \\bigg[ -\\frac{1}{2}(\\pmb x - \\pmb \\mu)^t \\Sigma^{-1}(\\pmb x - \\pmb \\mu) \\bigg]$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Since it is easier to work with the logarithm, we define the log-likelihood function $l(\\pmb \\theta)$ as \n", - "$l(\\pmb \\theta) \\equiv ln\\; p(D\\; | \\; \\pmb \\theta\\;) = \\sum\\limits_{k=1}^{n} \\;ln\\; p(\\pmb x_k \\pmb \\; | \\; \\pmb \\theta \\;)$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "and the log of the multivariate density" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$ l(\\pmb\\theta) = \\sum\\limits_{k=1}^{n} - \\frac{1}{2}(\\pmb x - \\pmb \\mu)^t \\pmb \\Sigma^{-1} \\; (\\pmb x - \\pmb \\mu) - \\frac{d}{2} \\; ln \\; 2\\pi - \\frac{1}{2} \\;ln \\; |\\pmb\\Sigma|$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "#### Maximum Likelihood Estimate (MLE)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In order to obtain the MLE $\\boldsymbol{\\hat{\\theta}}$, we maximize $l (\\pmb \\theta)$, which can be done via differentiation:\n", - "\n", - "with \n", - "$\\nabla_{\\pmb \\theta} \\equiv \\begin{bmatrix} \n", - "\\frac{\\partial \\; }{\\partial \\; \\theta_1} \\\\ \n", - "\\frac{\\partial \\; }{\\partial \\; \\theta_2}\n", - "\\end{bmatrix} = \\begin{bmatrix} \n", - "\\frac{\\partial \\; }{\\partial \\; \\pmb \\mu} \\\\ \n", - "\\frac{\\partial \\; }{\\partial \\; \\pmb \\sigma}\n", - "\\end{bmatrix}$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$\\nabla_{\\pmb \\theta} l = \\sum\\limits_{k=1}^n \\nabla_{\\pmb \\theta} \\;ln\\; p(\\pmb x| \\pmb \\theta) = 0 $" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## MLE of the mean vector $\\pmb \\mu$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The MLE of the parameter $\\pmb\\mu$ is given by the equation: \n", - "${\\hat{\\pmb\\mu}} = \\frac{1}{n} \\sum\\limits_{k=1}^{n} \\pmb x_k$" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import prettytable\n", - "\n", - "mu_est_1 = sum(train_set[train_set[:,2] == 1])/len(train_set[train_set[:,2] == 1])\n", - "mu_est_1 = mu_est_1[0:2].reshape(2,1)\n", - "mu_est_2 = sum(train_set[train_set[:,2] == 2])/len(train_set[train_set[:,2] == 2])\n", - "mu_est_2 = mu_est_2[0:2].reshape(2,1)\n", - "mu_est_3 = sum(train_set[train_set[:,2] == 3])/len(train_set[train_set[:,2] == 3])\n", - "mu_est_3 = mu_est_3[0:2].reshape(2,1)\n", - "\n", - "\n", - "\n", - "mu_mle = prettytable.PrettyTable([\"\", \"mu_1\", \"mu_2\", \"mu_3\"])\n", - "mu_mle.add_row([\"MLE\",mu_est_1, mu_est_2, mu_est_3])\n", - "mu_mle.add_row([\"actual\",mu_vec_1, mu_vec_2, mu_vec_3])\n", - "mu_mle.add_row([\"actual\",mu_vec_1, mu_vec_2, mu_vec_3])\n", - "\n", - "print(mu_mle)\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "+--------+-----------------+----------------------+-----------------+\n", - "| | mu_1 | mu_2 | mu_3 |\n", - "+--------+-----------------+----------------------+-----------------+\n", - "| MLE | [[ 0.10432914] | [[ 9.90423086e+00] | [[ 5.11221657] |\n", - "| | [ 0.075356 ]] | [ -8.96057143e-03]] | [ 4.90776771]] |\n", - "| | | | |\n", - "| actual | [[0] | [[10] | [[5] |\n", - "| | [0]] | [ 0]] | [5]] |\n", - "+--------+-----------------+----------------------+-----------------+\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## MLE of the covariance matrix $\\pmb \\Sigma$\n", - "\n", - "The MLE of the parameter $\\pmb\\Sigma$ is given by the equation: " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "${\\hat{\\pmb\\Sigma}} = \\frac{1}{n} \\sum\\limits_{k=1}^{n} (\\pmb x_k - \\hat{\\mu})(\\pmb x_k - \\hat{\\mu})^t$" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import prettytable\n", - "\n", - "def mle_est_cov(x_samples, mu_est):\n", - " \"\"\"\n", - " Calculates the Maximum Likelihood Estimate for the covariance matrix.\n", - " \n", - " Keyword Arguments:\n", - " x_samples: np.array of the samples for 1 class, n x d dimensional \n", - " mu_est: np.array of the mean MLE, d x 1 dimensional\n", - " \n", - " Returns the MLE for the covariance matrix as d x d numpy array.\n", - " \n", - " \"\"\"\n", - " cov_est = np.zeros((2,2))\n", - " for x_vec in x_samples:\n", - " x_vec = x_vec.reshape(2,1)\n", - " assert(x_vec.shape == mu_est.shape), 'mean and x vector hmust be of equal shape'\n", - " cov_est += (x_vec - mu_est).dot((x_vec - mu_est).T)\n", - " return cov_est / len(x_samples)\n", - "\n", - "\n", - "class1_train_samples1 = train_set[train_set[:,2] == 1][:,0:2]\n", - "cov_est_1 = mle_est_cov(class1_train_samples1, mu_est_1)\n", - "\n", - "class1_train_samples2 = train_set[train_set[:,2] == 2][:,0:2]\n", - "cov_est_2 = mle_est_cov(class1_train_samples2, mu_est_2)\n", - "\n", - "class1_train_samples3 = train_set[train_set[:,2] == 3][:,0:2]\n", - "cov_est_3 = mle_est_cov(class1_train_samples3, mu_est_3)\n", - "\n", - "\n", - "\n", - "\n", - "cov_mle = prettytable.PrettyTable([\"\", \"covariance_matrix_1\", \"covariance_matrix_2\", \"covariance_matrix_3\"])\n", - "cov_mle.add_row([\"MLE\", cov_est_1, cov_est_2, cov_est_3])\n", - "cov_mle.add_row(['','','',''])\n", - "cov_mle.add_row([\"actual\", cov_mat_1, cov_mat_2, cov_mat_3])\n", - "\n", - "print(cov_mle)\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "+--------+-----------------------------+-----------------------------+-----------------------------+\n", - "| | covariance_matrix_1 | covariance_matrix_2 | covariance_matrix_3 |\n", - "+--------+-----------------------------+-----------------------------+-----------------------------+\n", - "| MLE | [[ 4.99133045 -0.09737531] | [[ 5.64913253 0.01850218] | [[ 3.94634287 -0.12715664] |\n", - "| | [-0.09737531 4.52491813]] | [ 0.01850218 4.79555152]] | [-0.12715664 4.22477661]] |\n", - "| | | | |\n", - "| actual | [[ 4. 0.] | [[ 4. 0.] | [[ 5. 0.] |\n", - "| | [ 0. 4.]] | [ 0. 4.]] | [ 0. 5.]] |\n", - "+--------+-----------------------------+-----------------------------+-----------------------------+\n" - ] - } - ], - "prompt_number": 58 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## Error on the test set using the estimated parameters\n", - "\n", - "Using the estimated parameters $\\pmb \\mu_i$ and $\\pmb \\Sigma_i$, which we obtained via MLE, we calculate the error on the test data set again. " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Empirical Error of the test dataset\n", - "import prettytable\n", - "\n", - "class1_as_1 = 0\n", - "class1_as_2 = 0\n", - "class1_as_3 = 0\n", - "for row in test_set[test_set[:,2] == 1]:\n", - " g = classify_data(\n", - " row[0:2], \n", - " discriminant_function,\n", - " [mu_est_1, mu_est_2, mu_est_3],\n", - " [cov_est_1, cov_est_2, cov_est_3]\n", - " )\n", - " if g[1] == 2:\n", - " class1_as_2 += 1\n", - " elif g[1] == 3:\n", - " class1_as_3 += 1\n", - " else:\n", - " class1_as_1 += 1\n", - "\n", - "class2_as_1 = 0\n", - "class2_as_2 = 0\n", - "class2_as_3 = 0\n", - "for row in test_set[test_set[:,2] == 2]:\n", - " g = classify_data(\n", - " row[0:2], \n", - " discriminant_function,\n", - " [mu_est_1, mu_est_2, mu_est_3],\n", - " [cov_est_1, cov_est_2, cov_est_3]\n", - " )\n", - " if g[1] == 2:\n", - " class2_as_2 += 1\n", - " elif g[1] == 3:\n", - " class2_as_3 += 1\n", - " else:\n", - " class2_as_1 += 1\n", - "\n", - "class3_as_1 = 0\n", - "class3_as_2 = 0\n", - "class3_as_3 = 0\n", - "for row in test_set[test_set[:,2] == 3]:\n", - " g = classify_data(\n", - " row[0:2], \n", - " discriminant_function,\n", - " [mu_est_1, mu_est_2, mu_est_3],\n", - " [cov_est_1, cov_est_2, cov_est_3]\n", - " )\n", - " if g[1] == 2:\n", - " class3_as_2 += 1\n", - " elif g[1] == 3:\n", - " class3_as_3 += 1\n", - " else:\n", - " class3_as_1 += 1 \n", - " \n", - "test_conf_mat = prettytable.PrettyTable([\"test dataset\", \"w1 (predicted)\", \"w2 (predicted)\", \"w3 (predicted)\"])\n", - "test_conf_mat.add_row([\"w1 (actual)\",class1_as_1, class1_as_2, class1_as_3])\n", - "test_conf_mat.add_row([\"w2 (actual)\",class2_as_1, class2_as_2, class2_as_3])\n", - "test_conf_mat.add_row([\"w3 (actual)\",class3_as_1, class3_as_2, class3_as_3])\n", - "print(test_conf_mat)\n", - "misclass = test_set.shape[0] - class1_as_1 - class2_as_2 - class3_as_3\n", - "print('Empirical Error: {:.2f} ({:.2f}%)'.format(misclass / test_set.shape[0], misclass / test_set.shape[0] * 100))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "+--------------+----------------+----------------+----------------+\n", - "| test dataset | w1 (predicted) | w2 (predicted) | w3 (predicted) |\n", - "+--------------+----------------+----------------+----------------+\n", - "| w1 (actual) | 141 | 0 | 9 |\n", - "| w2 (actual) | 0 | 145 | 5 |\n", - "| w3 (actual) | 10 | 3 | 137 |\n", - "+--------------+----------------+----------------+----------------+\n", - "Empirical Error: 0.06 (6.00%)\n" - ] - } - ], - "prompt_number": 65 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As we can see from the results, the empirical error on the test training set decreased from 8.00% to 6.00%." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -} \ No newline at end of file